
HP OpenVMS Linker Utility
Manual
Order Number: BA554-90004

July 2006

This manual describes the OpenVMS Linker utility. The linker creates
images containing binary code and data that run on OpenVMS I64,
Alpha, or VAX systems. These images are primarily executable images
activated at the DCL command line. The linker also creates shareable
images that can be called by executable or by other shareable images.

Revision/Update Information: This manual supersedes the HP
OpenVMS Linker Utility Manual,
Version 7.3

Software Version: OpenVMS I64 Version 8.3
OpenVMS Alpha Version 8.3

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

ZK4548

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xiii

Part I Introduction to the OpenVMS Linker

1 Introduction

1.1 Overview . 1–1
1.1.1 Terminology Used in this Manual . 1–1
1.1.2 Linker Overview . 1–2
1.1.3 Linker Functions . 1–4
1.1.4 Using the Linker . 1–5
1.2 Specifying Input to the Linker . 1–6
1.2.1 Object Modules as Linker Input Files . 1–8
1.2.2 Shareable Images as Linker Input Files . 1–8
1.2.2.1 Including a Shareable Image in a Link Operation 1–9
1.2.2.2 Installing a Shareable Image . 1–10
1.2.3 Library Files as Linker Input Files . 1–10
1.2.3.1 Creating a Library File . 1–10
1.2.3.2 Including a Library File in a Link Operation 1–11
1.2.4 Symbol Table Files as Linker Input Files (VAX Only) 1–12
1.2.5 Options Files as Linker Input Files . 1–13
1.3 Specifying Linker Output Files . 1–14
1.3.1 Creating an Executable Image . 1–15
1.3.2 Creating a Shareable Image . 1–16
1.3.3 Creating a System Image (Alpha and VAX) . 1–16
1.3.4 Creating a Symbol Table File . 1–16
1.3.5 Creating a Map File . 1–17
1.3.6 Creating a Debug Symbol File (I64 and Alpha) 1–17
1.4 Controlling a Link Operation . 1–18
1.4.1 Linker Qualifiers . 1–18
1.4.2 Link Options . 1–21
1.5 Linking for Different Architectures (Alpha and VAX) 1–23

Part II Linking on OpenVMS I64 Systems

iii

2 Understanding Symbol Resolution (I64)

2.1 Overview . 2–1
2.1.1 Types of Symbols . 2–1
2.1.1.1 Understanding Strong and Weak Symbols 2–2
2.1.1.2 Group Symbols . 2–2
2.1.1.3 The C Extern Common Model . 2–2
2.1.1.4 Tentative Definitions in C . 2–3
2.1.1.5 Considerations for C Language Extensions 2–4
2.1.2 Linker Symbol Resolution Processing . 2–4
2.2 Input File Processing for Symbol Resolution . 2–7
2.2.1 Processing Object Modules . 2–8
2.2.2 Processing Shareable Images . 2–12
2.2.2.1 Implicit Processing of Shareable Images . 2–13
2.2.3 Processing Library Files . 2–14
2.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier 2–14
2.2.3.2 Including Specific Modules from a Library Using the /INCLUDE

Qualifier . 2–15
2.2.3.3 Processing Default Libraries . 2–16
2.2.4 Processing Input Files Selectively . 2–16
2.3 Ensuring Correct Symbol Resolution . 2–17
2.3.1 Understanding Cluster Creation . 2–18
2.3.2 Controlling Cluster Creation . 2–19
2.3.2.1 Using the CLUSTER= Option to Control Clustering 2–19
2.3.2.2 Using the COLLECT= Option to Control Clustering 2–20
2.4 Resolving Symbols Defined in the OpenVMS Executive 2–20
2.5 Processing Weak and Strong Global Symbols . 2–22
2.5.1 Overview of Weak and Strong Global Symbol Processing 2–22
2.5.1.1 Strong Symbols . 2–22
2.5.1.2 VMS-Style Weak Symbols . 2–23
2.5.1.3 UNIX-Style Weak Symbols . 2–23
2.5.2 Strong and Weak Definitions . 2–23
2.5.3 Resolving Strong and Weak Symbols . 2–24
2.5.4 Creating and Using VMS-style Weak Symbols 2–25
2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and Group

Symbols . 2–25
2.6.1 Processing Group Symbols . 2–26
2.6.2 HP C++ Examples . 2–26
2.6.3 Compiler-Generated Symbols and Shareable Images 2–28
2.7 Understanding and Fixing DIFTYPE and RELODIFTYPE Linker

Conditions . 2–29

3 Understanding Image File Creation (I64)

3.1 Overview . 3–1
3.2 Creating Sections . 3–3
3.2.1 Sections Created by The Linker . 3–10
3.2.1.1 Sections for Relaxed Symbol Definitions . 3–10
3.2.1.2 Sections Embedded in Code Segments . 3–10
3.2.1.3 Short Data Sections . 3–12
3.2.1.4 Section for the Symbol Vector . 3–14
3.2.1.5 Sections that Contain Unwind Data . 3–14
3.3 Creating Segments . 3–15
3.3.1 Processing Clusters to Create Segments . 3–15
3.3.2 Combining Sections into Image Segments . 3–16

iv

3.3.3 Traditional OpenVMS Image Attribute Terms and ELF Terms 3–18
3.3.4 Processing Significant Section Attributes . 3–19
3.3.5 Allocating Memory for Segments . 3–25
3.3.6 Segment Attributes . 3–26
3.3.7 Controlling Segment Creation . 3–28
3.3.7.1 Modifying Section Attributes . 3–29
3.3.7.2 Alternate Way to Modify Section Attributes 3–30
3.3.7.3 Manipulating Cluster Creation . 3–30
3.3.7.4 Isolating a Section into a Segment . 3–31
3.4 Initializing an Image on I64 Systems . 3–31
3.4.1 Handling of Initialized Overlaid Sections . 3–32
3.4.2 Writing the Binary Contents of Segments . 3–33
3.4.3 Other Image Segments . 3–34
3.4.3.1 Unwind Segments . 3–34
3.4.3.2 Short Data Segment . 3–34
3.4.3.3 Signature Segment . 3–34
3.4.3.4 Dynamic Segment . 3–34
3.4.4 Keeping the Size of Image Files Manageable . 3–37
3.4.4.1 Controlling Demand-Zero Image Segment Creation on I64

Systems . 3–38
3.4.5 Creating ELF Sections in the Image File . 3–39
3.4.6 Writing the Main Output Files . 3–40

4 Creating Shareable Images (I64)

4.1 Overview of Creating Shareable Images on I64 Systems 4–1
4.2 Declaring Universal Symbols in I64 Shareable Images 4–2
4.2.1 Symbol Definitions Point to Shareable Image Sections 4–6
4.2.2 Creating Upwardly Compatible Shareable Images 4–7
4.2.3 Deleting Universal Symbols Without Disturbing Upward

Compatibility . 4–8
4.2.4 Creating Run-Time Kits . 4–8
4.2.5 Specifying an Alias Name for a Universal Symbol 4–9
4.3 Improving the Performance of Installed Shareable Images 4–10
4.4 Linking User-Written System Services . 4–10

5 Interpreting an Image Map File (I64)

5.1 Overview of I64 Linker Map . 5–1
5.2 Components of an I64 Image Map File . 5–3
5.2.1 Object and Image Synopsis . 5–4
5.2.2 Cluster Synopsis Section . 5–6
5.2.3 Image Segment Synopsis . 5–7
5.2.4 Program Section Synopsis Section . 5–10
5.2.5 Symbol Cross-Reference Section . 5–12
5.2.6 Symbols By Value Section . 5–13
5.2.7 Image Synopsis Section . 5–15
5.2.8 Link Run Statistics Section . 5–16
5.3 Shortened Names with Footnotes in the Cross-Reference 5–19
5.4 Translation Table for Mangled Names . 5–20

v

Part III Linking on OpenVMS Alpha and VAX Systems

6 Understanding Symbol Resolution (Alpha and VAX)

6.1 Overview . 6–1
6.1.1 Types of Symbols . 6–1
6.1.2 Linker Symbol Resolution Processing . 6–2
6.2 Input File Processing for Symbol Resolution . 6–5
6.2.1 Processing Object Modules . 6–6
6.2.2 Processing Shareable Images . 6–10
6.2.3 Processing Library Files . 6–11
6.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier 6–12
6.2.3.2 Including Specific Modules from a Library Using the /INCLUDE

Qualifier . 6–13
6.2.3.3 Processing Default Libraries . 6–13
6.2.3.4 Open Systems Library Support . 6–14
6.2.4 Processing Input Files Selectively . 6–14
6.3 Ensuring Correct Symbol Resolution . 6–16
6.3.1 Understanding Cluster Creation . 6–16
6.3.2 Controlling Cluster Creation . 6–18
6.3.2.1 Using the CLUSTER= Option to Control Clustering 6–18
6.3.2.2 Using the COLLECT= Option to Control Clustering 6–18
6.4 Resolving Symbols Defined in the OpenVMS Executive 6–19
6.5 Defining Weak and Strong Global Symbols . 6–20

7 Understanding Image File Creation (Alpha and VAX)

7.1 Overview of Creating Images on Alpha/VAX Systems 7–1
7.2 Creating Program Sections (Alpha/VAX) . 7–3
7.3 Creating Image Sections . 7–9
7.3.1 Processing Clusters to Create Image Sections 7–9
7.3.2 Combining Program Sections into Image Sections 7–10
7.3.3 Processing Significant Program Section Attributes (Alpha/VAX) 7–11
7.3.4 Allocating Memory for Image Sections . 7–17
7.3.5 Image Section Attributes . 7–18
7.3.6 Controlling Image Section Creation . 7–22
7.3.6.1 Modifying Program Section Attributes . 7–22
7.3.6.2 Manipulating Cluster Creation . 7–23
7.3.6.3 Isolating a Program Section into an Image Section 7–23
7.4 Initializing an Image on Alpha/VAX Systems . 7–24
7.4.1 Writing the Binary Contents of Image Sections 7–24
7.4.2 Fixing Up Addresses . 7–25
7.4.3 Keeping the Size of Image Files Manageable . 7–26
7.4.3.1 Controlling Demand-Zero Image Section Creation 7–26

8 Creating Shareable Images (Alpha and VAX)

8.1 Overview of Creating Shareable Images on Alpha/VAX Systems 8–1
8.2 Declaring Universal Symbols in VAX Shareable Images 8–2
8.2.1 Creating Upwardly Compatible Shareable Images (VAX Linking Only)

. 8–4
8.2.1.1 Creating a Transfer Vector (VAX Linking Only) 8–5
8.2.1.2 Fixing the Location of the Transfer Vector in Your Image (VAX

Linking Only) . 8–7

vi

8.2.2 Creating Based Shareable Images (VAX Linking Only) 8–7
8.3 Declaring Universal Symbols in Alpha Shareable Images 8–8
8.3.1 Symbol Definitions Point to Shareable Image Psects (Alpha Linking

Only) . 8–9
8.3.2 Creating Upwardly Compatible Shareable Images (Alpha Linking

Only) . 8–10
8.3.3 Deleting Universal Symbols Without Disturbing Upward

Compatibility (Alpha Linking Only) . 8–10
8.3.4 Creating Run-Time Kits (Alpha Linking Only) 8–11
8.3.5 Specifying an Alias Name for a Universal Symbol (Alpha Linking

Only) . 8–11
8.3.6 Improving the Performance of Installed Shareable Images (Alpha

Linking Only) . 8–12

9 Interpreting an Image Map File (Alpha and VAX)

9.1 Overview of Alpha/VAX Linker Map . 9–1
9.2 Components of an Image Map File (Alpha/VAX) . 9–2
9.2.1 Object Module Synopsis (Alpha/VAX) . 9–3
9.2.2 Module Relocatable Reference Synopsis (VAX Linking Only) 9–3
9.2.3 Image Section Synopsis Section (Alpha/VAX) . 9–4
9.2.4 Program Section Synopsis Section (Alpha/VAX) 9–6
9.2.5 Symbols By Name Section (Alpha/VAX) . 9–8
9.2.6 Symbol Cross-Reference Section (Alpha/VAX) 9–8
9.2.7 Symbols By Value Section (Alpha/VAX) . 9–9
9.2.8 Image Synopsis Section (Alpha/VAX) . 9–10
9.2.9 Link Run Statistics Section (Alpha/VAX) . 9–11

Part IV LINK Command Reference

LINK . LINKER–3

Qualifier Descriptions . LINKER–4
/ALPHA (Alpha and VAX) . LINKER–5
/BASE_ADDRESS (I64 Only) . LINKER–6
/BPAGE . LINKER–7
/BRIEF . LINKER–9
/CONTIGUOUS . LINKER–10
/CROSS_REFERENCE . LINKER–11
/DEBUG . LINKER–12
/DEMAND_ZERO (I64 and Alpha) . LINKER–15
/DNI (Display Name Information, I64 Only) . LINKER–17
/DSF (Debug Symbol File, I64 and Alpha Only) LINKER–18
/EXECUTABLE . LINKER–19
/FP_MODE (I64 Only) . LINKER–20
/FULL . LINKER–21
/GST (I64 and Alpha) . LINKER–23
/HEADER (Alpha and VAX) . LINKER–24
/INCLUDE . LINKER–25
/INFORMATIONALS . LINKER–26
/LIBRARY . LINKER–27
/MAP . LINKER–28

vii

/NATIVE_ONLY (I64 and Alpha) . LINKER–30
/OPTIONS . LINKER–31
/P0IMAGE . LINKER–32
/PROTECT . LINKER–33
/REPLACE (Alpha Only) . LINKER–34
/SECTION_BINDING (Alpha Only) . LINKER–35
/SEGMENT_ATTRIBUTE (I64 Only) . LINKER–37
/SELECTIVE_SEARCH . LINKER–38
/SHAREABLE . LINKER–40
/SYMBOL_TABLE . LINKER–42
/SYSEXE (I64 and Alpha) . LINKER–44
/SYSLIB . LINKER–46
/SYSSHR . LINKER–47
/SYSTEM (Alpha and VAX) . LINKER–48
/THREADS_ENABLE . LINKER–49
/TRACE . LINKER–51
/USERLIBRARY . LINKER–52
/VAX (Alpha and VAX) . LINKER–55

Option Descriptions . LINKER–56
BASE= (VAX Only) . LINKER–57
CASE_SENSITIVE= . LINKER–59
CLUSTER= . LINKER–61
COLLECT= . LINKER–62
DZRO_MIN= (Alpha and VAX) . LINKER–64
GSMATCH= . LINKER–66
IDENTIFICATION= . LINKER–70
IOSEGMENT= . LINKER–71
ISD_MAX= (Alpha and VAX) . LINKER–72
NAME= . LINKER–73
PROTECT= . LINKER–75
PSECT_ATTRIBUTE= . LINKER–77
RMS_RELATED_CONTEXT= . LINKER–80
STACK= . LINKER–83
SYMBOL= . LINKER–84
SYMBOL_TABLE= (I64 and Alpha) . LINKER–85
SYMBOL_VECTOR= (I64 and Alpha) . LINKER–86
UNIVERSAL= (VAX Only) . LINKER–89

Glossary

viii

Index

Examples

1–1 Hello World! Program (HELLO.C) . 1–5
1–2 Sample Linker Options File . 1–13
2–1 Source File Containing a Symbolic Reference: MY_MAIN.C 2–9
2–2 Source File Containing a Symbol Definition: MY_MATH.C 2–9
2–3 UNIX-Style Weak and Group Symbols . 2–26
2–4 Compile and Link Commands . 2–27
3–1 Sample Program MYTEST.C . 3–6
3–2 Sample Program MYADD.C . 3–7
3–3 Sample Program MYSUB.C . 3–7
3–4 Sections Generated by an Analysis of Example 3-1 3–7
3–5 Linking Examples 3-1, 3-2, and 3-3 . 3–15
3–6 Segment Information in a Map File . 3–23
3–7 Section Information in a Map File . 3–24
3–8 Image Segment Descriptions in an ANALYZE/IMAGE Display 3–28
3–9 Image and Program Section Synopsis of Second Link 3–29
3–10 Compatible Initializations . 3–32
3–11 Linker Map Showing Program Section Synopsis 3–33
3–12 Incompatible Initialization . 3–33
4–1 Shareable Image Test Module: my_main.c . 4–2
4–2 Shareable Image: my_math.c . 4–3
5–1 Object and Image Synopsis . 5–4
5–2 Cluster Synopsis . 5–6
5–3 Image Segment Synopsis . 5–7
5–4 Symbol Cross-Reference . 5–12
5–5 Symbols by Value . 5–13
5–6 Image Synopsis . 5–15
5–7 Link Run Statistics . 5–17
5–8 Shortened Symbol and Module Names . 5–19
5–9 Cross Reference Footnotes . 5–20
5–10 Mangled/Demangled Symbols . 5–21
6–1 Module Containing a Symbolic Reference: my_main.c 6–7
6–2 Module Containing a Symbol Definition: my_math.c 6–7
7–1 Sample Program MYTEST.C . 7–5
7–2 Sample Program MYADD.C . 7–6
7–3 Sample Program MYSUB.C . 7–6
7–4 Program Sections Generated by Example 3-1 7–7
7–5 Linking Examples 3-1, 3-2, and 3-3 . 7–10
7–6 Image Section Information in a Map File . 7–16
7–7 Program Section Information in a Map File (VAX Example) 7–16
7–8 Image Section Descriptions in an ANALYZE/IMAGE Display 7–21
7–9 Image Section Synopsis of Second Link . 7–23
8–1 Shareable Image Test Module: my_main.c . 8–3
8–2 Shareable Image: my_math.c . 8–3

ix

8–3 Transfer Vector for the Shareable Image MY_MATH.EXE 8–7

Figures

1–1 Position of the Linker in Program Development 1–4
2–1 Symbol Vector Contents . 2–5
2–2 Symbol Resolution . 2–6
2–3 Clusters Created for Sample Link . 2–19
2–4 Linker Processing of Default Libraries and

SYS$BASE_IMAGE.EXE . 2–21
3–1 Communication of Image Memory Requirements on I64 Systems 3–2
3–2 Sections Created for Examples 3-1, 3-2, and 3-3 3–10
3–3 Official Function Descriptor . 3–13
3–4 Local Function Descriptor - Two Quadwords . 3–13
3–5 Combining Sections into Image Segments . 3–17
3–6 Combining Sections into Image Segments (continued) 3–18
4–1 Accessing Universal Symbols Specified Using the

SYMBOL_VECTOR= Option . 4–6
5–1 Program Section Synopsis . 5–10
6–1 Symbol Vector Contents . 6–3
6–2 Symbol Resolution . 6–4
6–3 Clusters Created for Sample Link . 6–17
6–4 Linker Processing of Default Libraries and

SYS$BASE_IMAGE.EXE . 6–20
7–1 Communication of Image Memory Requirements on Alpha/VAX 7–2
7–2 Program Sections Created for Examples 3-1, 3-2, and 3-3 7–9
7–3 Combining Program Sections into Image Sections 7–11
8–1 Comparison of UNIVERSAL= Option and Transfer Vectors 8–5
8–2 Accessing Universal Symbols Specified Using the

SYMBOL_VECTOR= Option . 8–9

Tables

1–1 Input Files Accepted by the Linker . 1–7
1–2 Output Files Generated by the Linker . 1–14
1–3 Linker Qualifiers . 1–18
1–4 Linker Options . 1–22
1–5 Logical Names for Cross-Architecture Linking 1–24
2–1 Linker Input File Processing . 2–8
2–2 Linker Input File Cluster Processing . 2–18
2–3 Symbol Definition Handling . 2–24
3–1 Mapping ELF Section Terms to OpenVMS Attributes 3–4
3–2 Section Attributes on I64 . 3–5
3–3 Mapping OpenVMS Image Attribute Terms to ELF Terms 3–19
3–4 Mapping Section Attributes to Segment Attributes for Executable

Images . 3–21
3–5 Mapping Section Attributes to Segment Attributes for Shareable

Images . 3–21

x

3–6 Significant Attributes of User Sections from Module MYSUB 3–22
3–7 Segment Attributes . 3–26
3–8 Linker Flags . 3–35
3–9 Flag Settings Determined by /TRACEBACK, /DEBUG, and /DSF . . . 3–36
3–10 Location of Global Symbols Determined by /TRACEBACK, /DEBUG,

and /DSF . 3–40
4–1 Linker Qualifiers and Options Used to Create Shareable Images on

I64 . 4–2
5–1 LINK Command Map File Qualifiers . 5–2
5–2 I64 Image Map Sections . 5–3
6–1 Linker Input File Processing . 6–6
6–2 Linker Input File Cluster Processing . 6–17
7–1 Program Section Attributes (Alpha/VAX) . 7–4
7–2 Mapping Program Section Attributes to Image Section Attributes for

Executable Images . 7–13
7–3 Mapping Program Section Attributes to Image Section Attributes for

Shareable Images . 7–13
7–4 Significant Attributes of Program Sections in MYSUB_CLUS

Cluster . 7–15
7–5 Image Section Attributes . 7–19
8–1 Linker Qualifiers and Options Used to Create Shareable Images 8–2
9–1 LINK Command Map File Qualifiers . 9–2
9–2 Image Map Sections . 9–2
9–3 Symbol Characterization Codes (Alpha/VAX) . 9–10
LINKER–1 Effects of /DEBUG, /DSF and /TRACE when Running an Image on

I64 and Alpha . LINKER–13

xi

Preface

Intended Audience
Programmers at all levels of experience can use this manual effectively.

Document Structure
This book is organized in four parts, as follows:

Part I provides an introduction to the linker running on OpenVMS I64, Alpha,
and VAX systems:

Chapter 1 introduces the OpenVMS Linker utility and how to use the LINK
command and its qualifiers and parameters.

Part II contains chapters specific to linking on OpenVMS I64 systems:

Chapter 2 describes how the linker resolves symbolic references among input files
on I64 systems.

Chapter 3 describes how the linker creates image files on I64 systems.

Chapter 4 describes how to create shareable images and use them in link
operations on I64 systems.

Chapter 5 describes how to interpret the I64 linker image map.

Part III contains chapters specific to linking on OpenVMS Alpha and VAX
systems:

Chapter 6 describes how the linker resolves symbolic references among input files
on Alpha and VAX systems.

Chapter 7 describes how the linker creates image files on Alpha and VAX
systems.

Chapter 8 describes how to create shareable images and use them in link
operations on Alpha and VAX systems.

Chapter 9 describes how to interpret the Alpha/VAX image map.

Part IV provides a reference section that describes the LINK command and its
qualifiers and options.

The glossary contains a list of important terms to refer to hardware and/or
software entities, for the OpenVMS Linker running on a variety of OpenVMS
operating systems and computers.

xiii

Related Documents
Information about the Alpha or VAX object language formats used by the linker
can be found in the respective appendixes in the OpenVMS Alpha/VAX Version
7.3 OpenVMS Linker Utility Manual, available from the documentation bookshelf
at the following URL:

http://h71000.www7.hp.com/doc/os732_index.html

For information on including the debugger in the linking operation and about
debugging in general, see the HP OpenVMS Debugger Manual.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

xiv

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xv

Part I
Introduction to the OpenVMS Linker

1
Introduction

This chapter introduces the OpenVMS Linker utility (the linker), describing its
primary functions and its role in software development. The chapter describes
the following:

• Definition of the linker and its main functions

• How to invoke the linker

• How to specify input files in a link operation

• How to specify which output files the linker produces

In addition, this chapter provides an overview of how you can control a link
operation by using qualifiers and options.

1.1 Overview
This section provides a list of key terms used in this manual and an overview of
the OpenVMS linker.

1.1.1 Terminology Used in this Manual
The OpenVMS Linker utility runs on a variety of OpenVMS operating systems
and computers. Several important terms are used in this manual to refer to these
hardware and/or software entities. The following list defines these terms. For a
complete list of linker terminology, see the Glossary.

• system—The computer hardware, the server; distinguish from the operating
system (for example, OpenVMS Alpha).

• platform—The system architecture; includes all systems running, for example,
Intel® Itanium® processors.

• OpenVMS system—An HP system running the OpenVMS operating system.
These include OpenVMS I64, Alpha, and VAX.

• OpenVMS I64 system (or I64 system)— An HP Integrity server running the
OpenVMS I64 operating environment.

• OpenVMS Alpha system (or Alpha system)—An HP Alpha system running
the OpenVMS Alpha operating system.

• OpenVMS VAX system (or a VAX system)—An HP VAX system running the
OpenVMS VAX operating system. tion.

• Executable and Linkable Format (ELF)—The object and image format
described in the System V Application Binary Interface. See the Glossary for
a complete definition of this term and additional terms.

I64, Alpha, or VAX might be used as prefixes as well. For example:

• I64 image—An OpenVMS I64 image that includes binary data and Itanium
instructions.

Introduction 1–1

Introduction
1.1 Overview

• Alpha object file— An OpenVMS Alpha object that includes binary data and
Alpha instructions.

• VAX linking—The process of using the OpenVMS Linker utility to create an
OpenVMS VAX image.

1.1.2 Linker Overview
The primary purpose of the linker is to create images. An image is a file
containing binary code and data that can be executed on an OpenVMS system.

On I64 systems, the linker creates OpenVMS I64 images by default. On Alpha
systems, the linker creates OpenVMS Alpha images by default. On OpenVMS
VAX systems, the linker creates OpenVMS VAX images by default.

On both Alpha and VAX systems, the linker provides /ALPHA and /VAX qualifiers
that allow you to instruct the linker to accept Alpha or VAX object files on each
respective system (see information about these linker qualifiers in Part IV.) As a
result, the linker can create VAX images on an Alpha system and vice versa.

The primary type of image the linker creates is an executable image. An
executable image can be activated at the DCL command line by issuing the RUN
command. At run time, the image activator, which is part of the operating
system, opens the image file and reads activation information from the image
to set up process page tables and pass control to the location (transfer address)
where image execution is to begin.

The linker can also create a shareable image. A shareable image is a collection
of procedures and data that can be called by executable images or by other
shareable images. A shareable image is similar to an executable image. The
linker separates shareable from nonshareable code and data. Shareable code and
data can be shared via global sections that are set up by the Install utility or by
the image activator.

In order to use the procedures or data of a shareable image, the shareable image
has to be included in a link operation for another image, either explicitly in a
linker option or implicitly from a default shareable image library. At run time,
when the image activator processes an executable image, it activates all the
shareable images to which the executable image was linked.

The OpenVMS Alpha and OpenVMS VAX linker can also create a system
image, which can be run as a standalone system. System images generally do
not contain image activation information and are not activated by the image
activator. Images without activation information are not defined in the OpenVMS
I64 object language. As a result, the OpenVMS I64 linker does not create this
special type of image.

The linker creates images by processing the input files you specify. The primary
type of input file that can be specified in a link operation is an object file.
Object files that contain one or more object modules are produced by language
processors, such as compilers or assemblers.

The binary code and data in an object module is in a platform-specific format:

• On I64 platforms, the object module (and the resulting image) is in the
Executable and Linkable Format (ELF).

• On Alpha platforms, the object module is in the Alpha Object Language
format.

1–2 Introduction

Introduction
1.1 Overview

• On VAX platforms, the object module is in the VAX Object Language format.

Note

This manual frequently refers to parts of the format of the object
language. As such, different terminology is occasionally used when
referring to the same item on different platforms.

For example, on OpenVMS Alpha and VAX systems, the linker
collects program sections (generally called psects) into image sections.
Comparatively, on OpenVMS I64 systems the linker collects sections into
segments. Although the names appear similar, there are considerable
differences between the structure and content of an image section on
OpenVMS Alpha and VAX compared with a segment on OpenVMS I64.

OpenVMS I64 compilers also take advantage of a short data section
when constructing code with offsets from the global pointer (GP) register,
neither of which are present on Alpha and VAX.

When the manual refers to a specific part of the object language,
distinctions are made as to whether the reference pertains to the object
language used by OpenVMS I64, Alpha, or VAX.

The linker also accepts other input files such as shareable images, and on VAX
platforms, symbol table files, which are both products of previous link operations.
Section 1.2 provides more information about all the types of input files accepted
by the linker. Section 1.3 provides more information about the output files
created by the linker.

Figure 1–1 illustrates the relationship of the linker to the language processor in
the program development process.

Introduction 1–3

Introduction
1.1 Overview

Figure 1–1 Position of the Linker in Program Development

Object Module

Debug
Symbols File

Linker

Language
Processors
(Compiler)

Symbol
Table File

Shareable
Image File

ZK-5070A-AI

Message
Compiler ACMS

Options File

* OpenVMS Alpha and VAX only

Executable
Image File

System
Image File*

Image
Map File

1.1.3 Linker Functions
To create an image from the input files you specify, the linker performs the
following primary functions:

• Symbol resolution. Source modules can use symbols to represent the
location of a routine entry point, the location of a data item, or a constant
value. A source module may reference symbols that are defined externally
to the module. When a language processor, such as a compiler or assembler,
processes the source module, it cannot find the value of a symbol defined
externally to the module. A language processor flags these externally defined
symbols as unresolved symbolic references and leaves it to the linker to
find their definitions among the other input files you specify. When the
linker finds the definition of a symbol, it substitutes the value of the symbol
(its definition) for the reference to the symbol. Chapter 6 provides more
information about symbol resolution.

• Virtual memory allocation. After resolving symbolic references among the
input files, the linker allocates virtual memory for the image, based on the
memory requirements specified by the input files. Chapter 7 provides more
information about memory allocation.

• Image initialization. After the linker resolves references and obtains the
memory requirements of the image, it initializes the image by filling it with
the compiled binary data and code. The linker also inserts the actual value of
resolved symbols at each instance where the symbol is referenced.

1–4 Introduction

Introduction
1.1 Overview

For certain global symbols, the linker does not write their value into the
image. For example, when taken from shareable images, the value of a
symbol that represents an address cannot be determined until run time; that
is, when the image activator loads the image into memory. The linker lists
these symbols in the fix-up information, to which the image activator provides
the actual address at run time.

When the image activator loads a shareable image in memory and relocates
all the symbols in the shareable image, it must ensure that the other images
that reference these symbols in the shareable image have their correct
addresses. Chapter 3 and Chapter 7 provide more information about image
initialization.

• Image optimization. For OpenVMS Alpha images, the linker can perform
certain optimizations to improve the run time performance of the image it is
creating. For OpenVMS I64 images, the linker can optimize data references
to the short data segment.

For more information, see Chapter 3 and Chapter 7.

For Alpha images, optimizations include replacing JSR instruction sequences
with the more efficient Branch to Subroutine (BSR) instruction sequence
wherever the language processors specify.

1.1.4 Using the Linker
You start the linker interactively by entering the LINK command together with
the appropriate input file names at the DCL prompt. You can also start the linker
by including the LINK command in a command procedure. (For more information
about starting the linker, see Part IV.)

The simple program shown in Example 1–1 prints the greeting ‘‘Hello World!’’ on
the terminal.

Example 1–1 Hello World! Program (HELLO.C)

#include <stdio.h>
main() {

printf("Hello World!\n");
}

To run this program, you must first compile the source file to create an object
module. To compile this HP C example, invoke the appropriate HP C compiler to
create an object module, as in the following example:

$ CC HELLO

During compilation, the compiler translates the statements in the source file
into machine instructions and groups portions of the program into program
sections according to their memory use and other characteristics. In addition, the
compiler lists all the global symbols defined in the module and referenced by the
module in the symbol table. In Alpha and VAX object modules this table is also
called a global symbol directory (GSD). In Example 1–1, the printf routine is
referenced by the module but is not defined in it. The printf routine is defined
in the HP C Run-Time Library (DECC$SHR).

To create an executable image, you usually link the object file produced by the
compiler, as in the following example:

$ LINK HELLO

Introduction 1–5

Introduction
1.1 Overview

By default, the linker processes DECC$SHR because it resides in the default
system shareable image library [IMAGELIB.OLB]. Because of this, you do not
need to specify this as input unless you are changing the behavior of the default
library scans (for example, linking with /NOSYSLIB). See Section 6.2.3.3 for more
information about how the linker processes default system libraries.

The linker processes the input files you specify in two passes. In its first pass
through the input files, the linker resolves symbolic references between the
modules. Because the linker processes different types of input files in different
ways, the order in which you specify input files can affect symbol resolution.
Chapter 6 provides more information about this topic.

After performing symbol resolution and determining all the input modules
necessary to create the image, the linker ascertains the memory requirements of
the image based on the memory requirements of the input files. The compilers
have specified the memory requirements of the object modules as program section
attributes.

On Alpha and VAX, the linker gathers together program sections with similar
attributes into image sections. At activation time, the image activator reads the
memory requirements of the image that the linker has stored in the image file
by processing the list of image section descriptors (ISDs) and begins to set up the
image for execution. (Chapter 7 provides more information about Alpha and VAX
image creation.)

On I64, the linker gathers ELF sections with similar attritutes into ELF
segments. At run time, the image activator reads the memory requirements
of the image that the linker has stored in the image file by processing the
segments. (Chapter 3 provides more information about creation of I64 images.)

If the image that results from the link operation is an executable image, it can
be executed at the DCL command line. The following example illustrates how to
execute the program in Example 1–1:

$ RUN HELLO
Hello World!

Note that a LINK command required to create a real application, unlike the Hello
World! example, can involve specifying hundreds of input files of various types.

As with most other DCL commands, the LINK command supports numerous
qualifiers with which you can control various aspects of a link operation. The
linker also supports linker options, which you can use to further control a
link operation. Linker options can be specified in an options file, which is
then specified as an input file in a link operation. Section 1.2.5 describes the
benefits of using options files and describes how to create them. Part IV provides
descriptions of the qualifiers and options supported by the linker. Section 1.4
contains a summary table of these qualifiers and options.

1.2 Specifying Input to the Linker
You specify the files you want the linker to process on the LINK command line
or in a linker options file. (Library files may also be specified as a user library,
which the linker processes by default.) You must specify at least one input file
in every link operation and, in every link operation, at least one input file must
be an object module. Table 1–1 lists the different types of input files accepted
by the linker, along with their default file types. (The defaults are used on all

1–6 Introduction

Introduction
1.2 Specifying Input to the Linker

OpenVMS platforms.) The table also describes how you can specify the file in a
link operation.

Table 1–1 Input Files Accepted by the Linker

File
Default
File Type Description

Object file .OBJ Created by a language processor. May be specified
on the LINK command line or in a linker options file.
This is the default input file accepted by the linker.

Shareable image .EXE Produced by a previous link operation. Must be
specified in a linker options file; you cannot specify
a shareable image as an input file on the command
line. Identify the input file as a shareable image
by appending the /SHAREABLE qualifier to the file
specification.

Library file .OLB Produced by the Librarian utility. May contain object
modules or shareable images. May be specified on
the LINK command line, in a linker options file, or
as a default user library processed by the linker.
Identify the input file as a library file by appending the
/LIBRARY qualifier to the library file specification. You
can also include specific modules from a library in a
link operation by appending the /INCLUDE qualifier to
the library file specification.

Symbol table file .STB Produced by a previous link operation or a language
processor. May be specified on the LINK command
line or in an options file. Because a symbol table
file is processed as an object module, it requires no
identifying qualifier.

Note that symbol table files produced by the linker
during I64 and Alpha links cannot be specified as
input files in a link operation. They are intended to
be used only as an aid to debugging with the System
Dump Analyzer utility. (See Section 1.2.4 for more
information.)

Options file .OPT Text file containing link option specifications or link
input file specifications. May be specified only on
the command line; you cannot specify an options file
inside another options file. Identify the input file as
an options file by appending the /OPTIONS qualifier to
the end of the file specification.

Only object files and image files of the same architecture can be combined to
create an image.

Introduction 1–7

Introduction
1.2 Specifying Input to the Linker

Note

OpenVMS VAX images can run as translated images on OpenVMS Alpha
and I64 systems. Similarly, OpenVMS Alpha images can run translated
images I64 systems, and translated images can interoperate with native
OpenVMS images.

For information about migrating applications from VAX to Alpha, see
Migrating an Application from OpenVMS VAX to OpenVMS Alpha.
For information about migrating applications from Alpha to I64, see
Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers.

1.2.1 Object Modules as Linker Input Files
When a language processor translates a source language program, it produces
an output file that contains one or more object modules. This output file, called
an object file, has the default file type of .OBJ and is the primary form of linker
input. At least one object file must be specified in any link operation. An object
file may be specified in the command line or in an options file.

For example, in Example 1–1, the only input file specified on the LINK command
line is the object module named HELLO.OBJ (the .OBJ file type does not need to
be specified because it is the default):

$ LINK HELLO

The linker processes the entire contents of an object file, that is, every object
module in the file. It cannot selectively process object modules within an object
file. The linker can process object modules selectively in an object module library
(.OLB) file only.

You cannot examine an object module by using a text editor. The only way to
examine an object file is by using the ANALYZE/OBJECT utility. This utility
produces a report that lists the records that make up the object module. This
report is primarily useful to compiler writers. For information about using the
ANALYZE command, see the HP OpenVMS DCL Dictionary.

1.2.2 Shareable Images as Linker Input Files
In order to execute code or reference data from a shareable image, the image
must first be referenced by another image. That is, a shareable image can serve
as input to a link operation for that image.
To provide useful input for a link operation, the shareable image offers symbols
(for example, procedure names) that are external to the other input modules of
the image. As a result, when the image is run, the image activator activates the
shareable image at the same time so that code and data from the shareable image
can be referenced.

Note

Another method for referencing a shareable image is to dynamically
activate the image by calling LIB$FIND_IMAGE_SYMBOL and passing
one of its symbols. For more information, see the HP OpenVMS RTL
Library (LIB$) Manual.

1–8 Introduction

Introduction
1.2 Specifying Input to the Linker

A shareable image file consists of activation information, image binaries (code
and data), and a symbol table. This symbol table contains definitions of universal
symbols exported by the shareable image. A universal symbol is to a shareable
image what a global symbol is to a module. That is, where a global symbol can be
used to satisfy references external to an object module, a universal symbol can be
used to satisfy references external to the shareable image.

Shareable images can provide the following benefits:

• Reducing total link processing time. Because the linker needs only to
read the activation information and to process the symbol table in a shareable
image, it takes less time for the linker to process a shareable image. The
linker does not have to resolve symbolic references within the shareable
image, sort program sections into the image, or initialize the image contents
as it does when processing object modules.

• Avoiding relinking entire applications. You can create a shareable image
that can be modified, recompiled, and relinked without causing the images
that were linked against previous versions of the shareable image to be
relinked. This is called upward compatibility. For more information about
this topic, see Chapter 8.

• Conserving disk space. Because many different executable images can
be linked against the same shareable image, it is necessary to keep only a
single copy of the shareable image on the disk. (Images that are linked with
shareable images do not actually contain a copy of the shareable image.)

• Conserving physical memory. Because the system can map the shareable
pages of an installed shareable image into the address space of many
processes, each process does not need to have its own copy of these pages.
Note that, to achieve this benefit, the shareable image must be installed using
the Install utility, specifying the /SHARED qualifier.

• Reduction of paging I/O. Because a page in an installed shareable image
may be mapped into the working set of several processes, it is more likely to
be in physical memory, reducing paging I/O. Note that, to achieve this benefit,
the shareable image must be installed using the Install utility, specifying the
/SHARED qualifier.

• Implementing memory-resident databases. Because installed
shareable images are memory resident, they simplify the implementation
of applications, such as data acquisition and control systems, where response
times are so critical that control variables and data readings must remain in
main memory.

1.2.2.1 Including a Shareable Image in a Link Operation
To include a shareable image in a link operation, you must specify the shareable
image in an options file, identifying the input file as a shareable image by
appending the /SHAREABLE qualifier to the file specification. You cannot
specify a shareable image as an input file on the LINK command line. The
following example illustrates an options file, named MY_OPTIONS_FILE.OPT,
that contains an input file specification of the shareable image (the .EXE file type
does not need to be specified because it is the default):

MY_SHARE/SHAREABLE

Introduction 1–9

Introduction
1.2 Specifying Input to the Linker

The following example illustrates the LINK command in which the options file
is specified. (For more information about creating and using shareable images,
see Chapter 8.) Note that the default file types for the options file and the object
module do not need to be specified.

$ LINK MY_MAIN_PROGRAM,MY_OPTIONS_FILE/OPTIONS

By default, if you do not specify the device and directory in the file specification,
the linker looks for shareable images in your default device and directory.

You link against shareable images in a shareable image library by specifying
the library on the LINK command line or in a linker options file, identifying
the file as a library by appending the /LIBRARY qualifier to the library file
specification. You can include specific shareable images from the library
in the link operation by appending the /INCLUDE qualifier to the library
file specification, specifying which shareable images you want to include as
parameters. (For more information about specifying library files in a link
operation, see Section 1.2.3). By default, the linker looks for user library files
in the current default directory.

Note that images that link against shareable images do not contain the shareable
image but only a reference to it. When the executable image is activated, the
image activator activates all the shareable images to which it has been linked.
By default, each image maps its own copy of the shareable image’s pages.

1.2.2.2 Installing a Shareable Image
If you install the shareable image (using the Install utility), all processes can
share the same physical copy of the shareable image in memory. To take
advantage of this feature, you must specify the ADD subcommand and the
/SHARED qualifier on the INSTALL command line, as in the following example:

$ INSTALL ADD/SHARED WORK:[PROGRAMS]MY_SHARE.EXE

The system creates a set of global sections for the portions of the shareable image
that can be shared. The system can map these portions as global sections into
the address space of multiple processes. For portions of the image that are not
shareable, each process gets a private copy at image activation time. For help in
creating an image on I64 systems, see Chapter 3. For similar information about
Alpha and VAX systems, see Chapter 7.

If you do not install the shareable image specifying the /SHARED qualifier, each
process receives a private copy of the image. (For information about installing
images, see the HP OpenVMS System Manager’s Manual.)

1.2.3 Library Files as Linker Input Files
A library file is a file produced by the Librarian utility (default file type is .OLB).
The linker accepts object module libraries and shareable image libraries as input
files.

1.2.3.1 Creating a Library File
You create a library by specifying the /CREATE qualifier with the LIBRARY
command. In the following example, the object module MY_PROG.OBJ is
inserted into the library MY_LIB.OLB:

$ LIBRARY/CREATE/INSERT MY_LIB MY_PROG

1–10 Introduction

Introduction
1.2 Specifying Input to the Linker

A library file contains a library header and a name table. A library name table
lists all of the global symbols in all of the modules and shareable images inserted
in the library and associates the name of the symbol with the name of the module
or shareable image in which it is defined.

Object module libraries contain copies of the object module. Shareable image
libraries contain only the names of the shareable images. However, both object
and shareable image libraries contain a name table, each entry associated with a
definition in an object module or shareable image. Note that this is not the full
symbol table of a module or a shareable image.

You cannot examine a library file using a text editor. To find out which modules
a library contains, start the Librarian utility with the /LIST qualifier. The
Librarian utility lists the symbols defined in these modules if you also specify
the /NAMES qualifier. In the following example, the library MYMATH_LIB.OLB
contains the object module MYMATHROUTS.OBJ, which contains the definitions
of the symbols myadd, mysub, mydiv, and mymul:

$ LIBRARIAN/LIST/NAMES MYMATH_LIB

Directory of ELF OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on
30-MAR-2005 09:59:06
Creation date: 30-MAR-2005 09:58:53 Creator: Librarian I01-29
Revision date: 30-MAR-2005 09:58:53 Library format: 6.0
Number of modules: 1 Max. key length: 1024
Other entries: 4 Preallocated index blocks: 213
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0
Module MYMATHROUTS
MYADD
MYDIV
MYMUL
MYSUB

For more information about creating and using libraries, see the HP OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

1.2.3.2 Including a Library File in a Link Operation
You can specify a library file in a link operation in any of the following ways:

• Using the /LIBRARY qualifier. You can specify a library file on the LINK
command line or in an options file, identifying the input file as a library by
appending the /LIBRARY qualifier.

When the linker processes a library file, it searches the library’s name
table for the definitions of symbols referenced in the other input files it
has processed previously in the link operation. (Note that the order in which
the linker processes a library file can affect symbol resolution. For more
information, see Chapter 6.)

When the linker finds the symbol name of a definition in the library’s name
table, it includes the associated library element in the link operation and
processes it as it would any other object module or shareable image. For
object module libraries, the linker extracts the object module from the
library. For shareable image libraries, the linker takes the image name
from the library and attempts to translate it in order to find the image.
If that fails, the linker looks for the shareable image in the device and
directory in which the library resides. If the linker cannot find the shareable
image at this location, it looks in the directory pointed to by the logical

Introduction 1–11

Introduction
1.2 Specifying Input to the Linker

name IA64$LIBRARY for I64 links, ALPHA$LIBRARY for Alpha links, or
SYS$LIBRARY for VAX links.

• Using the /INCLUDE qualifier. You can include specific modules from a
library into a link operation by appending the /INCLUDE qualifier to the
library file specification. You specify the modules you want included in the
link operation as arguments to the qualifier.

Note, however, that the linker does not process the name table of a library
file specified using the /INCLUDE qualifier. The linker includes from the
library the modules specified as arguments to the /INCLUDE qualifier into
the link operation and processes them as it would any other object module or
shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a
library file specification, the linker processes the library’s name table and also
includes the specified modules in the link operation.

• Defining the library as a default user library. You can include a library
in a link operation by defining it as a default user library. To define a default
user library, assign the name of the library as the value of one of the linker’s
LNK$LIBRARY logical names. The linker processes libraries pointed to by
these logicals after processing all the other input files specified in the link
operation. See Section 6.2.3.3 for more information about default library
processing.

1.2.4 Symbol Table Files as Linker Input Files (VAX Only)
A symbol table file is the product of a previous link operation or a language
processor. A symbol table file is similar to an object module but it contains only a
symbol table.

For VAX linking, you can specify a symbol table file as input in a link operation
as you would any other object module, as in the following example:

$ LINK MY_MAIN_PROGRAM, MY_SYMBOL_TABLE

Note

For I64 and Alpha linking, you cannot specify a symbol table as input in
a link operation.

The linker processes the symbol table file during symbol resolution. If the symbol
table file is the by-product of a link operation in which an executable image or
system image was created, the symbol table contains the names and values of
every global symbol in the image. If the symbol table file is associated with a
shareable image, it contains by default the names and values of the symbols in
the image declared as universal.

For a symbol table file to be useful in link opertions, the values associated with
the symbols in the symbol table file must be constants. The value of symbols
that represent addresses, such as a procedure entry point, can vary each time the
image is activated (unless the image is based).

Note also that a symbol table file associated with a shareable image should not
be specified as an input file in a link operation in place of the shareable image.
The shareable image itself must be specified as input because the linker requires
more information than can be found in a symbol table file, such as the memory
requirements of the shareable image (contained in the image header).

1–12 Introduction

Introduction
1.2 Specifying Input to the Linker

Symbol table files created by the linker during I64 and Alpha links can be used
as an aid to debugging with the System Dump Analyzer utility (SDA).

1.2.5 Options Files as Linker Input Files
An options file is a standard text file you must use to specify linker options and
shareable images specified as input files. You cannot specify linker options or
shareable images on the LINK command line. Linker options, similar to linker
qualifiers, allow you to control various aspects of the linker operation. Part IV
includes descriptions of the options supported by the linker.

In addition, you can use options files to perform the following tasks:

• Specifying frequently used input file specifications

• Entering LINK commands that might exceed the buffer capacity of the
command language interpreter

When creating a linker options file, keep in mind the following restrictions:

• Separate input file specifications with a comma (,).

• Do not enter any linker qualifiers except those required to identify
input files or modules, such as the /SELECTIVE_SEARCH, /LIBRARY
(optionally followed by /INCLUDE) or /SHAREABLE (optionally followed by
/SELECTIVE_SEARCH) qualifier.

• Do not specify an options file within an options file.

• Enter at most one option per line.

• Continue a line by entering the continuation character (the hyphen (-)) at the
end of the line.

• Enter comments after an exclamation point (!).

• You may abbreviate the name of a link option to as few letters as needed to
make the abbreviation unique.

Example 1–2 illustrates an options file, named PROJECT3.OPT, that contains
both input file specifications and linker options.

Example 1–2 Sample Linker Options File

MOD1.OBJ,MOD7.OBJ,LIB3.OLB/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX,MODY,MODZ),-
MOD12.OBJ/SELECTIVE_SEARCH
STACK=75
SYMBOL=JOBCODE,5

To use an options file in a link operation, specify the name of the options file on
the command line, identifying the file as an options file by appending the linker
qualifier /OPTIONS to the file specification (the .OPT file type does not need to be
specified because it is the default), as in the following example:

$ LINK PROGA,PROGB,PROJECT3/OPTIONS

If you precede the link operation with the SET VERIFY command, DCL displays
the contents of the options file as the file is processed.

Introduction 1–13

Introduction
1.2 Specifying Input to the Linker

If you want to use an options file in a command procedure or interactively
on the command line, specify the input file as the logical name SYS$INPUT,
appending the /OPTIONS qualifier to the logical name. DCL interprets the lines
immediately following the LINK command as the contents of the options file. The
following example illustrates a LINK command in a command procedure:

$! LINK command
$ LINK MAIN,SUB1,SYS$INPUT/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75
$

When you specify SYS$INPUT as an interactive options file, you must terminate
the options file by entering the Ctrl/Z key sequence, as in the following example:

$ LINK MAIN,SUB1,SUB2,SYS$INPUT:/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75

Ctrl/Z

HP recommends using command procedures to invoke the LINK command
because it enables you to keep both the LINK command and all input file
specifications, including any options files, together in a single file. To perform
a link operation using a command procedure, simply invoke the command
procedure, as in the following example:

$ @LINKPROC

1.3 Specifying Linker Output Files
The primary output generated by the linker is an image file. In addition, the
linker can generate other output files:

• On all platforms, a symbol table file and a map file

• On I64 and Alpha systems, a debug symbol file

Table 1–2 lists all the output files created by the linker.

Table 1–2 Output Files Generated by the Linker

File
Default
File Type Description

Executable image .EXE A program that can be run at the command line. This image is the
default output file created by the linker. Specify the /EXECUTABLE
qualifier to create an executable image.

Shareable image .EXE A collection of procedures and data that usually can be referenced
after being included in a link operation in which another image is
created. Specify the /SHAREABLE qualifier to create a shareable
image.

System image1 .EXE A program that is meant to be run as a standalone system. Specify
the /SYSTEM qualifier to create a system image.

1Alpha and VAX specific.

(continued on next page)

1–14 Introduction

Introduction
1.3 Specifying Linker Output Files

Table 1–2 (Cont.) Output Files Generated by the Linker

File
Default
File Type Description

Symbol table file .STB An object module containing the global symbol table from an
executable or system image, or the universal symbol table from a
shareable image. Specify the /SYMBOL_TABLE qualifier to create a
symbol table file.

Map file .MAP A text file created by the linker that provides information about the
layout of the image and statistics about the link operation. Specify the
/MAP qualifier to create a map file.

Debug symbol file2 .DSF A file containing debug information for use by the OpenVMS Debugger
or System Code Debugger. Specify the /DSF qualifier to create a debug
symbol file.

See HP OpenVMS Debugger Manual and Writing OpenVMS Alpha
Device Drivers in C for guidelines on using the system code debugger.

2I64 and Alpha specific.

You cannot examine an image file using a text editor. To examine an image
file, check for errors in image format, and obtain other information about the
image, you must use the ANALYZE/IMAGE utility. See the HP OpenVMS DCL
Dictionary for information about using this utility.

The following sections describe each of the output files.

1.3.1 Creating an Executable Image
An executable image is a file that can be executed by the RUN command.

On I64 systems, an executable image conforms to the ELF specification.
Typically, this image consists of header tables, note sections containing the
image identification information, a dynamic segment containing the image
activation information and shareable image dependencies, and program segments
containing the image binaries that define the memory requirements of the image.

Alpha and VAX images are usually made up of an image header which contains
image identification information and the image section descriptors (ISDs) that
define the memory requirements and shareable image dependencies of the image
binaries.

An executable image can reference one or more shareable images.

To create an executable image, you can specify the /EXECUTABLE qualifier.
Note, however, that the linker creates executable images by default. For example,
the command used to create the executable image in Example 1–1 did not specify
the /EXECUTABLE qualifier:

$ LINK HELLO

By default, the linker uses the name of the first input file specified as the name
of the image file, giving the file the .EXE file type. However, you can alter
this default naming convention. For more information, see the LINK command
description in Part IV.

Introduction 1–15

Introduction
1.3 Specifying Linker Output Files

1.3.2 Creating a Shareable Image
A shareable image is similar in structure and content to an executable image,
though it differs in the way that shareable program sections are sorted. To make
use of a shareable image, include it in a link operation in which another image is
created.

In I64 images, the symbol table is an ELF section that contains the symbol
information. In Alpha and VAX images, the symbol table resembles an appended
object module that only contains the symbol information.

Note that the following LINK command includes an options file using
SYS$INPUT. To make symbols in the shareable image available for other images
to link against, you must declare them as universal symbols in a linker options
file. The mechanism used to declare universal symbols for I64 and Alpha linking
differs from VAX linking. For information and examples about creating and using
shareable images, see Chapter 8.

To create a shareable image, specify the /SHAREABLE qualifier in the LINK
command line, as in the following example:

$ LINK/SHAREABLE MY_SHARE, SYS$INPUT/OPTIONS
SYMBOL_VECTOR=(-
MY_ROUTINE=PROCEDURE,-
MY_COUNTER=DATA)

$

1.3.3 Creating a System Image (Alpha and VAX)
A system image is an image that does not run under the control of the operating
system. It is intended for standalone operation only.

On I64 systems, system images that have no special format; they are simply
OpenVMS images that conform to the ELF specification. These system images
might have constraints that you may have to address (for example, limits to the
number of program segments).

By default, Alpha and VAX system images do not contain an image header,
as do executable and shareable images. You can create a system image with a
header by specifying the /HEADER qualifier. System images do not contain global
symbol tables.

To create an Alpha or VAX system image, specify the /SYSTEM qualifier in the
LINK command line, as in the following example:

$ LINK/SYSTEM MY_SYSTEM_IMAGE

1.3.4 Creating a Symbol Table File
A symbol table file is like an object module that contains all the global symbol
definitions in the image. You can create a symbol table for any type of image:
executable, shareable, or system. For executable images and system images, the
symbol table contains a listing of the global symbols in the image. For shareable
images, the symbol table lists the universal symbols in the image.

For I64 and Alpha linking, the symbol table files created by the linker cannot be
used as input files in subsequent link operations.

For VAX linking, symbol table files can be specified as input files in link
operations. For more information, see Section 1.2.4.

1–16 Introduction

Introduction
1.3 Specifying Linker Output Files

On all platforms, symbol table files are intended to be used with SDA as an aid to
debugging.

To create a symbol table file, specify the /SYMBOL_TABLE qualifier in the LINK
command line. In the following link operation in which an executable image is
created, a symbol table file is requested:

$ LINK/SYMBOL_TABLE MY_EXECUTABLE_IMAGE

By default, the linker uses the name of the first input file specified as the name
of the symbol table file, giving the file the .STB file type. However, you can alter
this default naming convention. For more information, see the description of the
/SYMBOL_TABLE qualifier in Part IV.

1.3.5 Creating a Map File
The linker can generate a diagnostic file, called an image map, which you can
use to locate link-time errors, to study the image layout, and to keep track of
global symbols. The image map provides information about the linking process,
including the following types of information:

• A listing of the object modules included in the link operation

• A listing of the image segments (I64) or image sections (Alpha and VAX)
created by the linker for the image

• A listing of all the program sections created by the linker

• A listing of all the global and universal symbols resolved by the linker for the
image

• A compilation of summary statistics about the link operation

To create an image map file, specify the /MAP qualifier on the LINK command
line. In batch mode, the linker creates a map file by default. When you invoke
the linker interactively (at the DCL command prompt), you must request a map
explicitly. By default, the linker uses the name of the first input file specified
as the name of the map file, giving the file the .MAP file type. However, you
can alter this default naming convention. For more information, see the LINK
command description in Part IV.

For example, to generate a map file in Example 1–1, you would specify the /MAP
qualifier as in the following example:

$ LINK/MAP HELLO

You can determine the information contained in the image map by specifying
additional qualifiers that are related to the /MAP qualifier. For example, by
specifying the /BRIEF qualifier with the /MAP qualifier, you can generate a map
file that contains only a subset of the total information that can be returned. For
information about creating a map file and the contents of a map file on I64, see
Chapter 5. For information about creating a map file and the contents of a map
file on Alpha and VAX, see Chapter 9.

1.3.6 Creating a Debug Symbol File (I64 and Alpha)
For I64 and Alpha linking, a debug symbol file (DSF) is a file containing debug
information for use by the OpenVMS Debugger and the System Code Debugger
(SCD). To create a debug symbol file, specify the /DSF qualifier in the LINK
command line, as in the following example:

$ LINK/DSF MY_PROJ.OBJ

Introduction 1–17

Introduction
1.3 Specifying Linker Output Files

By default, the linker uses the name of the first input file specified as the name
of the DSF file, giving the file the .DSF file type. However, you can alter this
default naming convention. For more information, see the description of the /DSF
qualifier in Part IV.

1.4 Controlling a Link Operation
The linker allows you to control various aspects of the link operation by
specifying qualifiers and options. The following sections summarize the qualifiers
and options supported by the linker. The remaining chapters of this manual
describe how to use these qualifiers and options, and Part IV provides reference
information about each linker qualifier and option.

1.4.1 Linker Qualifiers
As with any DCL command, the LINK command supports qualifiers that allow
you to control aspects of linker processing. The qualifiers supported by the linker
allow you to:

• Identify input files. For example, you must identify library files by
appending the /LIBRARY qualifier to the file specification. Section 1.2
describes these qualifiers.

• Specify output files. For example, you must specify the /SHAREABLE
qualifier to direct the linker to create a shareable image. Section 1.3 describes
these qualifiers.

• Control symbol resolution. For example, if you specify the /NOSYSLIB
qualifier, the linker will not process the default system object library or the
default system image library. Chapter 2 (I64) and Chapter 6 (Alpha and VAX)
contain more information about this topic.

• Control image file creation. For example, if you specify the
/CONTIGUOUS qualifier, the linker attempts to allocate contiguous disk
blocks for the image file. Chapter 3 (I64) and Chapter 7 (Alpha and VAX)
contain more information about this topic.

Table 1–3 lists the LINK command qualifiers alphabetically.

Table 1–3 Linker Qualifiers

Qualifier
Supported
Platform Description

/ALPHA Alpha, VAX Directs the linker to build
an OpenVMS Alpha image.
Section 1.5 describes this qualifier
in more detail.

/BASE_ADDRESS I64 Directs the linker to suggest a
starting address for an executable
image, when used in the boot
process. This starting address is
ignored by the image activator.

/BPAGE I64, Alpha, VAX Specifies the page size the linker
should use when creating image
sections or segments.

(continued on next page)

1–18 Introduction

Introduction
1.4 Controlling a Link Operation

Table 1–3 (Cont.) Linker Qualifiers

Qualifier
Supported
Platform Description

/BRIEF I64, Alpha, VAX Directs the linker to create a brief
image map. Must be specified with
the /MAP qualifier.

/CONTIGUOUS I64, Alpha, VAX Directs the linker to attempt
to store the output image in
contiguous disk blocks.

/CROSS_REFERENCE I64, Alpha, VAX Directs the linker to replace the
Symbols By Name section of
the image map with the Symbol
Cross-Reference section. Must be
specified with the /MAP qualifier.

/DEBUG I64, Alpha, VAX Directs the linker to include debug
information in the image and
to give control to the OpenVMS
Debugger when the image is run.

/DEMAND_ZERO I64, Alpha Controls how the linker creates
demand-zero image sections or
segments.

/DNI I64 Controls the processing of
demangling information.

/DSF I64, Alpha Directs the linker to create a file
called a debug symbol file (DSF) for
use by OpenVMS debuggers.

/EXECUTABLE I64, Alpha, VAX Directs the linker to create an
executable image.

/FP_MODE I64 Directs the linker to set the
program’s initial floating-point
mode in case it was not supplied by
the main module.

/FULL I64, Alpha, VAX Directs the linker to create a full
image map. Used only with the
/MAP qualifier.

/GST I64, Alpha Directs the linker to include
symbols that have been declared
universal in the global symbol
table (GST) of a shareable image.
Use /NOGST to create an image
with an empty GST. As such,
/NOGST allows you to ship a
shareable image that cannot be
linked against. This qualifier is not
supported for VAX linking.

/HEADER I64, Alpha, VAX Directs the linker to include an
image header in a system image.
Used only with the /SYSTEM
qualifier. Accepted on I64 but not
processed.

(continued on next page)

Introduction 1–19

Introduction
1.4 Controlling a Link Operation

Table 1–3 (Cont.) Linker Qualifiers

Qualifier
Supported
Platform Description

/INCLUDE I64, Alpha, VAX Identifies the input file to which it
is appended as a library file and
directs the linker to include specific
modules from the library in the
link operation.

/INFORMATIONALS I64, Alpha, VAX Directs the linker to output
informational messages
produced by a link operation.
/NOINFORMATIONALS
directs the linker to suppress
informational messages.

/LIBRARY I64, Alpha, VAX Identifies the input file to which it
is appended as a library file.

/MAP I64, Alpha, VAX Directs the linker to create an
image map.

/NATIVE_ONLY I64, Alpha Directs the linker to create an
image that cannot operate with a
translated OpenVMS image.

/OPTIONS I64, Alpha, VAX Identifies an input file as a linker
options file.

/P0IMAGE I64, Alpha, VAX Directs the linker to mark the
specified executable image as one
that can run only in P0 address
space.

/PROTECT I64, Alpha, VAX Directs the linker to protect the
shareable image from user-mode
and supervisor-mode write access.
Used with the /SHAREABLE
qualifier when the linker creates a
shareable image.

/REPLACE Alpha Directs the linker to perform
certain optimizations that improve
the performance of the resulting
image.

/SECTION_BINDING Alpha Directs the linker to check whether
the image to be created contains
dependencies on the layout of
image sections that could interfere
with the performance enhancement
if installed resident.

/SEGMENT_ATTRIBUTE I64 Directs the linker to set attributes
for image segments.

/SELECTIVE_SEARCH I64, Alpha, VAX Directs the linker to include only
those global symbols that are
defined in the module or image and
referenced by previously processed
modules.

(continued on next page)

1–20 Introduction

Introduction
1.4 Controlling a Link Operation

Table 1–3 (Cont.) Linker Qualifiers

Qualifier
Supported
Platform Description

/SHAREABLE I64, Alpha, VAX Directs the linker to create a
shareable image. Can also be
used to identify an input file as a
shareable image.

/SYMBOL_TABLE I64, Alpha, VAX Directs the linker to create a
symbol table file.

/SYSEXE I64,Alpha Directs the linker to process
the OpenVMS executive file
SYS$BASE_IMAGE.EXE (located
in the directory pointed to by the
logical name IA64$LOADABLE_
IMAGES or ALPHA$LOADABLE_
IMAGES) to resolve references to
symbols in a link operation.

/SYSLIB I64, Alpha, VAX Directs the linker to search the
default system image library and
the default system object library
to resolve undefined symbolic
references.

/SYSSHR I64, Alpha, VAX Directs the linker to search the
default system shareable image
library to resolve undefined
symbolic references.

/SYSTEM Alpha,VAX Directs the linker to create a
system image.

/THREADS_ENABLE I64, Alpha, VAX Directs the linker to enable
features of the thread environment,
in which the generated image is
activated.

/TRACEBACK I64, Alpha, VAX Directs the linker to include
traceback information in the image.

/USERLIBRARY I64, Alpha, VAX Directs the linker to search
default user libraries to resolve
undefined symbolic references.
/USERLIBRARY accepts a
keyword (ALL, GROUP, PROCESS,
SYSTEM, or NONE) to further
specify which logical name tables
to search for the definitions of
default user libraries.

/VAX Alpha, VAX Directs the linker to build an
OpenVMS VAX image. Section 1.5
describes this qualifier in more
detail.

1.4.2 Link Options
In addition to qualifiers, the linker supports options that allow you to control
other aspects of a link operation, such as the following:

• Specify image identification information. Using options such as NAME=,
ID=, and GSMATCH=, you can supply values to identify the image.

Introduction 1–21

Introduction
1.4 Controlling a Link Operation

• Declare universal symbols in shareable images. Using the
UNIVERSAL= option for VAX linking and the SYMBOL_VECTOR= option for
I64 and Alpha linking, you can make symbols in shareable images accessible
to external modules.

• Group input files together. Using the CLUSTER= option or the
COLLECT= option, you can specify which input files (or program sections
in those input files) the linker should group together. This can affect the
order of module processing and, therefore, symbol resolution.

Note that linker options must be specified in a linker options file. (See
Section 1.2.5 for information about creating linker options files and specifying
them in link operations.)

Table 1–4 lists all the linker options alphabetically.

Table 1–4 Linker Options

Option
Supported
Platform Description

BASE= VAX Sets the base virtual address for the
image.

CASE_SENSITIVE= I64, Alpha, VAX Determines whether the linker
preserves the mixture of uppercase
and lowercase characters used in
arguments to linker options.

CLUSTER= I64, Alpha, VAX Directs the linker to create a
cluster and to assign the cluster
the specified name, and insert the
input files specified in the cluster.
Note that the base-address option
value, which specifies the virtual
address for the cluster, is valid on
VAX, valid on Alpha for executable
images only, and not accepted on I64.
See the reference section CLUSTER=
option for information about this and
other option values.

COLLECT= I64, Alpha, VAX Moves the specified program sections
into the specified cluster.

DZRO_MIN= Alpha, VAX Sets the minimum number of
uninitialized, contiguous pages that
must be found in an image section
before the linker can extract the
pages from the image section and
create a demand-zero image section.

GSMATCH= I64, Alpha, VAX Sets match control parameters for a
shareable image.

IDENTIFICATION= I64, Alpha, VAX Sets the image ID field.

IOSEGMENT= I64, Alpha, VAX Specifies the size of the image I/O
segment.

ISD_MAX= Alpha, VAX Specifies the maximum number of
image sections.

NAME= I64, Alpha, VAX Sets the image name field.

(continued on next page)

1–22 Introduction

Introduction
1.4 Controlling a Link Operation

Table 1–4 (Cont.) Linker Options

Option
Supported
Platform Description

PROTECT= I64, Alpha, VAX Directs the linker to protect one or
more clusters from user-mode or
supervisor-mode write access. Can
be used only with shareable images.

PSECT_ATTR= I64, Alpha, VAX Assigns values and attributes to
program sections.

RMS_RELATED_
CONTEXT=

I64, Alpha, VAX Determines RMS related-name
context processing, also known as
file specification "stickiness."

STACK= I64, Alpha, VAX Sets the initial size of the user-mode
stack.

SYMBOL= I64, Alpha, VAX Defines a global symbol and assigns
it a value.

SYMBOL_TABLE= I64, Alpha Specifies whether a symbol table
file, produced in a link operation in
which a shareable image is created,
should contain all the global symbols
as well as the universal symbols in
the shareable image. By default,
the linker includes only universal
symbols.

SYMBOL_VECTOR= I64, Alpha Exports symbols in a shareable
image, making them accessible to
external images.

UNIVERSAL= VAX Declares the specified global symbol
as a universal symbol, making it
accessible to external images.

1.5 Linking for Different Architectures (Alpha and VAX)
You can create OpenVMS Alpha images on an OpenVMS VAX system and create
OpenVMS VAX images on an OpenVMS Alpha system. To do this, you must
mount a system disk of the target architecture and make it accessible on the
system where the link is to occur. Also, you must assign logical names to point to
portions of the target architecture disk.

Note

You cannot create OpenVMS I64 images on Alpha and VAX platforms, nor
create images for Alpha and VAX on I64 systems.

Table 1–5 lists the logical names and the conditions of their use.

Introduction 1–23

Introduction
1.5 Linking for Different Architectures (Alpha and VAX)

Table 1–5 Logical Names for Cross-Architecture Linking

Logical Name Description

ALPHA$LIBRARY The linker uses this logical name when creating an OpenVMS
Alpha image to locate the target system’s shareable images
and system libraries.

VAX$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS Alpha computer to locate the
target system’s shareable images and system libraries.

SYS$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS VAX computer to locate the target
system’s shareable images and system libraries.

ALPHA$LOADABLE_
IMAGES

The linker uses this logical when creating an OpenVMS Alpha
image to locate the target system’s base image SYS$BASE_
IMAGE.EXE when the /SYSEXE qualifier is in the link
command line.

The /ALPHA and /VAX qualifiers control which architecture an image is built for:

• When you specify /ALPHA, the linker creates an OpenVMS Alpha
image using the OpenVMS Alpha libraries and OpenVMS Alpha images
from the target system disk that the logicals ALPHA$LIBRARY and
ALPHA$LOADABLE_IMAGES point to. When you link on an OpenVMS
Alpha system, these logical names initially point to the current system’s
libraries and images. The qualifier /ALPHA is the default on OpenVMS
Alpha systems.

• When you specify /VAX on an OpenVMS Alpha system, the linker creates an
OpenVMS VAX image using the OpenVMS VAX libraries and OpenVMS VAX
images from the target system disk that the logical VAX$LIBRARY points to.
On an OpenVMS VAX system, you create VAX images by using the OpenVMS
VAX libraries and OpenVMS VAX images that the logical SYS$LIBRARY
points to. The qualifier /VAX is the default on OpenVMS VAX systems.

1–24 Introduction

Part II
Linking on OpenVMS I64 Systems

2
Understanding Symbol Resolution (I64)

This chapter describes how the linker performs symbol resolution on OpenVMS
I64 systems. For information on performing symbol resolution on Alpha and VAX
systems, see Chapter 6.

As one of its primary tasks, the linker must resolve symbolic references between
modules. This chapter describes how you can control the process to ensure that
the linker resolves symbolic references as you intend.

2.1 Overview
Programs are typically made up of many interdependent modules. For example,
one module may define a symbol to represent a program location or data element
that is referenced by many other modules. The linker is responsible for finding
the correct definition of each symbol referenced in all the modules included in
the link operation. This process of matching symbolic references with their
definitions is called symbol resolution.

2.1.1 Types of Symbols
Symbols can be categorized by their scope, that is, the range of modules over
which they are intended to be visible. Some symbols, called local symbols,
are meant to be visible only within a single module. Because the definition and
the references to these symbols must be confined to a single module, language
processors such as compilers can resolve these references.

Other symbols, called global symbols, are meant to be visible to external modules.
A module can reference a global symbol that is defined in another module.
Because the value of the symbol is not available to the compiler processing the
source file, it cannot resolve the symbolic reference. Instead,a compiler creates an
ELF symbol table (SYMTAB) in an object module that includes all of the global
symbol references and global symbol definitions itcontains. These symbols are
part of the global symbol directory (GSD).

On I64, the GSD has a conceptual meaning. It no longer indicates an area within
an object module, in which all named entities are listed. For ELF objects, the
named entities for data and code are listed in the ELF symbol table; the name
identities for sections are listed in the section header table. To use the traditional
name GSD for I64, the GSD can be seen as a subset of the ELF symbol table,
plus a subset of the section header table.

In most programming languages, you can explicitly specify whether a symbol is
global or local by setting or omitting particular attributes in the symbol definition
or reference. For example, in C all functions are global symbols by default but
the functions with the static attribute are local symbols.

Understanding Symbol Resolution (I64) 2–1

Understanding Symbol Resolution (I64)
2.1 Overview

In shareable images, symbols that are intended to be visible to external modules
are called universal symbols. A universal symbol in a shareable image is the
equivalent of a global symbol in an object module. Note, however, that only those
global symbols that have been declared as universal are listed in the ELF symbol
table (SYMTAB) of the shareable image and are available to external modules to
link against. These symbols are part of the global symbol table (GST).

Similar to the GSD, the GST has a conceptual meaning on I64 systems; that is,
it no longer indicates an area within an image file, in which all named entities
are listed. For ELF images, the named entities for data and code are listed in
the ELF symbol table and the named entities for sections are listed in the section
header table. To use the traditional name GST for I64, the GST can be seen as a
subset of the ELF symbol table, plus a subset of the section header table.

You must explicitly declare universal symbols as part of the link operation in
which the shareable image is created. For more information about declaring
universal symbols, see Chapter 4.

2.1.1.1 Understanding Strong and Weak Symbols
As on Alpha and VAX systems, the linker on I64 systems supports global symbols
that can be strong or weak. Weak symbols can be one of two types: VMS-style
weak and UNIX-style weak.

The VMS-style weak symbol is identical to the weak symbol on Alpha and
VAX. Using VMS-style weak symbols reflects a programming concept where the
developer marks a a symbol as weak depending on available language support.
For information about how the linker processes VMS-style weak symbols, see
Section 2.5.

UNIX-style weak symbols are unique to I64 and primarily used by the C++
compiler. Using UNIX-style weak symbols reflects an implementation concept,
where the compiler marks symbols as weak, depending on language constructs.
For information about how the linker processes UNIX-style weak symbols, see
Section 2.6.

2.1.1.2 Group Symbols
Global symbols can be gathered in a group which is seen by the linker as
a single entity. All symbols in a group are included or excluded in the link
process. The group is identified by its group name, which is also called a group
signature. A group also defines a set of sections, which contain definitions or
references of the group symbols. As with UNIX-style weak symbols, groups are
an implementation concept, primarily used by the HP C++ compiler. For more
information about working with group symbols, see Section 2.6.

2.1.1.3 The C Extern Common Model
In some HP programming languages, certain types of global symbols, such
as external variables in the C common extern model and COMMON data
in FORTRAN, are not listed in the symbol table as global symbol references
or definitions. Because these data types implement virtual memory that is
shared, the languages implement them as sections that are overlaid. Rather than
appearing as global symbol definitions or references, these variable names emerge
as section names. (Compilers use sections to define the memory requirements of
an object module.) Although this may look like symbol resolution to the user, the
linker does not process symbols. For information about how the linker processes
sections, see Chapter 3.

2–2 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.1 Overview

For example, this C definition and the Fortran data that follows are matched and
address the same data:

#pragma extern_model common_block
struct { int first; int second; } numbers;

INTEGER*4 first, second
COMMON /numbers/ first, second

2.1.1.4 Tentative Definitions in C
In the HP C programming language, external variables can be defined in a
strict or a relaxed reference/definition model. The strict model allows only one
strong definition. The relaxed model, allows several tentative definitions.
Any initialized variable is a strong symbol definition in the strict model. All
uninitialized variables can be relaxed or tentative definitions. For both types
of external variables, strong global symbols are generated by the compiler.
For a strong definition in any model, the compiler reserves memory in the
defining module. For tentative definitions, the compiler does not reserve memory.
Tentative definitions result in global symbols in the symbol table, marked as ELF
common.

Note

Do not confuse the term "ELF common" with "Fortran common"; these are
different concepts.

If there is one strong definition, the linker uses it as the primary definition and
treats all the tentative definitions as references. Otherwise, the linker does the
following:

• Creates a section named after the symbol to define memory for the tentative
definitions.

• Assigns the first module with a tentative definition as the defining module.

The section created by the linker contains the overlay attribute. Any other section
with the same name and the same attributes can overlay onto this section.

For example, the following C definitions are tentative:

/* module A */
#pragma extern_model relaxed_refdef
int my_data;

/* module B */
#pragma extern_model relaxed_refdef
int my_data;

The linker creates a section with memory for the variable and marks module A as
the defining module for the section.

Note

The linker does not include section names in its symbol resolution
processing. The name spaces for symbols and sections are separate.
The overlaying of sections with a created section for a tentative definition
with the same name does not produce an exception.

Understanding Symbol Resolution (I64) 2–3

Understanding Symbol Resolution (I64)
2.1 Overview

2.1.1.5 Considerations for C Language Extensions
On I64 systems, the HP C language extensions globalref and globaldef
allow you to create external variables that appear as symbol references and
definitions in the symbol table. For more information, see the HP C User’s Guide
for OpenVMS Systems.

In addition, HP C supports command line qualifiers and source code pragma
statements (as shown in the previous examples) that allow you to control the
extern model. For more information, see the HP C User’s Guide for OpenVMS
Systems.

2.1.2 Linker Symbol Resolution Processing
During its first pass through the input files specified in the link operation,
the linker attempts to find the definition for every symbol referenced in the
input files. By default, the linker processes all the global symbols defined and
referenced in the symbol table of each object module (GSD) and all the universal
symbols defined in the global symbol table (GST) of each shareable image and
any symbol defined by linker options. The definition of the symbol provides the
value of the symbol. The linker substitutes this value for each instance where
the symbol is referenced in the image being created. This value might not be
the actual value of the virtual address at run time, because the values might be
relocated by the image activator.

The value of a symbol depends on what the symbol represents. A symbol can
represent a routine entry point or a data location within an image. For these
symbols, the value of the symbol is an address. A symbol can also represent a
data constant (for example, the linker option SYMBOL=X,10). In this case, the
value of the symbol is its actual value.

For symbols that represent addresses in object modules, the value is expressed
initially as an offset into a section. (This is the manner in which language
processors express addresses.) Later in its processing, the linker determines
the symbol’s preliminary value after combining all module contributions into
segments, which yields the proposed memory layout. For information about how
the linker determines the virtual memory layout of an image, see Chapter 3.

For I64 images, at link time, the value of a symbol in a shareable image (as listed
in the GST of the image) is the index of the symbol’s entry in the symbol vector of
the image.

A symbol vector entry is a quadword that contains the value of the symbol.
The contents of the quadword depends on whether the symbol represents a
procedure entry point, data location, or a constant. Figure 2–1 illustrates the
contents of a symbol vector entry for each of these three types of symbols. At
link time, a symbol vector entry for a procedure entry point or a data location is
expressed as an offset into the image. At image activation time, when the image
is loaded into memory and the base address of the image is known, the image
activator converts the image offset into a virtual address. Figure 2–1 shows the
contents of the symbol vector at link time and at image activation time.

2–4 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.1 Overview

Figure 2–1 Symbol Vector Contents

Procedure

Constant

Data

63 0 063

Constant value Constant value

VM-1199A-AI

Virtual address of the function descriptor

Virtual address of data cellImage offset of data cell

After Image Activation:

Image offset of the function descriptor

At Link Time:

Note that the linker does not allow programs to make procedure calls to symbols
that represent data locations.

The actual value of an address symbol in a shareable image is determined at run
time by the image activator when it loads the shareable image into memory. The
image activator converts or relocates all the addresses within a shareable image
when it loads the image into memory. Once it has determined the absolute values
of these addresses, the image activator fixes up references to these addresses
in the image that linked against the shareable image. When the image was
linked, the linker created fix-ups that flag to the image activator where it must
insert the actual addresses to complete the linkage of a symbolic reference to its
definition in an image. The linker listed these fix-ups in the fix-up table, which
is part of the dynamic segment created for the image. For more information
about shareable images, see Chapter 4.

Note

For I64 images, you can not specify an address at which you want an
image mapped into virtual memory. The image activator decides where to
place the image.

Figure 2–2 illustrates the interdependencies created by symbolic references
among the modules that make up an application. In the figure, arrows point
from a symbol reference to a symbol definition. (The statements do not reflect a
specific programming language.)

Understanding Symbol Resolution (I64) 2–5

Understanding Symbol Resolution (I64)
2.1 Overview

Figure 2–2 Symbol Resolution

Move LOCAL1 to LOCAL2

Module B
Module C

Module A

VM-1200A-AI

LOCAL1
LOCAL2 LOCAL1

LOCAL2

LOCAL1
LOCAL2
GLOBAL1
GLOBAL2

Call GLOBAL3

Subtract GLOBAL2
from LOCAL2

GLOBAL3
Move LOCAL2
to LOCAL1

LEGEND: = code
 = data

Add GLOBAL1
to LOCAL1

Move LOCAL1
to LOCAL2

2–6 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.1 Overview

The linker creates an image, even if it cannot find a definition for every symbol
referenced in the input files it processes. As shown in the following example,
the linker reports these undefined symbols if at least one of the unresolved
references is a strong reference. (For information about strong and weak symbolic
references, see Section 2.5.) The linker includes the message in the map file, if a
map file was requested.

$ LINK MY_MAIN ! The module MY_MATH is omitted
%ILINK-W-NUDFSYMS, 1 undefined symbol:
! %ILINK-I-UDFSYM, MYSUB
" %ILINK-W-USEUNDEF, undefined symbol MYSUB referenced

section: $CODE$
offset: %X0000000000000110 slot: 2
module: MY_MAIN
file: WORK:[PROGRAMS]MY_MAIN.OBJ;1

! The linker issues an informational message for each symbol for which it
cannot find a definition.

" The linker issues a warning message for each instance where an undefined
symbol is referenced in the image.

If you run an image that contains undefined symbols and the symbols are never
accessed, the program runs successfully. However, if you run an image that
contains undefined symbols and the image accesses the symbols at run time, then
the image will abort. In most cases, it aborts with an access violation because the
linker assigns the value zero to undefined symbols or because the linker indicates
that an undefined function symbol was called, as shown in the following example:

$ RUN MY_MAIN
%SYSTEM-F-CALLUNDEFSYM, Call using undefined function symbol
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC

MY_MAIN 0 00000000000101B2 00000000000101B2
MY_MAIN MY_MAIN main 1594 0000000000000120 0000000000010120
MY_MAIN MY_MAIN __main 1586 00000000000000C0 00000000000100C0

0 FFFFFFFF80B7FB30 FFFFFFFF80B7FB30
DCL 0 000000000006BD60 000000007AE25D60
%TRACE-I-END, end of TRACE stack dump

2.2 Input File Processing for Symbol Resolution
The linker can include object modules, shareable images, and libraries in its
symbol resolution processing. Options files do not play an important role in
symbol resolution (the SYMBOL= option can define a symbol and its value).

By default, the linker includes all the symbol definitions from the object module
or shareable image. However, if you append the /SELECTIVE_SEARCH qualifier
to the object module or shareable image file specification, then the linker includes
in its processing only those symbols that define symbols referenced in a previously
processed input file. For more information about selectively processing input files,
see Section 2.2.4.

Table 2–1 summarizes how the linker processes these different types of input files
when performing symbol resolution.

Understanding Symbol Resolution (I64) 2–7

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

Table 2–1 Linker Input File Processing

Input File How Processed

Object file (.OBJ) By default, the linker processes all the symbol definitions and
references listed in the GSD of the module. If you append the
/SELECTIVE_SEARCH qualifier to the input file specification,
the linker includes only those symbol definitions from the GSD
that resolve symbolic references found in previously processed
input files.

Shareable image file
(.EXE)

By default, the linker processes all symbol definitions listed
in the GST of the image. However, the linker lists only those
symbol definitions in the map file that are referenced by other
modules in order to reduce map file clutter.

If you append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only
those symbol definitions from the GST that resolve symbolic
references found in previously processed input files.

Library files (.OLB) Specifying /LIBRRY, the linker searches the name table of
the library for symbols that are undefined in previously-
processed input files. (Usually, a library file’s name table lists
all the symbols available in all of the modules it contains.)
If the linker finds the definition of a symbol referenced
by a previously-processed input file, it includes in the link
operation, the library module containing the definition of the
symbol. Once the object module or shareable image is included
in the link operation, the linker processes it as any other object
module or shareable image.

If you append only the /INCLUDE qualifier to a library file
specification, the linker does not search the library’s name
table to find undefined symbolic references. Instead, the
linker includes the specified object module or shareable image
specified as a parameter to the /INCLUDE qualifier.

You cannot process a library file selectively. However, if
the Librarian utility’s /SELECTIVE_SEARCH qualifier was
specified when the object module or shareable image was
inserted into the library, the linker processes the module
selectively when it extracts it from the library.

2.2.1 Processing Object Modules
The linker resolves symbolic references with their definitions. For example, the
program in Example 2–1 references the symbol mysub.

2–8 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

Example 2–1 Source File Containing a Symbolic Reference: MY_MAIN.C

#include <stdio.h>

int mysub(int value_1, int value_2);

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;
result = 0;

result = mysub(num1, num2);
printf("Result is: %d\n", result);

}

mysub, which Example 1 references, is defined in the program in Example 2–2.

Example 2–2 Source File Containing a Symbol Definition: MY_MATH.C

int myadd(int value_1, int value_2)
{

int result;

result = value_1 + value_2;

return result;
}

int mysub (int value_1, int value_2)
{

int result;

result = value_1 - value_2;

return result;
}

int mymul(int value_1, int value_2)
{

int result;

result = value_1 * value_2;

return result;
}

int mydiv(int value_1, int value_2)
{

int result;

result = value_1 / value_2;

return result;
}

The GSD created by the language processor for the object module MY_MAIN.OBJ
lists the reference to the symbol mysub. Because object modules cannot be
examined using a text editor, the following representation of the GSD is taken
from the output of the ANALYZE/OBJECT utility of the OpenVMS I64 object
module MY_MAIN.OBJ.

Understanding Symbol Resolution (I64) 2–9

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

$ CC MY_MAIN.C
$ ANALYZE/OBJECT/SECTION=SYMTAB MY_MAIN.OBJ

.

.

.
Description Hex <bitmask> Decimal Interpretation
----------- --------------- ------- --------------

Symbol 16. (00000010) "MYSUB" !
Name Index in Sec. 8.: 0000004C 76.
Symbol Info Field: 12
Symbol Type: 02 STT_FUNC "
Symbol Binding: 01 STB_GLOBAL #

Symbol ’Other’ Field: 80
Symbol Visibility 00 STV_DEFAULT
Linkage Type 80 VMS_STL_STD

Bound to section: 0000 0. (SHDR$K_SHN_UNDEF) $
Symbol Value 0000000000000000 0. %
Size associated with sym: 0000000000000000

! In Example 2–2, MYSUB is defined in lowercase characters: mysub. The C
compiler automatically upper cases all external symbol names unless you use
the qualifier /NAMES=AS_IS.

" The Symbol Type for MYSUB is STT_FUNC, which classifies MYSUB as a function
(procedure). The linker checks the definition of mysub and make sure that
its Symbol Type is also STT_FUNC. The linker issues an error if there is a
discrepancy.

The Symbol Binding for MYSUB is STB_GLOBAL. For most applications,
symbol types fall into two categories: global (STB_GLOBAL) and local (STB_
LOCAL). Global symbols are visible across modules. Local symbols are visible
only within the module.

$ References, or undefined symbols, are bound to a special section number
which marks an undefined, missing, irrelevant or otherwise meaningless
section (zero or SHDR$K_SHN_UNDEF). Definitions are bound to a section
with a number greater than zero.

% For references, the Symbol Value and the Size are not always known, and
therefore are displayed as a zero.

The GSD created by the language processor for the object module MY_MATH.OBJ
contains the definition of the symbol mysub, as well as the other symbols defined
in the module. The definition of the symbol includes the value of the symbol.

The following excerpt from an analysis of the OpenVMS I64 object module
(performed using the ANALYZE/OBJECT utility) shows the format of a GSD
symbol definition entry.

2–10 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

$ CC MY_MATH.C
$ ANALYZE/OBJECT/SECTION=SYMTAB MY_MATH.OBJ

.

.

.
Description Hex <bitmask> Decimal Interpretation
----------- --------------- ------- --------------

Symbol 12. (0000000C) "MYSUB"
Name Index in Sec. 8.: 00000027 39.
Symbol Info Field: 12
Symbol Type: 02 STT_FUNC
Symbol Binding: 01 STB_GLOBAL

Symbol ’Other’ Field: 80
Symbol Visibility 00 STV_DEFAULT
Linkage Type 80 VMS_STL_STD

Bound to section: 0003 3. "$CODE$" !
Symbol Value 0000000000000020 32. "
Size associated with sym: 0000000000000020 #

! Since MYSUB is a procedure, it is associated with a code section.

" The Symbol Value (32) is the byte offset of the code entry point into the
section $CODE$.

The Size associated with the symbol is the amount of code in the routine (32
bytes).

When you link the modules shown in Example 2–1 and Example 2–2 together to
create an image, you specify both object modules on the command line, as in the
following example:

$ LINK MY_MAIN, MY_MATH

When the linker processes these object modules, it reads the contents of the
GSDs, obtaining the value of the symbol from the symbol definition.

For I64 images, the value of a symbol that is a function can be expressed in two
ways:

• If the linker has created a function descriptor (called a procedure descriptor
on Alpha) the value is the address of the function descriptor. This is listed in
the Symbol Cross Reference portion of the map with the suffix -R or in the
Symbols By Value portion of the map with the prefix R-.

• If the symbol is a function, and the linker has not created a function
descriptor, the value of a symbol is the location within the image of the
entry point of the function. This information is listed in the Symbol Cross
Reference portion of the map with the suffix -RC or in the Symbols By Value
portion of the map with the prefix RC-. R is the label that means relocatable,
and C is the label that means code address.

The function descriptor created by the linker is a pair of quadwords that contain
the Global Pointer (GP) for the image and the pointer to the entry point of the
function. Note that on I64, the linker creates the function descriptors rather than
the compiler. The linker also chooses the value for the GP, which is an address
that the code segment uses to access the short data segment. It accesses different
parts of the short data segment by using different offsets to the value the linker
has chosen for the GP.

If the symbol is data, it can be either relocatable or not relocatable. The linker
uses the R prefix or suffix in the map to indicate relocation.

Understanding Symbol Resolution (I64) 2–11

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

2.2.2 Processing Shareable Images
When the linker processes a shareable image, it processes all the universal
symbol definitions in the GST of the image. Because the linker creates the GST
of a shareable image in the same format as an object module’s symbol table, the
processing of shareable images for symbol resolution is similar to the processing
of object modules. The linker sets an attribute that flags the symbol as protected,
which also indicates a universal symbol when the linker creates an image. Note
that the linker includes only those universal symbols in the map file that resolve
references, thus eliminating extraneous symbols in the linker map.

For example, the program in Example 2–2 (in Section 2.2.1) can be implemented
as a shareable image. (For information about creating a shareable image, see
Chapter 4.) The shareable image can be included in the link operation as in the
following example:

$ LINK/MAP/FULL MY_MAIN, SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE

Ctrl/Z

The GST created by the linker for the shareable image MY_MATH.EXE contains
the universal definition of the symbol MYSUB, as well as the other symbols
defined in the module.

Because images cannot be examined using a text editor, the following
representations of the GST are taken from the output of the ANALYZE/IMAGE
utility:

$ CC MY_MATH.C
$ LINK/MAP/FULL/CROSS/SHAREABLE MY_MATH.OBJ,SYS$INPUT/OPT
SYMBOL_VECTOR=(MYADD=PROCEDURE,-

MYSUB=PROCEDURE,-
MYMUL=PROCEDURE,-
MYDIV=PROCEDURE)

Ctrl/Z

$ ANALYZE/IMAGE/SECTION=SYMTAB MY_MATH.EXE
Ctrl/Z

.

.

.
Symbol 3. (00000003) "MYSUB"
Name Index in Sec. 2.: 0000000D 13.
Symbol Info Field: 12
Symbol Type: 02 STT_FUNC
Symbol Binding: 01 STB_GLOBAL

Symbol ’Other’ Field: 93
Symbol Visibility 03 STV_PROTECTED
Function Type 10 VMS_SFT_SYMV_IDX
Linkage Type 80 VMS_STL_STD

Bound to section: 0008 8. "$LINKER RELOCATABLE_SYMBOL"
Symbol Value 0000000000000001 1.
Size associated with sym: 0000000000000000

For I64 images, STV_PROTECTED indicates a universal definition. The "Symbol
Type, STT_FUNC, indicates that this symbol represents a function (or procedure).
The Function Type, VMS_SFT_SYMV_IDX, indicates that the symbol value (in
this case 1) is the index into the symbol vector of the pointer to the function
descriptor for MYSUB.

2–12 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

The analysis also lists all the indexes in the symbol vector. The following Index,
which matches the previous value for the symbol, is 1. The entry in the symbol
vector with the index value of 1, contains the value 30080, which is the address of
a function descriptor for MYSUB. The function descriptor is a quadword pair. The
first quadword is the address of the entry point for MYSUB (10020). The address
10020 is in a segment that has the execute flag set (that is, a code segment). The
second quadword contains the global pointer chosen by the linker for the image
(230000).

SYMBOL VECTOR 4. Elements
------------- -----------
Index Value Entry/GP or Size Symbol or Section Name
----- ----- ---------------- ----------------------

0. 0000000000030068 PROCEDURE 0000000000010000 "MYADD"
0000000000230000

1. 0000000000030080 PROCEDURE 0000000000010020 "MYSUB"
0000000000230000

2. 0000000000030098 PROCEDURE 0000000000010040 "MYMUL"
0000000000230000

3. 00000000000300B0 PROCEDURE 0000000000010090 "MYDIV"
0000000000230000

.

.

.

2.2.2.1 Implicit Processing of Shareable Images
For VAX linking, when you specify a shareable image in a link operation, the
linker not only resolves symbols from the shareable image you specify but it also
resolves symbols from all shareable images that the shareable image has been
linked against (that is, the shareable image’s dependency list).

The I64 linker performs like the Alpha linker in that it does not automatically
scan down a shareable image’s dependency list to resolve symbols. Instead, on I64
an image’s dependency list is in the dynamic segment. It appears in an analysis
near the top of the file under the title Shareable Image List, as in the following
example analysis of MY_MAIN.EXE:

$ LINK/MAP/FULL/CROSS MY_MAIN,SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE

Ctrl/Z

$ ANALYZE/IMAGE MY_MAIN
.
.
.

Image Activation Information, in segment 4.

Global Pointer: 0000000000240000
Whole program FP-mode: IEEE DENORM_RESULTS
Link flags

Call SYS$IMGSTA
Image has main transfer
Traceback records in image file

Shareable Image List
MY_MATH

(EQUAL, 9412., 468313704.)
DECC$SHR

(LESS/EQUAL, 1., 1.)

Understanding Symbol Resolution (I64) 2–13

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

Note

If your VAX application’s build procedure depends on implicit processing
of shareable images, you may need to add these shareable images to your
I64 linker options file.

2.2.3 Processing Library Files
Libraries specified as input files in link operations contain either object modules
or shareable images. The way in which the linker processes library files
depends on how you specify the library in the link operation. Section 2.2.3.1,
Section 2.2.3.2, and Section 2.2.3.3 describe these differences. Note, however, that
once an object module or shareable image is included from the library into the
link operation, the linker processes the file as it would any other object module or
shareable image.

For example, to create a library and insert the object module version of the
program in Example 2–2 into the library, you could specify the following
command:

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH

The librarian includes the module in its module list and all of the global symbols
defined in the module in its name table. To view the library’s module list
and name table, specify the LIBRARY command with the /LIST and /NAMES
qualifiers, as in the following example:

$ LIBRARY/LIST/NAMES MYMATH_LIB
Directory of ELF OBJECT library WORK:[PROGRAMS]MYMATH_LIB.OLB;1 on
3-NOV-2005 17:49:14

Creation date: 3-NOV-2005 17:48:57 Creator: Librarian I01-35
Revision date: 3-NOV-2005 17:48:57 Library format: 6.0
Number of modules: 1 Max. key length: 1024
Other entries: 4 Preallocated index blocks: 213
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0

Module MY_MATH
MYADD
MYDIV
MYMUL
MYSUB

You can specify the library in the link operation using the following command:

$ LINK/MAP/FULL/CROSS MY_MATH, MYMATH_LIB/LIBRARY

The map file produced by the link operation verifies that the object module MY_
MATH.OBJ was included in the link operation.

2.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier
When the linker processes a library file identified by the /LIBRARY qualifier, the
linker processes the library’s name table and looks for the definitions of symbols
referenced in previously processed input files.

Note that in order to resolve a reference to a symbol defined in a library, the
linker must first process the module that references the symbol before it processes
the library file. As such, while the order of object modules and shareable images
is not usually important in a link operation, how you order library files can be
important. (For more information about controlling the order in which the linker
processes input files, see Section 2.3.)

2–14 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

Once the object module or shareable image is included from the library into the
link operation, the linker processes all the symbol definitions in a shareable
image, and symbol definitions and references in an object module. If you want
the linker to selectively process object modules or shareable images that are
included in the link operation from a library, you must append the Librarian
utility’s /SELECTIVE_SEARCH qualifier to the file specification of the object
module or shareable image when you insert it into the library. Appending the
linker’s /SELECTIVE_SEARCH qualifier to a library file specification in a link
operation is illegal. For more information about processing input files selectively,
see Section 2.2.4.

Processing Object Module Libraries
When the linker finds a symbol in the name table of an object module library, it:

• Extracts from the library the object module that contains the definition and
includes it in the link operation

• Processes the GSD of the object module extracted from the library, adding an
entry to the linker’s list of symbol definitions for every symbol defined in the
object module, and adding entries to the linker’s undefined symbol list for all
the symbols referenced by the module (see Section 2.2.1)

• Continues to process the undefined symbol list until there are no definitions
in the library for any outstanding references

When the linker finishes processing the library, it will have extracted all the
modules that resolve references generated by modules that were previously
extracted from the library.

Processing Shareable Image Libraries
When the linker finds a symbol in the name table of a shareable image library,
it notes which shareable image contains the symbol and then looks for the
shareable image to include it in the link operation. By default, the linker looks
for the shareable image in the same device and directory as the library file

If the linker cannot find the shareable image in the device and directory of the
library file, the linker looks for the shareable image in the directory pointed to by
the logical name IA64$LIBRARY.

Once the linker locates the shareable image, it processes the shareable image as
it does any other shareable image (see Section 2.2.2).

2.2.3.2 Including Specific Modules from a Library Using the /INCLUDE Qualifier
If the library file is specified with the /INCLUDE qualifier, the linker does not
process the library’s name table. Instead, the linker includes in the link operation
modules from the library specified with the /INCLUDE qualifier and processes
these modules as it would any other object module or shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a
library file specification, the linker processes the library’s name table to search for
modules that contain needed definitions. When the linker finds an object module
or shareable image in the library that contains a needed definition, it processes
it as described in Section 2.2.3.1. In addition, the linker includes the modules
specified with the /INCLUDE qualifier in the link operation and processes them
as it would any other object module or shareable image.

Understanding Symbol Resolution (I64) 2–15

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

2.2.3.3 Processing Default Libraries
In addition to the libraries you specify using the /LIBRARY qualifier or the
/INCLUDE qualifier, the linker processes certain other libraries by default. The
linker processes these default libraries in the following order:

1. Default user library files. You specify a default user library by associating
the library with one of the linker’s default logical names from the range
LNK$LIBRARY, LNK$LIBRARY_1, . . . LNK$LIBRARY_999. If the
/NOUSERLIBRARY qualifier is specified, the linker skips processing default
user libraries. (For more information about defining a default user library,
see the description of the /USERLIBRARY qualifier in the Linker command
reference in Part 4.)

If the default user library contains shareable images, the linker looks for the
shareable image as described in Section 2.2.3.1.

2. Default system shareable image library file. The linker processes the
default system shareable image library IMAGELIB.OLB by default unless
you specify the /NOSYSSHR or the /NOSYSLIB qualifier.

Note that when the linker needs to include a shareable image from
IMAGELIB.OLB in a link operation, it always looks for the shareable images
in IA64$LIBRARY. The linker does not look for the shareable image in the
device and directory of IMAGELIB.OLB as it does for other shareable image
libraries.

3. Default system object module library file. The linker processes the
default system object library STARLET.OLB by default unless you specify the
/NOSYSLIB qualifier.

When the I64 linker processes STARLET.OLB by default, it also processes
the shareable image (SYS$PUBLIC_VECTORS.EXE). This shareable image is
needed to resolve references to system services.

When STARLET is not processed by default (for example, when the
/NOSYSLIB qualifier is specified), the linker does not process SYS$PUBLIC_
VECTORS.EXE automatically, even if you explicitly specify STARLET.OLB in
an options file.

If you specify SYS$PUBLIC_VECTORS.EXE explicitly in an options file when
it is already being processed by default, the linker displays the following
warning:

%ILINK-W-MULCLUOPT, cluster SYS$PUBLIC_VECTORS multiply defined
in options file [filename]

2.2.4 Processing Input Files Selectively
By default, the linker processes all the symbol definitions and references in
an object module or a shareable image specified as input in a link operation.
However, if you append the /SELECTIVE_SEARCH qualifier to an input file
specification, the linker processes from the input file only those symbol definitions
that resolve references in previously processed input files.

Processing input files selectively can reduce the amount of time a link operation
takes and can conserve the linker’s use of virtual memory. Note, however, that
selective processing can also introduce dependencies on the ordering of input files
in the LINK command.

2–16 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.2 Input File Processing for Symbol Resolution

Note

Processing files selectively does not affect the size of the resultant image;
the entire object module is included in the image even if only a subset of
the symbols it defines is referenced. (Shareable images do not contribute
to the size of an image.)

For example, in the link operation in Section 2.2.2, the linker processes the
shareable image MY_MATH.EXE before it processes the object module MY_
MAIN.OBJ because of the way in which the linker clusters input files. (For
information about how the linker clusters input files, see Section 2.3.1.) When it
processes the shareable image, the linker includes on its list of symbol definitions
all the symbols defined in the shareable image. When it processes the object
module MY_MAIN.OBJ and encounters the reference to the symbol mysub, the
linker has the definition to resolve the reference.

If you append the /SELECTIVE_SEARCH qualifier to the shareable image
file specification and all of the other input files are specified on the command
line, the link will fail. In the following example, because the linker has no
symbols on its undefined symbol list when it processes the shareable image file
MY_MATH.EXE, it does not include any symbol definitions from the shareable
image in its processing. When it subsequently processes the object module
MY_MAIN.OBJ that references the symbol mysub, the linker cannot resolve the
reference to the symbol. (For information about how to correct this link operation,
see Section 2.3.1.)

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH.EXE/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

%ILINK-W-NUDFSYMS, 1 undefined symbol:
%ILINK-I-UDFSYM, MYSUB
%ILINK-W-USEUNDEF, undefined symbol MYSUB referenced

section: $CODE$
offset: %X0000000000000110 slot: 2
module: MY_MAIN
file: WORK:[PROGRAMS]MY_MAIN.OBJ;1

To process object modules or shareable images in a library selectively, you must
specify the /SELECTIVE_SEARCH qualifier when you insert the module in the
library. The following command creates the library MYMATH_LIB.OLB and
inserts the file MY_MATH.OBJ into the library. (For more information about
using the Librarian utility, see the HP OpenVMS Command Definition, Librarian,
and Message Utilities Manual.)

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH/SELECTIVE_SEARCH

2.3 Ensuring Correct Symbol Resolution
For many link operations, the order in which the input files are specified in
the LINK command is not important. However, in complex link operations that
specify multiple library files or process input files selectively, correct symbol
resolution may become problematic.

To ensure that the linker resolves all the symbolic references as you intend, you
may need to know order in which the linker processes the input files. To control
the order in which the linker processes input files, you must understand how the
linker parses the command line. The following sections describe these processes.

Understanding Symbol Resolution (I64) 2–17

Understanding Symbol Resolution (I64)
2.3 Ensuring Correct Symbol Resolution

2.3.1 Understanding Cluster Creation
As it parses the command line, the linker groups the input files you specify into
clusters and places these clusters on a cluster list. A cluster is an internal linker
construct that determines segment creation. The position of an input file in a
cluster and the position of that cluster on the linker’s cluster list determine the
order in which the linker processes the input files you specify.

The linker always creates at least one cluster, called the default cluster. The
linker may create additional clusters, called named clusters, depending on the
types of input files you specify and the linker options you specify. If it creates
additional clusters, the linker places them on the cluster list ahead of the default
cluster, in the order in which it encounters them in the options file. The default
cluster appears at the end of the cluster list. (Within the default cluster, input
files appear in the same order in which they are specified on the LINK command
line.)

Clusters for shareable images, specified in shareable image libraries, appear after
the default cluster on the cluster list because they are created later in linker
processing, when the linker knows which shareable images in the library are
needed for the link operation.

The linker groups input files into clusters according to file type. Table 2–2 lists
the types of input files accepted by the linker and describes how the linker
processes them when creating clusters.

Table 2–2 Linker Input File Cluster Processing

Input File Cluster Processing

Object file (.OBJ) Placed in the default cluster unless explicitly placed in a
named cluster using the CLUSTER= option.

Shareable image file (.EXE) Always placed in a named cluster.

Library files (.OLB) Placed in the default cluster unless explicitly placed in
a named cluster using the CLUSTER= option. If the
library contains shareable images and the linker includes a
shareable image from the library in the link operation, the
linker creates a new cluster for the shareable image.

The linker puts input files included in a link operation from
a library using the /INCLUDE qualifier in the same cluster
as the library.

The linker puts modules extracted from any default user
library that is an object library and from STARLET.OLB
in the default cluster. However, the linker puts shareable
images referenced from IMAGELIB.OLB into new clusters
at the end of the cluster list (after the default cluster).

Options file (.OPT) Not placed in a cluster.

The following example illustrates how the linker puts the various types of input
files in clusters. To see which clusters the linker creates for this link operation,
look at the Cluster Synopsis section of the image map file. Figure 2–3 illustrates
the clusters created for this link operation. Note that order of cluster creation is:
MY_CLUS, MY_SHARE, DEFAULT_CLUSTER, MY_SHARE_IMG.

2–18 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.3 Ensuring Correct Symbol Resolution

$ DEFINE LNK$LIBRARY SYS$DISK:[]MY_DEFAULT_LIB.OLB
$ LINK MY_MAIN.OBJ, MY_LIB.OLB/LIBRARY, SYS$INPUT/OPT
CLUSTER=MY_CLUS,,,MY_PROG.OBJ
MY_SHARE.EXE/SHAREABLE
MY_SHARE_LIB.OLB/LIBRARY

Ctrl/Z

Figure 2–3 Clusters Created for Sample Link

MY_SHARE

DEFAULT_CLUSTER MY_SHARE_IMG

VM-1201A-AI

MY_CLUS

File MY_PROG.OBJ
Module MY_PROG

File MY_SHARE.EXE
Image MY_SHARE

File MY_SHARE_IMG.EXE
 (from MY_SHARE_LIB)
Image MY_SHARE_IMG

File MY_MAIN.OBJ
Module MY_MAIN
File MY_LIB.OLB
Module MY_MOD1 (from MY_LIB)
File MY_SHARE_LIB.OLB
File MY_DEFAULT_LIB.OLB
Module MY_MOD2 (from MY_DEFAULT_LIB)

The linker processes input files in cluster order, processing each input file starting
with the first file in the first cluster, then processing the second file, and so on,
until it has processed all files in the first cluster. The linker continues processing
the input files in the second, and subsequent, clusters in the same manner.
Processing concludes when the linker has processed all files in all clusters.

2.3.2 Controlling Cluster Creation
You can control cluster creation and ordering by using either of the following
linker options:

• CLUSTER= option

• COLLECT= option

2.3.2.1 Using the CLUSTER= Option to Control Clustering
The CLUSTER= option causes the linker to create a named cluster and to
place, in the cluster, the object modules specified in the option. (The linker
puts shareable images in their own clusters.)

For example, you can use the CLUSTER= option to fix the link operation
illustrated in Section 2.2.4, where the link operation yielded warnings because a
shareable image was processed first and selectively. To make the linker process
the object module MY_MAIN.OBJ before it processes the shareable image
MY_MAIN.EXE, put the object module in a named cluster before specifying
the shareble image. In the following example, the /EXECUTABLE qualifier is

Understanding Symbol Resolution (I64) 2–19

Understanding Symbol Resolution (I64)
2.3 Ensuring Correct Symbol Resolution

specified on the command line to specify the name of the resultant image, because
MY_MAIN is not specified on the command line.

$ LINK/EXECUTABLE=MY_MAIN SYS$INPUT/OPT
CLUSTER=MYMAIN_CLUS,,,MY_MAIN
MY_MATH/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

The Object and Image Synopsis section of the image map file verifies that the
linker processed the object module MY_MAIN before it processed the shareable
image MY_MATH, as in the following map file excerpt:

+---------------------------+
! Object and Image Synopsis !
+---------------------------+

Module/Image File Ident Attributes Bytes
------------ ---- ----- ---------------- -----
MY_MAIN V1.0 Lkg Dnrm 504

WORK:[PROGRAMS]MY_MAIN.OBJ;1
MY_MATH V1.0 Sel Lkg 0

WORK:[PROGRAMS]MY_MATH.EXE;1
.
.
.

2.3.2.2 Using the COLLECT= Option to Control Clustering
You can also create a named cluster by specifying the COLLECT= option.
The COLLECT= option directs the linker to put specific sections in a named
cluster. The linker creates the cluster if it does not already exist. Note that the
COLLECT= option manipulates sections, not input files.

The linker sets the global (GBL) attribute of the sections specified in a
COLLECT= option to enable a global search for the definition of that section.

$ LINK/EXECUTABLE=MY_MAIN SYS$INPUT/OPT
CLUSTER=MYMAIN_CLUS,,,MY_MAIN
COLLECT=MYCODE_CLUS,$CODE$
MY_MATH/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

In this example, a cluster MYCODE_CLUS is created after MYMAIN_CLUS and
the section $CODE$ is collected into the cluster MYCODE_CLUS.

2.4 Resolving Symbols Defined in the OpenVMS Executive
For I64 linking, you link against the OpenVMS executive by specifying the
/SYSEXE qualifier. When this qualifier is specified, the linker selectively
processes the system shareable image, SYS$BASE_IMAGE.EXE, located in the
directory pointed to by the logical name IA64$LOADABLE_IMAGES. The linker
does not process SYS$BASE_IMAGE.EXE by default. Note that, because the
linker is processing a shareable image, references to symbols in the OpenVMS
executive are fixed up at image activation.

When the /SYSEXE qualifier is specified, the linker processes the file selectively.
To disable selective processing, specify the /SYSEXE=NOSELECTIVE qualifier
and keyword. For more information about using the /SYSEXE qualifier, see the
description of the qualifier in the command reference in Part 4.

2–20 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.4 Resolving Symbols Defined in the OpenVMS Executive

Relation to Default Library Processing
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_
IMAGE.EXE file after processing the system shareable image library,
IMAGELIB.OLB, and before processing the system object library, STARLET.OLB.
(Note that the linker also processes the system service shareable image,
SYS$PUBLIC_VECTORS.EXE, when it processes STARLET.OLB by default.)

The /SYSSHR and /SYSLIB qualifiers, which control processing of the default
system libraries, do not affect SYS$BASE_IMAGE.EXE processing. When the
/NOSYSSHR qualifier is specified with the /SYSEXE qualifier, the linker does
not process IMAGELIB.OLB, but still processes SYS$BASE_IMAGE.EXE and
then STARLET.OLB and SYS$PUBLIC_VECTORS.EXE. When /NOSYSLIB
is specified, the linker does not process IMAGELIB.OLB, STARLET.OLB, or
SYS$PUBLIC_VECTORS, but still processes SYS$BASE_IMAGE.EXE.

To process SYS$BASE_IMAGE.EXE before the shareable images in
IMAGELIB.OLB, specify SYS$BASE_IMAGE.EXE in a linker options file as
you would any other shareable image. If you specify SYS$BASE_IMAGE.EXE in
your options file, do not use the /SYSEXE qualifier.

Figure 2–4 illustrates how the /SYSEXE qualifier, in combination with the
/SYSSHR and /SYSLIB qualifiers, can affect linker processing. (The default
syntax illustrated in the figure is rarely specified.)

Figure 2–4 Linker Processing of Default Libraries and SYS$BASE_IMAGE.EXE

Default: /USERLIBRARY=ALL/SYSSHR/SYSLIB/NOSYSEXE

Link Against SYS$BASE_IMAGE.EXE:/USERLIBRARY=ALL/SYSSHR/SYSLIB/SYSEXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

IMAGELIB.OLB

IMAGELIB.OLB SYS$BASE_IMAGE.EXE

Skip IMAGELIB.OLB:/USERLIBRARY=ALL/NOSYSSHR/SYSLIB/SYSEXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

SYS$BASE_IMAGE.EXE

Skip Both System Libraries: /USERLIBRARY=ALL/NOSYSLIB/SYSEXE

SYS$BASE_IMAGE.EXE

VM-1202A-AI

User-Specified
Libraries

User-Specified
Libraries

User-Specified
Libraries

User-Specified
Libraries

Understanding Symbol Resolution (I64) 2–21

Understanding Symbol Resolution (I64)
2.5 Processing Weak and Strong Global Symbols

2.5 Processing Weak and Strong Global Symbols
This section describes how the linker processes weak and strong global symbols:

• Section 2.5.1 describes strong and weak global symbols and how the linker
processes them

• Section 2.5.2 describes how strong and weak symbol definitions are handled
when processing object modules

• Section 2.5.3 describes how the linker resolves strong and weak symbol
references

2.5.1 Overview of Weak and Strong Global Symbol Processing
The linker records each symbol definition and each symbol reference in its
internal global symbol table. For each symbol, the linker notes whether the
symbol is strong, VMS-style weak, or UNIX-style weak.

The linker processes strong symbol definitions differently than it does UNIX-style
weak symbol definitions (see Section 2.5.2. In general, a symbol can have only
one strong or one VMS-style weak definition but it can have multiple UNIX-
style weak definitions. When linking against libraries, note that there is also a
difference between VMS-style weak and UNIX-style weak symbol definitions.

The linker processes weak references differently than it does strong references,
although it handles both types of weak references in the same manner. Strong
references must be resolved, whereas VMS-style and UNIX-style weak can be
resolved optionally. If any weak symbol is not resolved, then the linker puts the
value zero in place of the reference. In this case, the linker does not display a
warning message.

By default, all global symbols generated by most I64 language processors
are strong. That is, object modules usually contain strong symbol definitions
and strong symbol references. You can decide to make some symbols VMS-
weak definitions and references. To do so, you must use a language feature
and explicitly mark the code or data as VMS-style weak. (For example, you
would explicitly mark the code or data as VMS-style weak with the intention
of performing a link operation on partially complete development code.) (See
Section 2.5.1.2 for more information about creating and using VMS-style weak
symbols.)

For some language constructs, the HP C++ compiler generates UNIX-style weak
symbols. That is, some object modules may contain strong and weak symbol
definitions and references. The compiler produces redundent code or data in
multiple object modules and the linker resolves to the first symbol encountered in
the link operation.

2.5.1.1 Strong Symbols
For strong global symbols, there can be only one definition. If the linker finds
more than one definition in different input modules, any secondary definition is
reported as a multiple definition.

By default, when adding an object module to a library, a strong symbol definition
from the object module is included in the library symbol table. As a result, the
symbol can be found when the linker searches a library to resolve a symbol
reference.

2–22 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.5 Processing Weak and Strong Global Symbols

2.5.1.2 VMS-Style Weak Symbols
VMS-style weak global symbols can have only one definition. If the linker finds
more than one definition in different input modules, any secondary definition is
reported as multiply defined.

When adding an object module to a library, a VMS-style weak global symbol is
not included in the library symbol table. As a result, if the module containing the
weak symbol definition is in a library but is not selected for inclusion (by means
of the /INCLUDE qualifier or to resolve a strong reference), the linker is unable
to resolve the reference.

2.5.1.3 UNIX-Style Weak Symbols
UNIX-style weak global symbols can have multiple definitions. When a strong
definition is absent, the linker selects the first occurrence of the UNIX-style weak
definition and views subsequent ones as references.

When adding an object module to a library, a UNIX weak symbol is included
in the library symbol table. (The I64 Librarian is compatible with UNIX-style
weak symbols.) If multiple modules define the same UNIX-style weak symbol,
the librarian maintains an ordered list of symbols in its symbol table. With this
information, the linker can find a UNIX-style weak symbol when searching a
library for an unresolved symbol. Note that the earliest module added in the
library defining the symbol is selected for inclusion.

If the object module containing any type of weak symbol definition is explicitly
specified, either as an input object file or for extraction from a library (by means
of the /INCLUDE qualifier or to resolve a strong reference), the VMS-style weak
or UNIX-style weak symbol definitions are available for symbol resolution.

2.5.2 Strong and Weak Definitions
The OpenVMS I64 linker supports modules from various programming languages
and contains rules for handling symbols from these languages under different
circumstances. Table 2–3 shows how symbol definitions are handled when object
modules are processed.

Understanding Symbol Resolution (I64) 2–23

Understanding Symbol Resolution (I64)
2.5 Processing Weak and Strong Global Symbols

Table 2–3 Symbol Definition Handling

Current Symbol Definition
New Symbol Definition
Encountered Action

<none> <any> Assign new
definition

UNIX-style weak UNIX-style weak Ignore new
definition

UNIX-style weak VMS-style weak Assign VMS-style
weak definition

UNIX-style weak Strong Assign Strong
definition

VMS-style weak UNIX-style weak Ignore new
definition

VMS-style weak VMS-style weak Report multiple
defined symbols

VMS-style weak Strong Report multiple
defined symbols

Strong UNIX-style weak Ignore new
definition

Strong VMS-style weak Report multiple
defined symbols

Strong Strong Report multiple
defined symbols

An exception to the rules presented in Table 2–3 is for the special symbol,
ELF$TFRADR, which defines the image entry point. Typically, each compiler
defines one symbol for each module that contains code. If the module contains a
main entry, then a strong symbol is defined. Conversely, if there is no main entry,
a VMS-style weak symbol is defined (which behaves differently than a strong
symbol).

If you have only VMS-style weak ELF$TFRADR symbols, the first-encountered
definition determines the image entry and the other definitions are ignored. If
there is a strong definition, it overwrites an existing VMS-style weak definition
and other definitions are ignored.

Note

This case is different than processing UNIX-style weak symbols, where
ignored symbols are converted to references.

2.5.3 Resolving Strong and Weak Symbols
This section describes how the I64 linker processes strong and weak references
to resolve symbols. In general, a strong reference can be resolved by a strong
symbol definition or any type of weak symbol definition.

For a strong reference, the linker searches all input files (explicit and implicit)
for a definition of the symbol. If the linker cannot locate the definition needed
to resolve the strong reference, it reports the undefined symbol and assigns the
symbol a value, which usually results in a run-time error for accessing the data
or calling the routine.

2–24 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.5 Processing Weak and Strong Global Symbols

When the linker resolves a weak reference with a strong symbol definition or a
weak symbol definition, it resolves the weak reference in the same way it does a
strong reference, with the following exceptions:

• The linker will not search library modules that have been specified with the
/LIBRARY qualifier or default libraries (user-defined or system) solely to
resolve a weak reference. If, however, the linker resolves a strong reference to
another symbol in such a module, it will also use that module to resolve any
weak references.

• If the linker cannot locate the definition needed to resolve a weak reference,
it assigns the symbol a value, which usually results in a run-time error,
but does not report an undefined symbol. If, however, the linker reports
any unresolved strong references, it will also report any unresolved weak
references.

By default, most global definitions in I64 languages are strongly defined.

2.5.4 Creating and Using VMS-style Weak Symbols
In the dialects of MACRO, BLISS, and Pascal supported on I64 systems, you can
define a global symbol as either strong or VMS-style weak, and you can make
either a strong or a VMS-style weak reference into a global symbol.

In these languages, all definitions and references are strong by default. To make
a VMS-style weak definition or a VMS-style weak reference, you must use the
.WEAK assembler directive (in MACRO), the WEAK attribute (in BLISS), or the
WEAK_GLOBAL or WEAK_EXTERNAL attribute (in Pascal).

One purpose for making a weak reference is need to write and test incomplete
programs. Resolving all symbolic references is crucial to a successful link
operation. Therefore, a problem arises when the definition of a referenced global
symbol does not yet exist. (This would be the case, for example, if the global
symbol definition is an entry point to a module that is not yet written.) The
solution to this condition is to make the reference to the symbol VMS-style weak,
which informs the linker that the resolution of this particular global symbol is
not crucial to the link operation.

2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and
Group Symbols

UNIX-style weak symbols and groups are used by the HP C++ compiler to
implement template instantiation. Templates, commonly used in the HP C++
standard library, provide a programming model that allows you to write and use
data type-independent code. When this code is part of a source module, it is used
with a data type, that is, the template is instantiated.

To instantiate the template, the compiler defines UNIX-style weak symbols for
variables and functions used in the template and generates a group. All these
symbols, along with code and data, are placed in the group and marked as group
symbols. When the same template with the same data type is instantiated in
several source modules, a group with the same name containing the same code
and data appears in each object module.

The linker handles group symbols in a special way to generate an image which
contains only one occurrence of this group of sections. The linker ensures that all
references to the groups are resolved to the designated instance of the group.

Understanding Symbol Resolution (I64) 2–25

Understanding Symbol Resolution (I64)
2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and Group Symbols

Currently, UNIX-style weak symbols and group symbols are only used by the HP
C++ compiler, which also limits the usage of UNIX-style weak binding to group
symbols. However, UNIX-style weak symbols and group symbols can be seen as
independent, and the linker handles them as such.

2.6.1 Processing Group Symbols
When linking modules, the first occurrence of a group makes its symbols known
to the linker. The linker regards any additional occurrence of the group with the
same name as redundant and therefore, ignors it.

Because the concept of groups (as described in the ELF specification) is limited
to object modules, the use of shareable images requires a different approach:
the VMS extension to ELF allows groups for shareable images. A shareable
image group always takes precedence over groups found in object modules. For
global symbols and identical groups, this means that all group symbols from an
already processed group of an object module are replaced by the ones from the
shareable image. The linker’s intention is to always use the code and data from
the shareable image.

2.6.2 HP C++ Examples
The following HP C++ examples demonstrate how symbols are resolved when you
link with compiler-generated UNIX-style weak and group symbols.

The examples apply a user-written function template called myswap. Note that
you can also use class templates, which are implemented in a similar manner. If
you are an experienced C++ programmer, you will also recognize that there is a
"swap" function in the HP C++ standard library, which you should use instead of
writing your own function.

In the examples, the compiler combines code sections (and other required
data) into a group, giving it a unique group name derived from the template
instantiation.

The linker includes the first occurrence of this group in the image. All UNIX-
style weak definitions obtained from that group are now defined by the module
providing this group. All subsequent groups with the same name do not
contribute code or data; that is, the linker ignores all subsequent sections.
The UNIX-style weak definitions from these ignored sections become references,
which are resolved by the definition from the designated instance (that is,
first-encountered instance) of the group. In this manner, code (and data) from
templates are included only once for the image.

Example 2–3 shows UNIX-Style weak symbols and group symbols.

Example 2–3 UNIX-Style Weak and Group Symbols

// file: my_asc.cxx

template <typename T> !
void myswap (T &v1, T &v2) { "

T tmp;
tmp = v1;
v1 = v2;
v2 = tmp;

}

(continued on next page)

2–26 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and Group Symbols

Example 2–3 (Cont.) UNIX-Style Weak and Group Symbols

void ascending (int &v1, int &v2) {
if (v2<v1)

myswap (v1,v2); #
}

// file: my_desc.cxx

template <typename T> !
void myswap (T &v1, T &v2) { "

T tmp;
tmp = v1;
v1 = v2;
v2 = tmp;

}

void descending (int &v1, int &v2) {
if (v1<v2)

myswap (v1,v2); #
}

// file: my_main.cxx

#include <cstdlib>
#include <iostream>

using namespace std;

static int m = 47;
static int n = 11;
template <typename T> void myswap (T &v1, T &v2);

extern void ascending (int &v1, int &v2);
extern void descending (int &v1, int &v2);

int main (void) {
cout << "original: " << m << " " << n << endl;
myswap (m,n); $
cout << "swapped: " << m << " " << n << endl;
ascending (m,n);
cout << "ascending: " << m << " " << n << endl;
descending (m,n);
cout << "descending: " << m << " " << n << endl;
return EXIT_SUCCESS;

}

Example 2–4 shows the compile and link commands.

Example 2–4 Compile and Link Commands

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_MAIN %

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_ASC &

$ CXX/OPTIMIZE=NOINLINE/STANDARD=STRICT_ANSI MY_DESC &

$ CXXLINK MY_MAIN, MY_ASC, MY_DESC ’

In the examples, the compiler combines code sections (and other required
data) into a group, giving it a unique group name derived from the template
instantiation.

Understanding Symbol Resolution (I64) 2–27

Understanding Symbol Resolution (I64)
2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and Group Symbols

The linker includes the first occurrence of this group in the image. All UNIX-
style weak definitions obtained from that group are now defined by the module
providing this group. All subsequent groups with the same name do not
contribute code or data; that is, the subsequent sections are ignored. The UNIX-
style weak definitions from these ignored sections become references, which are
resolved by the definition from the designated instance (first-encountered) of the
group. In this manner, code (and data) from templates are included only once for
the image.

! To keep the examples simple, the template definitions are included in the
sources, usually templates are defined in include files.

" C++ mangles symbol names to guarantee unique names for overloaded
functions. Therefore, in the linker map or in the output from
ANALYZE/OBJECT utility, the string MYSWAP may be part of a longer
symbol name and may not be easily identified. Further, the compiler creates
more names using the string MYSWAP: the unique group name, code section
names, and so on.

The functions "ascending" and "descending" sort a pair of numbers. If
necessary the contents are swapped. Swapping is implemented as a function
template, which is automatically instantiated with the call inside of the
functions "ascending" and "descending".

$ In the main function, "myswap" is used to demonstrate a strong reference to
a UNIX-style weak definition. (As previously mentioned, this is not common
practice. Usually, templates are defined in include files and included in all
sources.) Note that there is only a reference to the function and that there is
no definition. That is, the compiler does not create a group. When compiling
the main module, a reference to "myswap<int>" is automatically generated
for the call to myswap inside the main function. This strong reference will be
resolved by the first UNIX-style weak definition from either MY_ASC.OBJ or
MY_DESC.OBJ which define "myswap<int>".

% To see the effects of this example, the compiler should not inline code.
Because inlining is an optimization, this feature is demonstrated only by
omitting optimization.

& When both source modules are compiled, both object modules contain the
definition of the "myswap<int>" function. The compiler groups the code (and
other required data) sections into a group with a unique group name derived
from the template instantiation. The compiler generates UNIX-style weak
symbols and adds them to the group.

’ For linking, the CXXLINK command is used in the examples. This command
invokes the C++ linker driver, which in turn calls the OpenVMS linker to
perform the actual link operation

2.6.3 Compiler-Generated Symbols and Shareable Images
To create a VMS shareable image, you must define the interface in a symbol
vector at link time with a SYMBOL_VECTOR option. HP C++ generated objects
contain mangled symbols and may contain compiler-generated data, which
belongs to a public interface. In the SYMBOL_VECTOR option, the interface is
describe with the names from the object modules. Because they contain mangled
names, such a relationship may not be obvious from the source code and the
symbols as seen in an object module.

2–28 Understanding Symbol Resolution (I64)

Understanding Symbol Resolution (I64)
2.6 Processing HP C++ Compiler-Generated UNIX-Style Weak and Group Symbols

If you do not export all parts of an interface, code that is intended to update one
data cell may be duplicated in the executable and the shareable image along with
the data cell. That is, data can become inconsistent at run-time, producing a
severe error condition. This error condition can not be detected at link time nor
at image activation time. Conversely, if you export all symbols from an object
module, you may export the same symbol which is already public from other
shareable images.

A conflict arises when an application is linked with two shareable images
that export the same symbol name. In this case, the linker flags the multiple
definitions with a MULDEF warning that should not be ignored. This type
of error most often results when using templates defined in the C++ standard
library but instantiated by the user with common data types. Therefore, HP
recommends that you only create a shareable image when you know exactly what
belongs to the public interface. In all other cases, use object libraries and let
applications link against these libraries.

The HP C++ run-time library contains pre-instantiated templates. The public
interfaces for these are known and therefore, the HP C++ run-time library ships
as a shareable image. The universal symbols from the HP C++ run-time library
and the group symbols take precedence over user instantiated templates with
the same data types. As with other shareable images, this design is upwardly
compatible and does not require you to recompile or relink to make use of the
improved HP C++ run-time library.

2.7 Understanding and Fixing DIFTYPE and RELODIFTYPE Linker
Conditions

On OpenVMS I64 systems, if a module defines a variable as data (OBJECT), it
must be referenced as data by all other modules. If a module defines a variable as
a procedure (FUNC), it must be referenced as a procedure by all other modules.

When data is referenced as a procedure, the linker displays the following
informational message:

%ILINK-I-DIFTYPE, symbol symbol-name of type OBJECT cannot be
referenced as type FUNC

When a procedure is referenced as data, the following informational message is
displayed:

%ILINK-I-DIFTYPE, symbol symbol-name of type FUNC cannot be
referenced as type OBJECT

Type checking is performed by the linker on OpenVMS I64 because the linker
must create function descriptors. The equivalent procedure descriptor was
created by the compiler on OpenVMS Alpha, so this informational message is
new for the linker on OpenVMS I64.

This message is informational only and does not require user action. However,
if the linker detects data referenced as a procedure, it might issue the following
warning message in addition to the DIFTYPE message:

%ILINK-W-RELODIFTYPE, relocation requests the linker to build a
function descriptor for a non-function type of symbol

Understanding Symbol Resolution (I64) 2–29

Understanding Symbol Resolution (I64)
2.7 Understanding and Fixing DIFTYPE and RELODIFTYPE Linker Conditions

The following example of two modules demonstrates how to fix these conditions:

TYPE1.C

#include <stdio>

int status ; // Defines status as data.
extern int sub();

main ()
{

printf ("Hello World\n");
sub();

}

TYPE2.C

extern int status (int x) ; // Refers to status as a procedure.

sub ()
{

int x;
x = (int)status;
return status (x);

}

When these modules are linked, you get an informational message and a warning
message, as follows:

$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE1
$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE2
$ LINK TYPE1,TYPE2
%ILINK-I-DIFTYPE, symbol STATUS of type OBJECT cannot be referenced as
type FUNC

module: TYPE2
file: NODE1$:[SMITH]TYPE2.OBJ;6

%ILINK-W-RELODIFTYPE, relocation requests the linker to build a
function descriptor for a non-function type of symbol

symbol: STATUS
relocation section: .rela$CODE$ (section header entry: 18)
relocation type: RELA$K_R_IA_64_LTOFF_FPTR22
relocation entry: 0
module: TYPE2
file: NODE1$:[SMITH]TYPE2.OBJ;6

To correct the problem and avoid the informational and warning messages,
correct TYPE1.C to define status as a procedure:

TYPE1.C

#include <stdio>

int status (int x); // Defines status as a procedure.
extern int sub();

main ()
{

printf ("Hello World\n");
sub();

}

nt status (int x) {
return 1;

}

$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE1
$ CC/EXTERN_MODEL=STRICT_REFDEF TYPE2
$ LINK TYPE1,TYPE2

2–30 Understanding Symbol Resolution (I64)

3
Understanding Image File Creation (I64)

This chapter describes how the linker creates an image on OpenVMS I64 systems.
The linker creates images from the input files you specify in a link operaton. You
can control image file creation by using linker qualifiers and options.

3.1 Overview
After the linker has resolved all symbolic references between the input files
specified in the LINK command (described in Chapter 2), the linker knows all the
object modules and shareable images that are required to create the image. For
example, the linker has extracted from libraries specified in the LINK command
those modules that contain the definitions of symbols required to resolve symbolic
references in other modules. The linker must now combine all these modules into
an image.

To create an image, the linker must perform the following processing:

• Determine the memory requirements of the image

The memory requirements of an image are the sum of the memory
requirements of each object module included in the link operation, together
with the memory the linker created to support code and data. The language
processors that create the object modules specify the memory requirements
of an object module as section definitions. A section represents an area
of memory that has a name, a length, and other characteristics, called
attributes, which describe the intended or permitted usage of that portion of
memory. Section 3.2 describes sections.

The linker processes the section definitions in each object module, combining
sections with similar attributes into a segment, which on I64 systems is
analogous to an image section on Alpha and VAX systems (see Chapter 7).
Each segment specifies the size and attributes of a portion of the virtual
memory of an image. The image activator uses the segment attributes to
determine the characteristics of the physical memory pages into which it
loads the image, such as protection.

Figure 3–1 illustrates how memory requirements are communicated from the
language processor to the linker and from the linker to the image activator.
Section 3.3 provides more information about this process.

Understanding Image File Creation (I64) 3–1

Understanding Image File Creation (I64)
3.1 Overview

Figure 3–1 Communication of Image Memory Requirements on I64 Systems

Language Processor
(Compiler, assembler, etc.)

Physical Page

Linker

Image Activator

VM-1195A-AI

Section

Segment

Note that shareable images included in link operations have already been
processed by the linker. These images are separate images with their own
memory requirements, as specified by their own segments. The image
activator activates these shareable images at run time.

• Initialize the image

When segments are first created, they are empty. In this step of linker
processing, the linker copies the code and data sections from the object
modules into the image’s segments. Section 3.4 provides more information
about this process.

In the process of initializing the image, the linker may encounter sections
that have the type SHT_NOBITS. This section type indicates that the section
occupies no space in the file - a demand-zero section. The linker combines
these sections together into demand-zero segments. The linker also trims
the zeros off the end of segments when the qualifier /DEMAND_ZERO=PER_
PAGE is used. Note that this is not the default. The operating system
initializes demand-zero segments at run time, when a reference to a segment
requires the operating system to move the pages into memory. Section 3.4.4
describes how the linker creates demand-zero segments.

After creating segments and filling them with binary code and data, the linker
writes the image to an image file. Section 3.4.2 describes this process.

3–2 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

3.2 Creating Sections
Language processors create sections and define their attributes. The number
of sections created by a language processor and the attributes of these sections
are dependent upon language semantics. For example, some programming
languages implement global variables as separate sections with a particular
set of attributes. Programmers working in high-level languages typically have
little direct control over the sections created by the language processor. Medium-
and low-level languages provide programmers with more control over section
creation. For more information about the section creation features of a particular
programming language, see the language processor documentation.

The I64 linker also creates sections that are combined with the compiler sections
to create segments (see Section 3.2.1).

Section Attributes
The language processors define the attributes of the sections they create and
communicate these attributes to the linker in the section header table.

Section attributes define various characteristics of the area of memory described
by the section, such as the following:

• Access

Using section attributes, compilers can prohibit some types of access, such as
write access. Using other section attributes, compilers can allow access to the
section by more than one process.

• Positioning

By specifying certain section attributes, compilers can specify to the linker
how it should position the section in memory.

Section attributes are Boolean values, that is, they are either on or off. Table 3–2
lists all section attributes with the keyword you can use to set or clear the
attribute, using the PSECT_ATTR= option. (For more information about using
the PSECT_ATTR= option, see Section 3.3.7.)

For example, to specify that a section should have write access, specify the
writability attribute as WRT. To turn off an attribute, specify the negative
keyword. Some attributes have separate keywords that express the negation
of the attribute. For example, to turn off the global attribute (GBL), you must
specify the local attribute (LCL). Note that the alignment of a section is not
strictly considered an attribute of the section. However, because you can set it
using the PSECT_ATTR= option, it is included in the table.

To be compatible with Alpha and VAX linkers, the I64 linker retains the user
interfaces as much as possible. This information includes the traditional
OpenVMS section attribute names (WRT, EXE, and so on) that are used in
the PSECT_ATTR= option. However, on I64, the underlying object conforms
to the ELF standard. When processing the object module, the linker maps the
ELF terms to the OpenVMS terms. For compatibility, only OpenVMS terms are
written to the map file. In contrast, other tools, such as the ANALYZE/OBJECT
utility, do not use OpenVMS terms; they simply format the contents of the object
file and therefore display the ELF terms.

Table 3–1 maps the traditional OpenVMS section attribute names to the ELF
names and vice versa.

Understanding Image File Creation (I64) 3–3

Understanding Image File Creation (I64)
3.2 Creating Sections

Table 3–1 Mapping ELF Section Terms to OpenVMS Attributes

ELF Section Attribute1
Traditional OpenVMS
Section Attribute

SHF_WRITE WRT

SHF_EXECINSTR EXE

SHF_VMS_GLOBAL GBL

SHF_VMS_OVERLAID OVR

–2 REL

SHF_VMS_SHARED SHR

SHF_VMS_VECTOR VEC

SHF_VMS_ALLOC_64BIT ALLOC_64BIT

SHF_IA_64_SHORT SHORT3

SHT_NOBITS4 NOMOD5

1These ELF section attributes are prefixed with SHDR$V_
2All ELF sections are relative (REL). There is only a conceptual absolute section: the reserved section number SHDR$K_
SHN_ABS. Absolute symbols are defined by that mechanism.
3This is a section attribute in I64, with a new OpenVMS attribute name
4This is an ELF section type (prefixed with SHDR$K_), mapped to an OpenVMS section attribute
5SHT_NOBITS/NOMOD is only set by compilers; it reflects uninitialized data.

Table 3–2 lists all section attributes with the keyword you can use to set or clear
the attribute, using the PSECT_ATTR= option.

3–4 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

Table 3–2 Section Attributes on I64

Attribute Keyword Description

Alignment – Specifies the alignment of the section as an integer that
represents the power of 2 required to generate the desired
alignment. For certain alignments, the linker supports
keywords to express the alignment. The following table
lists all the alignments supported by the linker with their
keywords:

Power
of 2 Keyword Meaning

0 BYTE Alignment on byte boundaries.

1 WORD Alignment on word boundaries.

2 LONG Alignment on longword boundaries.

3 QUAD Alignment on quadword (8-byte)
boundaries.

4 OCTA Alignment on octaword (16-byte)
boundaries.

5 HEXA Alignment on hexadecimal word (32-byte)
boundaries.

6 – Alignment on 64-byte boundaries.

7 – Alignment on 128-byte boundaries.

8 – Alignment on 256-byte boundaries.

9 – Alignment on 512-byte boundaries.

13 – Alignment on 8 KB boundaries.

14 – Alignment on 16 KB boundaries.

15 – Alignment on 32 KB boundaries.

16 – Alignment on 64 KB boundaries.

– PAGE Alignment on the default target page
size, which is 64 KB for I64 linking. You
can override this default by specifying the
/BPAGE qualifier.

Position
Independence

PIC/NOPIC This keyword is ignored by the I64 linker.

Overlaid/ConcatenatedOVR/CON When set to OVR, specifies that the linker will overlay this
section with other sections with the same name and attribute
settings. Sections that are overlaid are assigned the same
base address. When set to CON, the linker concatenates the
sections.

Relocatable/Absolute REL/ABS When set to REL, specifies that the linker can place the
section anywhere in virtual memory. Absolute sections are
used by compilers primarily to define constants, but in the
ELF object language they are not put into an actual section.
Setting the section to ABS on I64 is not meaningful, and the
ABS keyword is ignored by the I64 linker.

(continued on next page)

Understanding Image File Creation (I64) 3–5

Understanding Image File Creation (I64)
3.2 Creating Sections

Table 3–2 (Cont.) Section Attributes on I64

Attribute Keyword Description

Global/Local GBL/LCL When set to GBL, specifies that the linker should gather
contributions to the section from all clusters and place them
in the same segment. When set to LCL, the linker gathers
sections into the same segment only if they are in the same
cluster. The memory for a global section is allocated in the
cluster that contains the first contributing module.

Shareability SHR/NOSHR Specifies that the section can be shared between several
processes. Only used to sort sections in shareable images.

Executability EXE/NOEXE Specifies that the section contains executable code.

Writability WRT/NOWRT Specifies that the contents of a section can be modified at run
time.

Protected Vectors VEC/NOVEC Specifies that the section contains privileged change-mode
vectors or message vectors. In shareable images, segments
with the VEC attribute are automatically protected.

Solitary SOLITARY Specifies that the linker should place this section in its own
segment. Useful for programs that map data into specific
locations in their virtual memory space. Note that compilers
do not set this attribute. You can set this attribute using the
PSECT_ATTR= option.

Unmodified NOMOD/MOD When set, specifies that the section has not been initialized
(NOMOD). The I64 linker uses this attribute to create demand
zero segments; see Section 3.4.4. Only compilers can set this
attribute (in ELF objects, the section type SHT_NOBITS). You
can clear this attribute only by specifying the MOD keyword
in the PSECT_ATTR= option.

Readability RD This keyword is ignored by the I64 linker.

User/Library USR/LIB This keyword is ignored by the I64 linker.

Short Data SHORT When set this indicates that a data section should be put in
one of the short sections. Compilers can set this attribute, in
which case the user can not alter it.

Allocate section in
P2 space

ALLOC_
64BIT/NOALLOC_
64BIT

When set this indicates that the section should be allocated
in P2 space instead of P0 space. The program may run but
not execute correctly when initialized data is put in P2 space.
Code and demand zero data do work properly.

To illustrate section creation, consider the sections created by the HP C compiler
when it processes the sample programs in the following examples:

Example 3–1 Sample Program MYTEST.C

#include <stdio.h>
extern int global_data;

extern int myadd(int, int);
extern int mysub(int, int);

main()
{
int num1, num2, res1, res2;

num1 = 5;
num2 = 6;

(continued on next page)

3–6 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

Example 3–1 (Cont.) Sample Program MYTEST.C

res1 = myadd(num1, num2);
res2 = mysub(num1, num2);
printf("res1 = %d, res2 = %d, globaldata = %d\n", res1, res2, global_data);

}

Example 3–2 Sample Program MYADD.C

#include <stdio.h>

int add_data = -1;

int myadd(int value_1, int value_2)
{

printf("In MYADD.C\n");
add_data = value_1 + value_2;
return add_data;

}

Example 3–3 Sample Program MYSUB.C

#include <stdio.h>

int global_data = 5;
int sub_data = -1;

int mysub(int value_1, int value_2)
{

printf("In MYSUB.C\n");
sub_data = value_1 - value_2;
return sub_data;

}

To see what sections the HP C compiler creates for these modules, use the
ANALYZE/OBJECT utility to examine each object module. Example 3–4 presents
an excerpt from the analysis of the object module MYTEST.OBJ. Only the section
definitions are included in the excerpt.

Example 3–4 Sections Generated by an Analysis of Example 3-1

$ anal/object/section=all/out=mytest.anl mytest.obj
.
.
.

SECTION SUMMARY

(continued on next page)

Understanding Image File Creation (I64) 3–7

Understanding Image File Creation (I64)
3.2 Creating Sections

Example 3–4 (Cont.) Sections Generated by an Analysis of Example 3-1

Number Type Name Flags
0. NULL ------------------------------
1. STRTAB .shstrtab ------------------------------
2. NOTE .note ------------------------------
3. PROGBITS $CODE$ -AE-----------------Shr-------
4. PROGBITS $LITERAL$ -A------------------Shr-------
5. NOBITS $LINK$ -A----------------------------
6. PROGBITS .IA_64.unwind_info -A----------------------------
7. IA_64_UNWIND .IA_64.unwind ! -A---L------------------------
8. STRTAB .strtab ------------------------------
9. SYMTAB .symtab ------------------------------
10. VMS_TRACE .debug_line ------------------------------
11. RELA .rela.debug_line ------------------------------
12. VMS_TRACE .trace_abbrev ------------------------------
13. VMS_TRACE .trace_info ------------------------------
14. RELA .rela.trace_info ------------------------------
15. VMS_TRACE .trace_aranges ------------------------------
16. RELA .rela.trace_aranges ------------------------------
17. RELA .rela.IA_64.unwind_info ------------------------------
18. RELA .rela.IA_64.unwind ------------------------------
19. RELA .rela$CODE$ ------------------------------

Key for Flags: W (Write), A (Alloc), E (Execute), S (Strings), I (Info link), L (Link order),
O (OS-specific processing), G (Group), Sho (Short), Nrc (No recovery code),
Gbl (Global), Ovr (Overlaid), Shr (Shared), Vec (Vector),
64b (Allocate 64bit address), Pro (Protected)

.

.

.

SECTION HEADER ENTRY 3. (0003)
"$CODE$"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------
Name Offset in .shstrtab: 00000011 "$CODE$" " shdr$l_sh_name
Section Type: 00000001 SHDR$K_SHT_PROGBITS shdr$l_sh_type
Section Flags: # 0000000400000006 shdr$q_sh_flags
Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc
Machine instructions: <0000000000000004> SHDR$M_SHF_EXECINSTR shdr$v_shf_execinstr
Shareable section: <0000000400000000> SHDR$M_SHF_VMS_SHARED shdr$v_shf_vms_shared

Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr
Offset to Section Data: 0000000000000170 shdr$q_sh_offset
Size of Section Data: 00000000000001C0 $ shdr$q_sh_size
Section Link Field: 00000000 shdr$l_sh_link
Section Info Field: 00000000 shdr$l_sh_info
Alignment Constraint: 0000000000000010 % shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize

.

.

.
SECTION HEADER ENTRY 7. (0007)
".IA_64.unwind"
Description Hex (<bitmask>) Interpretation Field Name
----------- --------------- -------------- ----------
Name Offset in .shstrtab: 0000003C ".IA_64.unwind" shdr$l_sh_name
Section Type: 70000001 SHDR$K_SHT_IA_64_UNWIND shdr$l_sh_type
Section Flags: 0000000000000082 shdr$q_sh_flags
Data occupies memory: <0000000000000002> SHDR$M_SHF_ALLOC shdr$v_shf_alloc
Preserve section order: <0000000000000080> SHDR$M_SHF_LINK_ORDER shdr$v_shf_link_order

Section Load Address: 0000000000000000 Not Used (Object File) shdr$pq_sh_addr

(continued on next page)

3–8 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

Example 3–4 (Cont.) Sections Generated by an Analysis of Example 3-1
Offset to Section Data: 0000000000000090 shdr$q_sh_offset
Size of Section Data: 0000000000000030 shdr$q_sh_size
Section Link Field: ! 00000003 shdr$l_sh_link
Section Info Field: ! 00000006 shdr$l_sh_info
Alignment Constraint: 0000000000000008 shdr$q_sh_addralign
Entry Size (if table): 0000000000000000 shdr$q_sh_entsize

Note

You can also determine the sections in an object module after a link
operation by looking at the Program Section Synopsis section of an image
map file, as illustrated in Example 3–7.

The items in the following list correspond to the numbered items in Example 3–4:

! The unwind table section is the only section with the Link Order attribute
set. The Link Order attribute signifies that the I64 linker must preserve
section ordering. See Section 3.2.1.5.

" The Name Offset indicates the name of the section.

Section flags indicate which section attributes are set. The attributes are
listed by their ELF name. Note that the keywords are only listed when the
bit in shdr$q_sh_flags is set. For example SHDR$M_SHF_EXECINSTR
(Machine Instructions) is an attribute of the $CODE$ section.

$ The Size of Section Data indicates the number of bytes required for the
section.

% Alignment Constraint specifies the address boundary at which the linker
must place a module’s contribution to the section. The number shown here,
10 (hexadecimal), is a byte alignment and not an OpenVMS style (power of 2)
of specifying the section attributes.

Figure 3–2 illustrates some of the sections created by the HP C compiler for the
modules in Example 3–1, Example 3–2, and Example 3–3. (The shaded areas
represent the settings of the section attributes the linker considers when sorting
the sections into image segments in an executable image. See Section 3.3.4 for
more information about how the linker creates segments in an image.)

Understanding Image File Creation (I64) 3–9

Understanding Image File Creation (I64)
3.2 Creating Sections

Figure 3–2 Sections Created for Examples 3-1, 3-2, and 3-3

VM-1196A-AI

mytest.obj myadd.obj mysub.obj

GLOBAL_DATA

$CODE$

SUB_DATAADD_DATA

.IA_64.unwind.info

.IA_64.unwind

$LITERAL$

$CODE$

.IA_64.unwind.info

.IA_64.unwind

$LITERAL$

$CODE$

.IA_64.unwind.info

.IA_64.unwind

$LITERAL$

3.2.1 Sections Created by The Linker
Unlike the VAX and Alpha linkers, the I64 linker creates new sections as well as
contributions to existing sections for loadable segments.

When the linker assigns a name for a section, the name can be a reserved name
containing an embedded space (e.g. $LINKER UNWIND$). The linker uses the
embedded space in a reserved name to prevent you from changing the section
attributes. The PSECT_ATTR option reads the embedded space and compresses
it out of the name. As such, the name is not read by the linker as you intended
and the attributes are preserved.

3.2.1.1 Sections for Relaxed Symbol Definitions
In HP C, relaxed symbol definitions that can act like a reference or a definition
(when no other definition is found) have no section assigned to them. If there is
no hard definition (i.e., a symbol with a compiler-supplied section), the linker
allocates a section for the symbol. The section has the same name as the symbol,
and is contributed by the I64 linker (labeled with <Linker> in the map).

3.2.1.2 Sections Embedded in Code Segments
The I64 linker contributes sections to code segments that contain calls to code
outside the image, outside the code segment but to another segment within the
image, or to code that can’t be reached with a normal branch instruction inside
the segment (called a trampoline).

The instructions can be helpful when using the debugger to step into subroutines.
The instructions are grouped in 128-bit bundles, with a series of dashes marking
the end of a bundle.

3–10 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

<Linker> is used to lable the linker contribution in the map, usually at the end of
the code section (normally named $CODE$).

Calls Out of the Image
The compiler is unaware whether a call is internal or external to the image being
created. The linker has this knowledge and for external calls, generates the
following sequence of instructions:

addl r15=<offset>,r1;;
ld8 r16=[r15],8
nop.i

ld8 r1=[r15]
mov b6=r16
br.few b6;; !

! This is an Indirect Branch (B4). For more information, see the Intel IA-64
Architecture Software Developers Manual, Volume 3, Instruction Set Reference,
Revision 1.1, July 2000, pages 2-9 and 4-64.

In the first instruction, R15 contains the address of the Function Descriptor
(FD), which the linker obtained by adding an offset to the Global Pointer register
(GP, implemented as R1). R16 is loaded with a pointer to the code address. R1
then receives the new Global Pointer. The branch instruction completes the call
sequence.

Calls Out of the Segment to Another Segment in the Same Image
The compiler is unaware whether the destination of a call is in another segment
of the same. The linker has this knowledge and for calls that cross segment
boundaries, generates the following sequence of instructions:

addl r15=<offset>,r1;;
ld8 r16=[r15]
nop.i

nop.m
mov b6=r16
br.few b6;; !

! This is an Indirect Branch (B4). For more information, see the Intel IA-64
Architecture Software Developers Manual, Volume 3, Instruction Set Reference,
Revision 1.1, July 2000, pages 2-9 and 4-64.

In the first instruction, R15 contains the address of the Function Descriptor
(FD), which the linker obtained by adding an offset to the Global Pointer (GP,
implemented as R1) register. R16 is loaded with a pointer to the code address.
Because the instructions branch to another segment in the same image and
because there is one GP per image, the linker can skip copying the GP from the
FD.

Calls That Cannot be Reached with Normal Branch Instruction (Trampolines)
The linker uses a trampoline when when the branch-to-code instruction in the
same segment (calculated in 128 bit or 16 byte bundles) is more than 21-bit
signed offset. The trampoline must be located somewhere within the original
21-bit signed branch. The trampoline then does an indirect branch from the
trampoline to the target instruction.

Understanding Image File Creation (I64) 3–11

Understanding Image File Creation (I64)
3.2 Creating Sections

nop.m 0x0
movl r15=<offset between the next instruction and the target> !

nop.m 0x0
mov r16=ip;; "
add r16=r15,r16;;

nop.m 0x0
mov b6=r16
br.few b6;; #

! See the Intel IA-64 Architecture Software Developers Manual, Volume 3,
Instruction Set Reference, Revision 1.1, July 2000, page 2-156.

" The ip is the PC; it points to previous instruction that indicates the beginning
of an instruction bundle.

This is an Indirect Branch (B4). For more information, see the Intel IA-64
Architecture Software Developers Manual, Volume 3, Instruction Set Reference,
Revision 1.1, July 2000, pages 2-9 and 4-64.

3.2.1.3 Short Data Sections
In order to make position-independent code that does not require any relocations,
Itanium platforms allow code to make a reference to pointers and other short
data using offsets from an address in a register. This special register is called
the Global Pointer (GP) register. The language processors place such data into
sections named short data sections. It is the task of the linker to collect these
sections into a segment or segments and to determine the GP value. The GP
value is determined so that the beginning of the first (or only) short data segment
is the negative-most offset from the GP within range. For the Intel Itanium
architecture, the negative-most offset is 2 MB. Therefore, the GP value is the
virtual address of the beginning of the first (or only) short data segment plus 2
MB. If the address range for your short data segment or segments is less than
2Mb, the GP value may not even point to a virtual address mapped by your
image. The compilers usually place data in the short data sections that are
relatively short (like quadwords or smaller) and not long (like an array).

There are two kinds of short data sections — read-only and read-write. The I64
linker is a major contributor to the read-only short data section. In this section,
the linker puts addresses of data and function descriptors (termed procedure
descriptors on Alpha) that can be reached by code with a short offset from the
Global Pointer register. This section is named $LINKER SDATA$. In the map,
<Linker> is used to label the linker contributions to this section.

Function descriptors placed in the read-only short data section have varying
lengths depending on their type. The types are official and local. Official function
descriptors are always three quadwords long. Local function descriptors can
be two quadwords or four quadwords long, depending on whether the qualifier
/NONATIVE_ONLY is present. If the image is supposed to interoperate with
translated images, the /NONATIVE_ONLY qualifier must be used, and local
function descriptors will be four quadwords long.

Official function descriptors represent functions that are defined by an image.
One example of functions defined by an image are those functions which can be
exported from a shareable image by the symbol vector and called by other images.
Official function descriptors always contain the address of the first instruction
of the function in the first quadword. The GP value under which the function
executes is in the second quadword. The third quadword contains a zero, or if

3–12 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

the /NONATIVE_ONLY qualifier is used it contains the function’s signature or
a pointer to the function’s signature. A signature describes the parameters and
return status of the function. If the third quadword is zero then the function
descriptor has no signature, and a translated image is not allowed to call the
function.

An official function descriptor has the following format at runtime:

Figure 3–3 Official Function Descriptor

63 0

code address

Global Pointer (GP) address

signature information

Official Function Descriptor

VM-1206A-AI

A local function descriptor represents a function outside of the image. Local
function descriptors made for images that do not interoperate with translated
images contain at run-time the address of the first instruction of the function
in the first quadword. The GP value under which the function executes is in
the second quadword. The linker generates a fixup for the function descriptor
because it has no knowledge of those addresses. The fixup is applied by the
image activator which has already activated the image with those addresses in it.

A local function descriptor has the following format at runtime:

Figure 3–4 Local Function Descriptor - Two Quadwords

0

VM-1207A-AI

63

code address

Global Pointer (GP) address

Local Function Descriptor

Local function descriptors made by the linker for images that can interoperate
with translated images are four quadwords long. At run-time, after the image
activator has determined that the target shareable image is translated, the four
quadwords in the function descriptor contain the following:

• Entry (code) address of the routine that mediates calls between native and
translated code

• Address of this function descriptor

• Signature information for the call

• Pointer to the official function descriptor for the entry point in the translated
image (or some other unique identification that can be interpreted by the
support facility the mediates calls between native and translated code)

Understanding Image File Creation (I64) 3–13

Understanding Image File Creation (I64)
3.2 Creating Sections

The linker assumes the image activator will find a native image, and issues a
fixup to the image activator to fill in the first two (of four) quadwords with the
code address and GP. The third quadword is filled in with signature information,
like an official function descriptor. The fourth quadword is filled in with a
zero. If the image activator determines that the function referenced by this
function descriptor in a native image, it applies the fixup and ignores the last two
quadwords.

3.2.1.4 Section for the Symbol Vector
The symbol vector on Alpha is in a PSECT named $SYMVECT. The I64 Linker
does not use a section with the name $SYMVECT, but places the symbol vector in
a section with the name $LINKER SYMBOL_VECTOR$, and places the section
in the short data segment by default. In the map, <Linker Option> is used to
label this linker contribution.

You can use the qualifier /SEGMENT=(SYMBOL_VECTOR=NOSHORT) to move
$LINKER SYMBOL_VECTOR$ to a data segment which is read-only. The I64
Linker creates a read-only data segment if one does not already exist.

For a look at the layout of a symbol vector see Figure 2–1.

3.2.1.5 Sections that Contain Unwind Data
When an exception is signaled by hardware or software, the condition handling
facility looks for a condition handler. If a condition handler is found, the handler
may choose to call SYS$UNWIND to unwind the stack. SYS$UNWIND has,
at its disposal, an unwind table. The unwind table contains a pointer into a
variable-sized information block that contains the unwind descriptor list and a
language-specific area. The unwind table and the unwind information block are
created by the compilers. The linker has to place the contributions to the unwind
tables in the same order as the contributions to the code segment for unwinding
to work.

The linker renames the compiler-named sections that contain unwind tables
(usually named .IA_64.unwind) and unwind information blocks (usually named
.IA_64_unwinfo). It can tell which sections contain unwind tables because
those sections have the type SHT_IA_64_UNWIND. It also has the link order
(SHF_LINK_ORDER) attribute set. The link order attribute means that the
contributions to the unwind table must be in the same order as contributions
pointed to by the SH_LINK field (a code section).

The new, reserved name of the section that contains the unwind tables is
$LINKER UNWIND$. $LINKER UNWINFO$ is the new, reserved name of
the section that contains unwind information. These names appear in the linker
map; the actual names of these sections are gone by the time the map is written.
The linker uses reserved names for these sections; this means that you are not
allowed to change the section attributes with a PSECT_ATTR= clause or collect
them with the COLLECT= option to other clusters. This is because the placement
and ordering of these sections are driven by the placement and ordering of the
code sections to which they refer. By altering the placement or ordering of the
code sections through the use of linker options or input file ordering, the sections
containing unwind tables and unwind information blocks will likewise have the
placement or ordering of their contributions altered.

$LINKER UNWIND$ and $LINKER UNWINFO$ have identical significant
attributes and therefore end up in the same unwind segment. This is denoted
in the Image Segment Synopsis section of the map by the [UNWIND] tag. The

3–14 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.2 Creating Sections

unwind segment is connected to the corresponding code segment by entries in the
dynamic segment (which the image activator uses for activating an image).

If you have a complex link with an options file that contains a number of
CLUSTER= or COLLECT= options, you may have more unwind segments than
you really need. The I64 linker constructs one unwind segment per cluster with
one or more code segments. To reduce the number of unwind segments, you
should reduce the number of clusters containing code. This is done by collecting
code sections onto a smaller number of clusters or onto a single cluster.

3.3 Creating Segments
On I64 systems, the linker creates segments, which are analogous to image
sections on Alpha and VAX systems. Segments define the memory requirements
and page protection characteristics of an image.

To create segments, the linker processes the sections in the object modules
specified in the link operation. The number and type of segments the linker
creates depend on the input files and what is specified in the link operation.
Section 3.3.1 describes how the clustering of input files affects segment creation.
Section 3.3.2 describes the effects of section attributes on segment creation.

3.3.1 Processing Clusters to Create Segments
To create segments, the linker processes the section definitions in the input files
you specify in the LINK command. The linker processes these input files on a
cluster-by-cluster basis (as described in Section 2.3.1).

Each cluster spawns segments into which sections are placed. However, the
linker crosses cluster boundaries when processing sections with the global (GBL)
attribute. (In ELF, GBL corresponds to SHF_VMS_GLOBAL.) When the linker
encounters a section with the global attribute, it searches all the previously
processed clusters for a section with the same name and attributes and, if it finds
one, places the new definition of the global section in the same cluster as the first
definition of the program section.

The linker processes input files in the order by which they appear in the clusters.
Note that on I64 there are no based clusters, that is, the I64 linker does not
allow you to enter a base address with the CLUSTER= option. In addition, the
linker only has to process clusters once.

For more information about creating clusters, see the descriptions of the
CLUSTER= and the COLLECT= option in Part IV.

A LINK command to create an image using the object modules in Section 3.2 is
shown in Example 3–5.

Example 3–5 Linking Examples 3-1, 3-2, and 3-3

$ LINK/MAP/FULL/CROSS MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB

Ctrl/Z

Understanding Image File Creation (I64) 3–15

Understanding Image File Creation (I64)
3.3 Creating Segments

The CLUSTER= option in this link operation causes the linker to create a cluster
named MYSUB_CLUS, which contains the object module MYSUB.OBJ. The
linker puts the object modules MYTEST.OBJ and MYADD.OBJ in the default
cluster. These clusters appear on the linker’s cluster list in the following order:

1. MYSUB_CLUS

2. DEFAULT_CLUSTER

3. DECC$SHR

The linker always processes the default cluster after any user-specified cluster
(MYSUB_CLUS). DECC$SHR was automatically picked up from IMAGELIB.OLB
by the I64 linker after the preceding clusters were processed and there were still
unresolved symbols.

3.3.2 Combining Sections into Image Segments
The linker creates segments by grouping together sections with similar attributes.
Within a segment, the linker organizes sections alphabetically by name. If more
than one object module contributes to the same section, the linker lays out their
contributions in the order it processes them.

Figure 3–5 shows how the linker groups the sections in the object modules from
the sample link into segments, based on the setting of their significant attributes.
In the figure, the settings of these significant attributes are represented by
shading. (The figure considers attributes that are significant when creating
executable images, and does not consider the SHR attribute as significant as it
does with shareable images. Section 3.3.4 provides more information about which
program section attributes are significant.)

Note that in Figure 3–5, the relaxed definition from MYTEST.OBJ for GLOBAL_
DATA appears in the MYSUB_CLUS cluster, even though the object module
MYTEST.OBJ is in the default cluster. In general, the linker puts all
contributions to a global section in the cluster in which it is first defined. In
the relaxed case, the linker chooses the memory from the hard definition that
occurs in MYSUB.OBJ.

3–16 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

Figure 3–5 Combining Sections into Image Segments

 Sections

Segment 1

Segment 2

Segment 3

Segment 4

VM-1197A-AI

Segments

GLOBAL_DATA

$LITERAL$

SUB_DATA

$CODE$

GLOBAL_DATA

$CODE$

$LITERAL$

SUB_DATA

from mysub

From the symbol table of mytest

from mysub

from mysub

from mysub

Relaxed ref/def
from mytest finds
memory here

from mysub

from mysub

PLT/Trampolines
from Linker

$LINKER UNWIND$

from mysub

$LINKER UNWINFO$

from mysub

from mysub

.IA_64.unwind_info

.IA_64.unwind

from mysub

from mysub 1

Mysub_clus
Cluster

from mysub

Understanding Image File Creation (I64) 3–17

Understanding Image File Creation (I64)
3.3 Creating Segments

Figure 3–6 continues the representation in Figure 3–5.

Figure 3–6 Combining Sections into Image Segments (continued)

 Sections

Segment 5

Segment 6

Segment 7

Segment 8

VM-1198A-AI

Segments

$LITERAL$

$CODE$

$CODE$

.IA_64.unwind

.IA_64.unwind

$LITERAL$

from mytest

from mytest

from mytest

.IA_64.unwind_info

.IA_64.unwind_info

from mytest

from mytest

$LITERAL$
from myadd

$CODE$
from mytest

$CODE$
from myadd

$LINKER UNWIND$

ADD_DATA
from myadd

from myadd

$LITERAL$
from myadd

from myadd

from myadd

ADD_DATA
from myadd

from mytest

$LINKER UNWIND$
from myadd

$LINKER UNWINFO$
from mytest

PLT/Trampolines
from Linker

$LINKER UNWINFO$
from myadd

1

Default
Cluster

! The linker processes unwind tables and unwind information sections
independent of the linker’s general section collection rules. It groups all
the .IA_64.unwind sections (which have section type SHT_IA_64_UNWIND)
and then all the .IA_64.unwinfo sections follow linked in the same order as
the code sections.

3.3.3 Traditional OpenVMS Image Attribute Terms and ELF Terms
The ELF format has fewer attributes than a traditional OpenVMS image. Some
of the attributes are expressed in the segment header and some are not used
on I64 systems. In addition, the linker creates an image file in the ELF format.
However, for compatibility, the I64 linker writes a map file with image attribute
names the same as it does for other OpenVMS systems. Other utilities like
ANALYZE/IMAGE simply display the ELF terms. To help explain ELF terms
compared with traditional OpenVMS term, Table 3–3 shows how the terms are
mapped.

3–18 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

Table 3–3 Mapping OpenVMS Image Attribute Terms to ELF Terms

Traditional OpenVMS
Image Attribute1

Display Name in
Linker Map ELF Image Attribute2

GBL – –3

CRF WRITE,SHARED PF_VMS_SHARED,PF_W

Demand zero DEMAND ZERO Zero segment file size4

EXE EXECUTABLE PF_X

WRT READ WRITE PF_W

MATCHCTL – –3

LASTCLU – –5

FIXUPVEC – –3

RESIDENT RESIDENT PF_VMS_RESIDENT6

VECTOR VECTOR PF_VMS_VECTOR

PROTECT PROTECT PF_VMS_PROTECT

1These OpenVMS image attributes are prefixed with [E]ISD$M_
2These ELF image attributes are prefixed with PHDR$M_
3Not an attribute, implemented in the dynamic segment
4Zero PHDR$Q_P_FILESZ and nonzero PHDR$Q_P_MEMSZ
5Not used on I64
6Reserved by HP

Note

All sections, and therefore all segments, are position independent.
Therefore, there is no PIC segment type on I64.

3.3.4 Processing Significant Section Attributes
When combining sections into segments, the linker considers only significant
section atributes, that is, a subset of the section attributes. The set of significant
attributes varies according to the type of image being created. When creating an
executable image, the linker considers all combinations of the following attributes
when combining sections into segments:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD)

• Short (SHORT/NOSHORT)

• Allocation in P2 (ALLOC_64BIT/NOALLOC_64BIT)

When creating a shareable image, the linker considers all combinations of the
following attributes when combining sections into segments:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Shareability (SHR/NOSHR)

Understanding Image File Creation (I64) 3–19

Understanding Image File Creation (I64)
3.3 Creating Segments

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD)

• Short (SHORT/NOSHORT)

• Allocation in P2 (ALLOC_64BIT/NOALLOC_64BIT)

Table 3–4 and Table 3–5 list all the possible combinations of the significant
section attributes for executable images and shareable images. Note that the
order in which the combinations appear in the table (each row) is the same order
in which the linker processes them.

For example, the linker first processes all sections with the WRT, NOEXE,
NOVEC, MOD, and NOSHORT attributes, creating a segment of sections with
these attributes. The linker then processes all sections with the WRT, NOEXE,
NOVEC, NOMOD and NOSHORT attributes, creating another segment for
those sections. The linker continues this processing until all the combinations of
significant attributes have been processed and all the sections in the cluster have
been placed in a segment.

The tables include only sections that are relocatable (with the REL attribute).
Absolute sections (with the ABS attribute), by definition, can have no allocation
(they contain only constants) and cannot contribute to a segment.

To simplify the tables, they do not include the ALLOC_64BIT attribute. ALLOC_
64BIT only determines if the the section should be allocated in P2 space. The
default is NOALLOC_64BIT. This attribute does not influence the segment
attributes of the created segment. But obviously, two sections, whose attribute
only differ in ALLOC_64BIT, end up in different segments. The ALLOC_64BIT
attribute can be set for all sections except the ones with the SHORT attribute.

The linker creates additional segments that cannot be controlled by the user (see
Section 3.4.3).

The tables assume that the images are linked using the /DEMAND_ZERO
qualifier, which is the default. (When this qualifier is specified, the linker groups
sections that do not contain any data into demand-zero segments, allocating
memory for the segment but not writing zeros to disk.) If the image is linked
with the /NODEMAND_ZERO qualifier, then the linker allocates space for the
segment in the image file. Note that the /NODEMAND_ZERO qualifier does
not affect how the linker sorts sections; it proceeds exactly as specified by the
table. However, when the image is written, the linker allocates disk space for the
segment and fills the space with zeros.

The tables also show how a particular combination of section attributes
determines the attributes of the segment in which it is placed. For more
information about segment attributes, see Section 3.3.6.

3–20 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

Table 3–4 Mapping Section Attributes to Segment Attributes for Executable Images

Significant Section Attribute Settings Segment Attributes Set1

NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W

NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,Demand zero2

NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,PF_VMS_
PROTECT

EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X

EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X

EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,PF_VMS_
PROTECT

EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,PF_VMS_VECTOR,PF_VMS_
PROTECT

EXE NOWRT *3 NOMOD NOSHORT PF_R,PF_X

EXE WRT * NOMOD NOSHORT PF_R,PF_W,PF_X

NOEXE NOWRT NOVEC MOD NOSHORT PF_R

NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,Demand zero2

NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,PF_VMS_PROTECT

* WRT * * SHORT PF_R,PF_W,PF_VMS_SHORT

* NOWRT * * SHORT PF_R,PF_VMS_SHORT

1These attributes are prefixed with PHDR$V_.
2Demand zero is no attribute, it is expressed as a file size of zero for a segment with nonzero memory size. If the
/NODEMAND_ZERO qualifier is specified, the file size is equal to the memory size of the segment.
3An asterisk (*) means any section attribute.

Table 3–5 Mapping Section Attributes to Segment Attributes for Shareable Images

Significant Section Attribute Settings Segment Attributes Set1

NOSHR NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W

NOSHR NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,Demand zero2

SHR NOEXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_VMS_SHARED

SHR NOEXE WRT NOVEC NOMOD NOSHORT PF_R,PF_W,PF_VMS_SHARED

NOSHR NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,PF_
VMS_PROTECT

SHR NOEXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_VMS_VECTOR,PF_
VMS_PROTECT

NOSHR EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X

NOSHR EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X

SHR EXE NOWRT NOVEC MOD NOSHORT PF_R,PF_X,PF_VMS_SHARED

SHR EXE WRT NOVEC MOD NOSHORT PF_R,PF_W,PF_X,PF_VMS_SHARED

NOSHR EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,PF_
VMS_PROTECT

1These attributes are prefixed with PHDR$V_.
2Demand zero is no attribute, it is expressed as a file size of zero for a segment with nonzero memory size. If the
/NODEMAND_ZERO qualifier is specified, the file size is equal to the memory size of the segment.

(continued on next page)

Understanding Image File Creation (I64) 3–21

Understanding Image File Creation (I64)
3.3 Creating Segments

Table 3–5 (Cont.) Mapping Section Attributes to Segment Attributes for Shareable Images

Significant Section Attribute Settings Segment Attributes Set1

NOSHR EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,PF_VMS_
VECTOR,PF_VMS_PROTECT

SHR EXE NOWRT VEC MOD NOSHORT PF_R,PF_X,PF_VMS_VECTOR,PF_
VMS_PROTECT,PF_VMS_SHARED

SHR EXE WRT VEC MOD NOSHORT PF_R,PF_W,PF_X,PF_VMS_
VECTOR,PF_VMS_PROTECT,PF_
VMS_SHARED

*3 EXE NOWRT * NOMOD NOSHORT PF_R,PF_X

* EXE WRT * NOMOD NOSHORT PF_R,PF_W,PF_X

NOSHR NOEXE NOWRT NOVEC MOD NOSHORT PF_R

NOSHR NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,Demand zero2

SHR NOEXE NOWRT NOVEC MOD NOSHORT PF_R,PF_VMS_SHARED

SHR NOEXE NOWRT NOVEC NOMOD NOSHORT PF_R,PF_VMS_SHARED

NOSHR NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,PF_VMS_
PROTECT

SHR NOEXE NOWRT VEC MOD NOSHORT PF_R,PF_VMS_VECTOR,PF_VMS_
PROTECT,PF_VMS_SHARED

* * WRT * * SHORT PF_R,PF_W,PF_VMS_SHORT

* * NOWRT * * SHORT PF_R,PF_VMS_SHORT

1These attributes are prefixed with PHDR$V_.
2Demand zero is no attribute, it is expressed as a file size of zero for a segment with nonzero memory size. If the
/NODEMAND_ZERO qualifier is specified, the file size is equal to the memory size of the segment.
3An asterisk (*) means any section attribute.

For example, Table 3–6 summarizes the settings of some significant attributes of
the user controllable sections in the module MYSUB.OBJ (see Example 3–5).

Table 3–6 Significant Attributes of User Sections from Module MYSUB

User Section Writability Executability Short Data

GLOBAL_DATA WRT NOEXE NOSHORT

SUB_DATA WRT NOEXE NOSHORT

$CODE$ NOWRT EXE NOSHORT

$LITERAL$ NOWRT NOEXE NOSHORT

The linker puts these four sections into three segments because only two have
compatible attributes.

• The GLOBAL_DATA and SUB_DATA sections have identical attributes,
including the WRT attribute.

• The $CODE$ and $LITERAL$ sections have the NOWRT attribute and differ
in the EXE attribute.

The linker collects all these sections in segments in the named cluster MYSUB_
CLUS, as requested with the CLUSTER= option in Example 3–5.

3–22 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

The linker performs similar processing of the sections in the default cluster in
Example 3–5. The Image Segment Synopsis section of the map file lists the
clusters the linker created and lists the segments it created for each cluster. This
map section also describes the layout of the image in memory, including the base
address of each segment within the image. Example 3–6 illustrates an excerpt of
the Image Segment Synopsis section from the map file produced with the sample
link (Example 3–5). Note that for I64, the listing does not include clusters for
shareable images, like the HP C Run-Time Library.

Example 3–6 Segment Information in a Map File

+------------------------+
! Image Segment Synopsis !
+------------------------+

Seg# Cluster Type Base Addr Protection Attributes
---- ------- ---- --------- ---------- ----------

0 MYSUB_CLUS LOAD 00010000 READ WRITE
1 LOAD 00020000 READ ONLY EXECUTABLE
2 LOAD 00030000 READ ONLY
3 LOAD 00040000 READ ONLY [UNWIND] !"
4 DEFAULT_CLUSTER LOAD 00050000 READ WRITE
5 LOAD 00060000 READ ONLY EXECUTABLE
6 LOAD 00070000 READ ONLY
7 LOAD 00080000 READ ONLY [UNWIND] !"
8 LOAD 00090000 READ ONLY SHORT !
9 DYNAMIC Q-00000000

80000000 READ ONLY !

! Linker created segments which can not be controlled by the user, see
Section 3.4.3.

" UNWIND is not a segment attribute and is therefore printed in brackets.
Marking the unwind segment here, helps to differentiate this segment from
segments into which other sections are collected.

For more information about the image segment synopsis section of a map file, see
Chapter 5.

To find out which sections the linker placed in each segment, look at the Program
Section Synopsis section of the map file. This section lists all the sections in each
cluster and lists the contributions (the number of bytes) to each section from
each object module. By comparing the base address of the sections with the base
address of the segments in the Image Segment Synopsis section, you can tell in
which segment the sections appear. Example 3–7 is an excerpt from the Program
Section Synopsis section of the map file produced by the sample link operation
(Example 3–5).

Understanding Image File Creation (I64) 3–23

Understanding Image File Creation (I64)
3.3 Creating Segments

Example 3–7 Section Information in a Map File

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module/Image Base End Length Attributes !
---------- ------------ ---- --- ------ ----------

GLOBAL_DATA 00010000 00010003 00000004 (4.) NOEXE, WRT
MYSUB 00010000 00010003 00000004 (4.) Initializing Contribution

SUB_DATA 00010010 00010013 00000004 (4.) NOEXE, WRT
MYSUB 00010010 00010013 00000004 (4.) Initializing Contribution

$CODE$ 00020000 0002008F 00000090 (144.) EXE,NOWRT
MYSUB 00020000 0002006F 00000070 (112.)
<Linker> 00020070 0002008F 00000020 (32.)

$LITERAL$ 00030000 0003000C 0000000D (13.) NOEXE,NOWRT
MYSUB 00030000 0003000C 0000000D (13.)

$LINKER UNWIND$ 00040000 00040017 00000018 (24.) NOEXE,NOWRT
MYSUB 00040000 00040017 00000018 (24.)

$LINKER UNWINFO$ 00040018 0004002F 00000018 (24.) NOEXE,NOWRT
MYSUB 00040018 0004002F 00000018 (24.)

ADD_DATA 00050000 00050003 00000004 (4.) NOEXE, WRT
MYADD 00050000 00050003 00000004 (4.) Initializing Contribution

$CODE$ 00060000 000602CF 000002D0 (720.) EXE,NOWRT
MYTEST 00060000 000601BF 000001C0 (448.)
MYADD 000601C0 0006022F 00000070 (112.)
<Linker> 00060230 000602CF 000000A0 (160.)

$LITERAL$ 00070000 0007003C 0000003D (61.) NOEXE,NOWRT
MYTEST 00070000 00070027 00000028 (40.)
MYADD 00070030 0007003C 0000000D (13.)

$LINKER UNWIND$ 00080000 00080047 00000048 (72.) NOEXE,NOWRT
MYTEST 00080000 0008002F 00000030 (48.)
MYADD 00080030 00080047 00000018 (24.)

$LINKER UNWINFO$ 00080048 000800A7 00000060 (96.) NOEXE,NOWRT
MYADD 000601C0 0006022F 00000070 (112.)
<Linker> 00060230 000602CF 000000A0 (160.)

$LITERAL$ 00070000 0007003C 0000003D (61.) NOEXE,NOWRT
MYTEST 00070000 00070027 00000028 (40.)
MYADD 00070030 0007003C 0000000D (13.)

$LINKER UNWIND$ 00080000 00080047 00000048 (72.) NOEXE,NOWRT
MYTEST 00080000 0008002F 00000030 (48.)
MYADD 00080030 00080047 00000018 (24.)

$LINKER UNWINFO$ 00080048 000800A7 00000060 (96.) NOEXE,NOWRT
MYTEST 00080048 0008008F 00000048 (72.)
MYADD 00080090 000800A7 00000018 (24.)

$LINKER SDATA$ 00090000 000900B7 000000B8 (184.) NOEXE,NOWRT,SHORT
<Linker> 00090000 000900B7 000000B8 (184.)

3–24 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

! To fit on a page, the attribute column of the Program Section Synopsis is
reduced to show only the attributes listed in Table 3–6.

For more information about the Program Synopsis Section of a map file, see
Section 5.2.4.

3.3.5 Allocating Memory for Segments
When it creates a segment, the linker allocates enough memory for the image
segment to accommodate all the sections it contains. Each section definition
includes its size.

The linker aligns segments on CPU-specific page boundaries. Within a segment,
the linker assigns to each section a virtual address relative to the base address of
the segment.

Concatenated Sections
If the sections have the concatenated (CON) attribute set, the linker positions the
sections one after the other within a segment, inserting padding bytes between
the sections if necessary to achieve the alignment requirement of a particular
contribution to a section. The linker retains the alignment specified for each
section contribution but uses the largest alignment of a contributing module as
the alignment of the whole section.

With a PSECT_ATTR= option you can align the section within the segment.
However, aligning the section does not influence the alignment of the individual
contributions to the section. The linker follows the compiler’s alignment
specification when it aligns each individual contribution. If you specify a
smaller alignment for a section than any compiler-assigned alignment from
all contributions, the linker issues a warning.

Overlaid Program Sections
If the sections have the overlaid (OVR) attribute set, the linker uses the same
start address for the sections so that they occupy the same virtual memory (that
is, the sections overlay each other). For overlaid sections, the linker allocates
enough space to accommodate the largest of all the section contributions. Note
that the linker does not generate a warning message if the contributions specify
different size allocations.

Any module can initialize the contents of an overlaid program section. However,
the I64 linker only allows compatible initializations for the same section data.
See Section 3.4.1 for an explanation of a compatible initialization.

Assigning Virtual Addresses
The linker allocates virtual memory to all the segments beginning at a page size
boundary. The linker usually places segments in the P0 region. It currently
uses a default page size of 10000 hexadecimal, which is an architecture specific
value. However, you can specify the page size using the /BPAGE qualifier. (For
information about the /BPAGE qualifier, see Part IV.)

By default, the first P0 segment is placed at 10000 hexadecimal, leaving the
first page unused as a guard page. The first P2 segment (for example containing
sections with the ALLOC_64BIT attribute) is placed at 80000000 hexadecimal.
However, all segment base addresses are only suggestions for the OpenVMS
image activator. The image activator can determine a different base address for
each segment (within the address region) to map the segment. This is always the
case for shareable images. This is also the case for all images being installed as
resident images, where the INSTALL utility determines the addresses. Unlike

Understanding Image File Creation (I64) 3–25

Understanding Image File Creation (I64)
3.3 Creating Segments

the Alpha and VAX platforms, executable images can also have their segment
base addresses determined by the image activator or the INSTALL utility.

An image not activated by the OpenVMS image activator might need a specific
base address for the first segment. For such an image, you can specify this
address with the /BASE_ADDRESS qualifier. (For information about the /BASE_
ADDRESS qualifier, see Part IV.)

Because the linker processes clusters in the order in which they appear in the
cluster list, the virtual address space of the final image will generally contain
contiguous segments of consecutive clusters on the basis of their order in the
cluster list.

After allocating memory for all segments in a cluster, the linker relocates their
contents by performing the following processing:

1. Relocating each section in the segment. The linker adds the starting
virtual address of the segment to the relative offset of the section from the
base of the segment.

2. Relocating each global symbol in the section. The linker adds the newly
calculated section virtual address to the relative offset of the global symbols
from the base of the section.

3.3.6 Segment Attributes
When it creates segments, the linker assigns attributes to the segment based
on the attributes of the sections it contains. The segment attributes describe
certain characteristics of the portion of memory they represent, for example, the
protection characteristics. For example, a segment that contains sections with
the writability attribute also has the writability attribute set. Table 3–4 and
Table 3–5 include the segment attributes associated with a segment that contains
sections with a particular set of attributes. Table 3–7 lists all the segment
attributes. Segment attributes, like section attributes, are Boolean values that
are either on or off.

Table 3–7 Segment Attributes

Attribute Symbol1 Function

Executability PF_X The mapping of the EXE attribute from the section.

Write PF_W The mapping of the WRT attribute from the section.

Readability PF_R All segments have this attribute set.

Modified if
Relocated

PF_VMS_
NOWRIT_
RELOC

The attribute is set by the linker if the the segment contents is changed
when relocated. The image activator sets the protection to NOWRT
after the relocation.

Initial Code PF_VMS_
INITALCODE

This attribute is reserved by HP.

Resident PF_VMS_
RESIDENT

This attribute is reserved by HP.

Vectored PF_VMS_
VECTOR

The mapping of the VEC attribute from the section.

1These symbols are prefixed with PHDR$V_.

(continued on next page)

3–26 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

Table 3–7 (Cont.) Segment Attributes

Attribute Symbol1 Function

Protected PF_VMS_
PROTECT

Protect indicates that a section is protected. The linker sets the
PF_VMS_PROTECT attribute whenever PF_VMS_VECTOR is set.
PROTECT is also set if the /PROTECT qualifier is used, or if the cluster
that the segment is spawned from came after a PROTECT=YES option
(and before a PROTECT=NO option).

Modified by
Fix-Ups

PF_VMS_
NOWRIT_
FIXUP

The attribute is set by the linker if the segment contents is changed for
fix-ups. The image activator sets the protection to NOWRT after the
fix-ups are applied.

Short Data PF_VMS_
SHORT

The mapping of the SHORT attribute from the section.

Shared PF_VMS_
SHARED

The SHR mapping of the SHR attribute from the sections.

1These symbols are prefixed with PHDR$V_.

The Image Segment Synopsis section of a map file lists the attributes of each
segment created in the Protection and Attributes columns. See Example 3–6
for an illustration and see Table 3–3 for the display names in these columns.
You can also get a listing of all the segments created by the linker by using the
ANALYZE/IMAGE utility. The output generated by this utility includes a list of
all the segments that make up the image, with their attributes. An excerpt from
the analysis of the image file MYTEST.EXE is shown in Example 3–8.

Understanding Image File Creation (I64) 3–27

Understanding Image File Creation (I64)
3.3 Creating Segments

Example 3–8 Image Segment Descriptions in an ANALYZE/IMAGE Display

SEGMENT HEADER ENTRY 0.
Offset Description Hex (<bitmask>) Interpretation
------ ----------- --------------- --------------
00000000 Segment Type: 00000001 PHDR$K_PT_LOAD
00000004 Segment Flags: 00000006 !

Segment is writeable: <00000002> PHDR$M_PF_W
Segment is readable: <00000004> PHDR$M_PF_R

00000008 Offset to Segment Data: 0000000000000400 "
00000010 Memory Virtual Address: 0000000000010000 #
00000018 Page Fault Cluster Size: 0000000000000000 $
00000020 Segment Size in File: 0000000000000014 %
00000028 Segment Size in Memory: 0000000000000014 &
00000030 Alignment Constraint: 0000000000000010

SEGMENT HEADER ENTRY 1. (0001) 56. (0038) bytes
Offset Description Hex (<bitmask>) Interpretation
------ ----------- --------------- --------------
00000000 Segment Type: 00000001 PHDR$K_PT_LOAD
00000004 Segment Flags: 00000005 !

Segment is executable: <00000001> PHDR$M_PF_X
Segment is readable: <00000004> PHDR$M_PF_R

00000008 Offset to Segment Data: 0000000000000600 "
00000010 Memory Virtual Address: 0000000000020000 #
00000018 Page Fault Cluster Size: 0000000000000000 $
00000020 Segment Size in File: 0000000000000090 %
00000028 Segment Size in Memory: 0000000000000090 &
00000030 Alignment Constraint: 0000000000000010

.

.

.

The items in the following list correspond to the numbers in Example 3–8:

! The settings of segment attributes. Table 3–7 lists these attributes.

" The offset in the image file in bytes, at which the segment begins.

The virtual base address assigned to the segment by the linker. Note that at
run time the image activator may decide to map this segment at a different
address.

$ The number of pagelets that should be mapped in when the initial page fault
occurs. You can set this value by using the CLUSTER= option.

% The size of the segment in the image file, expressed in bytes. Note that
demand zero segments have a file size of zero but a nonzero memory size.

& The size of the segment in the memory, expressed in bytes. For the shown
segments, both sizes are identical so they are not demand zero segments.

3.3.7 Controlling Segment Creation
You can control how the linker combines sections into segments in the following
ways:

• By modifying the attributes of sections

• By using the SOLITARY attribute

• By using the /SEGMENT_ATTRIBUTES qualifier

• By putting object modules into named clusters

3–28 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

• By collecting sections

3.3.7.1 Modifying Section Attributes
The linker combines sections in the same cluster into the same segment if they
have the same settings for the significant section attributes. To force the linker
to put the sections into different segments, change the attributes of one of the
sections by using the PSECT_ATTR= option.

For example, in the sample link operation, the GLOBAL_DATA section has the
WRT attribute. But its contents, the variable global_data, serves as a constant
(initialized but never changed). If you want the GLOBAL_DATA section to
appear in a read-only segment, change the writability attribute. For example,
in the following link of the sample programs, the writability attribute is set to
NOWRT.

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,NOWRT

Ctrl/Z

Example 3–9 shows the image and program section synopsis for the second link.

Example 3–9 Image and Program Section Synopsis of Second Link

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module/Image Base End Length Attributes
---------- ------------ ---- --- ------ ----------

SUB_DATA 00010000 00010003 00000004 (4.) NOEXE, WRT,NOVEC, MOD
MYSUB 00010000 00010003 00000004 (4.) Initializing Contribution

$CODE$ 00020000 0002008F 00000090 (144.) EXE,NOWRT,NOVEC, MOD
MYSUB 00020000 0002006F 00000070 (112.)
<Linker> 00020070 0002008F 00000020 (32.)

$LITERAL$ 00030000 0003000C 0000000D (13.) NOEXE,NOWRT,NOVEC, MOD
MYSUB 00030000 0003000C 0000000D (13.)

GLOBAL_DATA 00030010 00030013 00000004 (4.) NOEXE,NOWRT,NOVEC, MOD
MYSUB 00030010 00030013 00000004 (4.) Initializing Contribution

$LINKER UNWIND$ 00040000 00040017 00000018 (24.) NOEXE,NOWRT,NOVEC, MOD
MYSUB 00040000 00040017 00000018 (24.)

.

.

.

Note that there is no change in the number and attributes of the segments.
However, the GLOBAL_DATA section moved into an existing read-only segment.
(It also moved in the address space.) The GLOBAL_DATA section is now in the
same segment as the read-only $LITERAL$ section, which it follows, based on
alphabetical order (for a comparison, see Example 3–7).

Understanding Image File Creation (I64) 3–29

Understanding Image File Creation (I64)
3.3 Creating Segments

3.3.7.2 Alternate Way to Modify Section Attributes
With the /SEGMENT_ATTRIBUTE qualifier, you can change some attributes for
a class of sections. The keywords SHORT_DATA, CODE, and SYMBOL_VECTOR
define obvious classes of sections: all sections with the SHORT, all sections
with the EXE attribute, and the symbol vector section. The attribute to change
depends on the class.

For short data sections, you can set WRT. For executable sections, you can set
or clear the ALLOC_64BIT attribute. For the symbol vector, you can set or clear
the SHORT attribute. To be compatible with other DCL command qualifiers,
for the first two classes, more descriptive names are used: WRITE for WRT,
P0 for NOALLOC_64BIT, P2 for ALLOC_64BIT. (For information about the
/SEGMENT_ATTRIBUTE qualifier, see the Command Reference in Part 4.)

With /SEGMENT_ATTRIBUTE, the section attributes are changed before the
sections are collected into segments. As a result, the effect is the same as
using the PSECT_ATTR= for each member of the class. However, /SEGMENT_
ATTRIBUTE can do more because even the linker-generated sections are
members of the classes (for example, $LINKER SDATA$ and $LINKER
SYMBOL_VECTOR$).

To move all code into P2 space, you can use the /SEGMENT_
ATTRIBUTE=CODE=P2 command qualifier. Please note, that if you use clusters
in the same link command (with linker options) and if EXE sections are put
on specific clusters, setting ALLOC_64BIT does not change the per cluster
segment creation. You then will see more than one executable segment with
base addresses in P2 space.

The /SEGMENT_ATTRIBUTE=SHORT_DATA=WRITE command qualifier allows
you to combine the read-only and the read-write short data segments into a single
segment, reclaiming up to 65,535 bytes of unused, read-only space (default
value for /BPAGE). When setting SHORT_DATA to WRITE, your program
may accidentally write to formerly read-only data. Therefore, this qualifier is
recommended only if your short data segment has reached the limit of 4 MB.

By default, the linker stores the shareable image’s symbol vector into the
read-only short data segment. That is, the linker created section $LINKER
SYMBOL_VECTOR$ has the SHORT attribute. By specifying /SEGMENT_
ATTRIBUTE=SYMBOL_VECTOR=NOSHORT, the linker clears the SHORT
attribute of the section and, therefore, collects the symbol vector into a read-only
data segment of the default cluster. If the shareable image has no read-only data
se is created. This frees up the symbol vector entries from the short data. This
qualifier is recommended only if your short data segment has reached the limit of
4 MB.

3.3.7.3 Manipulating Cluster Creation
In general, the linker creates segments on a per-cluster basis; that is, only
sections within a particular cluster can contribute to segment creation. (The
linker can collect sections with the global attribute from all clusters into a single
segment. However, there is one expection: sections with the SHORT attribute
can not be collected.) To ensure that a section appears in a particular segment,
put the section in a specific cluster.

For example, in the sample link operation illustrated in Example 3–5, the linker
puts all the sections in the object module MYSUB.OBJ in the cluster named
MYSUB_CLUS because the CLUSTER= option is specified. If you wanted
to group all of the sections that contain code from all the other clusters into

3–30 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.3 Creating Segments

the MYSUB_CLUS cluster, you could specify the COLLECT= option, as in the
following example.

Note

Section naming conventions are language processor specific. By
convention, most OpenVMS language processors put the code they
generate into sections named $CODE$. An exception is the HP C++
compiler which puts code into a section named .text.

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
COLLECT=MYSUB_CLUS,$CODE$

Ctrl/Z

3.3.7.4 Isolating a Section into a Segment
You can specify that the linker places a particular section into its own segment.
This can be useful for programs that map data into predefined locations within
an image.

To isolate a section into a segment, specify the SOLITARY attribute of the section
using the PSECT_ATTR= option. For example, to isolate the GLOBAL_DATA
section in the sample link into its own segment, specify the following:

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,SOLITARY

Ctrl/Z

When mapping data into an existing location in the virtual memory of your
program using the Create and Map Global Section ($CRMPSC) system service or
the Map Global Section ($MGBLSC) system service, you must specify an address
range (in the inadr argument) that is aligned on a CPU-specific page boundary.
Because the linker aligns segments on CPU-specific page boundaries and the
section in which the global section is to be mapped is the only section in the
segment, you ensure that the start address of the location is page aligned. In
addition, because I64 systems must map at least an entire page of memory at a
time, using the SOLITARY attribute allows you to ensure that no other data is
in the segment. By default, the linker creates the next segment on the next page
boundary so that no data can be overwritten.

Note that SHORT sections can not be isolated. That is, an attempt to set the
SOLITARY attribute to a SHORT section is ignored by the linker and a warning
is issued.

3.4 Initializing an Image on I64 Systems
After allocating memory for the image, the linker initializes the image by writing
the binary contents into the segment buffers, that is, by copying section data
from the object modules. In addition, the linker inserts the addresses of symbols
within the image wherever they are referenced.

Understanding Image File Creation (I64) 3–31

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

3.4.1 Handling of Initialized Overlaid Sections
On I64 systems, the ELF object language does not implement the feature of the
Alpha and VAX object language which allows the initialization of portions of
the sections. When an initialization is made, the entire section is initialized.
Subsequent initializations of this section can be performed only if they are
compatible. A subsequent initialization is compatible if the number of initializers
are less or equal to the existing ones and all the values match or if there are
more initializers than the existing ones but all the existing values match.

The linker receives entire sections from the compilers that are already initialized.
The linker reads all the applicable module initializations to the section and
checks for compatible initializations. If they are not compatible, the linker issues
the following error message:

%ILINK-E-INVOVRINI, incompatible multiple initializations for
overlaid section

section: <section name>
module: <module name for first overlaid section>
file: <file name for first overlaid section>
module: <module name for second overlaid section>
file: <file name for second overlaid section>

In this message, the linker lists the first module, which contributes an
initialization, and the first module with an incompatible initialization. Note
that this is not a full list of all incompatible initializations; it is simply the first
one that the linker encounters.

In the Program Section Synopsis of the linker map, each module with an
initialization is flagged as Initializing Contribution. Use this information to
identify and resolve all the incompatible initializations.

Example 3–10 shows the additional information in the map file shown in
Example 3–11.

Example 3–10 Compatible Initializations

$ cre one.c
#pragma extern_model common_block
int common_data[]={0,1,2,3};
int main (void) {return 1;}

Ctrl/Z

$ cc one
$ cre two.c
#pragma extern_model common_block
int common_data[]={0,1};

Ctrl/Z

$ cc two
$ cre three.c
#pragma extern_model common_block
int common_data[]={0,1,2,3,4,5,6,7};

Ctrl/Z

$ cc three
$ link/map one,two,three
$

Example 3–11 shows the program section synopsis of the linker map for
Example 3–10. Note that the Align and Attributes fields normally continue
after the Length field but were modified to fit on the page.

3–32 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

Example 3–11 Linker Map Showing Program Section Synopsis

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module/Image Base End Length Attributes
---------- ------------ ---- --- ------ ------------

COMMON_DATA 00010000 0001001F 00000020 (32.) OVR,NOEXE, WRT,NOVEC, MOD
ONE 00010000 0001000F 00000010 (16.) Initializing Contribution
TWO 00010000 00010007 00000008 (8.) Initializing Contribution
THREE 00010000 0001001F 00000020 (32.) Initializing Contribution

Example 3–12 shows an incompatible initialization and the resulting linker
message.

Example 3–12 Incompatible Initialization

$ cre four.c
#pragma extern_model common_block
int common_data[]={0,1,0,0};

Ctrl/Z

$ cc /extern=common four
$ link one,two,three,four
%ILINK-E-INVOVRINI, incompatible multiple initializations for
overlaid section

section: COMMON_DATA
module: ONE
file: DISK$USER:[JOE]ONE.OBJ;1
module: FOUR
file: DISK$USER:[JOE]FOUR.OBJ;1

Note that the sources use a #pragma to force the extern common model. For
OpenVMS, the default extern model is the relaxed reference/definition (ref/def)
model. In that model, only one explicit initialization is allowed. That is, even
identical initializations result in a linker MULDEF message.

3.4.2 Writing the Binary Contents of Segments
An object module contains sections with compiler-initialized data. The linker
copies the data into the corresponding segment buffer. For overlaid sections,
subsequent data overwrites already existing data. With the compatibility check
for overlaid sections, (as explained in Section 3.4.1) the linker ensures, that
exisiting data is only overwritten with identical values.

If the compilers initialized data with binary zeros, the buffer contains zeros as
well. To save some disk space, the linker can check a segment buffer contents for
trailing zeros. This time consuming operation, performed by default. Insteady,
you must request it with the PER_PAGE keyword for the /DEMAND_ZERO
qualifier. Similar to a demand-zero section, the trailing zeros are not written to
the image file. The amount of trailing demand-zero bytes for such a segment is
expressed as the difference between the memory size (including these zeros) and
the file size (excluding them). (For information about the PER_PAGE keyword
and the /DEMAND_ZERO qualifier, see Part IV.)

An object module can contain information to express link time calculations for
addresses, offsets or values. For example, an offset between two global variables
defined in two different object modules can be calculated by the linker and can
be used to initialize another global variable. The link time expressions in the
object modules are implemented in object relocations. The linker processes

Understanding Image File Creation (I64) 3–33

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

them similar to the other object relocations. The calculation is done in a linker
internal accumulator and the result is written into the corresponding buffer of
the segment.

When this processing is complete, the linker has written the binary contents of
all code and data sections into segment buffers in its own address space.

3.4.3 Other Image Segments
This section describes other segments created by the I64 linker:

• Unwind segments (Section 3.4.3.1)

• Short data segments (Section 3.4.3.2)

• Signature segments (Section 3.4.3.3)

• Dynamic segments (Section 3.4.3.4)

3.4.3.1 Unwind Segments
Creation of the unwind segments can not be controlled with linker options
or qualifiers. You can indirectly influence where they appear by moving code
sections. For each cluster with a code segment there is an unwind segment.
That is, to move all unwind information into one segment you can collect all code
sections on one cluster. Both, the sections and the segments, are listed in the
corresponding sections of the linker map.

3.4.3.2 Short Data Segment
The linker usually creates two short data segments. One of them is read-only and
the other is read-write. They must be placed by the image activator at addresses
that are the same relative distance apart as the linker originally put them in
the image. In other words, they must be relocated together as if they were one
segment. Note that the qualifier /SEGMENT_ATTRIBUTE=SHORT=WRITE can
be used to combine the two short data segments into one read-write segment.

3.4.3.3 Signature Segment
In case the generated image needs to interoperate with translated images, the
linker may create another segment to save procedure signature information.
Such a segment is only necessary if the signature can’t be stored with the
function descriptor (because the signature is greater than 8 bytes, a quadword).
Signatures describe the calling interface for translated images and are described
in Section 3.2.1.3.

3.4.3.4 Dynamic Segment
The linker creates a segment with image activator information, referred to as
the dynamic segment. This segment contains the necessary information about
the shareable images on which the image depends, including the required match
control and pointers to the fix-ups. It contains linker flags, for example, if the
image was linked with /DEBUG and (by default) should run under the control of
the OpenVMS debugger. For shareable images, the dynamic segment contains
a pointer to the symbol vector. For all images, it includes fix-up and image
relocation information.

The linker flags are initially set by the linker. For I64 images, you can display
the settings using the SHOW IMAGE command. For I64 images only, the SET
IMAGE command enables you to manipulate individual flags or to restore the
initial linker setting. If you change the flags, you change the behavior of the
image at activation or run time.

3–34 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

Note

Changing linker flags might result in unexpected image behavior.

Table 3–8 shows the flags set by the linker.

Table 3–8 Linker Flags

Flag1 Description Set by Linker Qualifier or Option

CALL_DEBUG SYS$IMGSTA checks this flag to determine
whether it calls the debugger.

See Table 3–9

DBG_IN_DSF Debug information is present in the DSF file. See Table 3–9

DBG_IN_IMG Debug information is present in the image file. See Table 3–9

EXE_INIT Image has a pointer to EXE$INITIALIZE. Reserved for OpenVMS use

IMGSTA Image execution is to begin by calling
SYS$IMGSTA. The image activator includes
SYS$IMGSTA as the first address in the
(traditional VMS style) transfer vector.

See Table 3–9

INITIALIZE Image has a pointer to LIB$INITIALIZE. If at least one of the input object modules
has a reference to LIB$INITIALIZE.

MAIN Image has a main transfer address. In at least one of the input object modules a
procedure was flagged as a main entry point
by the corresponding language processor.

MKTHREADS Enable multiple kernel thread use. /THREADS_ENABLE=MULTIPLE_
KERNEL_THREADS

NOP0BUFS No P0 buffers for RMS image I/O. IOSEGMENT=,NOP0BUFS

P0IMAGE Image is loaded only to P0 space. /P0IMAGE

SIGNATURES TIE Signatures are present. /NONATIVE_ONLY

TBK_IN_DSF Traceback records are present in the DSF file. See Table 3–9

TBK_IN_IMG Traceback records are present in the image file. See Table 3–9

UPCALLS User thread upcalls are enabled. /THREADS_ENABLE=UPCALLS

1These dynamic segment flags are prefixed with "DYNSEG$SC_VMS_LF_" as a main entry point by the corresponding
language processor.

Understanding Image File Creation (I64) 3–35

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

Table 3–9 shows flags are determined by a combination of linker qualifiers.

Table 3–9 Flag Settings Determined by /TRACEBACK, /DEBUG, and /DSF

Qualifier IMGSTA1
CALL_
DEBUG1

TBK_IN
_IMG1

DBG_IN
_IMG1

TBK_IN
_DSF1

DBG_IN
_DSF1

/NoTrace/NoDebug
/NoDSF

0 0 0 0 0 0

/Trace/NoDebug
/NoDSF

1 0 1 0 0 0

/NoTrace /Debug
/NoDSF

1 1 1 1 0 0

/Trace /Debug
/NoDSF

1 1 1 1 0 0

/NoTrace /NoDebug
/DSF

0 0 0 0 1 1

/Trace /NoDebug
/DSF

1 0 1 0 1 1

/NoTrace /Debug
/DSF

1 1 1 0 1 1

/Trace /Debug
/DSF

1 1 1 0 1 1

1These dynamic segment flags are prefixed with DYNSEG$SC_VMS_LF_

Notes

• On I64 systems, the value of SYS$IMGSTA is not included in the image’s
transfer array; only a flag that indicates it is to be called. The image activator
already knows the value of SYS$IMGSTA.

• Linker flags do not appear in a DSF file. DSF files are not activated by the
image activator (they have no dynamic segment and, therefore, no linker flags
field).

• When /DSF is specified along with /TRACEBACK or /DEBUG, the VMS_LF_
TBK_IN_IMG (traceback in image) flag is set. This is a difference in behavior
from Alpha, where traceback records are not included in the image when
/TRACEBACK/DSF or /DEBUG/DSF is specified. Note that debugger records
do not get copied to an image whenever /DEBUG/DSF is specified. Here,
/DEBUG causes only the VMS_LF_IMGSTA bit to be set in the image.

The dynamic segment contains additional date taken from the linker qualifier
keywords or values, or option arguments. Other than these, you can not influence
the creation or contents of the dynamic segment.

Note that the linker, by default, assigns a P2 base address for the dynamic
segment. The image activator needs the dynamic segment at image activation
time, the segment is not used at run time. The image activator maps the dynamic
segment at the proposed P2 address and processes its contents. The image
activator maps the dynamic segments of the shareable images as well, also into
P2 space. When all of the information of all these dynamic segments is processed,
the image activator may unmap all of these segments.

3–36 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

Fixing Up Addresses, Relocating Images
The segments of executable and shareable images are usually loaded into memory
at a location in P0 space, which is ultimately determined by the image activator.
The linker proposes a load address for executable images of 10000 (hexadecimal)
and a load address of 0 for shareable images. Because the linker does not know
the actual address that an image will be loaded, it cannot initialize external
symbol references nor even symbol references internal to the image itself. In both
cases, the image requires a virtual address to make the reference.

In the first case, the image needs to refer to external symbols which are usually
resolved from shareable images that will be loaded in the future when the image
is activated. For such symbols, the linker creates fix-ups that the image activator
uses to resolve these external symbolic references.

In the second case, internal symbolic references, the linker creates image
relocations that the image activator must use to relocate the image. These
relocations are used if the image activator uses a load address different from the
one proposed for it, which is the case for all shareable images.

The linker combines the fix-ups and image relocations with the activation
information in the dynamic segment.

The linker generates fix-ups for symbol references to a shareable image. These
references are to global data (by value or by reference) or to global procedures,
which the shareable image offers. Depending on the type, the linker generates
fix-ups for currently undetermined values or address data in an image segment.
The image activator processes these fix-ups. At activation-time, the values and
addresses of global data and procedures from the shareable image are known.
Then, the image activator fills in the data in the segment to contain the values
from the shareable image.

This collaboration of the linker and the image activator makes images
independent of the implementation of a public interface, which is manifested
in the shareable image and its symbol vector.

The linker generates image relocations for address data of resolved symbol
references within the generated image. The address value has to change
if the linker-proposed load address changes at image activation time. If the
image activator determines a different load address, it uses the linker provided
relocations to adjust the address data.

This combined effort of the linker and the image activator preserves the position
independence of the images.

3.4.4 Keeping the Size of Image Files Manageable
On OpenVMS, uninitialized static data is initialized with bytes of zeros.
Language processors usually do not provide explicit bytes of zeros for uninitialized
static data within the object file. Instead, they create conceptual sections filled
with bytes of zeros. On I64, these are sections with a section type specified as
SHT_NOBITS (equivalent to the traditional NOMOD section attribute). These
sections occupy virtual memory when the image is activated but do not occupy
any space in the object file. As these sections are collected together, they will
generate demand-zero segments in the image file that will occupy virtual memory
at image activation time but do not occupy space in the image file (just as the
NOBITS sections do in object files).

Understanding Image File Creation (I64) 3–37

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

When a reference is made to data in a demand-zero segment at run-time, the
operating system will map an in-memory page of zeros rather than having to
access the image file on disk to load a page of zeros (a much slower process).
Along with that benefit, demand-zero segments keep the image file size smaller.

If one or more contributions to a section do not have the NOMOD attribute set,
the section is considered a non-demand-zero section and will be collected into a
non-demand-zero segment.

On OpenVMS I64 systems, the linker can create demand-zero segments for
both executable and shareable images. However, sections with the SHR and the
NOMOD attributes set are not sorted into demand-zero segments in shareable
images.

At run time, uninitialized static data is identical to zero-initialized data.
However, I64 language processors supply actual sections with bytes of zeros
for static data explicitly initialized to zero in your source code. Such sections
are not collected into demand-zero segments. However, the linker can search
these non-demand-zero segment buffers for whole pages of trailing zero data
and create demand-zero pages from them. Because this process, called trailing
demand-zero compression, can be time consuming, it is not done by default.
To have this processing done, you must specify the PER_PAGE keyword in the
/DEMAND_ZERO qualifier.

Trailing demand-zero compression reduces the size of the image file and usually
enhances the performance of the program. As with demand-zero segments, a
run-time reference made to data in a demand-zero page will cause the operating
system to map an in-memory page of zeros rather than having to go out to disk
for a block of zeros.

3.4.4.1 Controlling Demand-Zero Image Segment Creation on I64 Systems
You can force the linker to allocate disk blocks for demand-zero segments by
specifying the /NODEMAND_ZERO qualifier. The linker initializes the segment
data with zeros and writes the segment data into the image file. Note that the
linker still sorts the sections with the NOMOD attribute into separate segments.

To control which sections are placed in demand-zero segments, you must reset
the NOMOD attribute of the section by using the PSECT_ATTR= option. The
NOMOD attribute cannot be set by the programmer in source code or with linker
options, but it can be cleared with PSECT_ATTR=psect-name,MOD.

If you set the EXE or VEC attributes for a section for which the compiler has
set the NOMOD attribute, the linker issues a warning and sets the section
attributes back to NOEXE and NOVEC. The linker creates a read-only demand-
zero segment for a segment with the NOWRT attribute. See Part IV for more
information.

To request trailing zero compression, you have to use the PER_PAGE keyword for
the /DEMAND_ZERO qualifier.

The DZRO_MIN= and the ISD_MAX= options are not supported on I64 systems.
The linker ignores these options and produces informational messages. For
further explanation of these options, see Part IV.

3–38 Understanding Image File Creation (I64)

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

3.4.5 Creating ELF Sections in the Image File
Debugger and traceback sections are processed only if you requested in the LINK
command that the debug information be included using the /DEBUG qualifier
and that the traceback information not be excluded using the /NOTRACE
qualifier. Otherwise, this information is ignored. These sections contain their
information in the Debugging With Attribute Record Format, or DWARF.
DWARF information is kept in several sections, identified by a few section types
and distinguished by name. You are not able to control these sections with the
PSECT_ATTR= or the COLLECT= option clauses. Also, the linker does not collect
these sections into segments.

The DWARF sections are combined according to their section type and are usually
written into the image file. You can request that the debug information go into
a separate file called a debug symbol file (DSF) by using the /DSF qualifier. (For
information about the /DSF qualifier, see Part IV.)

The linker saves some image information in the .note ELF section, referred to as
the note section. It saves the link time and the linker ID, as well as the image
name and the global symbol table name (GSTNAM). This section contains a copy
of some of the original link-time value settings for additional fields that can be
modified by the SET IMAGE command. Further, it contains a a modification
timestamp field, updated when the SET IMAGE command changes field values.
Finally, it contains a modification timestamp the PATCH utility uses when it
changes any data in the image file.

The linker writes global symbols into the image file under the following
conditions:

• When you request a shareable image. (If you want to ship a shareable image
that cannot be linked against, use /NOGST to exclude the global symbol from
the shareable image file.)

• When you request a debug version of the image.

The Table 3–10 indicates where global symbol definitions are written during a
link operation that uses the debugging qualifiers:

Understanding Image File Creation (I64) 3–39

Understanding Image File Creation (I64)
3.4 Initializing an Image on I64 Systems

Table 3–10 Location of Global Symbols Determined by /TRACEBACK, /DEBUG,
and /DSF

Qualifier Global Symbols in Image Global Symbols in DSF File

/NoTrace/NoDebug
/NoDSF

0 0

/Trace /NoDebug
/NoDSF

0 0

/NoTrace /Debug
/NoDSF

1 0

/Trace /Debug
/NoDSF

1 0

/NoTrace /NoDebug
/DSF

0 1

/Trace /NoDebug
/DSF

0 1

/NoTrace /Debug
/DSF

0 1

/Trace /Debug
/DSF

0 1

The linker creates the required ELF sections, to implement the symbol table.
It creates a section named .symtab to contain the values and symbol attributes
together with a pointer to a string section, .strtab, which contains the symbol
names.

3.4.6 Writing the Main Output Files
To complete the image creation the generated data has to be written to the image
file. The linker prepares all the necessary ELF header tables, which are updated,
when writing segments and ELF sections. The linker writes the headers, and
sections, that is the contents of the linker buffers in the following order:

1. Temporary ELF header, temporary segment header table

2. All segments to the image file.

3. The traceback sections to the image or debug symbol file, unless /NOTRACEB
specified in the LINK command.

4. The debug sections to the image or debug symbol file, in case /DEBUG was
specified in the LINK command.

5. The remaining sections of the map to the map file, if requested in the LINK
command. (These sections include all requested sections except the Object
Module Synopsis, which it already wrote, and the Link Run Statistics, which
it cannot write until the linking operation finishes.)

6. The global symbol table to the image file, and also to another separate file, if
requested in the LINK command.

7. The supporting ELF sections to the image file.

8. The ELF section header table to the image file.

9. The updated ELF header and segment header table.

10. The link statistics to the map file, if requested in the LINK command.

3–40 Understanding Image File Creation (I64)

4
Creating Shareable Images (I64)

This chapter describes how to create shareable images on OpenVMS I64 systems
and how to declare universal symbols in shareable images.

4.1 Overview of Creating Shareable Images on I64 Systems
To create a shareable image, specify the /SHAREABLE qualifier on the LINK
command line. You can specify as input files in the link operation any of the
types of input files accepted by the linker, as described in Chapter 1.

Note, however, to enable other modules to reference symbols in the shareable
image, you must declare them as universal symbols. You must declare universal
symbols at link time using linker options. The linker lists all universal symbols
in the global symbol table (GST) of the shareable image. For I64 images the GST
is implemented as a set of symbols in the ELF symbol table (SYMTAB) in the
shareable image. The linker processes the GST of a shareable image specified as
an input file in a link operation during symbol resolution. (For more information
about symbol resolution, see Chapter 2.)

For I64 linking, you declare universal symbols by listing the symbols in a
SYMBOL_VECTOR= option statement in a linker options file. You do not need to
create a transfer vector to create an upwardly compatible shareable image, as you
do with OpenVMS VAX shareable images. The symbol vector can provide upward
compatibility. For more information about this topic, see Section 4.2.

The linker supports qualifiers and options that control various aspects of
shareable image creation. Table 4–1 lists these qualifiers and options. (For more
information about linker qualifiers and options, see Part IV.)

Creating Shareable Images (I64) 4–1

Creating Shareable Images (I64)
4.1 Overview of Creating Shareable Images on I64 Systems

Table 4–1 Linker Qualifiers and Options Used to Create Shareable Images on
I64

Qualifier Description

/GST Directs the linker to include universal symbols in the global
symbol table (GST) of the shareable image, which is the default.
When you specify the /NOGST qualifier, the linker creates an
empty GST for the image. See Section 4.2.4 for more information
about using this qualifier to create run-time kits.

/PROTECT Directs the linker to protect the shareable image from write
access by user or supervisor mode.

/SHAREABLE Directs the linker to create a shareable image, when specified in
the link command line. When appended to a file specification in
a linker options file, this qualifier identifies the input file as a
shareable image.

Option Description

GSMATCH= Sets the major and minor identification numbers in the
shareable image and specifies the algorithm when comparing
identification numbers.

PROTECT=1 When specified with the YES keyword in a linker options file,
this option directs the linker to protect the clusters created by
subsequent options specified in the options file. You turn off
protection by specifying the PROTECT=NO option in the options
file.

SYMBOL_TABLE=2 When specified with the GLOBALS keyword, this option directs
the linker to include in a symbol table file all the global
symbols defined in the shareable image, in addition to the
universal symbols. By default, the linker includes only universal
symbols in a symbol table file associated with a shareable image
(SYMBOL_TABLE=UNIVERSALS).

SYMBOL_VECTOR= Specifies symbols in the shareable image that you want declared
as universal.

1For I64, HP recommends you protect the whole image with the /PROTECT qualifier, see Section 4.4.
2For I64, the only purpose of a symbol table file is to make symbols and their values known to the
System Dump Analyzer (SDA). The option is intended for system developers who use SDA to look at a
running system, a process, or crash dump.

4.2 Declaring Universal Symbols in I64 Shareable Images
To illustrate how to declare universal symbols, consider the programs in
the following examples. Example 4–1 shows a shareable image test module;
Example 4–2 shows the shareable image.

Example 4–1 Shareable Image Test Module: my_main.c

#include <stdio.h>

#pragma extern_model save
#pragma extern_model common_block
extern int my_data;
#pragma extern_model restore

(continued on next page)

4–2 Creating Shareable Images (I64)

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

Example 4–1 (Cont.) Shareable Image Test Module: my_main.c

extern int my_symbol;
extern int mysub(int, int);

main()
{

int num1, num2, result;

num1 = 7;
num2 = 4;

result = mysub(num1, num2);
printf("Result= %d\n", result);
printf("Data implemented as overlaid psect= %d\n", my_data);
printf("Global reference data is= %d\n", my_symbol);

}

Example 4–2 Shareable Image: my_math.c

#pragma extern_model save
#pragma extern_model common_block
int my_data = 5;
#pragma extern_model restore

int my_symbol = 10;

int add_data = -1;
int sub_data = -1;
int mul_data = -1;
int div_data = -1;

int myadd(int value_1, int value_2)
{

add_data = value_1 + value_2;
return add_data;

}
int mysub(int value_1, int value_2)
{

sub_data = value_1 - value_2;
return sub_data;

}
int mymul(int value_1, int value_2)
{

mul_data = value_1 * value_2;
return mul_data;

}
int mydiv(int value_1, int value_2)
{

div_data = value_1 / value_2;
return div_data;

}

You must use the extern common model to make the HP C for OpenVMS I64
compiler implement the symbol my_data as an overlaid section. The default
model on HP C is relaxed/refdef. (For more information on the extern models and
how they are enabled with pragmas or command qualifiers, see the HP C User’s
Guide for OpenVMS Systems.)

Creating Shareable Images (I64) 4–3

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

For I64 linking, you declare universal symbols by listing them in a SYMBOL_
VECTOR= option. For each symbol listed in the SYMBOL_VECTOR= option, the
linker creates an entry in the shareable image’s symbol vector and creates an
entry for the symbol in the shareable image’s GST. When the shareable image is
included in a subsequent link operation, the linker processes the symbols listed
in its GST.

To enable images that linked against a shareable image to run with various
versions of the shareable image, you must specify the identification numbers of
the image. By default, the linker assigns a unique identification number to each
version of a shareable image. At run time, if the ID of the shareable image as it
is listed in the executable image does not match the ID of the shareable image
the image activator finds to activate, the activation will abort. For information
about using the GSMATCH= option to specify ID numbers, see the description of
the GSMATCH= option in Part IV.

To implement Example 4–2 as an I64 shareable image, you must declare the
universal symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-

MYSUB=PROCEDURE,-
MYMUL=PROCEDURE,-
MYDIV=PROCEDURE,-
MY_SYMBOL=DATA,-
MY_DATA=PSECT)

Ctrl/Z

You must identify the type of symbol vector entry you want to create by specifying
a keyword. The linker allows you to create symbol vector entries for procedures,
data (relocatable or constant), and for global data implemented as an overlaid
section.

A symbol vector entry is a quadword that contains information about the symbol
that can be used in subsequent fixups of images that are linked against the
shareable image. The contents of the quadword depends on what the symbol
represents. If the symbol represents a procedure (=PROCEDURE), the symbol
vector entry contains the address of the function descriptor (FD). If the symbol
represents a data (=DATA), the symbol vector entry contains the address of the
data location. If the symbol represents a data constant (=DATA), the symbol
vector entry contains the actual value of the constant. If the symbol represents a
section (=PSECT) the symbol vector entry contains the address of the location of
the section.

The linker fills in the symbol vector with values and addresses. The address
calculations are based on the assumption that the shareable image will be
mapped at the default start address of 10000 (hexadecimal). This is done despite
the fact that the linker can not know where the image will be in memory, at
run time. The linker also adds relocation information for the image activator
to adjust the address values based on the actual start address of the shareable
image, at activation time. This way, at run time, the symbol vector contains the
actual code or data addresses.

When you create the shareable image (by linking it specifying the /SHAREABLE
qualifier), the value of a universal symbol listed in the GST is the zero-based
index in the quadword array, representing its entry in the symbol vector
(expressed as the index z in Figure 4–1).

4–4 Creating Shareable Images (I64)

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

When you include this shareable image in a subsequent link operation, the linker
leaves the address of the data, the address function descriptor of the external
routine, or the address of the section empty in the linker-created short data. The
linker creates a fixup for the executable image that references the symbol from
the shareable image. The fixup includes the symbol’s index in the symbol vector
of the shareable image.

The following example illustrates how to link the object module MY_MAIN.OBJ
with the shareable image MY_MATH.EXE.

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE

Ctrl/Z

At run time, when the image activator maps the shareable image into memory,
it calculates the actual locations of the routines and relocatable data within the
image and stores these values in its symbol vector. The image activator then
fixes up the references to these symbols in the executable image. For a symbol
representing constant data, the constant from the symbol vector is copied into
the executable image. For a symbol representing relocatable data, the address
of the data from the symbol vector is copied into the executable image. For a
symbol representing a procedure the contents of the FD pointed to by the address
in the symbol vector, the code address and the global pointer, is copied into the
executable image. When the executable image makes a call to the procedure,
shown as the branch (br.few) instruction sequence in Figure 4–1, control is
transferred directly to the location of the procedure within the shareable image.

Creating Shareable Images (I64) 4–5

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

Figure 4–1 Accessing Universal Symbols Specified Using the SYMBOL_VECTOR= Option

Legend:

X = Offset from MY_MAIN global pointer (GP) to local function descriptor (FD)
 of mysub
n = Address of code entry mysub
m = Address of official function descriptor (fd) of mysub
GP = Global pointer in MY_MAIN
gp = Global pointer in MY_MATH
z = Index into the symbol vector

MY_MAIN

Short
Data

Short
Data

Fixup entry
for mysub
(type IPLTLSB)

addl r15=X,GP
ld8 r16=[r15],8
ld8 r1=[r15]
mov b6=r16
br.few.b6

0 (n after fixup)

0 (gp after fixup)

Segment and Offset of FD
Symbol Vector Index (z)

MY_MATH

FD:

GP:

mysub::

m

n

gp

n

[z]

m (fd):

Code

Symbol
Vector

VM-1219A-AI

Note that the images are being activated by the image activator with all
relocations applied, pointing out a single fixup. That is, m and n are the virtual
addresses after the image relocations are applied and gp is the relocated global
pointer value.

Note also that, unlike VAX linking, global symbols implemented as overlaid
sections are not universal by default. Instead, you control which of these
symbols is a universal symbol by including it in the SYMBOL_VECTOR= option,
specifying the PSECT keyword. The example declares the section my_data as a
universal symbol.

4.2.1 Symbol Definitions Point to Shareable Image Sections
On I64 systems, the linker cannot overlay sections that are referenced by symbol
definitions with shareable image sections of the same name.

For example, the HP C compiler generates symbol definitions when the relaxed
ref/def extern model is used (the default).

4–6 Creating Shareable Images (I64)

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

For hard symbol definitions, the compiler creates an overlaid section defining the
memory requirements for that symbol. For tentative symbol definitions, there is
no virtual memory allocated by the compiler. At link time, if there is no virtual
memory for a symbol found, the linker creates an overlaid section defining the
memory.

If an overlaid section was created for a symbol definition, such a section cannot
be overlaid with shareable image sections that are created when you link a
shareable image and use the PSECT keyword in your SYMBOL_VECTOR option.
(For more information on the extern models, see HP C User’s Guide for OpenVMS
Systems.)

If the linker detects this condition, it issues the following error:

%LINK-E-SHRSYMFND, shareable image psect <name> was pointed
to by a symbol definition
%LINK-E-NOIMGFIL, image file not created

The link continues, but no image is created. To work around this restriction,
change the symbol vector keyword to DATA, or recompile your C program with
the qualifier /EXTERN=COMMON.

For more information, see the HP C User’s Guide for OpenVMS Systems.

If the section specified in a SYMBOL_VECTOR= option does not exist, the linker
issues a warning, places zeros in the symbol vector entry and does not create an
entry for the section in the image’s GST.

The linker maintains separate name spaces for global symbol names and section
names. As described in Chapter 2, the section names are not used to resolve an
undefined symbol. Because of the different name spaces, it is possible to specify
an identical name in a symbol vector option when exporting a global symbol and
a section. This depends on the main module’s extern model and which entry in
the symbol vector resolves or overlays a reference from the main module.

Note

Although this is correct linker behavior, using identical names in this
manner can create confusion. As such, HP discourages the use this
feature.

4.2.2 Creating Upwardly Compatible Shareable Images
The SYMBOL_VECTOR= option allows you to create upwardly compatible
shareable images. You can create a shareable image that can be modified,
recompiled, and relinked without causing the images that were linked against
previous versions of the image to be relinked.

To ensure upward compatibility when using a SYMBOL_VECTOR= option, you
must preserve the order and placement of the entries in the symbol vector with
each relinking. Do not delete existing entries and only add new entries at the
end of the list. If you use multiple SYMBOL_VECTOR= option statements in
a single options file to declare the universal symbols, you must also maintain
the order of the SYMBOL_VECTOR= option statements in the options file. If
you specify SYMBOL_VECTOR= options in separate options files, make sure the
linker always processes the options files in the same order. (The linker creates
only one symbol vector for an image.)

Creating Shareable Images (I64) 4–7

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

Use the GSMATCH mechanism to record any changes you make. GSMATCH
handles the changes as follows:

• Major changes or incompatible changes, different orders of existing symbol
vector entries, or deletion of entries most likely will result in a mismatch of
the major ID number.

• Minor changes or compatible changes, or addition of new entries should
result in a match of the major ID number but in a mismatch of the minor ID
number.

By using the major and minor IDs in this manner, along with the LEQUAL
keyword, you can create upwardly compatible shareable images. For example, a
main image linked against minor ID 2 of a shareable image is not allowed to run
against the shareable image with a minor ID less than 2, if the shareable image
was linked with the keyword LEQUAL. For more information, see the description
of the GSMATCH= option in Part IV.

4.2.3 Deleting Universal Symbols Without Disturbing Upward Compatibility
To delete a universal symbol without disturbing the upward compatibility of an
image, use the PRIVATE_PROCEDURE or PRIVATE_DATA keywords. In the
following example, the symbol mysub is deleted using the PRIVATE_PROCEDURE
keyword:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-

MYSUB=PRIVATE_PROCEDURE,-
MYMUL=PROCEDURE,-
MYDIV=PROCEDURE,-
MY_SYMBOL=DATA,-
MY_DATA=PSECT)

Ctrl/z

When you specify the PRIVATE_PROCEDURE or PRIVATE_DATA keyword in
the SYMBOL_VECTOR= option, the linker creates symbol vector entries for the
symbols but does not create an entry for the symbol in the GST of the image.
The symbol still exists in the symbol vector and none of the other symbol vector
entries have been disturbed. Images that were linked with previous versions of
the shareable image that reference the symbol still work, but the symbol is not
available for new images to link against.

Using the PRIVATE_PROCEDURE keyword, you can replace an entry for an
obsolete procedure with a private entry for a procedure that returns a message
that explains the status of the procedure.

4.2.4 Creating Run-Time Kits
If you use shareable images in your application, you may want to ship a run-
time kit with versions of these shareable images that cannot be used in link
operations.

To do this, you must first link your application, declaring the universal symbols
in the shareable images using the SYMBOL_VECTOR= option so that references
to these symbols can be resolved. After the application is linked, you must then
relink the shareable images so that they have fully populated symbol vectors but
empty global symbol tables (GSTs). The fully populated symbol vectors allow your
application to continue to use the shareable images at run time. The empty GSTs
prevent other images from linking against your application.

4–8 Creating Shareable Images (I64)

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

To create this type of shareable image for a run-time kit (without having to
disturb the SYMBOL_VECTOR= option statements in your application’s options
files), relink the shareable image after development is completed, specifying the
/NOGST qualifier on the LINK command line. When you specify the /NOGST
qualifier, the linker builds a complete symbol vector, containing the symbols you
declared universal in the SYMBOL_VECTOR= option, but does not create entries
for the symbols that you declared universal in the GST of the shareable image.
For more information about the /GST qualifier, see Part IV.

4.2.5 Specifying an Alias Name for a Universal Symbol
For I64 linking, a universal symbol can have a name, called a universal alias,
different from the name contributed by the object module in which it is defined.
You specify the universal alias name when you declare the global symbol as a
universal symbol using the SYMBOL_VECTOR= option. The universal alias
name precedes the internal name of the global symbol, separated by a slash (/).
In the following example, the global symbol mysub is declared as a universal
symbol under the name sub_alias.

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYADD=PROCEDURE,-

SUB_ALIAS/MYSUB=PROCEDURE,-
MYMUL=PROCEDURE,-
MYDIV=PROCEDURE,-
MY_SYMBOL=DATA,-
MY_DATA=PSECT)

Ctrl/Z

You can specify universal alias names for symbols that represent procedures or
data; you cannot declare a universal alias name for a symbol implemented as an
overlaid section. In link operations in which the shareable image is included, the
calling modules must refer to the universal symbol by its universal alias name to
enable the linker to resolve the symbolic reference.

The alias mechanism can also be used to map case sensitive symbols to case
insensitive ones. With C and C++, case sensitivity becomes more important. You
may want to create a shareable image that contains both symbols, so that object
modules from traditional programming languages as MACRO and FORTRAN
can link against your image as well as modules which compile from open sources
and usually expect case sensitive names. In the following link operation for
Example 4–2, for each routine or data, uppercase and lowercase symbols are
defined with the alias mechanism, which are written into the GST.

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
CASE_SENSITIVE=YES
SYMBOL_VECTOR=(MYADD=PROCEDURE,-

myadd/MYADD=PROCEDURE,-
MYSUB=PROCEDURE,-
mysub/MYSUB=PROCEDURE,-
MYMUL=PROCEDURE,-
mymul/MYMUL=PROCEDURE,-
MYDIV=PROCEDURE,-
mydiv/MYDIV=PROCEDURE,-
MY_SYMBOL=DATA,-
my_symbol/MY_SYMBOL=DATA,-
MY_DATA=PSECT)

CASE_SENSITIVE=NO
Ctrl/Z

Creating Shareable Images (I64) 4–9

Creating Shareable Images (I64)
4.2 Declaring Universal Symbols in I64 Shareable Images

In a privileged shareable image, calls from within the image that use the alias
name result in a fix-up and subsequent vectoring through the privileged library
vector (PLV), which results in a mode change. Calls from within the shareable
image that use the internal name are done in the caller’s mode. (Calls from
external images always result in a fix-up.) For more information about creating a
PLV, see the HP OpenVMS Programming Concepts Manual.

4.3 Improving the Performance of Installed Shareable Images
On I64, you can improve the performance of an installed shareable image by
installing it as a resident image (by using the /RESIDENT qualifier of the Install
utility). INSTALL loads the executable and read-only segments of resident
images into physical memory, with virtual addresses in system space. Data or
code of such images is directly accessed from memory. That is, at run time image
pages do not need to be read from the image file. See INSTALL utility for more
information about installing images as resident images.

4.4 Linking User-Written System Services
User-written system services allow user-mode programs to call routines that can
perform functions that require privileges. These services are implemented in
shareable images. Because of the privileged code, these images are also referred
to as privileged shareable images. For security reasons, the privileged code
and associated data must be protected from manipulations. Therefore, such
images are also called protected shareable images.

As you would create any other shareable image, create a privileged shareable
image by specifying the /SHAREABLE qualifier in the LINK command. However,
because the privileged routine entry points in privileged shareable images must
be routed through the OpenVMS system service dispatcher in order to change
mode to a more privileged mode, declaring these entry points as universal
requires additional steps:

• Protect the privileged shareable image from user-mode or supervisor-
mode write access— Create a protected shareable image by specifying
the /PROTECT qualifier. If you need to protect only certain segments in a
privileged shareable image, use the PROTECT= option. For more information
about this option, see Part IV.

• Create a Privileged Library Vector (PLV) and put it in a protected
section— Create a PLV for a privileged shareable image. The image
activator uses the information in the PLV to set up the change of mode code.
You can create a protected shareable image by specifying the /PROTECT
qualifier. For information about creating a PLV, see the HP OpenVMS
Programming Concepts Manual.

4–10 Creating Shareable Images (I64)

Creating Shareable Images (I64)
4.4 Linking User-Written System Services

Note

On I64, HP recommends that you protect the entire image, rather than
parts of the image (that is, individual image segments). Partial protection
requires that you verify that all data to be protected is in the protected
segment. Compilers for I64 put data in different types of sections. By
doing so, it becomes difficult to control protection setting. For example,
compilers put some data into short data sections. The linker then must
collect these sections into short data segments, which cannot be collected
into user-defined clusters (the only clusters that you can protect with the
linker option). That is, for partially protected images, you need control
over that location that the compiler puts all your data. The compiler
of your choice might not offer a reliable method to do so; therefore; HP
recommends protecting the entire image.

Creating Shareable Images (I64) 4–11

5
Interpreting an Image Map File (I64)

This chapter describes how to interpret information in an image map created
by the linker on OpenVMS I64 systems. It describes the combinations of linker
qualifiers used to produce a map.

For information about interpreting an image map file on Alpha and VAX systems,
see Chapter 9.

5.1 Overview of I64 Linker Map
At your request, the linker can generate information that describes the contents
of the image and the linking process. This information, called an image map,
can be helpful when determing programming and link-time errors, studying the
layout of the image in virtual memory, and keeping track of global symbols.

You can obtain the following types of information about an image from its image
map:

• The names of all modules included in the link operation, both explicitly in the
LINK command and implicitly from libraries

• The names, sizes, and other information about the segments that comprise
the image

• The names, sizes, and locations of sections within an image

• The names and values of all the global symbols referenced in the image,
including the name of the module in which the symbol is defined and the
names of the modules in which the symbol is referenced

• Statistical summary information about the image and the link operation itself

You determine which information the linker includes in a map file by specifying
qualifiers in the LINK command line. If you specify the /MAP qualifier, the map
file includes certain information by default (called a default map). You can also
request a map file that contains less information about the image (called a brief
map) or a map file that contains more information about the image (called a
full map). Table 5–1 lists the LINK command qualifiers that affect map file
production.

Interpreting an Image Map File (I64) 5–1

Interpreting an Image Map File (I64)
5.1 Overview of I64 Linker Map

Table 5–1 LINK Command Map File Qualifiers

Qualifier Description

/MAP Directs the linker to create a map file. This is the default
for batch jobs. /NOMAP is the default for interactive link
operations.

/BRIEF When used in combination with the /MAP qualifier, directs the
linker to create a map file that contains only a subset of the
default map sections.

/FULL When used in combination with the /MAP qualifier, directs the
linker to create a map file that contains extensive information
of the image in the map file. To tailor the full information to
your needs, you can use keywords to add or suppress specific
information. The default value for /FULL is SECTION_
DETAILS.

• DEMANGLED_SYMBOLS—Directs the OpenVMS I64
Linker to add a translation table of mangled and demangled
(source code) names. You can request this section if you
use a programming language, whose language processor
performs name mangling (for example Ada and C++) and
the compiler provides the necessary information within
the object modules. The table contains names of global
definitions, procedures and data. Please note, /DNI (to
process display name information) must be be present,
which is by default. See Section 5.4 for more information.

• GROUP_SECTIONS—Directs the OpenVMS I64 Linker to
list all processed groups (ELF COMDATs). For example
C++ includes groups in its object modules and shareable
images. Please note when linking against C++ shareable
images, all groups of these images will be listed; even for
short programs this will create a long list.

• [NO]SECTION_DETAILS—Directs whether or not the
OpenVMS I64 Linker suppresses zero length contributions
in the Program Section Synopsis.

• ALL—For the OpenVMS I64 Linker, the ALL keyword is
equivalent to specifying all of the above listed keywords.

/CROSS_REFERENCE When used in combination with the /MAP qualifier, directs the
linker to replace the Symbols By Name section with a Symbol
Cross-Reference section, in which all the symbols in each module
are listed with the modules in which they are called. You cannot
request this type of listing in a brief map file.

5–2 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2 Components of an I64 Image Map File
The linker formats the information it includes in a map file into sections.
Table 5–2 lists the sections of a map file in the order in which they appear in
the file. The table also indicates whether the section appears in a brief map, full
map, or default map file.

Table 5–2 I64 Image Map Sections

Section Name Description Default Map
Full
Map

Brief
Map

Object and Image
Synopsis†

Lists all the object modules
included in the image and the
shareable images referenced in
the order they are processed by
the linker.

Yes Yes Yes

Cluster Synopsis Lists all the clusters created by
the linker

– Yes –

Image Segment Synopsis Lists the image segments that
were created

– Yes –

COMDAT Group
Synopsis

Lists the processed groups
ordered by group name

– Keyword
GROUP_
SECTIONS

–

Program Section
Synopsis†

Lists the sections and their
attributes.

Yes Yes –

Symbol Cross
Reference†

Lists each symbol name, its
value, the name of the module
that defined it, and the names of
the modules that refer to it.

Yes /CROSS Yes /CROSS –

Symbols By Value Lists all the symbols with
their values in hexadecimal
representation.

– Yes –

Cross Reference
Footnotes

If the cross reference or the
symbol value lists contain
shortened name, this section
is automatically created and the
full names are listed.

YEs Yes –

Mangled/Demangled
Symbols

Lists all the mangled symbols
with their demangled (source
code) names.

– Keyword
DEMANGLED_
SYMBOLS

–

Image Synopsis Presents statistics and other
information about the output
image.

Yes Yes Yes

Link Run Statistics Presents statistics about the
link run that created the image.
Quota usage keeps track of
quotas being used by the I64
linker and may suggest which
quota should be increased to
improve performance.

Yes Yes Yes

†In a full map file, these sections include information about modules that were included in the link operation from
libraries but were not explicitly specified on the LINK command line.

The following sections describe each of the image map sections.

Interpreting an Image Map File (I64) 5–3

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.1 Object and Image Synopsis
The first section that appears in a map file is the Object and Image Synopsis,
which lists the name of each object or shareable image included in the link
operation in the order in which they were processed. This section of the map
file also includes other information about each module, arranged in columns.
Example 5–1 shows the Object and Image Synopsis map.

This section corresponds to the Alpha section titled Object Module Synopsis. To
compare with the linker map on Alpha, see Section 9.2.1.

Example 5–1 Object and Image Synopsis

+---------------------------+
! Object and Image Synopsis !
+---------------------------+

! " # $ % &
Module/Image File Ident Attributes Bytes Creation Date Creator
------------ ---- ----- ---------------- ----- ------------- -------
GETJPI V1.0 Lkg Dnrm 280 7-NOV-2006 15:50 HP C V7.2-002

DISK$USER:[JOE]GETJPI.OBJ;1
DECC$SHR V8.3-00 Lkg 0 27-OCT-2006 10:57 Linker T02-28

SYS$COMMON:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-3 Sel Lkg 0 27-OCT-2006 10:56 Linker T02-28

SYS$COMMON:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

Key for Attributes
+--+
! Sel - Module was selectively searched !
! Lkg - Contains call linkage information !
! Dnrm - Denormal IEEE FP model !
+--+

The items in the following list correspond to the numbered items in the preceding
figure:

! Module/Image. The name of each object module or shareable image included
in the link operation. The modules/images are listed in the order in which
the linker processed them. (Note that the order of processing can be different
from the order in which the files were specified in the command line. For
more information about how the linker processes input files, see Chapter 2.)
If the linker encounters an error during its processing of an object module or
shareable image, an error message appears on the line directly following the
line containing the name of that module or image.

This column corresponds to the Module Name column on the Alpha linker
map.

" File. Full file specification of the input file, including device and directory.
The specification is printed on a separate line. It starts at the File column
and continues across the other columns. If the specification is longer than
111 characters, it is shortened by dropping the device portion of the file
specification or both the device and directory portions of the file specification.

Attributes. The attributes displays four subcolumns of module attributes.
An explanation of the abbreviations used appears in the Key for Attributes
legend that appears at the end of the Object and Image Synopsis section:

5–4 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

The first of the four subcolumns indicates whether the symbol search of the
module was selective. If the symbol search was selective, the abbreviation Sel
appears. If the symbol search of the module was not selective, this subcolumn
is left blank.

The second subcolumn indicates whether the module has call linkage
information. If the module has call linkage information, Lkg appears. If
the module does not have call linkage information, this subcolumn is left
blank.

The third subcolumn indicates whether the module was compiled with the
Reduced Floating Point model. If it was, the abbreviation RFP appears. If
the module was not compiled with the Reduced Floating Point model, this
subcolumn is left blank. This designation is suppressed for shareable images.

The fourth subcolumn indicates the whole program Floating Point mode for
the module. Several abbreviations can appear in this column. For example
Dnrm, the denormal IEEE FP model.

The following example lists all of the possible abbreviations for this
subcolumn in the Keys for Attributes legend. The Bytes, Creation Date
and Creator columns are omitted from this example; refer to the preceding
map example for the entire Object and Image Synopsis.

Module/Image File Ident Attributes
------------ ---- ----- ----------------
NONE V1.0 Lkg

DISK1:[JOE]NONE.OBJ;1
NOFLOAT_CASE Lkg RFP

DISK1:[JOE]NOFLOAT.OBJ;1
DNORM_CASE Lkg Dnrm

DISK1:[JOE]DENORM_W.OBJ;1
FAST_CASE Lkg Fast

DISK1:[JOE]FAST_W.OBJ;1
NEPCT_CASE Lkg Inex

DISK1:[JOE]INEXACT_W.OBJ;1
SPCL_CASE Lkg Spcl

DISK1:[JOE]SPECIAL_W.OBJ;1
UNDER_CASE Lkg Undr

DISK1:[JOE]UNDERFLOW_W.OBJ;1
DG_FL_CASE Lkg VXfl

DISK1:[JOE]VAXFLOAT_W.OBJ;1
DECC$SHR V8.2-00 Lkg

RESD$:[SYSLIB]DECC$SHR.EXE;1
SYS$PUBLIC_VECTORS X-2 Sel Lkg

RESD$:[SYSLIB]SYS$PUBLIC_VECTORS.EXE;1

Key for Attributes
+--+
! Sel - Module was selectively searched !
! Lkg - Contains call linkage information !
! RFP - Conforms to the reduced FP model !
! VXfl - VAX Float FP model !
! Dnrm - Denormal IEEE FP model !
! Fast - Fast IEEE FP model !
! Inex - Inexact IEEE FP model !
! Undr - Underflow-to-zero IEEE FP model !
! Spcl - Special FP model !
+--+

Interpreting an Image Map File (I64) 5–5

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

$ Bytes. The number of bytes the object module contributes to the image.
Because shareable images do not contribute to the image the value 0 (zero)
appears in this column.

% Creation Date. The date and time the module or image was created.

& Creator. Identification of the language processor or other utility that created
the module or image.

5.2.2 Cluster Synopsis Section
The Cluster synopsis section (Example 5–2) shows clusters that were created
for and used by the Linker, the order in which they were processed, and Global
Section Match (GSMATCH) criteria.

Example 5–2 Cluster Synopsis

+------------------+
! Cluster Synopsis !!
+------------------+

" #
Cluster Match Majorid Minorid
------- ----- ------- ----------
MYCLU
DEFAULT_CLUSTER
DECC$SHR LESS/EQUAL 1 1
SYS$PUBLIC_VECTORS EQUAL 9525 361572293

The items in the following list correspond to the numbered items in the preceding
figure:

! Cluster Synopsis. For I64 systems, there are separate map sections titled
Cluster Synopsis and Image Segment Synopsis. The Cluster Synopsis section
on I64 does not contain segment information.

" Cluster. The Cluster column shows the names of the clusters created
for and used by the linker, and the order in which they were processed.
STARLET.OLB is an exception. It is on the default cluster but its processing
is postponed after processing IMAGELIB.OLB. See Chapter 2 for more
information on processing default libraries.

Match, Majorid, and Minorid. The Match, Majorid, and Minorid columns
show the GSMATCH criteria along with the major and minor version
numbers, if this information is available. For more information, see the
GSMATCH= option in Part IV.

5–6 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.3 Image Segment Synopsis
The Image Segment Synopsis section of the linker map file (Example 5–3) lists
the image segments created by the linker. The image segments appear in the
order in which the linker created them. The order of the segments depends on
the order of the clusters as shown in the linker’s image cluster synopsis (see
Section 5.2.2). For I64 systems, segments of the shareable images which are
included in the link operation are not listed in the Image Segment Synopsis.

This section of the image map includes other information about the image
segments, formatted in columns. To compare with the Alpha Image Section
Synopsis map, see Section 9.2.3.

Example 5–3 Image Segment Synopsis

+------------------------+
! Image Segment Synopsis !!
+------------------------+

" # $ % & ’ () +>
Seg# Cluster Type Pglts Base Addr Disk VBN PFC Protection Attributes
---- ------- ---- ----- --------- -------- --- ---------- ----------

0 MYCLU LOAD 1 00010000 2 0 READ WRITE
1 LOAD 1 00020000 0 0 READ WRITE DEMAND ZERO
2 LOAD 1 00030000 3 0 READ ONLY EXECUTABLE,SHARED
3 LOAD 1 00040000 4 0 READ ONLY SHARED
4 LOAD 1 00050000 5 0 READ ONLY [UNWIND]
5 DEFAULT_CLUSTER LOAD 1 00060000 6 0 READ ONLY SHORT+?
6 DYNAMIC 2 Q-00000000

80000000 7 0 READ ONLY

Key for special characters above
+----------------------+
! Q - Quad Value !
+----------------------+

The items in the following list correspond to the numbered items in the preceding
figure:

! The Image Segment Synopsis section shows each segment as it was created.

" Seg#. The image’s segment number, indicating segments in the order the
linker created them and used in image relocations and image fixups that are
applied to a segment by the image activator.

Using the ANALYZE/IMAGE/SEGMENT=DYNAMIC command, you can
format the dynamic segment, which includes the image relocations and
fixups. The following extract of the ANALYZE shows how the segment
numbers are used for image relocations:

Segment Offset Modified: 0000000000000050 imr$q_rela_offset
Image Relocation Type: 00000081 imr$l_type
Segment Being Modified: 00000003 imr$l_rela_seg
Image Relocation Addend: 0000000000000000 imr$q_addend
Symbol Segment Offset: 0000000000000000 imr$q_sym_offset
Symbol Segment Number: 00000000 imr$l_sym_seg
Virtual Address Affected: 0000000000040050

Cluster. The name of each cluster the linker created, listed in the order in
which the linker created them. For better readability, the cluster name is
only shown for the first segment in the cluster.

Interpreting an Image Map File (I64) 5–7

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

$ Type. The type of the segment, indicating if a segment will be in memory at
run time (LOAD), or if the segment is used to activate the image (DYNAMIC).

% Pagelets. The length of each segment, expressed in pagelets (512-byte
quantities).

& Base Address. The base address assigned to the segment. Note that all
segments are relocatable, the image activator may relocate the base address.

’ Disk VBN (virtual block number). The virtual block number of the image file
on disk where the segment begins. The number 0 indicates that the segment
is not in the image file. This is the case for demand-zero segments.

(Page fault cluster (PFC). The number of pagelets read into memory by the
operating system when the initial page fault occurs for that segment. The
number 0 indicates that the system parameter PFCDEFAULT determines
this value, rather than the linker.

) Protection. The protection attributes of the segment:

Keyword Meaning

READ ONLY Indicates that the segment is protected against write access.

READ WRITE Indicates that the segment allows both read and write access.

+> Attributes. A keyword phrase that characterizes the settings of certain
attributes of the image segment, such as the attributes that affect paging.

The following table lists the keywords used by the linker to indicate these
characteristics of an image segment:

Keyword Meaning

DEMAND ZERO Indicates that the segment is a demand-zero segment. (For
more information, see Section 3.4.4.)

DZRO
COMPRESSED

Indicates that a segment had the trailing pagelets containing
zeros compressed. (For more information, see Section 3.4.4.)

EXECUTABLE Indicates that the segment contains code.

PROTECTED Indicates that a segment at run time will be protected from
user-mode and supervisor-mode write access. The image
activator ensures the protection when the segment is in
memory. (For more information, see Section 4.4)

SHARED Indicates that a segment can be shared between several
processes.

SHORT Indicates a short data segment, data which is addressed with
small offsets from the global pointer. (For more information,
see Section 3.4.3.2)

VECTOR Indicates that a segment contains privileged change-mode
vectors or message vectors.

5–8 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

Keyword Meaning

[UNWIND] Indicates that a segment contains unwind information. Please
note that UNWIND is not an attribute. The linker flags this
segment for better readability because all other attributes may
be identical to other segments. (For more information, see
Section 3.2.1.5)

The linker may use more than one keyword to describe a segment. For
example, to describe a segment that contains code, the linker uses the READ
ONLY and EXECUTABLE keywords.

+? If the module was compiled with /TIE and the image is linked /NONATIVE_
ONLY and if the image contains nonstandard signatures, a separate segment
appears immediately after the short data segment that contains them.

Interpreting an Image Map File (I64) 5–9

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.4 Program Section Synopsis Section
The Program Section Synopsis section lists the sections that comprise the image,
along with information about the size of the section, its starting- and ending-
addresses, and its attributes. The Module Name column in this map section
lists the modules that contribute to each section. Figure 5–1 shows the Program
Section Synopsis.

Figure 5–1 Program Section Synopsis

VM-1175A-A

1 2 7

8

9

10

3 4 5 6

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module/Image Base End Length Align Attributes
---------- ------------ ---- --- ------ ----- ----------

ITMLST 00010000 0001000F 00000010 (16.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD
 GETJPI 00010000 0001000F 00000010 (16.) OCTA 4 Initializing Contribution

FILLEN 00020000 00020003 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020000 00020003 00000004 (4.) OCTA 4

FILLM 00020010 00020013 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020010 00020013 00000004 (4.) OCTA 4

IOSB 00020020 00020027 00000008 (8.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020020 00020027 00000008 (8.) OCTA 4

STATUS 00020030 00020033 00000004 (4.) OCTA 4 OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 <Linker> 00020030 00020033 00000004 (4.) OCTA 4

$CODE$ 00030000 000300FF 00000100 (256.) OCTA 4 CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
 GETJPI 00030000 000300BF 000000C0 (192.) OCTA 4
 <Linker> 000300C0 000300FF 00000040 (64.) OCTA 4

$LINK$ 00040000 00040000 00000000 (0.) OCTA 4 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC,NOMOD
 GETJPI 00040000 00040000 00000000 (0.) OCTA 4

$LITERAL$ 00040000 00040017 00000018 (24.) OCTA 4 CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00040000 00040017 00000018 (24.) OCTA 4

$LINKER UNWIND$ 00050000 00050017 00000018 (24.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050000 00050017 00000018 (24.) QUAD 3

$LINKER UNWINFO$ 00050018 0005002F 00000018 (24.) QUAD 3 CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 GETJPI 00050018 0005002F 00000018 (24.) QUAD 3
$LINKER SYMBOL_VECTOR$ 00060000 00060007 00000008 (8.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker Option> 00060000 00060007 00000008 (8.) OCTA 4

$LINKER SDATA$ 00060008 000600AF 000000A8 (168.) OCTA 4 CON,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD,SHORT
 <Linker> 00060008 000600AF 000000A8 (168.) OCTA 4

The items in the following list correspond to the numbered items in the preceding
figure. There are two types of line entries: first type is a section entry (Psect
Name); the second type are individual module contributions to that section
(Module/Image).

! Psect Name. The name of each section in the image in ascending order of its
base virtual address.

" Module/Image. The names of the modules that contribute to the section
whose name appears on the line directly above in the Psect Name column.
If a shareable image appears in this column, the section is overlaid onto the
section in the shareable image.

Base. The starting virtual address of the section or of a module that
contributes to a section. If the section is overlaid onto a section in a shareable
image, the virtual address is taken from the shareable image.

5–10 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

$ End. The ending virtual address of the section or of a module that contributes
to a section. If the section is overlaid onto a section in a shareable image, the
virtual address is taken from the shareable image.

% Length. For the section entry line, the total length of the section in bytes;
for the individual module contribution lines, the length of the individual
contribution in bytes.

& Align. The type of alignment used for the entire section or for an individual
section contribution. The alignment is expressed in two ways. In the first
column, the alignment is expressed using a predefined keyword, such as
OCTA. In the second column, the alignment is expressed as an integer that is
the power of 2 that creates the alignment. For example, octaword alignment
would be expressed as the keyword OCTA and as the integer 4 (because 24

= 16). For more information on the effects of alignment with the PSECT=
option see Part IV.

If the linker does not support a keyword to express an alignment, it puts the
text ‘‘2 **’’ in the column in which the keyword usually appears. When read
with the integer in the second column, it expresses these alignments, such as
25 = 32.

’ Attributes. The attributes associated with the section. For a complete list of
all the possible attributes, see Chapter 3.

(The linker indicates which modules made initializations (if there were any) to
sections which have the attributes OVR, REL and GBL with the designation
Initializing Contribution.

If you get multiple initialization errors, the linker will have two or more
sections marked with the designation Initializing Contribution, in order to
help you debug an instance that has many contributors.

) The linker contributes storage for common or relaxed ref/def symbols. It is
marked with <Linker> under the Module/Image header. The section name
is always named after the symbol. (In this example map the C module was
compiled with the default switch /EXTERN=RELAXED, and the variables
ITMLST, FILLEN, FILLIM and IOSB are relaxed ref/def symbols).

+> The linker makes a contribution to the code section containing trampolines
(instructions with larger branches within the same code segment) or code to
branch to another segment (either inside or outside the image). It is marked
with <Linker> under the Module/Image header.

Note

If a routine is extracted from the default system library to resolve a
symbolic reference, the Program Section Synopsis section in a full map
contains information about the program sections comprising that routine.
The Program Section Synopsis section in a default map does not.

Interpreting an Image Map File (I64) 5–11

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.5 Symbol Cross-Reference Section
The Symbol Cross-Reference section is a superset of the Symbols By Name
section. It is produced in place of the Symbols By Name section when you specify
the /CROSS_REFERENCE qualifier. It lists all symbols referenced in the image,
along with the module in which they are defined and with all the modules that
reference them. Example 5–4 shows how the Symbol Cross-Reference Section
formats this information.

Example 5–4 Symbol Cross-Reference

+------------------------+
! Symbol Cross Reference !
+------------------------+

! " # $
Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
DECC$TXPRINTF 00000496-X% DECC$SHR GETJPI
ELF$TFRADR 00060050-R WK-GETJPI
FILLEN 00020000-R GETJPI GETJPI
FILLM 00020010-R GETJPI GETJPI
GETJPI (U) 00000000 <Linker Option>
INTERNAL_GETJPI 00060098-R GETJPI
IOSB 00020020-R GETJPI GETJPI
ITMLST 00010000-R GETJPI
STATUS 00020030-R GETJPI GETJPI
SYS$GETJPIW 0000009A-X SYS$PUBLIC_VECTORS GETJPI

The items in the following list correspond to the numbered items in the preceding
figure:

! Symbol. The name of the global symbol.

" Value. The value of the global symbol, expressed in hexadecimal. The
linker appends characters to the end of the symbol value to describe other
characteristics of the symbol. For an explanation of these symbols, see
Section 5.2.6.

For I64 systems, the designation of an external symbol is always X (external).
The linker can not know whether or not an external symbol is relocatable or
not. As a result, the designation R (relocatable) can not be attached.

$ Defined By. The name of the module in which the symbol is defined. For
example, the symbol ITMLST is defined in the module named GETJPI.

% Referenced By... . The name or names of all the modules that contain at least
one reference to the symbol.

5–12 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.6 Symbols By Value Section
The Symbols By Value section lists all the global symbols in the image in
ascending order by value. The linker formats the information into columns.
Example 5–5 shows the Symbols By Value map section.

Example 5–5 Symbols by Value

+------------------+
! Symbols By Value !
+------------------+

! "
Value Symbols...
----- ----------
00000000 GETJPI (U)
0000009A X-SYS$GETJPIW
00000496 X-DECC$TXPRINTF
00010000 R-ITMLST
00020000 R-FILLEN
00020010 R-FILLM
00020020 R-IOSB
00020030 R-STATUS
00060050 R-ELF$TFRADR
00060098 R-INTERNAL_GETJPI

Key for special characters above#
+----------------------+
! * - Undefined !
! (U) - Universal !
! R - Relocatable !
! X - External !
! C - Code Address !
! WK - Weak !
! UxWk - Unix-Weak !
+----------------------+

The items in the following list correspond to the numbered items in the preceding
figure:

! Value. The value of each global symbol, expressed in hexadecimal, in
ascending numerical order.

" Symbols... . The names of the global symbols. If more than one symbol has
the same value, the linker lists them on more than one line. The characters
prefixed to the symbol names indicate other characteristics of the symbol,
such as its scope.

Keys for Special Characters. The keys for special characters used in the
Symbols column are defined as follows:

• On I64, the special character C appears for code address. When a function
does not have a function descriptor assigned by the linker, its value is its
code address.

• For I64 systems, universal symbols appear once with a suffix of (U)
defined by <Linker Option> to indicate the external value, and again,
possibly with the prefix or suffix R, that indicates their internal value.
The external value is the index into the symbol vector. If you had a

Interpreting an Image Map File (I64) 5–13

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

symbol vector with an alias name, the alias name appears with the
universal value, and the internal name appears with the internal value.

For example, symbol_vector=(getjpi/internal_getjpi=procedure)
yields:

00000000 GETJPI (U)
00050098 R-INTERNAL_GETJPI

Note that the OpenVMS Alpha prefixes and suffixes A and I (for Alias and
Internal) are not used by I64.

• WK designates a weak symbol.

• UxWk designates a UNIX-style weak symbol, which is similar to an
OpenVMS weak symbol. However, more than one symbol with a UNIX-
style weak definition can be processed when linking multiple modules
without producing a multiple definitions error. UNIX-style weak symbols
are currently produced by the C++ compiler. (For more information about
symbol types, see Chapter 2.)

5–14 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

5.2.7 Image Synopsis Section
The Image Synopsis section contains miscellaneous information about the
image, such as its name and identification numbers, and a summary of various
attributes of the image, such as the number of files used to build the image.
Example 5–6 illustrates the format of this section of a map file. The list following
the example provides more information about items in this section that are not
self-explanatory.

Example 5–6 Image Synopsis

+----------------+
! Image Synopsis !
+----------------+

Virtual memory allocated:! 00010000 0006FFFF 00060000 (393216. bytes, 768. pages)
64-Bit Virtual memory allocated:" 00000000 00000000 00000000

80000000 80010000 00010000 (65536. bytes, 128. pages)
Stack size:# 0. pages
Image header virtual block limits:$ 1. 1. (1. block)
Image binary virtual block limits:% 2. 8. (7. blocks)
Image name and identification: GETJPI V1.0
Number of files: 5.
Number of modules: 3.
Number of program sections: 8.
Number of global symbols: 3364.
Number of cross references: 17.
Number of image segments: 7.
Transfer address from module: GETJPI
User transfer FD address:& 00000000 00060050
User transfer code address:’ 00000000 00030000
Initial FP mode: 00000000 09800000 (IEEE DENORM_RESULTS)
Number of code references to shareable images: 2.
Image type: SHAREABLE. Global Section Match=EQUAL, Ident, Major=9533, Minor=3817251083
Reduced Floating Point model (RFP): Image does not use RFP model
Map format: FULL WITH CROSS REFERENCE in file DISK$USER:[JOE]GETJPI.MAP;1
Estimated map length: 443. blocks

The following item corresponds to the numbered item in Example 5–6:

! Virtual memory allocated. This line contains the following information:

• The starting address of the image (base address)

• The ending address of the image

• The total size of the image, expressed in bytes, in hexadecimal radix

The numbers in parentheses at the end of the line indicate the total size
of the image, expressed in bytes and in pagelets. Both these values are
expressed in decimal.

" 64-Bit Virtual memory allocated. The next two lines contain information on
the image portions in P2 space. The virtual addresses are printed by column,
in two rows, with the high order digits in the first row. The values are as in
the prceeding line: the starting-address, the ending-address, the size.

Sections with the attribute ALLOC_64BIT are collected into P2 space (For
more information on collecting sections and assigning virtual addresses
see Chapter 3.) The linker usually places the image activator information
(dynamic segment) into the 64-bit space. Therefore, for all I64 images, there
usually is 64-bit virtual memory allocated.

Interpreting an Image Map File (I64) 5–15

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

Stack size.

$ Image header virtual block limits. For I64 images, the header blocks contain
the ELF header and the segment header table. This is usually one disk block.

% Image binary virtual block limits. For I64 images, the binary blocks contain
the image binaries (the segments) and other sections, depending on the type
of image. There can be traceback and debug information as well as symbol
tables. Also, the section header table describing such sections is counted here.

& User transfer FD address. The virtual address of the function decriptor (FD)
for the main entry. This is an address in the short data segment.

’ User transfer code address. The virtual address of the first code instruction
in the main entry. This is an address in an executable segment.

5.2.8 Link Run Statistics Section
The Link Run Statistics section contains miscellaneous statistical information
about the link operation, such as performance indicators. Example 5–7 shows the
formatting of this section.

Note that the link command line and the linker options are part of the Link Run
Statistics Section.

5–16 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

Example 5–7 Link Run Statistics

+---------------------+
! Link Run Statistics !
+---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------

Command processing: 52 00:00:00.01 00:00:00.00
Pass 1: 187 00:00:00.01 00:00:00.01
Allocation/Relocation: 10 00:00:00.01 00:00:00.02
Pass 2: 537 00:00:00.00 00:00:00.00
Write program segments: 15 00:00:00.01 00:00:00.05
Symbol table output: 3 00:00:00.00 00:00:00.06
Map data after object module synopsis: 6 00:00:00.00 00:00:00.01

Total run values: 810 00:00:00.04 00:00:00.17

Quota usage! ByteCount FileCount PgFlCount
------------ --------- --------- ---------

Available: 255616 128 700000
Command processing: 384 3 7040
Pass 1: 384 3 9504
Allocation/Relocation: 576 4 9504
Pass 2: 384 3 17824
Write program segments: 576 4 17952
Symbol table output: 384 3 17952
Map data after object module synopsis: 384 3 17952

Using a working set limited to 18784 pages and 11105 pages of data storage (excluding image)

Number of modules extracted explicitly = 0
with 0 extracted to resolve undefined symbols

1 library searches were for symbols not in the library searched"

A total of 1 global symbol table entries was written#

LINK/MAP/FULL/CROSS/SHARE GETJPI/OPT
<DISK$USER:[JOE]GETJPI.OPT;1>
cluster=myclu,,,getjpi.obj
symbol_vector=(getjpi/internal_getjpi=procedure)#

Interpreting an Image Map File (I64) 5–17

Interpreting an Image Map File (I64)
5.2 Components of an I64 Image Map File

The following description corresponds to the callout number in the preceding
linker map figure:

! Quota usage. For I64, includes Quota usage information in the Link Run
Statistics section. This information can help you to keep track of the quotas
that are being used by the Linker. If quota issues occur, the linker is usually
able to work around them. However, the linker outputs a special message
to the Quota Usage section indicating what quota should be increased to
improve performance. For example:

Performance of this link operation could be improved by increasing quotas
Quota related to status return: %SYSTEM-SECTBLFUL, process or global
section table is full

2688 extra file I/O operations performed due to current process quota(s)
36 performed on object files; 2652 performed on library files

" Library searches were for symbols not in the library searched. When
resolving undefined symbols, libraries are searched for definitions (see
Chapter 2 for more information on symbol resolution). The printed number
shows how often undefined symbols are not found in a library. For example,
assume that module MAIN references the symbols MY_ADD and MY_SUB,
which are defined by modules in ADDLIB.OLB and SUBLIB.OLB. Using the
link command: $ LINK MAIN, MAINLIB/LIB, ADDLIB/LIB, SUBLIB/LIB

if the MY_ADD and MY_SUB symbols are not found in MAINLIB, MY_SUB
is not found in ADDLIB. This results in "3 library searches for symbols not in
the library searched".

The number of global symbols written into a shareable image corresponds to
the procedure and data entries in the symbol vector option. In this example,
there is only a single entry in the symbol vector option.

5–18 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.3 Shortened Names with Footnotes in the Cross-Reference

5.3 Shortened Names with Footnotes in the Cross-Reference
Some sections of the linker map have tables with a fixed amount of space for
their columns. The Symbol Cross-Reference and the Symbols By Value map
sections are examples. If names exceed the given column size, the linker prints
a shortened name. On I64, for the cross reference and the symbol value list
the linker attaches a footnote, referring to the full name. If there are footnotes
attached to any name, the linker automatically adds a Cross-Reference Footnotes
section. The footnote section contains the footnote index and the full name,
wrapped to several lines, if necessary.

The following example demonstrates how to read the footnotes. The long names
were constructed for demonstration purpose only. In Example 5–8, the qualifiers
/MAP/CROSS/FULL were specified to get both the cross-reference and the symbol
value list.

Example 5–8 Shortened Symbol and Module Names

+------------------------+
! Symbol Cross Reference !
+------------------------+

! "
Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_long_variable_name...[1]

00010000-R A_VERY_LONG_MODULE_NAME_JUST_F...[2]

+------------------+
! Symbols By Value !
+------------------+

#
Value Symbols...
----- ----------
00010000 R-a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_lon...[1]

The items in the following list correspond to the numbered items in the preceding
figure:

! In the symbol cross reference, the symbol name does not fit on one line. The
name is shortened, which is shown with the trailing ellipses. And index of
the footnote is in the rightmost column.

" In the symbol cross reference, the module name exceeds the size for the
column Defined By. Again, ellipses show that the names is shortened and an
index of the footnote is attached.

The same symbol shows in the Symbols By Value section. Even less space is
provided to fit the symbol into the Symbols... column. The name, therefore, is
shortened with ellipses and a footnote index is attached. Because this is the
same symbol as in the Cross-Reference Section (although more shortened),
the same index points to the same full name, and the entry in the footnote
section.

Interpreting an Image Map File (I64) 5–19

Interpreting an Image Map File (I64)
5.3 Shortened Names with Footnotes in the Cross-Reference

Example 5–9 Cross Reference Footnotes

+---------------------------+
! Cross Reference Footnotes !
+---------------------------+

!
Index Full Symbol Name
----- ----------------

1 a_very_very_very_very_very_very_very_very_very_very_very_very_very_very_very_long_variable_name
_used_only_for_demonstration_purpose

2 A_VERY_LONG_MODULE_NAME_JUST_FOR_DEMO

Example 5–9 shows an example of a Cross Reference Footnotes section,
automatically added by the linker.

! In this example, the full name does not fit into the footnote column. The full
symbol name will be wrapped to multiple lines, as necessary.

5.4 Translation Table for Mangled Names
Some compilers mangle symbol names to implement language features (for
example, overloading) or to use shortened, unique names. Ada and C++
compilers, for example, do so. The linker receives only mangled names from the
compilers for resolving symbols and for exporting universal symbols. There is no
general rule to derive a mangled name from a source code name or vice versa. If
you need to know the source code name for a given mangled name, you need the
demangler support from that programming language processor.

Recent compilers are able to add demangling information to the object modules.
With this information and the language specific demangler routines (usually
available with run-time libraries), the linker can create a translation table for
mangled names. To obtain this table, use the DEMANGLED_SYMBOLS keyword
for the /FULL qualifier when requesting a map. The linker lists all the global
symbol definitions from the input object modules with their source code names.
Example 5–10 shows a translation table in the linker map.

5–20 Interpreting an Image Map File (I64)

Interpreting an Image Map File (I64)
5.4 Translation Table for Mangled Names

Example 5–10 Mangled/Demangled Symbols

+---------------------------+
! Mangled/Demangled Symbols !
+---------------------------+

Symbol = Source Code Name

CX3$ZN4RW22RWRDNRYXCHNGI2LM6VES!
= "int __rw::__rw_ordinary_exchange<int, int>(int&, int const&)"

CX3$_Z10DESCENDINGRIS_2OLL9N5
= "descending(int&, int&)""

CX3$_Z6MYSWAPIIEVRT_S1_1658A7V
= "void myswap<int>(int&, int&)""

CX3$_Z9ASCENDINGRIS_162K6TK
= "ascending(int&, int&)""

CXXL$ZN4RW10RWGARDC1ERNS1UGN3D2
= "__rw::__rw_guard::$complete$__rw_guard(__rw::__rw_mutex_base&)"

CXXL$ZN4RW10RWGARDC2EPNS05KBR8A
= "__rw::__rw_guard::$subobject$__rw_guard(__rw::__rw_mutex_base*)"

CXXL$ZN4RW10RWGARDC9EPNS20LCU4S
= "__rw::__rw_guard::__rw_guard(__rw::__rw_mutex_base*)"

CXXL$ZN4RW10RWGARDC9ERNS2NGDC8S
= "__rw::__rw_guard::__rw_guard(__rw::__rw_mutex_base&)"

CXXL$ZN4RW17RWSTTCMTXB8C19J9SHI
= "__rw::__rw_static_mutex<bool>::_C_mutex"

CXXL$ZN4RW17RWSTTCMTXJ8C1AJH16C
= "__rw::__rw_static_mutex<unsigned int>::_C_mutex"

CXXL$ZN4RW20RWTMCXCHNGII0DCUDA8
= "int __rw::__rw_atomic_exchange<int, int>(int&, int const&, __rw::__rw_mutex_base&)"

CXXL$ZNKST15BSCSTRAMBFCS03029KV
= "std::basic_streambuf<char, std::char_traits<char> >::_C_write_avail() const"

CXXL$ZNKST5CTYPEICE5WDNC2S864U0
= "std::ctype<char>::widen(char) const"

! The translation table is sorted by the mangled names. Sorting the names
by the source code name is not helpful. For example, the C++ source code
function names contain the return type, which would determine the sort order
rather than the function names.

Note that the mangled names might contain a dollar sign ($) character. This
does not necessarily indicate an OpenVMS reserved name.

" The table only contains global symbol definitions from the object modules
included in the link. However, there might be more names than expected; the
compiler may generate some names (for example, when implementing
C++ templates). In the map extract, "descending(int&, int&)", "void
myswap<int>(int&, int&)" and "ascending(int&, int&)" are the user-defined
template functions from the example Example 2–3. Other names are C++
generated names.

Interpreting an Image Map File (I64) 5–21

Part III
Linking on OpenVMS Alpha and VAX Systems

6
Understanding Symbol Resolution (Alpha and

VAX)

This chapter describes how the linker performs symbol resolution on OpenVMS
Alpha and VAX systems. For information on performing symbol resolution on I64
systems, see Chapter 2.

As one of its primary tasks, the linker must resolve symbolic references between
modules. This chapter describes how you can control the process to ensure that
the linker resolves symbolic references as you intend.

6.1 Overview
Programs are typically made up of many interdependent modules. For example,
one module may define a symbol to represent a program location or data element
that is referenced by many other modules. The linker is responsible for finding
the correct definition of each symbol referenced in all the modules included in
the link operation. This process of matching symbolic references with their
definitions is called symbol resolution.

6.1.1 Types of Symbols
Symbols can be categorized by their scope, that is, the range of modules over
which they are intended to be visible. Some symbols, called local symbols,
are meant to be visible only within a single module. Because the definition and
the references to these symbols must be confined to a single module, language
processors such as compilers can resolve these references.

Other symbols, called global symbols, are meant to be visible to external
modules. A module can reference a global symbol that is defined in another
module. Because the value of the symbol is not available to the compiler
processing the source file, it cannot resolve the symbolic reference. Instead,
a compiler creates a global symbol directory (GSD) in an object module that lists
all of the global symbol references and global symbol definitions it contains.

In shareable images, symbols that are intended to be visible to external modules
are called universal symbols. A universal symbol in a shareable image is the
equivalent of a global symbol in an object module. Note, however, that only
those global symbols that have been declared as universal are listed in the global
symbol table (GST) of the shareable image and are available to external modules
to link against.

Language processors determine whether a symbol is local or global. For example,
in VAX FORTRAN, statement numbers are local symbols and module entry
points are global symbols. In other languages, you can explicitly specify whether
a symbol is local or global by including or excluding particular attributes in the
symbol definition. Note also that some languages allow you to specify symbols as
weak or strong (see Section 6.5 for more information).

Understanding Symbol Resolution (Alpha and VAX) 6–1

Understanding Symbol Resolution (Alpha and VAX)
6.1 Overview

You must explicitly declare universal symbols as part of the link operation in
which the shareable image is created. For more information about declaring
universal symbols, see Chapter 8.

Note

In some HP programming languages, certain types of global symbols,
such as external variables in C and COMMON data in FORTRAN,
are not listed in the GSD as global symbol references or definitions.
Because these data types implement virtual memory that is shared,
the languages implement them as program sections that are overlaid.
These symbols appear as program section definitions in the GSD, not
as a symbol definition or reference. (Compilers use program sections to
define the memory requirements of an object module.) The linker does not
include program section definitions in its symbol resolution processing.
For information about how the linker processes program sections, see
Chapter 7.

On VAX systems, the VAX C language extensions globalref and globaldef allow
you to create external variables that appear as symbol references and definitions
in the GSD. For more information, see the VAX C documentation.

On Alpha systems, the HP C compiler supports the globalref and globaldef
language extensions. In addition, HP C supports command line qualifiers and
source code pragma statements that allow you to control whether it implements
external variables as program sections or as global symbol references and
definitions. For more information, see the HP C documentation.

6.1.2 Linker Symbol Resolution Processing
During its first pass through the input files specified in the link operation,
the linker attempts to find the definition for every symbol referenced in the
input files. By default, the linker processes all the global symbols defined and
referenced in the GSD of each object module and all the universal symbols
defined and referenced in the GST of each shareable image. The definition of the
symbol provides the value of the symbol. The linker substitutes this value for
each instance where the symbol is referenced in the image.

The value of a symbol depends on what the symbol represents. A symbol can
represent a routine entry point or a data location within an image. For these
symbols, the value of the symbol is an address. A symbol can also represent a
data constant (for example, X = 10). In this case, the value of the symbol is its
actual value (in the example, the value of X is 10).

For symbols that represent addresses in object modules, the value is expressed
initially as an offset into a program section. This is how language processors
express addresses. Later in its processing, when the linker combines the program
sections contributed by all the object modules into the image sections that define
the virtual memory layout of the image, it determines the actual value of the
address. (For information about how the linker determines the virtual memory
layout of an image, see Chapter 7.)

For symbols that represent addresses in a shareable image, the value of the
symbol at link time is architecture specific.

6–2 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.1 Overview

For Alpha images, at link time, the value of a symbol in a shareable image
(as listed in the GST of the image) is the offset of the symbol’s entry in the
symbol vector of the image. A symbol vector entry is a pair of quadwords that
contain information about the symbol. The contents of these quadwords depend
on whether the symbol represents a procedure entry point, data location, or a
constant. Figure 6–1 illustrates the contents of a symbol vector entry for each
of these three types of symbols. Note that, at link time, a symbol vector entry
for a procedure entry point or a data location is expressed as an offset into the
image. At image activation time, when the image is loaded into memory and the
base address of the image is known, the image activator converts the image offset
into a virtual address. Figure 6–1 shows the contents of the symbol vector at link
time and at image activation time.

Figure 6–1 Symbol Vector Contents

63 0

image offset of procedure entry

image offset of procedure desc.

constant value

0

image offset of data cell

Procedure

Constant

Data

virtual addr. of procedure entry

virtual addr. of procedure desc.

constant value

0

virtual addr. of data cell

At Link Time: After Image Activation:

0

63 0

0

ZK−5840A−GE

Note that the linker does not allow programs to make procedure calls to symbols
that represent data locations.

For VAX images, at link time, the value of a symbol in a shareable image (as
listed in the GST of the image) is the offset into the image of the routine or data
location, if the symbol was declared universal using the UNIVERSAL= option. If
the symbol was declared universal using a transfer vector, the value of the symbol
is the offset into the image of the transfer vector entry. If the symbol represents
a constant, the GST contains the actual value of the constant.

The actual value of an address symbol in a shareable image is determined at run
time by the image activator when it loads the shareable image into memory. The
image activator relocates all the address references within a shareable image
when it loads the image into memory. Once it has determined the absolute values
of these addresses, the image activator fixes up references to these addresses in
the image that linked against the shareable image. Previously, the linker created
fix-ups that flag to the image activator where it must insert the actual addresses
to complete the linkage of a symbolic reference to its definition in an image. The
linker listed these fix-ups in the fix-up section it creates for the image. (For
more information about shareable images, see Chapter 8.)

Understanding Symbol Resolution (Alpha and VAX) 6–3

Understanding Symbol Resolution (Alpha and VAX)
6.1 Overview

For VAX images, you can specify the address at which you want a shareable
image loaded into memory by using the BASE= option. When you specify this
option, the linker can calculate the absolute addresses of symbols within the
shareable image because the base address of the shareable image is known.
By specifying a base address, you eliminate the need for the image activator to
perform fix-ups and relocations.

Note, however, that basing a shareable image can potentially destroy upward
compatibility between the shareable image and other images that were linked
against it.

Figure 6–2 illustrates the interdependencies created by symbolic references
among the modules that make up an application. In the figure, arrows point
from a symbol reference to a symbol definition. (The statements do not reflect a
specific programming language.)

Figure 6–2 Symbol Resolution

MODULEA

MODULEB MODULEC

ZK−0529−GE

Call GLOBAL3
Move LOCAL1 to LOCAL2

to LOCAL2
Move LOCAL1

GLOBAL2
GLOBAL1
LOCAL2
LOCAL1

to LOCAL1
Add GLOBAL1

LOCAL2
LOCAL1

to LOCAL1
Move LOCAL2

GLOBAL3

LOCAL2
LOCAL1

from LOCAL2
Subtract GLOBAL2

6–4 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.1 Overview

The linker creates an image even if it cannot find a definition for every symbol
referenced in the input files it processes. The linker reports these undefined
symbols as in the following example, if at least one of these unresolved references
is a strong reference. (For information about strong and weak symbolic
references, see Section 6.5.) The linker includes the message in the map file,
if a map file was requested.

$ link my_main ! The module MY_MATH is omitted
%LINK-W-NUDFSYMS, 1 undefined symbols:
! %LINK-I-UDFSYM, MYSUB
" %LINK-W-USEUNDEF, undefined symbol MYSUB referenced

in psect $CODE offset %X0000001A
in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;1

! The linker issues an informational message for each symbol for which it
cannot find a definition.

" The linker issues a warning message for each instance where an undefined
symbol is referenced in the image.

If you run an image that contains undefined symbols and the symbols are never
accessed, the program will run successfully. If you run an image that contains
undefined symbols and the image accesses the symbols at run time, the image
will abort, in most cases, with an access violation because the linker assigns the
value zero to undefined symbols, as in the following example:

$ run my_main
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000000,
PC=00001018, PSL=03C00000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

MY_MAIN main 15 00000018 00001018

6.2 Input File Processing for Symbol Resolution
The linker can include object modules, shareable images, and libraries in its
symbol resolution processing. For VAX images, the linker can also include a
symbol table file in its symbol resolution processing. (Options files, in which
linker options and input files are specified, are not included in symbol resolution.)

By default, when the linker processes an object module or shareable image, it
includes all the symbol definitions from the object module or shareable image
in its processing. However, if you append the /SELECTIVE_SEARCH qualifier
to the object module or shareable image file specification, the linker includes
in its processing only those symbols from the object module or shareable image
that define symbols referenced in a previously processed input file. (For more
information about selectively processing input files, see Section 6.2.4.)

Table 6–1 summarizes how the linker processes these different types of input files
when performing symbol resolution. The following sections provide more detail
on the linker’s processing of each type of input file.

Understanding Symbol Resolution (Alpha and VAX) 6–5

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

Table 6–1 Linker Input File Processing

Input File How Processed

Object file (.OBJ) By default, the linker processes all the symbol definitions
and references listed in the GSD of the module. If you
append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only
those symbol definitions from the GSD that resolve symbolic
references found in previously processed input files.

Shareable image file
(.EXE)

By default, the linker processes all symbol definitions and
references listed in the GST of the image. Note, however, to
avoid cluttering the map file of the resultant image, the linker
lists only those symbol definitions in the map file that are
referenced by other modules.

If you append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only
those symbol definitions from the GST that resolve symbolic
references found in previously processed input files.

†Symbol table file (.STB) By default, the linker processes all the symbol definitions
and references in the GSD of the module. If you append the
/SELECTIVE_SEARCH qualifier to the input file specification,
the linker includes in its processing only those symbol
definitions from the module that resolve symbolic references
found in previously processed input files.

Library files (.OLB) The linker searches the name table of the library for symbols
that are undefined in previously processed input files. (A
library file’s name table lists all the symbols available in all
of the modules it contains.) If the linker finds the definition
of a symbol referenced by a previously processed input file, it
includes in the link operation the module in the library that
contains the definition of the symbol. Once the object module
or shareable image is included in the link operation, the linker
processes it as any other object module or shareable image.

If you append the /INCLUDE qualifier to a library file
specification, the linker does not search the library’s name
table to find undefined symbolic references. Instead, the linker
simply includes the specified object module or shareable image
specified as a parameter to the /INCLUDE qualifier.

You cannot process a library file selectively. However, if
the Librarian utility’s /SELECTIVE_SEARCH qualifier was
specified when the object module or shareable image was
inserted into the library, the linker will process the module
selectively when it extracts it from the library.

†VAX specific

6.2.1 Processing Object Modules
The way the linker processes object modules to resolve symbolic references
illustrates how the linker processes most other input files. (Symbol table files
are object modules. The GST of a shareable image, which the linker processes in
symbol resolution, is also created as an object module appended to the shareable
image.)

For example, the program in Example 6–1 references the symbol mysub.

6–6 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

Example 6–1 Module Containing a Symbolic Reference: my_main.c

#include <stdio.h>

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;
result = 0;

result = mysub(num1, num2);
printf("Result is: %d\n", result);

}

Mysub, which Example 6–1 references, is defined in the program in
Example 6–2.

Example 6–2 Module Containing a Symbol Definition: my_math.c

int myadd(int value_1,int value_2) {
int result;

result = value_1 + value_2;
return(result);

}

int mysub(int value_1,int value_2)
int result;

result = value_1 - value_2;
return(result);

}

int mymul(int value_1,int value_2)
int result;

result = value_1 * value_2;
return(result);

}

int mydiv(int value_1,int value_2)
int result;

result = value_1 / value_2;
return(result);

}

The GSD created by the language processor for the object module MY_MAIN.OBJ
lists the reference to the symbol mysub. Because object modules cannot be
examined using a text editor, the following representation of the GSD is taken
from the output of the ANALYZE/OBJECT utility. The example is from the
analysis of an OpenVMS Alpha object module. Differences between the format
of the symbol reference between VAX object files and Alpha object files are
highlighted in the list following the example.

Understanding Symbol Resolution (Alpha and VAX) 6–7

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD) !, 344 bytes
.
.
.

9) Global Symbol Specification (EGSD$C_SYM) "
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 0
(2) EGSY$V_UNI 0
(3) EGSY$V_REL 0
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0 #
(6) EGSY$V_NORM 0 $

symbol: "MYSUB"

! For VAX object files, the symbol for the global symbol directory is OBJ$C_
GSD.

" For VAX object files, the symbol for a global symbol specification is GSD$C_
SYM.

For VAX object files, this field is not included.

$ For VAX object files, this field is not included. For Alpha object files, the
value of this field is always zero for symbolic references.

The GSD created by the language processor for the object module MY_MATH.OBJ
contains the definition of the symbol mysub, as well as the other symbols defined
in the module. The definition of the symbol includes the value of the symbol.

The following excerpt from an analysis of the OpenVMS Alpha object module
(performed using the ANALYZE/OBJECT utility) shows the format of a GSD
symbol definition entry. Note that, in an OpenVMS Alpha object module, a
symbol definition is listed as a Global Symbol Specification.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD), 46 bytes
.
.
.
9) Global Symbol Specification (EGSD$C_SYM)

data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 0
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1 !

" psect: 3
value: 64 (%X’00000040’)
$ code address psect: 5
% code address: 8 (%X’00000008’)

symbol: "MYSUB"
.
.
.

6–8 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

! The value of the EGSY$V_NORM flag is 1 if the symbol represents a
procedure. The value is set to zero if the symbol represents data.

" The index of the program section that contains the procedure descriptor for
mysub.

The location of the procedure descriptor expressed as the offset from the
starting address of the program section that contains the procedure descriptor.

$ Index of program section that contains the code entry point.

% The location of the code entry point, expressed as the offset from the starting
address of the program section that contains the entry point.

The following excerpt from an analysis of the OpenVMS VAX object module
(performed using the ANALYZE/OBJECT utility) shows the format of a GSD
symbol definition entry. Note that, on VAX systems, a symbol definition is listed
as an Entry Point Symbol and Mask Definition record.

4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 46 bytes
.
.
.
2) Entry Point Symbol and Mask Definition (GSD$C_EPM)

data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) GSY$V_WEAK 0
(1) GSY$V_DEF 1
(2) GSY$V_UNI 0
(3) GSY$V_REL 1
(4) GSY$V_COMM 0

psect: 0
value: 0 (%X’0000000C’)
entry mask: <>
symbol: "MYSUB"

.

.

.

The value of the symbol is expressed as an offset into a program section.

When you link the modules shown in Example 6–1 and Example 6–2 together to
create an image, you specify both object modules on the command line, as in the
following example:

$ LINK MY_MAIN, MY_MATH

When the linker processes these object modules, it reads the contents of the
GSDs, obtaining the value of the symbol from the symbol definition.

Note that, for Alpha images, in the map file associated with the image, the value
of the symbol mysub is the location within the image of the procedure descriptor
for the routine. The procedure descriptor contains the address of the routine
within the image.

For VAX images, the value of the symbol mysub is represented in the map file as
the location of the entry point mask.

Understanding Symbol Resolution (Alpha and VAX) 6–9

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

6.2.2 Processing Shareable Images
When the linker processes a shareable image specified as input in a link
operation, it processes all the symbol definitions and references in the GST of
the image. The GST contains all the universal symbols defined in the shareable
image. Because the linker creates the GST of a shareable image in the format
of an object module, the processing of shareable images for symbol resolution is
similar to the processing of object modules. Note that the linker includes in the
map file only those symbols that resolve references to avoid cluttering the listing
with extraneous symbols.

For example, the program in Example 6–2 (in Section 6.2.1) can be implemented
as a shareable image. (For information about creating a shareable image, see
Chapter 8.) The shareable image can be included in the link operation as in the
following example:

$ LINK/MAP/FULL MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE

The GST created by the linker for the shareable image MY_MATH.EXE contains
the definition of the symbol mysub, as well as the other symbols defined in the
module.

Because images cannot be examined using a text editor, the following
representations of the GST are taken from the output of the ANALYZE/IMAGE
utility.

For Alpha images, the universal symbol mysub in the shareable image MY_
MATH.EXE appears in the GST of the image as a Universal Symbol Specification
record, as illustrated in the following example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
.
.
.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_EGSD), 200 bytes
.
.
.

3) Universal Symbol Specification (EGSD$C_SYMG)
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 1
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1

psect: 0
value: 16 (%X’00000010’)
symbol vector entry (procedure)

%X’00000000 00010008’
%X’00000000 00000040’

symbol: "MYSUB"
.
.
.

6–10 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

Note that the value of the symbol, as it appears in the Universal Symbol
Specification, is the location of the symbol’s entry in the image’s symbol vector,
expressed as an offset from the base of the symbol vector. The symbol vector
entry contains the address of mysub’s entry point and the address of its procedure
descriptor. These locations are expressed as offsets from the base of the image.
The entry for a symbol in the GST of an image is a duplicate of the symbol’s entry
in the symbol vector.

For VAX images, the universal symbol mysub in the shareable image MY_
MATH.EXE appears in the GST of the image as an Entry Point Symbol and Mask
Definition record, as illustrated in the following example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
.
.
.

2) Entry Point Symbol and Mask Definition (GSD$C_EPM)
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) GSY$V_WEAK 0
(1) GSY$V_DEF 1
(2) GSY$V_UNI 1
(3) GSY$V_REL 1
(4) GSY$V_COMM 0

psect: 0
value: 8 (%X’00000008’)
entry mask: <>
symbol: "MYSUB"

.

.

.

Note that the flag GSY$V_UNI is set for universal symbols to distinguish them
from global symbols in object modules that use the same record format.

Implicit Processing of Shareable Images
For VAX linking, when you specify a shareable image in a link operation, the
linker not only processes the shareable image you specify, but also all the
shareable images that the shareable image has been linked against. (A shareable
image contains a global image section descriptor [GISD] for each shareable image
to which it has been linked.)

For Alpha linking, the linker does not process the shareable images that the
shareable image you specify has been linked against. (Shareable images on
Alpha systems still contain GISDs for each shareable image that they have been
linked against, however.) If your application’s build procedure depends on implicit
processing of shareable images, you may need to add these shareable images to
your linker options file.

6.2.3 Processing Library Files
Libraries specified as input files in link operations contain either object modules
or shareable images. The way in which the linker processes library files
depends on how you specify the library in the link operation. Section 6.2.3.1,
Section 6.2.3.2, and Section 6.2.3.3 describe these differences. Note, however, that
once an object module or shareable image is included from the library into the
link operation, the linker processes the file as it would any other object module or
shareable image.

Understanding Symbol Resolution (Alpha and VAX) 6–11

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

For example, to create a library and insert the object module version of the
program in Example 6–2 into the library, you could specify the following
command:

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH

The librarian includes the module in its module list and all of the global symbols
defined in the module in its name table. To view the library’s module list
and name table, specify the LIBRARY command with the /LIST and /NAMES
qualifiers, as in the following example:

$ LIBRARY/LIST/NAMES MYMATH_LIB
Directory of OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on
3-NOV-2000 11:11:33
Creation date: 3-NOV-2000 11:08:04 Creator: VAX-11 Librarian V04-00
Revision date: 3-NOV-2000 11:08:04 Library format: 3.0
Number of modules: 1 Max. key length: 31
Other entries: 5 Preallocated index blocks: 49
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0

Module MY_MATH
MYADD MYDIV
MYMUL MYSUB

You can specify the library in the link operation using the following command:

$ LINK/MAP/FULL MY_MATH, MYMATH_LIB/LIBRARY

The map file produced by the link operation verifies that the object module MY_
MATH.OBJ was included in the link operation.

6.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier
When the linker processes a library file identified by the /LIBRARY qualifier, the
linker processes the library’s name table, looking for the definitions of symbols
referenced in previously processed input files.

Note that, to resolve a reference to a symbol defined in a library, the linker must
process the module that references the symbol before processing the library file.
Thus, while the ordering of object modules and shareable images is not usually
important in a link operation, the ordering of library files can be important. (For
more information about controlling the order in which the linker processes input
files, see Section 6.3.)

Once the object module or shareable image is included from the library into the
link operation, the linker processes all the symbol definitions and references
in the module. If you want the linker to selectively process object modules or
shareable images that are included in the link operation from a library, you
must append the Librarian utility’s /SELECTIVE_SEARCH qualifier to the file
specification of the object module or shareable image when you insert it into the
library. Appending the linker’s /SELECTIVE_SEARCH qualifier to a library file
specification in a link operation is illegal. For more information about processing
input files selectively, see Section 6.2.4.

Processing Object Module Libraries
When the linker finds a symbol in the name table of an object module library,
it extracts from the library the object module that contains the definition and
includes it in the link operation. The linker then processes the GSD of the object
module extracted from the library, adding an entry to the linker’s list of symbol
definitions for every symbol defined in the object module, and adding entries to
the linker’s undefined symbol list for all the symbols referenced by the module (as

6–12 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

described in Section 6.2.1). The linker continues to process the undefined symbol
list until there are no definitions in the library for any outstanding references.
When the linker finishes processing the library, it has extracted all the modules
that resolve references generated by modules previously extracted from the
library.

Processing Shareable Image Libraries
When the linker finds a symbol in the name table of a shareable image library,
it notes which shareable image contains the symbol and then looks for the
shareable image to include it in the link operation. By default, the linker looks
for the shareable image in the same device and directory as the library file.

For VAX linking, if the linker cannot find the shareable image in the device
and directory of the library file, the linker looks for the shareable image in the
directory pointed to by the logical name SYS$LIBRARY.

For Alpha linking, if the linker cannot find the shareable image in the device
and directory of the library file, the linker looks for the shareable image in the
directory pointed to by the logical name ALPHA$LIBRARY.

Once it locates the shareable image, the linker processes the shareable image as
it does any other shareable image (as described in Section 6.2.2).

6.2.3.2 Including Specific Modules from a Library Using the /INCLUDE Qualifier
If the library file is specified with the /INCLUDE qualifier, the linker does not
process the library’s name table. Instead, the linker includes in the link operation
the modules from the library specified in the /INCLUDE qualifier and processes
them as it would any other object module or shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a
library file specification, the linker processes the library’s name table to search for
modules that contain needed definitions. When the linker finds an object module
or shareable image in the library that contains a needed definition, it processes it
as described in Section 6.2.3.1. In addition, the linker also includes the modules
specified with the /INCLUDE qualifier in the link operation and processes them
as it would any other object module or shareable image.

6.2.3.3 Processing Default Libraries
In addition to the libraries you specify using the /LIBRARY qualifier or the
/INCLUDE qualifier, the linker also processes certain other libraries by default.
The linker processes these default libraries in the following order:

1. Default user library files. You specify a default user library by associating
the library with one of the linker’s default logical names from the range
LNK$LIBRARY, LNK$LIBRARY_1, . . . LNK$LIBRARY_999. If the
/NOUSERLIBRARY qualifier is specified, the linker skips processing default
user libraries. (For more information about defining a default user library,
see the description of the /USERLIBRARY qualifier in Part 2.)

If the default user library contains shareable images, the linker looks for the
shareable image as described in Section 6.2.3.1.

2. Default system shareable image library file. The linker processes the
default system shareable image library IMAGELIB.OLB by default unless
you specify the /NOSYSSHR or the /NOSYSLIB qualifier.

Understanding Symbol Resolution (Alpha and VAX) 6–13

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

Note that when the linker needs to include a shareable image from
IMAGELIB.OLB in a link operation, it always looks for the shareable images
in SYS$LIBRARY for VAX linking or ALPHA$LIBRARY for Alpha linking.
The linker does not look for the shareable image in the device and directory of
IMAGELIB.OLB as it does for other shareable image libraries.

3. Default system object module library file. The linker processes the
default system object library STARLET.OLB by default unless you specify the
/NOSYSLIB qualifier.

For Alpha linking, when the linker processes STARLET.OLB by default, it
also processes the shareable image (SYS$PUBLIC_VECTORS.EXE). This
shareable image is needed to resolve references to system services. (For VAX
linking, references to system services are resolved by linking against the file
SYS$P1_VECTOR, which resides in STARLET.OLB.)

When STARLET is not processed by default (for example, when the
/NOSYSLIB qualifier is specified), the linker does not process SYS$PUBLIC_
VECTORS.EXE automatically, even if you explicitly specify STARLET.OLB in
an options file.

If you specify SYS$PUBLIC_VECTORS.EXE explicitly in an options file when
it is already being processed by default, the linker displays the following
warning:

%LINK-W-MULCLUOPT, cluster SYS$PUBLIC_VECTORS multiply defined
in options file [filename]

6.2.3.4 Open Systems Library Support
If you are developing portable applications using the Compaq Network
Application Support (NAS) products, a second image library, similar to
IMAGELIB, is used. The second image library contains components that conform
to NAS conventions rather than to OpenVMS conventions. By default, the linker
will not search this library because it may contain symbols that do not conform to
the OpenVMS global symbol naming rules.

If you want the linker to include the open image library in its processing,
define the logical name LNK$OPEN_LIB with any nonnull string value. If
the LNK$OPEN_LIB logical is defined at link time, the linker searches OPEN_
LIB in the same way it searches IMAGELIB. The open image library search is
in addition to any other searches, and it is done after user libraries are searched
and before other system libraries are searched, as follows:

1. User libraries, if defined with LNK$LIBRARY_nnn

2. OPEN_LIB, if LNK$OPEN_LIB logical is defined

3. IMAGELIB, unless /NOSYSSHR is specified

4. STARLET, unless /NOSYSLIB is specified

6.2.4 Processing Input Files Selectively
By default, the linker processes all the symbol definitions and references in
an object module or a shareable image specified as input in a link operation.
However, if you append the /SELECTIVE_SEARCH qualifier to an input file
specification, the linker processes from the input file only those symbol definitions
that resolve references in previously processed input files.

6–14 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.2 Input File Processing for Symbol Resolution

Processing input files selectively can reduce the amount of time a link operation
takes and can conserve the linker’s use of virtual memory. Note, however, that
selective processing can also introduce dependencies on the ordering of input files
in the LINK command.

Note

Processing files selectively does not affect the size of the resultant image;
the entire object module is included in the image even if only a subset of
the symbols it defines is referenced. (Shareable images do not contribute
to the size of an image.)

For example, in the link operation in Section 6.2.2, the linker processes the
shareable image MY_MATH.EXE before it processes the object module MY_
MAIN.OBJ because of the way in which the linker clusters input files. (For
information about how the linker clusters input files, see Section 6.3.2.1.)
When it processes the shareable image, the linker includes on its list of symbol
definitions all the symbols defined in the shareable image. When it processes the
object module MY_MAIN.OBJ and encounters the reference to the symbol mysub,
the linker has the definition to resolve the reference.

If you append the /SELECTIVE_SEARCH qualifier to the shareable image
file specification and all of the other input files are specified on the command
line, the link will fail. In the following example, because the linker has no
symbols on its undefined symbol list when it processes the shareable image file
MY_MATH.EXE, it does not include any symbol definitions from the shareable
image in its processing. When it subsequently processes the object module
MY_MAIN.OBJ that references the symbol mysub, the linker cannot resolve the
reference to the symbol. (For information about how to correct this link operation,
see Section 6.3.2.1.)

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

%LINK-W-NUDFSYMS, 1 undefined symbol:
%LINK-I-UDFSYM, MYSUB
%LINK-W-USEUNDEF, undefined symbol MYADD referenced

in psect $CODE offset %X00000011
in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;6

To process object modules or shareable images in a library selectively, you must
specify the /SELECTIVE_SEARCH qualifier when you insert the module in
the library. The following example creates the library MYMATH_LIB.OLB and
inserts the file MY_MATH.OBJ into the library. (For more information about
using the Librarian utility, see the HP OpenVMS Command Definition, Librarian,
and Message Utilities Manual.)

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH/SELECTIVE_SEARCH

Understanding Symbol Resolution (Alpha and VAX) 6–15

Understanding Symbol Resolution (Alpha and VAX)
6.3 Ensuring Correct Symbol Resolution

6.3 Ensuring Correct Symbol Resolution
For many link operations, the order in which the input files are specified in
the LINK command is not important. However, in complex link operations that
specify many library files or process input files selectively, to ensure that the
linker resolves all the symbolic references among the input files as you intend,
you may need to be aware of the order in which the linker processes the input
files. To control the order in which the linker processes input files, you must
understand how the linker parses the command line.

6.3.1 Understanding Cluster Creation
As it parses the command line, the linker groups the input files you specify into
clusters and places these clusters on a cluster list. A cluster is an internal linker
construct that determines image section creation. The position of an input file in
a cluster and the position of that cluster on the linker’s cluster list determine the
order in which the linker processes the input files you specify.

The linker always creates at least one cluster, called the default cluster. The
linker may create additional clusters, called named clusters, depending on the
types of input files you specify and the linker options you specify. If it creates
additional clusters, the linker places them on the cluster list ahead of the default
cluster, in the order in which it encounters them in the options file. The default
cluster appears at the end of the cluster list. (Within the default cluster, input
files appear in the same order in which they are specified on the LINK command
line.)

Clusters for shareable images specified in shareable image libraries appear after
the default cluster on the cluster list because they are created later in linker
processing, when the linker knows which shareable images in the library are
needed for the link operation.

The linker groups input files into clusters according to file type. Table 6–2 lists
the types of input files accepted by the linker and describes how the linker
processes them when creating clusters.

6–16 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.3 Ensuring Correct Symbol Resolution

Table 6–2 Linker Input File Cluster Processing

Input File Cluster Processing

Object file (.OBJ) Placed in the default cluster unless explicitly placed in a
named cluster using the CLUSTER= option.

Shareable image file (.EXE) Always placed in a named cluster.

†Symbol table file (.STB) Placed in the default cluster unless explicitly placed in a
named cluster using the CLUSTER= option.

Library files (.OLB) Placed in the default cluster unless explicitly placed in
a named cluster using the CLUSTER= option. If the
library contains shareable images and the linker includes a
shareable image from the library in the link operation, the
linker creates a new cluster for the shareable image.

The linker puts input files included in a link operation from
a library using the /INCLUDE qualifier in the same cluster
as the library.

The linker puts modules extracted from any default user
library that is an object library and from STARLET.OLB
in the default cluster. However, because they are
shareable images, the linker puts modules extracted from
IMAGELIB.OLB into new clusters at the end of the cluster
list (after the default cluster).

Options file (.OPT) Not placed in a cluster.

†VAX specific

The following example illustrates how the linker puts the various types of input
files in clusters. To see which clusters the linker creates for this link operation,
look at the Image Section Synopsis section of the image map file. Figure 6–3
illustrates the clusters created for this link operation.

$ DEFINE LNK$LIBRARY SYS$DISK:[]MY_DEFAULT_LIB.OLB
$ LINK MY_MAIN.OBJ, MY_LIB.OLB/LIBRARY, SYS$INPUT/OPT
CLUSTER=MY_CLUS,,,MY_PROG.OBJ
MY_SHARE.EXE/SHAREABLE
MY_SHARE_LIB.OLB/LIBRARY
MY_TAB.STB

Figure 6–3 Clusters Created for Sample Link

MY_CLUS

MY_PROG.OBJ
(from MY_SHARE_LIB)

MOD1.OBJ (from MY_LIB)
MY_SHARE_LIB.OLB
MY_TAB.STB
MOD2.OBJ (from MY_DEFAULT_LIB)
MY_DEFAULT_LIB.OLB

ZK−5291A−GE

MY_SHARE.EXE MY_MAIN.OBJ SHARE_MOD.EXE
MY_LIB.OLB

MY_SHARE DEFAULT_CLUSTER SHARE_MOD

Understanding Symbol Resolution (Alpha and VAX) 6–17

Understanding Symbol Resolution (Alpha and VAX)
6.3 Ensuring Correct Symbol Resolution

The linker processes input files in cluster order: processing each input file
starting with the first file in the first cluster, then the second, and so on, until it
has processed all files in the first cluster. Then it does the same for the second
cluster, and the next, and so on, until it has processed all files in all clusters.

6.3.2 Controlling Cluster Creation
You can control in which cluster the linker places an input file by using either of
the following linker options:

• CLUSTER= option

• COLLECT= option

6.3.2.1 Using the CLUSTER= Option to Control Clustering
The CLUSTER= option causes the linker to create a named cluster and to place in
the cluster the object modules specified in the option. (The linker puts shareable
images in their own clusters by default.)

For example, you can use the CLUSTER= option to fix the link operation
illustrated in Section 6.2.4, where the link failed because a shareable image
was processed selectively. To make the linker process the object module MY_
MAIN.OBJ before it processes the shareable image MY_MAIN.EXE, put the
object module in a named cluster. In the following example, the /EXECUTABLE
qualifier is specified on the command line to specify the name of the resultant
image, because MY_MAIN is not specified on the command line.

$ link/executable=my_main sys$input/opt
CLUSTER=mymain_clus,,,my_main
my_math/shareable/selective_search

Ctrl/Z

The Object Module Synopsis section of the image map file verifies that the linker
processed the object module MY_MAIN before it processed the shareable image
MY_MATH, as in the following map file excerpt:

+------------------------+
! Object Module Synopsis !
+------------------------+

Module Name Ident Bytes File
----------- ----- ----- -----
MY_MAIN V1.0 105 MY_MAIN.OBJ;1
MY_MATH V1.0 12 MY_MATH.EXE;1

.

.

.

6.3.2.2 Using the COLLECT= Option to Control Clustering
You can also create a named cluster by specifying the COLLECT= option. The
COLLECT= option directs the linker to put specific program sections in a named
cluster. The linker creates the cluster if it does not already exist. Note that the
COLLECT= option manipulates program sections, not input files.

The linker sets the global (GBL) attribute of the program sections specified in a
COLLECT= option to enable a global search for the definition of that program
section.

6–18 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.4 Resolving Symbols Defined in the OpenVMS Executive

6.4 Resolving Symbols Defined in the OpenVMS Executive
For VAX linking, you link against the OpenVMS executive by specifying the
system symbol table (SYS$LIBRARY:SYS.STB) in the link operation. Because a
symbol table file is an object module, the linker processes the symbol table file as
it would any other object module.

For Alpha linking, you link against the OpenVMS executive by specifying
the /SYSEXE qualifier. When this qualifier is specified, the linker selectively
processes the system shareable image, SYS$BASE_IMAGE.EXE, located in the
directory pointed to by the logical name ALPHA$LOADABLE_IMAGES. The
linker does not process SYS$BASE_IMAGE.EXE by default.

Note that, because the linker is processing a shareable image, references to
symbols in the OpenVMS executive are fixed up at image activation, not fully
resolved at link time as they are for VAX linking. Also note that the linker looks
for SYS$BASE_IMAGE.EXE in the directory pointed to by the logical name
ALPHA$LOADABLE_IMAGES, not in the directory pointed to by the logical
name SYS$LIBRARY as for VAX linking.

When the /SYSEXE qualifier is specified, the linker processes the file selectively.
To disable selective processing, specify the /SYSEXE=NOSELECTIVE qualifier.
For more information about using the /SYSEXE qualifier, see the description of
the qualifier in Part 2.

Relation to Default Library Processing
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_
IMAGE.EXE file after processing the system shareable image library,
IMAGELIB.OLB, and before processing the system object library, STARLET.OLB.
(Note that the linker also processes the system service shareable image,
SYS$PUBLIC_VECTORS.EXE, when it processes STARLET.OLB by default.)

The /SYSSHR and /SYSLIB qualifiers, which control processing of the default
system libraries, do not affect SYS$BASE_IMAGE.EXE processing. When the
/NOSYSSHR qualifier is specified with the /SYSEXE qualifier, the linker does
not process IMAGELIB.OLB, but still processes SYS$BASE_IMAGE.EXE and
then STARLET.OLB and SYS$PUBLIC_VECTORS.EXE. When /NOSYSLIB
is specified, the linker does not process IMAGELIB.OLB, STARLET.OLB, or
SYS$PUBLIC_VECTORS, but still processes SYS$BASE_IMAGE.EXE.

To process SYS$BASE_IMAGE.EXE before the shareable images in
IMAGELIB.OLB, specify SYS$BASE_IMAGE.EXE in a linker options file as
you would any other shareable image. If you specify SYS$BASE_IMAGE.EXE in
your options file, do not use the /SYSEXE qualifier.

Figure 6–4 illustrates how the /SYSEXE qualifier, in combination with the
/SYSSHR and /SYSLIB qualifiers, can affect linker processing. (The default
syntax illustrated in the figure is rarely specified.)

Understanding Symbol Resolution (Alpha and VAX) 6–19

Understanding Symbol Resolution (Alpha and VAX)
6.4 Resolving Symbols Defined in the OpenVMS Executive

Figure 6–4 Linker Processing of Default Libraries and SYS$BASE_IMAGE.EXE

Default: /USERLIBRARY=ALL/SYSSHR/SYSLIB/NOSYSEXE

Link Against SYS$BASE_IMAGE.EXE:/USERLIBRARY=ALL/SYSSHR/SYSLIB/SYSEXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

IMAGELIB.OLB

IMAGELIB.OLB SYS$BASE_IMAGE.EXE

Skip IMAGELIB.OLB:/USERLIBRARY=ALL/NOSYSSHR/SYSLIB/SYSEXE

STARTLET.OLB and
SYS$PUBLIC_VECTORS.EXE

SYS$BASE_IMAGE.EXE

Skip Both System Libraries: /USERLIBRARY=ALL/NOSYSLIB/SYSEXE

SYS$BASE_IMAGE.EXE

VM-1202A-AI

User-Specified
Libraries

User-Specified
Libraries

User-Specified
Libraries

User-Specified
Libraries

6.5 Defining Weak and Strong Global Symbols
In the dialects of MACRO, BLISS, and Pascal supported on both VAX and Alpha
systems, you can define a global symbol as either strong or weak, and you can
make either a strong or a weak reference to a global symbol.

In these languages, all definitions and references are strong by default. To make
a weak definition or a weak reference, you must use the .WEAK assembler
directive (in MACRO), the WEAK attribute (in BLISS), or the WEAK_GLOBAL
or WEAK_EXTERNAL attribute (in Pascal).

The linker records each symbol definition and each symbol reference in its global
symbol table, noting for each whether it is strong or weak. The linker processes
weak references differently from strong references and weakly defined symbols
differently from strongly defined symbols.

A strong reference can be made to a weakly defined symbol or to a strongly
defined symbol.

For a strong reference, the linker checks all explicitly specified input modules
and libraries and all default libraries for a definition of the symbol. In addition,
if the linker cannot locate the definition needed to resolve the strong reference,
it reports the undefined symbol and assigns the symbol a value, which usually
results in a run-time error for accessing the data or calling the routine.

A weak reference can be made to a weakly defined symbol or to a strongly defined
symbol. In either case, the linker resolves the weak reference in the same way it
does a strong reference, with the following exceptions:

• The linker will not search library modules that have been specified with the
/LIBRARY qualifier or default libraries (user-defined or system) solely to

6–20 Understanding Symbol Resolution (Alpha and VAX)

Understanding Symbol Resolution (Alpha and VAX)
6.5 Defining Weak and Strong Global Symbols

resolve a weak reference. If, however, the linker resolves a strong reference
to another symbol in such a module, it will also use that module to resolve
any weak references.

• If the linker cannot locate the definition needed to resolve a weak reference,
it assigns the symbol a value of 0, but does not report an error (as it does if
the reference is strong). If, however, the linker reports any unresolved strong
references, it will also report any unresolved weak references.

One purpose of making a weak reference arises from the need to write and test
incomplete programs. The resolution of all symbolic references is crucial to a
successful linking operation. Therefore, a problem arises when the definition of a
referenced global symbol does not yet exist (as would be the case, for example, if
the global symbol definition is an entry point to a module that is not yet written).
The solution is to make the reference to the symbol weak, which informs the
linker that the resolution of this particular global symbol is not crucial to the link
operation.

By default, all global symbols in all VAX and Alpha languages have a strong
definition.

A strongly defined symbol in a library module is included in the library symbol
table; a weakly defined symbol in a library module is not. As a result, if the
module containing the weak symbol definition is in a library but has not been
specified for inclusion by means of the /INCLUDE qualifier, the linker will not
be able to resolve references (strong or weak) to the symbol. If, however, the
linker has selected that library module for inclusion (in order to resolve a strong
reference), it will be able to resolve references (strong or weak) to the weakly
defined symbol.

If the module containing the weak symbol definition is explicitly specified either
as an input object file or for extraction from a library (by means of the /INCLUDE
qualifier), the weak symbol definition is as available for symbol resolution as a
strong symbol definition.

Understanding Symbol Resolution (Alpha and VAX) 6–21

7
Understanding Image File Creation (Alpha and

VAX)

This chapter describes how the linker creates an image on OpenVMS Alpha and
VAX systems. The linker creates images from the input files you specify in a
link operation. You can control image file creation by using linker qualifiers and
options.

7.1 Overview of Creating Images on Alpha/VAX Systems
After the linker has resolved all symbolic references between the input files
specified in the LINK command (described in Chapter 6), the linker knows all the
object modules and shareable images that are required to create the image. For
example, the linker has extracted from libraries specified in the LINK command
those modules that contain the definitions of symbols required to resolve symbolic
references in other modules. The linker must now combine all these modules into
an image.

To create an image, the linker must perform the following processing:

• Determine the memory requirements of the image. The memory
requirements of an image are the sum of the memory requirements of each
object module included in the link operation. The language processors that
create the object modules specify the memory requirements of an object
module as program section definitions. A program section represents an
area of memory that has a name, a length, and other characteristics, called
attributes, which describe the intended or permitted usage of that portion of
memory. Section 7.2 describes program sections.

The linker processes the program section definitions in each object module,
combining program sections with similar attributes into an image section.
Each image section specifies the size and attributes of a portion of the virtual
memory of an image. The image activator uses the image section attributes
to determine the characteristics of the physical memory pages into which it
loads the image, such as protection.

Figure 7–1 illustrates how memory requirements are communicated from the
language processor to the linker and from the linker to the image activator.
Section 7.3 provides more information about this process.

Understanding Image File Creation (Alpha and VAX) 7–1

Understanding Image File Creation (Alpha and VAX)
7.1 Overview of Creating Images on Alpha/VAX Systems

Figure 7–1 Communication of Image Memory Requirements on Alpha/VAX

Linker

ZK−5199A−GE

Language Processor
(Compiler, assembler, etc.)

Image Activator

Program Section

Image Section

Physical Page

Note that shareable images included in link operations have already been
processed by the linker. These images are separate images with their own
memory requirements, as specified by their own image sections. The linker
does, however, create special global image section descriptors (GISDs) for each
shareable image to which an image has been linked. The image activator
activates these shareable images at run time.

• Initialize the image. When image sections are first created, they are empty.
In this step of linker processing, the linker fills the image sections with the
machine code and data, as specified by the Text Information and Relocation
(TIR) commands in the object module. Section 7.4 provides more information
about this process.

For Alpha linking, the linker also attempts to optimize the performance of an
image by replacing Jump to Subroutine (JSR) instruction sequences with the
more efficient Branch to Subroutine (BSR) instruction sequences.

After creating image sections and filling them with binary code and data, the
linker writes the image to an image file. Section 7.4.1 describes this process. To
keep the size of image files manageable, the linker does not allocate space in the
image file for image sections that have not been initialized with any data unless
this function has been disabled (that is, the linker does not write pages of zeros
to the image file). The linker can create demand-zero image sections, which the
operating system initializes at run time when a reference to the image section
requires the operating system to move the pages into memory. Section 7.4.3
describes how the linker creates demand-zero image sections.

7–2 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

7.2 Creating Program Sections (Alpha/VAX)
Language processors create program sections and define their attributes. The
number of program sections created by a language processor and the attributes
of these program sections are dependent upon language semantics. For example,
some programming languages implement global variables as separate program
sections with a particular set of attributes. Programmers working in high-level
languages typically have little direct control over the program sections created by
the language processor. Medium- and low-level languages provide programmers
with more control over program section creation. For more information about the
program section creation features of a particular programming language, see the
language processor documentation.

In general, the linker does not create program sections. However, for Alpha
linking, the linker creates a special program section for a shareable image,
named $SYMVECT, which contains the symbol vector of the shareable image.

Program Section Attributes
The language processors define the attributes of the program sections they create
and communicate these attributes to the linker in program section definition
records in the global symbol directory (GSD) in an object module. (The GSD also
contains global symbol definitions and references, as described in Chapter 6.)

Program section attributes control various characteristics of the area of memory
described by the program section, such as the following:

• Access. Using program section attributes, compilers can prohibit some types
of access, such as write access. Using other program section attributes,
compilers can allow access to the program section by more than one process.

• Positioning. By specifying certain program section attributes, compilers can
specify to the linker how it should position the program section in memory.

Program section attributes are Boolean values, that is, they are either on or off.
Table 7–1 lists all program section attributes with the keyword you can use to set
or clear the attribute, using the PSECT_ATTR= option. (For more information
about using the PSECT_ATTR= option, see Section 7.3.6.)

For example, to specify that a program section should have write access, specify
the writability attribute as WRT. To turn off an attribute, specify the negative
keyword. Some attributes have separate keywords that express the negative
of the attribute. For example, to turn off the global attribute (GBL), you must
specify the local attribute (LCL). Note that the alignment of a program section is
not strictly considered an attribute of the program section. However, because you
can set it using the PSECT_ATTR= option, it is included in the table.

Understanding Image File Creation (Alpha and VAX) 7–3

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Table 7–1 Program Section Attributes (Alpha/VAX)

Attribute Keyword Description

Alignment – Specifies the alignment of the program section as an integer
that represents the power of 2 required to generate the desired
alignment. For certain alignments, the linker supports keywords to
express the alignment. The following table lists all the alignments
supported by the linker with their keywords:

Power
of 2 Keyword Meaning

0 BYTE Alignment on byte boundaries.

1 WORD Alignment on word boundaries.

2 LONG Alignment on longword boundaries.

3 QUAD Alignment on quadword boundaries.

4 OCTA Alignment on octaword boundaries.

9 – Alignment on 512-byte boundaries.

13 – Alignment on 8 KB boundaries.

14 – Alignment on 16 KB boundaries.

15 – Alignment on 32 KB boundaries.

16 – Alignment on 64 KB boundaries.

– PAGE Alignment on the default target page size,
which is 64 KB for Alpha linking and 512
bytes for VAX linking. You can override this
default by specifying the /BPAGE qualifier.

Position
Independence

PIC/NOPIC Specifies that the program section can run anywhere in virtual
address space. Applicable in shareable images only. Note that this
attribute is not meaningful for Alpha images, but it is still used to
sort program sections.

Overlaid/ConcatenatedOVR/CON When set to OVR, specifies that the linker may combine (overlay)
this program section with other program sections with the same
name and attribute settings. Program sections that are overlaid
are assigned the same base address. When set to CON, the linker
concatenates the program sections.

Relocatable/Absolute REL/ABS When set to REL, specifies that the linker can place the program
section anywhere in virtual memory, according to the memory
allocation strategy for the type of image being produced. When
set to ABS, this attribute specifies that the program section is
an absolute program section that contains no binary data or code
and appears to be based at virtual address 0. Absolute program
sections are used by compilers primarily to define constants.

Global/Local GBL/LCL When set to GBL, specifies that the linker should gather
contributions to the program section from all clusters and place
them in the same image section. When set to LCL, the linker
gathers program sections into the same image section only if they
are in the same cluster. The memory for a global program section is
allocated in the cluster that contains the first contributing module.

(continued on next page)

7–4 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Table 7–1 (Cont.) Program Section Attributes (Alpha/VAX)

Attribute Keyword Description

Shareability SHR/NOSHR Specifies that the program section can be shared between several
processes. Only used to sort program sections in shareable images.

Executability EXE/NOEXE Specifies that the program section contains executable code. If
an image transfer address is defined in a nonexecutable program
section, the linker issues a diagnostic message.

†For Alpha linking, the EXE attribute is propagated to the image
section descriptor where it is used by the Install utility when it is
installing the image as a resident image. (For information about
resident images, see the description of the /SECTION_BINDING
qualifier in Part 2.)

Writability WRT/NOWRT Specifies that the contents of a program section can be modified at
run time.

Protected Vectors VEC/NOVEC Specifies that the program section contains privileged change-mode
vectors or message vectors. In shareable images, image sections
with the VEC attribute are automatically protected.

Solitary SOLITARY Specifies that the linker should place this program section in its
own image section. Useful for programs that map data into specific
locations in their virtual memory space. Note that compilers do
not set this attribute. You can set this attribute using the PSECT_
ATTR= option.

†Unmodified NOMOD/MOD When set, specifies that the program section has not been
initialized (NOMOD). On Alpha systems, the linker uses this
attribute to create demand zero sections; see Section 7.4.3. Only
compilers can set this attribute. You can clear this attribute only
by specifying the MOD keyword in the PSECT_ATTR= option.

†COM – Used by the Compaq C compiler to implement the relaxed symbol
reference/definition model for external variables. See the C
documentation for more information. This attribute cannot be
modified using the PSECT_ATTR= option.

Readability RD Reserved by HP.

User/Library USR/LIB Reserved by HP. To ensure future compatibility, this attribute
should be clear.

†Alpha specific

To illustrate program section creation, consider the program sections created
by the VAX C compiler when it processes the sample programs in the following
examples.

Example 7–1 Sample Program MYTEST.C

extern int global_data;

int myadd();
int mysub();

main()
{

int num1, num2, res1, res2;
static int my_data;

(continued on next page)

Understanding Image File Creation (Alpha and VAX) 7–5

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Example 7–1 (Cont.) Sample Program MYTEST.C

num1 = 5;
num2 = 6;

res1 = myadd(num1, num2);
res2 = mysub(num1, num2);
printf("res1 = %d, res2 =%d, globaldata=%d\n",

res1,res2,global_data);
}

Example 7–2 Sample Program MYADD.C

#include <stdio.h>

myadd(value_1,value_2)
int value_1;
int value_2;
{
int result;
static int add_data;

printf("In MYADD.C\n");

result = value_1 + value_2;
return(result);
}

Example 7–3 Sample Program MYSUB.C

int global_data = 5;

mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;
static int sub_data;

result = value_1 - value_2;
return(result);
}

To see what program sections the VAX C compiler creates for these programs,
use the ANALYZE/OBJECT utility to examine the global symbol directory (GSD)
in each object module. (Note that the names the language processors assign to
program sections are architecture specific.)

Example 7–4 presents an excerpt from the analysis of the object module
MYTEST.OBJ. Only the program section definitions are included in the excerpt.

7–6 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Example 7–4 Program Sections Generated by Example 3-1

4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 138 bytes
.
.
.

6) Program Section Definition (GSD$C_PSC)
! alignment: 4-byte boundary <-- psect 0
" attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 1
(6) GPS$V_EXE 1
(7) GPS$V_RD 1
(8) GPS$V_WRT 0
(9) GPS$V_VEC 0

allocation: 63 (%X’0000003F’)
$ symbol: "$CODE"
7) Program Section Definition (GSD$C_PSC)

alignment: 4-byte boundary <-- psect 1
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 0
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 4 (%X’00000004’)
symbol: "DATA"

8) Program Section Definition (GSD$C_PSC)
alignment: 4-byte boundary <-- psect 2
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 1
(3) GPS$V_REL 1
(4) GPS$V_GBL 1
(5) GPS$V_SHR 1
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 4 (%X’00000004’)
symbol: "GLOBAL_DATA"

(continued on next page)

Understanding Image File Creation (Alpha and VAX) 7–7

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Example 7–4 (Cont.) Program Sections Generated by Example 3-1
9) Program Section Definition (GSD$C_PSC)

alignment: 4-byte boundary <-- psect 3
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 0
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 36 (%X’00000024’)
symbol: "$CHAR_STRING_CONSTANTS"
.
.
.

Note that you can also determine the program sections in an object module after
a link operation by looking at the Program Section Synopsis section of an image
map file, as illustrated in Example 7–7.

The items in the following list correspond to the numbered items in Example 7–4:

! Alignment specifies the address boundary at which the linker places a
module’s contribution to the program section.

" Attribute flags indicate which program section attributes are set. The
attributes are listed by their full symbolic name, that is, each abbreviation
is preceded by the character string ‘‘GPS$V_’’. Note that, for attributes
that are turned off by specifying different keywords, only the keyword that
sets the attribute is listed. For example, you can see whether the program
section is overlaid by checking attribute flag number 2. If the value is 1, the
program section is overlaid; if the value is 0, the program section must be
concatenated. Table 7–1 lists all the program section attributes. Note that
the solitary attribute is not included in the GSD of an object module because
that attribute is not set by language processors.

For Alpha linking, the program section display includes several additional
attribute flags. The COM attribute is reserved for use by Compaq. The
NOMOD attribute indicates that the program section does not contain
initialized data. The linker gathers program sections with this attribute
into demand-zero image sections. Section 7.4.3 describes how the linker
creates demand-zero image sections.

Allocation indicates the number of bytes required for the program section.

$ Symbol indicates the name of the program section.

Figure 7–2 illustrates the program sections created by the VAX C compiler for the
programs in Example 7–1, Example 7–2, and Example 7–3. (The shaded areas
represent the settings of the program section attributes the linker considers when
sorting the program sections into image sections in an executable image. See
Section 7.3.3 for more information about how the linker creates image sections.)

7–8 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.2 Creating Program Sections (Alpha/VAX)

Figure 7–2 Program Sections Created for Examples 3-1, 3-2, and 3-3

ZK-5200A-AI

mytest.obj myadd.obj mysub.obj

$CODE $CODE$CODE

$DATA

GLOBAL_DATA

$DATA

$CHAR_STRING
_CONSTANTS

GLOBAL_DATA

$DATA

$CHAR_STRING
_CONSTANTS

7.3 Creating Image Sections
To create the image sections that define the memory requirements and page
protection characteristics of an image, the linker processes the program section
definitions in the object modules specified in the link operation. The number and
type of image sections the linker creates depend on the number of clusters the
linker creates when processing the LINK command and on the attributes of the
program sections in the object modules in each cluster. Section 7.3.1 describes
how the clustering of input files affects image section creation. Section 7.3.2
describes the effects of program section attributes on image section creation.

7.3.1 Processing Clusters to Create Image Sections
To create image sections, the linker processes the program section definitions
in the input files you specify in the LINK command. The linker processes these
input files on a cluster-by-cluster basis (as described in Section 6.3.1).

In general, only program sections in a particular cluster can contribute to a
particular image section. However, the linker crosses cluster boundaries when
processing program sections with the global (GBL) attribute. When the linker
encounters a program section with the global attribute, it searches all the
previously processed clusters for a program section with the same name and
attributes and, if it finds one, places the new definition of the global program
section in the same cluster as the first definition of the program section.

The linker processes input files in the order in which they appear in the clusters,
making two passes through the cluster list.

On its first pass, the linker processes based clusters. Based clusters specify the
location within memory at which the linker must position them. A based cluster
can be a cluster that contains a based shareable image or a cluster, created by
the CLUSTER= option, in which a base address was specified.

For VAX linking, you can also use the BASE= option to specify the base address
of the default cluster.

For more information about creating based clusters, see the descriptions of the
CLUSTER= and BASE= options in Part 2.

Understanding Image File Creation (Alpha and VAX) 7–9

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

After processing based clusters, the linker then processes nonbased clusters. The
linker ignores nonbased (position-independent) shareable image clusters because
they are allocated virtual memory at run time.

A LINK command to create an image using the object modules in Section 7.2 is
shown in Example 7–5.

Example 7–5 Linking Examples 3-1, 3-2, and 3-3

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

The CLUSTER= option in this LINK command causes the linker to create a
cluster named MYSUB_CLUS, which contains the object module MYSUB.OBJ.
The linker also creates a cluster for the C Run-Time Library shareable
image VAXCRTL.EXE. The linker puts the object modules MYTEST.OBJ and
MYADD.OBJ in the default cluster. These clusters appear on the linker’s cluster
list in the following order:

1. MYSUB_CLUS

2. VAXCRTL

3. DEFAULT_CLUSTER

The linker always processes the default cluster last. (For Alpha linking, you do
not need to explicitly include the C Run-Time Library shareable image in the
link operation because it resides in the default system shareable image library
IMAGELIB.OLB, which the linker processes by default.)

7.3.2 Combining Program Sections into Image Sections
The linker creates image sections by grouping together program sections with
similar attributes. Within an image section, the linker organizes program
sections alphabetically by name. If more than one object module contributes to
the same program section, the linker lays out their contributions in the order it
processes them.

Figure 7–3 shows how the linker groups the program sections in the object
modules from the sample link into image sections, based on the setting of their
significant attributes. In the figure, the settings of these significant attributes
are represented by shading. (The figure considers attributes that are significant
when creating executable images, not shareable images. Section 7.3.3 provides
more information about which program section attributes are significant.)

Note, in the figure, that the overlaid contributions from MYSUB.OBJ and
MYTEST.OBJ to the program section, GLOBAL_DATA, both appear in the
MYSUB_CLUS cluster, even though the object module MYTEST.OBJ is in the
default cluster. The linker puts all contributions to a global program section in
the cluster in which it is first defined.

7–10 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Figure 7–3 Combining Program Sections into Image Sections

Program Sections

Isect1

ZK-5201A-AI

Image Sections

$CHAR_STRING
_CONSTANTS

$CHAR_STRING
_CONSTANTS

$CODE

$CODE

$DATA

$CODE

$DATA

$CODE

$DATA

$CHAR_STRING
_CONSTANTS

$CODE

$DATA

GLOBAL_DATA

$CHAR_STRING
_CONSTANTS

$DATA

GLOBAL_DATA

$DATA

$CODE

GLOBAL_DATA

Isect2

Isect3

Isect4

From mysub

From mytest

From myadd

Mysub_clus
Cluster

Default
Cluster

From mysub

From mysub

From mytest

From mytest

From mytest

From myadd

From myadd

From mysub

From mysub &
mytest

From mysub

From mytest

From myadd

From mytest

From mytest

From myadd

From myadd

7.3.3 Processing Significant Program Section Attributes (Alpha/VAX)
When combining program sections into image sections, the linker considers only
a subset of program section attributes. The set of significant attributes varies
according to the type of image being created. When creating an executable image,
the linker considers all combinations of the following attributes when combining
program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD) (Alpha linking only)

Understanding Image File Creation (Alpha and VAX) 7–11

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

When creating a shareable image, the linker considers all combinations of the
following attributes when combining program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Shareability (SHR/NOSHR)

• Position independence (PIC/NOPIC)

• Protected vector (VEC/NOVEC)

• Unmodified (NOMOD/MOD) (Alpha linking only)

The linker creates only one large image section for system images, so combining
program sections by attributes is not applicable.

Table 7–2 and Table 7–3 list all the possible combinations of program section
attributes for executable images and shareable images. Note that the order in
which the combinations appear in the table (each row) is the same order in which
the linker processes them. For example, the linker first processes all program
sections with the NOWRT, NOEXE, and NOVEC attributes, creating an image
section of program sections with these attributes. The linker then processes all
program sections with the WRT, NOEXE, and NOVEC attributes, creating an
image section for these program sections. The linker continues this processing
until all the combinations of significant attributes have been processed and all
the program sections in the cluster have been placed in an image section.

The tables include only program sections that are relocatable (with the REL
attribute). Absolute program sections (with the ABS attribute), by definition,
can have no allocation (they contain only constants) and cannot contribute to an
image section.

For OpenVMS Alpha images, the tables assume that the images are linked
using the /DEMAND_ZERO qualifier, which is the default. (When this qualifier
is specified, the linker groups program sections that do not contain any data
into demand-zero image sections, allocating memory for the image section but
not writing zeros to disk.) If the image is linked with the /NODEMAND_ZERO
qualifier, the linker allocates space for the image section in the image file. Note
that the /NODEMAND_ZERO qualifier does not affect how the linker sorts
program sections; it proceeds exactly as specified by the table. However, when
the image is written, the linker allocates disk space for the image section and fills
the space with zeros.

The tables also show how a particular combination of program section attributes
determines the attributes of the image section in which it is placed. For more
information about image section attributes, see Section 7.3.5.

7–12 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Table 7–2 Mapping Program Section Attributes to Image Section Attributes for Executable
Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

NOWRT NOEXE NOVEC †MOD NORMAL –

WRT NOEXE NOVEC †MOD " WRT, CRF

NOWRT EXE NOVEC †MOD " ‡EXE

WRT EXE NOVEC †MOD " WRT, CRF, ‡EXE

NOWRT NOEXE VEC †MOD " VECTOR,PROTECT

WRT NOEXE VEC †MOD " WRT,VECTOR, PROTECT,CRF

NOWRT EXE VEC †MOD " VECTOR,PROTECT, ‡EXE

WRT EXE VEC †MOD " WRT,VECTOR,PROTECT,‡EXE

†NOWRT †NOEXE †NOVEC †NOMOD " DZRO

†WRT †NOEXE †NOVEC †NOMOD " WRT,DZRO3

2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
3If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO
attribute.
†Alpha specific
‡For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.

Table 7–3 Mapping Program Section Attributes to Image Section Attributes for Shareable
Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

NOWRT NOEXE SHR NOPIC NOVEC †MOD SHRFXD –

WRT NOEXE SHR NOPIC NOVEC †MOD " WRT

NOWRT EXE SHR NOPIC NOVEC †MOD " †EXE

WRT EXE SHR NOPIC NOVEC †MOD " WRT,†EXE

NOWRT NOEXE NOSHR NOPIC NOVEC †MOD PRVFXD –

WRT NOEXE NOSHR NOPIC NOVEC †MOD " WRT, CRF

NOWRT EXE NOSHR NOPIC NOVEC †MOD " †EXE

WRT EXE NOSHR NOPIC NOVEC †MOD " WRT,CRF,†EXE

NOWRT NOEXE SHR PIC NOVEC †MOD SHRPIC PIC

WRT NOEXE SHR PIC NOVEC †MOD " WRT, PIC

NOWRT EXE SHR PIC NOVEC †MOD " PIC, †EXE

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
†Alpha specific

(continued on next page)

Understanding Image File Creation (Alpha and VAX) 7–13

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Table 7–3 (Cont.) Mapping Program Section Attributes to Image Section Attributes for
Shareable Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

WRT EXE SHR PIC NOVEC †MOD " WRT,PIC,†EXE

NOWRT NOEXE NOSHR PIC NOVEC †MOD PRVPIC PIC

WRT NOEXE NOSHR PIC NOVEC †MOD " WRT, CRF, PIC

NOWRT EXE NOSHR PIC NOVEC †MOD " PIC,†EXE

WRT EXE NOSHR PIC NOVEC †MOD " WRT,CRF,PIC, †EXE

NOWRT NOEXE SHR NOPIC VEC †MOD SHRFXD VECTOR,PROTECT

WRT NOEXE SHR NOPIC VEC †MOD " WRT,VECTOR,PROTECT

NOWRT EXE SHR NOPIC VEC †MOD " VECTOR,PROTECT,†EXE

WRT EXE SHR NOPIC VEC †MOD " WRT,VECTOR,PROTECT,
‡ EXE

NOWRT NOEXE NOSHR NOPIC VEC †MOD PRVFXD VECTOR,PROTECT

WRT NOEXE NOSHR NOPIC VEC †MOD " WRT, CRF

NOWRT EXE NOSHR NOPIC VEC †MOD " VECTOR,PROTECT,†EXE

WRT EXE NOSHR NOPIC VEC †MOD " WRT,CRF,VECTOR,
PROTECT, ‡ EXE

NOWRT NOEXE SHR PIC VEC †MOD SHRPIC PIC,VECTOR,PROTECT

WRT NOEXE SHR PIC VEC †MOD " WRT,PIC,VECTOR,
PROTECT

NOWRT EXE SHR PIC VEC †MOD " PIC,VECTOR,PROTECT,
†EXE

WRT EXE SHR PIC VEC †MOD " WRT,PIC,VECTOR,
PROTECT, ‡ EXE

NOWRT NOEXE NOSHR PIC VEC †MOD PRVPIC PIC,VECTOR,PROTECT

WRT NOEXE NOSHR PIC VEC †MOD " WRT,CRF,PIC,VECTOR,
PROTECT

NOWRT EXE NOSHR PIC VEC †MOD " PIC,VECTOR,PROTECT,
†EXE

WRT EXE NOSHR PIC VEC †MOD " WRT,CRF,PIC,VECTOR,
PROTECT, †EXE

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
†Alpha specific

(continued on next page)

7–14 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Table 7–3 (Cont.) Mapping Program Section Attributes to Image Section Attributes for
Shareable Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

†NOWRT †NOEXE †SHR †NOPIC †NOVEC †NOMOD SHRFXD –

†WRT †NOEXE †SHR †NOPIC †NOVEC †NOMOD " WRT

†NOWRT †NOEXE †NOSHR †NOPIC †NOVEC †NOMOD PRVFXD DZRO

†WRT †NOEXE †NOSHR †NOPIC †NOVEC †NOMOD " WRT,DZRO3

†NOWRT †NOEXE †NOSHR †PIC †NOVEC †NOMOD PRVPIC DZRO

†WRT †NOEXE †NOSHR †PIC †NOVEC †NOMOD " WRT,DZRO 3, PIC

†NOWRT †NOEXE †SHR †PIC †NOVEC †NOMOD SHRPIC PIC

†WRT †NOEXE †SHR †PIC †NOVEC †NOMOD " WRT,PIC

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
3If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO
attribute.
†Alpha specific

For example, Table 7–4 summarizes the settings of the significant attributes of
the program sections in the module MYADD.OBJ. (Because this is an OpenVMS
VAX object module, the MOD attribute is not considered.)

Table 7–4 Significant Attributes of Program Sections in MYSUB_CLUS Cluster

Writability Executability Protected Vector

$CODE NOWRT EXE NOVEC

DATA WRT NOEXE NOVEC

$CHAR_STRING_CONSTANTS WRT NOEXE NOVEC

The linker puts both the DATA and $CHAR_STRING_CONSTANTS program
sections in the same image section because they both have the same settings of
significant attributes. Within the image section, the linker organizes the program
sections alphabetically, so the $CHAR_STRING_CONSTANTS program section
appears before the DATA program section. The linker creates a separate image
section for the $CODE program section.

The linker performs similar processing of the program sections in the default
cluster. The Image Section Synopsis section of the map file lists the clusters the
linker created and lists the image sections it created for each cluster. This section
also describes the layout of the image in memory, including the base address
of each image section. Example 7–6 illustrates an excerpt of the Image Section
Synopsis section from the map file produced with the sample link. The listing
includes clusters for contributions for the VAX C Run-Time Library.

Understanding Image File Creation (Alpha and VAX) 7–15

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Example 7–6 Image Section Information in a Map File

+------------------------+
! Image Section Synopsis !
+------------------------+

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging . . .
------- ---- ----- --------- -------- --- ---------------------

MYSUB_CLUS 0 1 00000200 2 0 READ WRITE COPY ON REF
0 1 00000400 3 0 READ ONLY

VAXCRTL 3 4 00000000-R 0 0 READ ONLY
3 1 00000800-R 0 0 READ ONLY
4 1 00000A00-R 0 0 READ WRITE COPY ON REF
3 17 00000C00-R 0 0 READ ONLY
3 142 00002E00-R 0 0 READ ONLY
4 21 00014A00-R 0 0 READ WRITE COPY ON REF
4 1 P-00017400-R 0 0 READ WRITE COPY ON REF
2 3 00017600-R 0 0 READ WRITE FIXUP VECTORS

LIBRTL 3 193 00000000-R 0 0 READ ONLY
4 8 00018200-R 0 0 READ WRITE DEMAND ZERO

MTHRTL 3 335 00000000-R 0 0 READ ONLY
2 1 00029E00-R 0 0 READ WRITE FIXUP VECTORS

DEFAULT_CLUSTER 0 1 00000600 4 0 READ WRITE COPY ON REF
0 1 00000800 5 0 READ ONLY
0 1 00000A00 6 0 READ WRITE FIXUP VECTORS

253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO

For more information about the image section synopsis section of a map file, see
Section 9.2.3.

To find out which program sections the linker placed in each image section, look
at the Program Section Synopsis section of the map file. This section lists all the
program sections in each cluster and lists the contributions (the number of bytes)
to each program section from each object module. By comparing the base-address
of the program sections with the base-addresses of the image sections in the
Image Section Synopsis section, you can tell in which image section the program
sections appear. Example 7–7 is an excerpt from the Program Section Synopsis
section of the map file produced by the sample link operation.

Example 7–7 Program Section Information in a Map File (VAX Example)

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length Align Attributes
---------- ----------- ---- --- ------ ----- ----------

$DATA 00000200 00000203 00000004 (4.) LONG 2 PIC,USR,CON . . .
MYSUB 00000200 00000203 00000004 (4.) LONG 2

GLOBAL_DATA 00000204 00000207 00000004 (4.) LONG 2 PIC,USR,OVR . . .
MYSUB 00000204 00000207 00000004 (4.) LONG 2
MYTEST 00000204 00000207 00000004 (4.) LONG 2

$CODE 00000400 0000040B 0000000C (12.) LONG 2 PIC,USR,CON . . .
MYSUB 00000400 0000040B 0000000C (12.) LONG 2

(continued on next page)

7–16 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Example 7–7 (Cont.) Program Section Information in a Map File (VAX Example)

$CHAR_STRING_CONSTANTS 00000600 0000062D 0000002E (46.) LONG 2 PIC,USR,CON . . .
MYTEST 00000600 00000623 00000024 (36.) LONG 2
MYADD 00000624 0000062D 0000000A (10.) LONG 2

$DATA 00000630 00000637 00000008 (8.) LONG 2 PIC,USR,CON . . .
MYTEST 00000630 00000633 00000004 (4.) LONG 2
MYADD 00000634 00000637 00000004 (4.) LONG 2

$CODE 00000800 00000858 00000059 (89.) LONG 2 PIC,USR,CON . . .
MYTEST 00000800 0000083E 0000003F (63.) LONG 2
MYADD 00000840 00000858 00000019 (25.) LONG 2

.

.

.

For more information about the program synopsis section of a map file, see
Section 9.2.4.

7.3.4 Allocating Memory for Image Sections
When it creates an image section, the linker allocates enough memory for the
image section to accommodate all the program sections it contains. Each program
section definition includes its size.

The linker aligns image sections on CPU-specific page boundaries. Within an
image section, the linker assigns to each program section a virtual address
relative to the base address of the image section.

Concatenated Program Sections
If the program sections have the concatenated (CON) attribute set, the linker
positions the program sections one after the other within an image section,
inserting padding bytes between the program sections if necessary to achieve the
alignment requirement of a particular contribution to a program section. The
linker retains the alignment specified for each program section contribution but
uses the largest alignment of a contributing module as the alignment of the whole
program section.

Overlaid Program Sections
If the program sections have the overlaid (OVR) attribute set, the linker uses the
same start address for the program sections so that they occupy the same virtual
memory (that is, the program sections overlay each other). For overlaid program
sections, the linker allocates enough space to accommodate the largest of all the
program section contributions. Note that the linker does not generate a warning
message if the contributions specify different size allocations.

Any module can initialize the contents of an overlaid program section. However,
the final contents of the program section are determined by the last contributing
module. Therefore, the order in which you specify the input modules is
important.

Assigning Virtual Addresses
The linker keeps track of free (available) virtual addresses by maintaining a
free virtual memory list. For each cluster, the linker determines the number of
pages required, searches the list beginning at the lowest virtual address for a
contiguous number of pages large enough to contain the cluster, allocates those
addresses to the cluster, then removes those addresses from the list.

Understanding Image File Creation (Alpha and VAX) 7–17

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

The linker allocates virtual memory to the first cluster beginning at a page size
boundary for executable images in the P0 region of the user’s virtual address
space, unless the cluster is based, in which case it allocates virtual memory
beginning at the specified address. For VAX linking, the default is 512 (200
hexadecimal). However, you can specify the page size using the /BPAGE qualifier.
(For information about the /BPAGE qualifier, see Part 2.)

On its first pass through the cluster list, the linker allocates virtual addresses
to any based user clusters or based shareable image clusters on the cluster
list, removing the allocated addresses from the free virtual memory list as it
proceeds. On its second pass, it repeats this procedure for nonbased user clusters.
(Remember that nonbased shareable image clusters will have memory allocated
for them at run time.)

Because the linker processes clusters in the order of their appearance on the
cluster list, the virtual address space of the final image will generally contain
contiguous image sections of consecutive clusters on the basis of their order in
the cluster list. The presence of based clusters, however, may prevent such an
outcome, and for this reason they are not recommended.

After allocating memory for a cluster, the linker relocates its contents by
performing the following processing:

1. Relocating each image section. The linker adds the starting virtual
address of the cluster to the relative offset of the image section from the
cluster base and places the result in the appropriate field of the image section
descriptor (ISD).

2. Relocating each program section in the image section. The linker
adds the newly calculated starting virtual address of the image section to the
relative offset of the program section from the base of the image section.

3. Relocating each global symbol in the program section. The linker adds
the newly calculated program section virtual address to the relative offset of
the global symbols from the base of the program section.

7.3.5 Image Section Attributes
When it creates image sections, the linker assigns attributes to the image
section based on the attributes of the program sections it contains. The image
section attributes describe certain characteristics of the portion of memory they
represent, for example, the protection characteristics. For example, an image
section that contains program sections with the writability attribute also has
the writability attribute set. Table 7–2 and Table 7–3 include the image section
attributes associated with an image section that contains program sections with
a particular set of attributes. Table 7–5 lists all the image section attributes.
Image section attributes, like program section attributes, are Boolean values that
are either on or off.

7–18 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Table 7–5 Image Section Attributes

Attribute Symbol Function

Global [E]ISD$M_GBL GBL is set when the ISD came from a shareable image. On both VAX
and Alpha systems, the first ISD of a shareable image is included in
the base image for use by the image activator. For VAX linking, if the
shareable image is based, all of its ISDs are included in the image being
linked.

Copy On
Reference

[E]ISD$M_CRF CRF is set whenever the psect attributes are WRT and not SHR. CRF is
also set by the linker whenever it creates fix-ups to the section (which
require the image activator to write to it).

Demand
Zero

[E]ISD$M_
DZRO

Demand zero is set for VAX linking for executable images if:

• The section was never written to with a TIR (Text and Information
Relocation) command.

• The section resulted from compression of empty pages from an
existing section.

Demand zero is set for Alpha executable and Alpha shareable images if
the user has not specified /NODEMAND_ZERO and if:

• The section was never written to with an ETIR command.

• The program sections in the section have the NOMOD bit set.

DZRO is always set for stack ISDs on both Alpha images and VAX
images.

Executability [E]ISD$M_EXE The EXE attribute is inherited from the program section.

Write [E]ISD$M_WRT The WRT attribute is inherited from the program section. WRT is also
set by the linker if fix-ups are made to the section. When this is done,
the linker also generates a change protection fix-up so that the image
activator can change the protection back to NOWRT after the fix-up is
applied.

Match
Control

ISD$M_
MATCHCTL

This is used only for VAX images. It is not an attribute. MATCHCTL is
a 3-bit field inside the flags field. It contains the match control bits. For
Alpha images, this information is contained in a completely separate
field.

Last Cluster [E]ISD$M_
LASTCLU

LASTCLU is set only for sections in executable images. LASTCLU
indicates that an image section was generated off of the last cluster
(which was not a shareable image cluster) in the cluster list. If
FIXUPVEC is set, LASTCLU is clear.

Initial Code [E]ISD$M_
INITALCODE

This attribute is reserved by Compaq.

Based [E]ISD$M_
BASED

BASED indicates that the section is based. This is set when BASE=
is specified in the options file. This attribute may also be set if based
shareable images are encountered during linking. This attribute is
present but not used for Alpha linking.

Fix-Up
Vectors

[E]ISD$M_
FIXUPVEC

FIXUPVEC marks the section that contains the image activator fix-ups.
This section is created by the linker. The attribute cannot be set by the
user.

(continued on next page)

Understanding Image File Creation (Alpha and VAX) 7–19

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Table 7–5 (Cont.) Image Section Attributes

Attribute Symbol Function

Resident [E]ISD$M_
RESIDENT

This attribute is reserved by HP.

Vectored [E]ISD$M_
VECTOR

VECTOR indicates a vectored section, either a message section or a
privileged library vector.

Protected [E]ISD$M_
PROTECT

Protect indicates that a section is protected. The linker sets the
PROTECT attribute whenever VECTOR is set. PROTECT is also
set if the /PROTECT qualifier is used, or if the cluster that the section
is spawned from came after a PROTECT=YES option (and before a
PROTECT=NO option).

The linker uses type designations instead of image section attributes to propagate
the SHR and PIC program section attributes. The linker assigns the type
designation [E]ISD$K_NORMAL for image sections in executable images. Image
sections in shareable images can be any of the following types:

Image Section Type Attribute Settings

Share fixed ([E]ISD$K_SHRFXD) SHR,NOPIC

Private fixed ([E]ISD$K_PRVFXD) NOSHR,NOPIC

Share position-independent
([E]ISD$K_SHRPIC)

SHR,PIC

Private position-independent
([E]ISD$K_PRVPIC)

NOSHR,PIC

The Image Section Synopsis section of a map file lists the attributes of each
image section created in the Protection and Paging column. See Example 7–6
for an illustration. You can also get a listing of all the image sections created by
the linker by using the ANALYZE/IMAGE utility. The output generated by this
utility includes a list of all the image sections that make up the image, with their
attributes. An excerpt from the analysis of the image file MYTEST.EXE is shown
in Example 7–8.

7–20 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Example 7–8 Image Section Descriptions in an ANALYZE/IMAGE Display

Image Section Descriptors (ISD)

1)! image section descriptor (16 bytes)
" page count: 1
base virtual address: %X’00000200’ (P0 space)
$ page fault cluster size: default
% IS flags:
(0) ISD$V_GBL 0
(1) ISD$V_CRF 1
(2) ISD$V_DZRO 0
(3) ISD$V_WRT 1
(7) ISD$V_LASTCLU 0
(8) ISD$V_INITALCODE 0
(9) ISD$V_BASED 0
(10) ISD$V_FIXUPVEC 0
(11) ISD$V_RESIDENT 0
(17) ISD$V_VECTOR 0
(18) ISD$V_PROTECT 0
& section type: ISD$K_NORMAL
’ base VBN: 2

.

.

.
9) image section descriptor (31 bytes)
page count: 193
base virtual address: %X’00000000’ (P0 space)
page fault cluster size: default
IS flags:
(0) ISD$V_GBL 1
(1) ISD$V_CRF 0
(2) ISD$V_DZRO 0
(3) ISD$V_WRT 0
(7) ISD$V_LASTCLU 0
(8) ISD$V_INITALCODE 0
(9) ISD$V_BASED 0
(10) ISD$V_FIXUPVEC 0
(11) ISD$V_RESIDENT 0
(17) ISD$V_VECTOR 0
(18) ISD$V_PROTECT 0
section type: ISD$K_SHRPIC
base VBN: 0
(global section major id: %X’01’, minor id: %X’00000E’
) match control: ISD$K_MATLEQ
+> global section name: "LIBRTL_001"

The items in the following list correspond to the numbers in Example 7–8:

! The size of the image section descriptor.

" The size of the image section, expressed in pages. For Alpha images, the
value is expressed in bytes.

The start address assigned to the image section by the linker. Note that
this address is an offset from the beginning of the image, which is assumed
to start at virtual address zero. (The linker always inserts an empty page
at the beginning of every executable image.) Note also that the linker does
not assign a start address for image sections representing shareable images
because this information cannot be determined until run time, when the
shareable image is loaded into memory by the image activator.

$ The number of pagelets that should be mapped in when the initial page fault
occurs. You can set this value by using the CLUSTER= option.

Understanding Image File Creation (Alpha and VAX) 7–21

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

% The settings of image section attributes. Table 7–5 lists these attributes.

& The type of image section, based on the combination of image section
attributes.

’ The virtual block in the image file at which the image section begins.

(Image sections that represent shareable images include the global section
identification number, which specifies the identification number of the
shareable image.

) Image sections that represent shareable images also include a match control
field that identifies the match control algorithm the image activator should
apply to the global image section identification number when it activates the
shareable image this ISD describes.

+> Image sections that represent shareable images include the global section
name field, which is the name of the shareable image. The ‘‘_001"’’ is
appended to the name by the linker to indicate which ISD in the image this
represents.

7.3.6 Controlling Image Section Creation
You can control how the linker combines program sections into image sections in
the following ways:

• By modifying the attributes of program sections

• By putting object modules into named clusters

• By using the SOLITARY attribute

7.3.6.1 Modifying Program Section Attributes
The linker combines program sections in the same cluster into the same image
section if they have the same settings for the significant program section
attributes. To force the linker to put the program sections into different image
sections, change the attributes of one of the program sections by using the
PSECT_ATTR= option.

For example, in the sample link operation, the DATA program section and the
$CHAR_STRING_CONSTANTS program section are combined into the same
image section. If you want the $CHAR_STRING_CONSTANTS program section
to appear in a different image section, change one of the significant attributes.
For example, in the following link of the sample programs, the writability
attribute is set to NOWRT. (For Alpha linking, you do not need to explicitly
specify the C Run-Time Library in the link operation because it resides in the
default system shareable image library [IMAGELIB.OLB], which the linker
processes by default.)

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=$CHAR_STRING_CONSTANTS,NOWRT
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

Example 7–9 presents an excerpt from the Image Section Synopsis section of the
map file produced by this link.

7–22 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

Example 7–9 Image Section Synopsis of Second Link

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging . . .
------- ---- ----- --------- -------- --- ---------------------

.

.

.
DEFAULT_CLUSTER 0 1 00000600 4 0 READ ONLY

0 1 00000800 0 0 READ WRITE DEMAND ZERO
0 1 00000A00 5 0 READ ONLY
0 1 00000C00 6 0 READ WRITE FIXUP VECTORS

253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO
.
.
.

Note that the default cluster contains one additional image section, a read-only
image section beginning at virtual address 0x00000600, than the default cluster
in the original link, illustrated in Section 7.3.1.

7.3.6.2 Manipulating Cluster Creation
In general, the linker creates image sections on a per-cluster basis; that is, only
program sections within a particular cluster can contribute to image section
creation. (The linker can collect program sections with the global attribute from
all clusters into a single image section.) To ensure that a program section appears
in a particular image section, put the program section in a specific cluster.

For example, in the sample link operation illustrated in Example 7–5, the linker
puts all the program sections in the object module MYSUB.OBJ in the cluster
named MYSUB_CLUS because the CLUSTER= option is specified. If you wanted
to group all of the program sections that contain code from all the other clusters
into the MYSUB_CLUS cluster, you could specify the COLLECT= option, as in
the following example. (By convention, VAX language processors put the code
they generate into program sections named $CODE. Program section naming
conventions are architecture specific.)

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
COLLECT=MYSUB_CLUS,$CODE
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

7.3.6.3 Isolating a Program Section into an Image Section
You can specify that the linker place a particular program section into its own
image section. This can be useful for programs that map data into predefined
locations within an image.

To isolate a program section into an image section, specify the SOLITARY
attribute of the program section using the PSECT_ATTR= option. For example,
to isolate the GLOBAL_DATA program section in the sample link into its own
image section, specify the following:

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,SOLITARY

Ctrl/Z

Understanding Image File Creation (Alpha and VAX) 7–23

Understanding Image File Creation (Alpha and VAX)
7.3 Creating Image Sections

For Alpha linking, when mapping data into an existing location in the virtual
memory of your program using the Create and Map Global Section ($CRMPSC)
system service or the Map Global Section ($MGBLSC) system service, you must
specify an address range (in the inadr argument) that is aligned on a CPU-
specific page boundary. Because the linker aligns image sections on CPU-specific
page boundaries and the program section in which the section is to be mapped is
the only program section in the image section, you ensure that the start address
of the location is page aligned. In addition, because Alpha systems must map at
least an entire page of memory at a time, using the SOLITARY attribute allows
you to ensure that no other data in the image section is inadvertently overwritten
by the mapping. By default, the linker creates the next image section on the next
page boundary so that no data can be overwritten.

7.4 Initializing an Image on Alpha/VAX Systems
After allocating memory for the image, the linker initializes the image by writing
the binary contents of the image sections by processing text information and
relocation (TIR) records in the object modules. These records direct the linker
in the initialization of the image section by telling it what to store in the image
section buffers. In addition, the linker inserts the addresses of symbols within
the image wherever they are referenced.

7.4.1 Writing the Binary Contents of Image Sections
A TIR record contains object language commands, such as stack and store
commands. Stack commands direct the linker to put information on its stack, and
store commands direct the linker to write the information from its stack to the
buffer for that image section.

During this image section initialization, the linker keeps track of the program
section being initialized and the image section to which it has been allocated.
The first attempt to initialize part of an image section by storing nonzero data
causes the linker to allocate a buffer in its own program region to contain the
binary contents of the generated image section. This allocation is achieved by the
Expand Region ($EXPREG) system service, and it requires that the linker have
available a virtually contiguous region of its own memory at least as large as the
image section being initialized.

A buffer is not allocated for an image section until the linker executes a store
command (with nonzero data) within that image section.

Debugger information (DBG) records and traceback information (TBT) records
are processed only if the debugger was requested and traceback information was
not excluded by the /NOTRACE qualifier in the LINK command. Otherwise,
these records are ignored. The records contain stack and store object language
commands (TIR records), but they are stored in the debugger symbol table
(DST) instead of in an image section. (The linker expands its memory region to
accommodate the DST, unless the /NOTRACEBACK qualifier was specified in the
LINK command.)

When the linker processes end-of-module (EOM) records, it checks that its
internal stack has been collapsed to its initial state. When this processing is
complete, the linker has written the binary contents of all image sections to
image section buffers in its own address space.

The linker writes the contents of its buffers in the following order:

1. All image sections to the image file.

7–24 Understanding Image File Creation (Alpha and VAX)

Understanding Image File Creation (Alpha and VAX)
7.4 Initializing an Image on Alpha/VAX Systems

2. The debugger symbol table to the image file, unless /NOTRACEBACK was
specified in the LINK command.

3. The remaining sections of the map to the map file, if requested in the LINK
command. (These sections include all requested sections except the Object
Module Synopsis, which it already wrote, and the Link Run Statistics, which
it cannot write until the linking operation finishes.)

4. The global symbol table to the image file, and also to another separate file, if
requested in the LINK command.

5. The image header to the image file.

6. The link statistics to the map file, if requested in the LINK command.

7.4.2 Fixing Up Addresses
Executable images and based images are loaded into memory at a known location
in P0 space. The linker cannot know where in memory a shareable image will be
located when it is loaded into memory at run time by the image activator. Thus,
the linker cannot initialize references to symbols within the shareable image from
external modules or to internal symbolic references within the shareable image
itself. For shareable images, the linker creates fix-ups that the image activator
must resolve when it activates the images at run time.

The linker uses the fix-up image section in the following ways:

• The fix-up image section adjusts the values stored by any .ADDRESS
directives that are encountered during the creation of the nonbased shareable
image. This action, together with subsequent adjustment of these values by
the image activator, preserves the position independence of the shareable
image.

On Alpha systems, an error message informs you at link time that the linker
is placing global symbols from shareable images in byte- or word-sized fields.
The OpenVMS Alpha image header format does not allow byte or word fixups.

Following is an example of the kind of error message the system displays:

%LINK-E-NOFIXSYM, unable to perform WORD fixup for symbol TPU$_OPTIONS
in psect $PLIT$ in module TEST_MODULE file USER:[ACCOUNT]TEST.OLB;1

To work around the Alpha image header format restriction, move the symbolic
value into a selected location at run time rather than at link time. For
example, in MACRO, rather than performing .WORD TPU$_OPTIONS, use
the following instruction:

MOVW #TPU$_OPTIONS, dest

• For VAX linking, the fix-up image section processes all general-address-mode
code references to targets in position-independent shareable images. In this
way, it creates the linkage between these code references and their targets,
whose locations are not known until run time.

Understanding Image File Creation (Alpha and VAX) 7–25

Understanding Image File Creation (Alpha and VAX)
7.4 Initializing an Image on Alpha/VAX Systems

7.4.3 Keeping the Size of Image Files Manageable
Because neither language processors nor the linker initialize data areas in a
program with zeros, leaving this task to the operating system instead, some
image sections might contain uninitialized pages. To keep the size of the image
file as small as possible, the linker does not write pages of zeros to disk for these
uninitialized pages unless you explicitly disable this function. The linker can
search image sections that contain initialized data for groups of contiguous,
uninitialized pages and creates demand-zero image sections out of these pages
(called demand-zero compression). Demand-zero image sections reduce the
size of the image file and enhance the performance of the program. At run
time, when a reference is made that initializes the section, the operating system
initializes the allocated page of physical memory with zeros (hence the name
‘‘demand-zero’’).

The Alpha compilers identify to the linker program sections that have not been
initialized by setting the NOMOD attribute of the program section. The linker
groups these uninitialized program sections into a demand-zero image section.

If two modules contribute to the same program section and one contribution
has the NOMOD attribute set and the other does not, the linker performs a
logical AND of the NOMOD bits so that the two contributions end up in the same
(non-demand-zero) image section.

Note that the linker creates demand-zero image sections only for OpenVMS VAX
executable images. On OpenVMS Alpha systems, the linker can create demand-
zero image sections for both executable and shareable images. Program sections
with the SHR and the NOMOD attributes set are not sorted into demand-zero
image sections in shareable images.

7.4.3.1 Controlling Demand-Zero Image Section Creation
When performing demand-zero compression, by default the linker searches the
pages of existing image sections looking for the default minimum of contiguous,
uninitialized pages. You can specify a different minimum by using the DZRO_
MIN= option. For more information about the effect of this option on image size
and performance, see the description of the DZRO_MIN= option in Part 2.

You can control demand-zero compression by specifying the maximum number of
image sections that the linker can create using the ISD_MAX= option.

7–26 Understanding Image File Creation (Alpha and VAX)

8
Creating Shareable Images (Alpha and VAX)

This chapter describes how to create shareable images on Alpha and VAX systems
and how to declare universal symbols in shareable images. For information on
how to create shareable images on OpenVMS I64 systems, see Chapter 4.

8.1 Overview of Creating Shareable Images on Alpha/VAX Systems
To create a shareable image, specify the /SHAREABLE qualifier on the LINK
command line. You can specify as input files in the link operation any of the
types of input files accepted by the linker, as described in Chapter 1.

Note, however, to enable other modules to reference symbols in the shareable
image, you must declare them as universal symbols. High- and mid-level
languages do not provide semantics to declare universal symbols. You must
declare universal symbols at link time using linker options. The linker lists
all universal symbols in the global symbol table (GST) of the shareable image.
The linker processes the GST of a shareable image specified as an input file in
a link operation during symbol resolution. (For more information about symbol
resolution, see Chapter 6.)

For Alpha linking, you declare universal symbols by listing the symbols in a
SYMBOL_VECTOR= option statement in a linker options file. You do not need to
create a transfer vector to create an upwardly compatible shareable image. The
symbol vector can provide upward compatibility. For more information about this
topic, see Section 8.3.

For VAX linking, you declare universal symbols by listing the symbols in a
UNIVERSAL= option statement in a linker options file. You can create shareable
images that can be modified, recompiled, and relinked without causing the images
that were linked against previous versions of the shareable image to be relinked.
To provide this upward compatibility, you must create a transfer vector that
contains an entry for each universal symbol in the image. For more information
about these topics, see Section 8.2.

The linker supports qualifiers and options that control various aspects of
shareable image creation. Table 8–1 lists these qualifiers and options. (For more
information about linker qualifiers and options, see Part 2.)

Creating Shareable Images (Alpha and VAX) 8–1

Creating Shareable Images (Alpha and VAX)
8.1 Overview of Creating Shareable Images on Alpha/VAX Systems

Table 8–1 Linker Qualifiers and Options Used to Create Shareable Images

Qualifier Description

‡/GST For Alpha images, directs the linker to include universal symbols
in the global symbol table (GST) of the shareable image, which is
the default. When you specify the /NOGST qualifier, the linker
creates an empty GST for the image. See Section 8.3.4 for more
information about using this qualifier to create run-time kits.
Not supported for VAX images.

/PROTECT Directs the linker to protect the shareable image from write
access by user or supervisor mode.

/SHAREABLE Directs the linker to create a shareable image, when specified in
the link command line. When appended to a file specification in
a linker options file, this qualifier identifies the input file as a
shareable image.

Option Description

GSMATCH= Sets the major and minor identification numbers in the header
of the shareable image and specifies the algorithm the linker
uses when comparing identification numbers.

PROTECT= When specified with the YES keyword in a linker options file,
this option directs the linker to protect the clusters created by
subsequent options specified in the options file. You turn off
protection by specifying the PROTECT=NO option in the options
file.

‡SYMBOL_TABLE= For Alpha linking, when specified with the GLOBALS keyword,
this option directs the linker to include in a symbol table file all
the global symbols defined in the shareable image, in addition
to the universal symbols. By default, the linker includes
only universal symbols in a symbol table file associated with
a shareable image (SYMBOL_TABLE=UNIVERSALS). Not
supported for VAX linking.

‡SYMBOL_VECTOR= For Alpha linking, specifies symbols in the shareable image that
you want declared as universal. Not supported for VAX linking.

†UNIVERSAL= For VAX linking, specifies symbols in the shareable image that
you want declared as universal. Not supported for Alpha linking.

†VAX specific
‡Alpha specific

8.2 Declaring Universal Symbols in VAX Shareable Images
For VAX linking, you declare universal symbols by specifying the UNIVERSAL=
option in an options file. List the symbol or symbols you want to be universal
as an argument to the option. The symbols listed in a UNIVERSAL= option can
represent procedures, relocatable data, or constants. For each symbol declared
as universal, the linker creates an entry in the global symbol table (GST) of the
image. At link time, when the linker performs symbol resolution, it processes the
symbols listed in the GSTs of the shareable images included in the link operation.

To illustrate how to declare universal symbols, consider the programs in the
following examples.

8–2 Creating Shareable Images (Alpha and VAX)

Creating Shareable Images (Alpha and VAX)
8.2 Declaring Universal Symbols in VAX Shareable Images

Example 8–1 Shareable Image Test Module: my_main.c

#include <stdio.h>

extern int my_data;

globalref int my_symbol;

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;

result = mysub(num1, num2);
printf("Result= %d\n", result);
printf("Data implemented as overlaid psect= %d\n", my_data);
printf("Global reference data is= %d\n", my_symbol);

}

Example 8–2 Shareable Image: my_math.c

int my_data = 5;

globaldef int my_symbol = 10;

myadd(value_1, value_2)
int value_1;
int value_2;
{

int result;

result = value_1 + value_2;
return(result);

}
mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;

result = value_1 - value_2;
return(result);
}
mydiv(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 / value_2;
return(result);

}
mymul(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 * value_2;
return(result);

}

Creating Shareable Images (Alpha and VAX) 8–3

Creating Shareable Images (Alpha and VAX)
8.2 Declaring Universal Symbols in VAX Shareable Images

To implement Example 8–2 as a shareable image, you must declare the universal
symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
PSECT_ATTR=my_data,NOSHR
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mymul
UNIVERSAL=mydiv
UNIVERSAL=my_symbol

Ctrl/Z

Note that the symbol my_data in Example 8–2 does not have to be declared
universal because of the way in which VAX C implements it. Several Compaq
programming languages, including VAX C and Compaq Fortran for OpenVMS
VAX, implement certain external variables as program sections with the overlaid
(OVR), global (GBL), and relocatable (REL) attributes. When the linker processes
these object modules, it overlays the program sections so that the various object
modules that reference the variable access the same virtual memory. Symbols
implemented in this way are declared universal (appear in the GST of the image)
by default.

In the sample link operation, the SHR attribute of the program section that
implements the data symbol my_data is reset to NOSHR. If you do not reset the
shareable attribute for program sections that are writable, you must install the
shareable image to run the program. (The shareable attribute [SHR] determines
whether multiple processes have shared access to the memory.)

The following example illustrates how to link the object module MY_MAIN.OBJ
with the shareable image MY_MATH.EXE. Note that the LINK command sets
the shareability attribute of the program section my_data to NOSHR, as in the
link operation in which the shareable was created.

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE
PSECT_ATTR=my_data,NOSHR

Ctrl/Z

8.2.1 Creating Upwardly Compatible Shareable Images (VAX Linking Only)
For VAX linking, you can create a shareable image that can be modified,
recompiled, and relinked without causing the images that were linked
against previous versions of the image to be relinked. To provide this upward
compatibility, you must ensure that the values of relocatable universal symbols
within the image remain constant with each relinking.

Universal Symbols that Represent Procedures
To fix the locations of universal symbols that represent procedures in a shareable
image, create a transfer vector for the shareable image. In a transfer vector,
you create small routines in VAX MACRO that define an entry point in the
image and then transfer control to another location in memory. You declare the
entry points defined in the transfer vector as the universal symbols and have
each routine transfer control to the actual location of the procedures within the
shareable image. As long as you ensure that the location of the transfer vector
remains the same with each relinking, images that linked with previous versions
of the shareable image will access the procedures at the locations they expect.

8–4 Creating Shareable Images (Alpha and VAX)

Creating Shareable Images (Alpha and VAX)
8.2 Declaring Universal Symbols in VAX Shareable Images

Figure 8–1 illustrates the flow of control at run time between a main image and
a shareable image in which the actual routines are declared as universal symbols
(as shown in Section 8.2) and between a main image and a shareable image in
which the transfer vector entry points are declared as universal symbols (as
shown in Section 8.2.1.1).

Figure 8–1 Comparison of UNIVERSAL= Option and Transfer Vectors

Accessing symbols by using the UNIVERSAL=option:

Transfer Vector

ZK−5069A−GE

jump myadd
jump mysub
jump mymul
jump mydiv

Accessing symbols by using transfer vectors:

myadd:

mysub:

mymul:

mydiv:

myadd:

mysub:

mymul:

mydiv:

mysub

mysub

Shareable Image
(mymathrouts.exe)

Executable Image
(mytest.exe)

Shareable Image
(mymathrouts.exe)

Executable Image
(mytest.exe)

Universal Symbols that Represent Data
To provide upwardly compatible symbols that represent data locations, you must
also fix these locations within memory. You can accomplish this by allocating the
data symbols at the end of the transfer vector file. In this way, when you fix the
location of the transfer vector within an image, the data locations also remain the
same. (This is described in the next section.)

8.2.1.1 Creating a Transfer Vector (VAX Linking Only)
You create a transfer vector using VAX MACRO. Specify the .TRANSFER
directive because it declares the symbol that you specify as its argument
as a universal symbol by default. Compaq recommends the following coding
conventions for creating a transfer vector:

Creating Shareable Images (Alpha and VAX) 8–5

Creating Shareable Images (Alpha and VAX)
8.2 Declaring Universal Symbols in VAX Shareable Images

! .transfer FOO ;Begin transfer vector to FOO
" .mask FOO ;Store register save mask
jmp L^FOO+2 ;Jump to routine

! The .TRANSFER directive causes the symbol, named FOO in the example, to
be added to the shareable image’s global symbol table. (You do not need to
also specify the symbol in a UNIVERSAL= statement in a linker options file.)

" The .MASK directive causes the assembler to allocate 2 bytes of memory,
find the register save mask accompanying the entry point (FOO in the
example), and store the register save mask of the procedure. (According
to the OpenVMS calling standard, procedure calls using the CALLS or
CALLG instructions include a word, called the register save mask, whose bits
represent which registers must be preserved by the routine.)

The JMP instruction transfers control to the address specified as its
argument. In the example, this address is two bytes past the routine entry
point FOO (the first two bytes of the routine are the register save mask).

HP recommends that you use a jump instruction (for example, JMP L^) in the
transfer vector. Transfering control with a BSBW or JSB instruction results
in saving the address of the next instruction from the transfer vector on the
stack. In addition, the displacement used by the BSBW instruction must be
expressible in 16 bits, which may not be sufficient to reach the target routine.
Also, to avoid making the image position dependent, do not use an absolute
mode instruction.

Note that the preceding convention assumes that the routine is called using the
procedure call format, the default for most high-level language compilers. If a
routine is called as a subroutine, using the JSB instruction, you do not need to
include the .MASK directive. When creating a transfer vector for a subroutine
call, Compaq recommends adding bytes of padding to the transfer vectors. This
padding makes a subroutine transfer vector the same size as a transfer vector
for a procedure call. If you need to replace a subroutine transfer vector with a
procedure call transfer vector, you can make the replacement without disturbing
the addresses of all the succeeding transfer vectors.

The following example illustrates a subroutine transfer vector that uses the
.BLKB directive to allocate the padding:

.TRANSFER FOO ;Begin transfer vector to FOO
JMP L^FOO ;Jump to routine
.BLKB 2 ;Pad vector to 8 bytes

To ensure upward compatibility, follow these guidelines when creating a transfer
vector:

• Preserve the order and placement of entries in a transfer vector. Once you
establish the order in which entries appear in a transfer vector, do not change
it. Images that were linked against the shareable image depend on the
location of the symbol in the transfer vector.

You can reserve space within a transfer vector for future growth by specifying
dummy transfer vector entries at various positions in a transfer vector.

• Add new entries to the end of a transfer vector. When including universal
data in a transfer vector file, use padding to leave adequate room for future
growth between the end of the transfer vector and the beginning of the list of
universal data declarations.

A transfer vector for the program in Example 8–2 is illustrated in Example 8–3.

8–6 Creating Shareable Images (Alpha and VAX)

Creating Shareable Images (Alpha and VAX)
8.2 Declaring Universal Symbols in VAX Shareable Images

Example 8–3 Transfer Vector for the Shareable Image MY_MATH.EXE

.transfer myadd

.mask myadd
jmp l^myadd+2
.transfer mysub
.mask mysub
jmp l^mysub+2
.transfer mymul
.mask mymul
jmp l^mymul+2
.transfer mydiv
.mask mydiv
jmp l^mydiv+2
.end

Assemble the transfer vector file to create an object module that can be included
in a link operation:

$ MACRO MY_MATH_TRANS_VEC.MAR

8.2.1.2 Fixing the Location of the Transfer Vector in Your Image (VAX Linking Only)
For VAX linking, you include a transfer vector in a link operation as you would
any other object module. However, to ensure upward compatibility, you must
make sure that the transfer vector always appears in the same location in the
image. The best way to accomplish this is to make the transfer vector always
appear at the beginning of the image by forcing the linker to process it first. If
you put the transfer vector file in a named cluster, using the CLUSTER= option,
and specify it as the first option in an options file that can generate a cluster, the
transfer vector will appear at the beginning of the file. (For more information
about controlling cluster creation, see Section 6.3.)

The following example illustrates how to include the transfer vector in the link
operation, using the CLUSTER= option, so that the linker processes it first:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
! GSMATCH=lequal,1,1000
" CLUSTER=trans_vec_clus,,,MY_MATH_TRANS_VEC.OBJ

Ctrl/Z

! To enable images that linked against a shareable image to run with various
versions of the shareable image, you must specify the identification numbers
of the image. By default, the linker assigns a unique identification number
to each version of a shareable image. At run time, if the ID of the shareable
image as it is listed in the executable image does not match the ID of the
shareable image the image activator finds to activate, the activation will
abort. For information about using the GSMATCH= option to specify ID
numbers, see the description of the GSMATCH= option in Part 2.

" This CLUSTER= option causes the linker to create the named cluster
TRANS_VEC_CLUS and to put the transfer vector file in this cluster.

8.2.2 Creating Based Shareable Images (VAX Linking Only)
For VAX linking, you can create a based shareable image by specifying the
BASE= option in a linker options file. In a based image, you specify the starting
address at which you want the linker to begin allocating memory for the image.
For more information about the BASE= option, see Part 2.

HP does not recommend using based shareable images.

Based shareable Alpha images are not supported.

Creating Shareable Images (Alpha and VAX) 8–7

Creating Shareable Images (Alpha and VAX)
8.3 Declaring Universal Symbols in Alpha Shareable Images

8.3 Declaring Universal Symbols in Alpha Shareable Images
For Alpha linking, you declare universal symbols by listing them in a SYMBOL_
VECTOR= option. For each symbol listed in the SYMBOL_VECTOR= option,
the linker creates an entry in the shareable image’s symbol vector and creates
an entry for the symbol in the shareable image’s global symbol table (GST).
When the shareable image is included in a subsequent link operation, the linker
processes the symbols listed in its GST.

To implement Example 8–2 as an Alpha shareable image, you must declare the
universal symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-

mysub=PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/Z

You must identify the type of symbol vector entry you want to create by specifying
a keyword. The linker allows you to create symbol vector entries for procedures,
data (relocatable or constant), and for global data implemented as an overlaid
program section.

A symbol vector entry is a pair of quadwords that contains information about the
symbol. The contents of these quadwords depends on what the symbol represents.
If the symbol represents a procedure, the symbol vector entry contains the
address of the procedure entry point and the address of the procedure descriptor.
If the symbol represents a data location, the symbol vector entry contains the
address of the data location. If the symbol represents a data constant, the symbol
vector entry contains the actual value of the constant.

When you create the shareable image (by linking it specifying the /SHARE
qualifier), the value of a universal symbol listed in the GST is the offset of its
entry into the symbol vector (expressed as the offset z in Figure 8–2).

When you include this shareable image in a subsequent link operation, the linker
puts this value in the linkage pair in the linkage section of the executable image
that references the symbol. (A linkage pair is a data structure defined by the
OpenVMS calling standard.)

At run time, when the image activator loads the shareable image into memory,
it calculates the actual locations of the routines and relocatable data within the
image and stores these values in the symbol vector. The image activator then
fixes up the references to these symbols in the executable image that references
symbols in the shareable image, moving the values from the symbol vector in
the shareable image into the linkage section in the executable image. When
the executable image makes the call to the procedure, shown as the Jump-to-
Subroutine (JSR) instruction sequence in Figure 8–2, control is transferred
directly to the location of the procedure within the shareable image.

8–8 Creating Shareable Images (Alpha and VAX)

Creating Shareable Images (Alpha and VAX)
8.3 Declaring Universal Symbols in Alpha Shareable Images

Figure 8–2 Accessing Universal Symbols Specified Using the SYMBOL_VECTOR= Option

MY_MATHMY_MAIN

n
m

mysub::

mysub = Z

m + base of MY_MATH
n + base of MY_MATH

LDQ R26, X (LS)
LDQ R27, X+8 (LS)
JSR R26, R26

z = offset from base of symbol vector of symbol vector entry for mysub
m = offset from base of image of procedure descriptor of mysub
n = offset from base of image of procedure entry point for mysub
x = offset from current procedure descriptor of Linkage Pair for mysub

LS

ZK−5333A−GE

Linkage
Pair

Symbol
Vector

X

Proc. Descriptor for mysub
Linkage
Section

Entry for
Mysub

Code

GST

m

z

n

Linkage
Section

Note that, unlike VAX linking, global symbols implemented as overlaid program
sections are not universal by default. Instead, you control which of these
symbols is a universal symbol by including it in the SYMBOL_VECTOR= option,
specifying the PSECT keyword. The example declares the program section
my_data as a universal symbol.

You must specify the qualifier /EXTERN_MODEL=COMMON on the compile
command line to make the HP C for OpenVMS Alpha compiler implement the
symbol as an overlaid program section. If you do not specify the COMMON
keyword, the default keyword is RELAXED_REFDEF.

8.3.1 Symbol Definitions Point to Shareable Image Psects (Alpha Linking
Only)

On Alpha systems, the linker cannot overlay program sections that are referenced
by symbol definitions with shareable image program sections of the same name.
The C compiler generates symbol definition records that contain the index of
an overlaid program section when the relaxed ref-def extern model is used (the
default).

Shareable image program sections are created when you link a shareable image
and use the PSECT keyword in your SYMBOL_VECTOR option.

If the linker detects this condition, it issues the following error:

%LINK-E-SHRSYMFND, shareable image psect <name> was pointed
to by a symbol definition
%LINK-E-NOIMGFIL, image file not created

Creating Shareable Images (Alpha and VAX) 8–9

Creating Shareable Images (Alpha and VAX)
8.3 Declaring Universal Symbols in Alpha Shareable Images

The link continues, but no image is created. To work around this restriction,
change the symbol vector keyword to DATA, or recompile your C program with
the qualifier /EXTERN=COMMON.

For more information, see the HP C for OpenVMS Alpha documentation.

The name of a symbol implemented as an overlaid program section can duplicate
the name of a symbol representing a procedure or data location. If the program
section specified in a SYMBOL_VECTOR= option does not exist, the linker issues
a warning, places zeros in the symbol vector entry, and does not create an entry
for the program section in the image’s GST.

8.3.2 Creating Upwardly Compatible Shareable Images (Alpha Linking Only)
The SYMBOL_VECTOR= option allows you to create upwardly compatible
shareable images without requiring you to create transfer vectors as for VAX
images.

However, as with transfer vectors, to ensure upward compatibility when using a
SYMBOL_VECTOR= option, you must preserve the order and placement of the
entries in the symbol vector with each relinking. Do not delete existing entries.
Add new entries only at the end of the list. If you use multiple SYMBOL_
VECTOR= option statements in a single options file to declare the universal
symbols, you must also maintain the order of the SYMBOL_VECTOR= option
statements in the options file. If you specify SYMBOL_VECTOR= options in
separate options files, make sure the linker always processes the options files in
the same order. (The linker creates only one symbol vector for an image.)

Note, however, that there is no need to anchor the symbol vector at a particular
location in memory, as you would anchor a transfer vector for a VAX link. The
value at link time of a universal symbol in an Alpha shareable image is its
location in the symbol vector, expressed as an offset from the base of the symbol
vector, and the location of the symbol vector is stored in the image header. (For
VAX linking, the value of a universal symbol at link time is the location of the
symbol in the image, expressed as an offset from the base of the image.) Thus,
the relative position of the symbol vector within the image does not affect upward
compatibility.

8.3.3 Deleting Universal Symbols Without Disturbing Upward Compatibility
(Alpha Linking Only)

To delete a universal symbol without disturbing the upward compatibility of an
image, use the PRIVATE_PROCEDURE or PRIVATE_DATA keywords. In the
following example, the symbol mysub is deleted using the PRIVATE_PROCEDURE
keyword:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-

mysub=PRIVATE_PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/z

8–10 Creating Shareable Images (Alpha and VAX)

Creating Shareable Images (Alpha and VAX)
8.3 Declaring Universal Symbols in Alpha Shareable Images

When you specify the PRIVATE_PROCEDURE or PRIVATE_DATA keyword in
the SYMBOL_VECTOR= option, the linker creates symbol vector entries for the
symbols but does not create an entry for the symbol in the GST of the image.
The symbol still exists in the symbol vector and none of the other symbol vector
entries have been disturbed. Images that were linked with previous versions of
the shareable image that reference the symbol will still work, but the symbol will
not be available for new images to link against.

Using the PRIVATE_PROCEDURE keyword, you can replace an entry for an
obsolete procedure with a private entry for a procedure that returns a message
that explains the status of the procedure.

8.3.4 Creating Run-Time Kits (Alpha Linking Only)
If you use shareable images in your application, you may want to ship a run-
time kit with versions of these shareable images that cannot be used in link
operations.

To do this, you must first link your application, declaring the universal symbols
in the shareable images using the SYMBOL_VECTOR= option so that references
to these symbols can be resolved. After the application is linked, you must then
relink the shareable images so that they have fully populated symbol vectors but
empty global symbol tables (GSTs). The fully populated symbol vectors allow your
application to continue to use the shareable images at run time. The empty GSTs
prevent other images from linking against your application.

To create this type of shareable image for a run-time kit (without having to
disturb the SYMBOL_VECTOR= option statements in your application’s options
files), relink the shareable image after development is completed, specifying the
/NOGST qualifier on the LINK command line. When you specify the /NOGST
qualifier, the linker builds a complete symbol vector, containing the symbols you
declared universal in the SYMBOL_VECTOR= option, but does not create entries
for the symbols that you declared universal in the GST of the shareable image.
For more information about the /GST qualifier, see Part 2.

8.3.5 Specifying an Alias Name for a Universal Symbol (Alpha Linking Only)
For Alpha linking, a universal symbol can have a name, called a universal alias,
different from the name contributed by the object module in which it is defined.
You specify the universal alias name when you declare the global symbol as a
universal symbol using the SYMBOL_VECTOR= option. The universal alias
name precedes the internal name of the global symbol, separated by a slash (/).
In the following example, the global symbol mysub is declared as a universal
symbol under the name sub_alias.

$ LINK/SHAREABLE MY_SHARE/SYS$INPUT/OPT
SYMBOL_VECTOR=(myadd=procedure,-

sub_alias/mysub=procedure,-
mymul=procedure,-
mydiv=procedure,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/Z

You can specify universal alias names for symbols that represent procedures or
data; you cannot declare a universal alias name for a symbol implemented as
an overlaid program section. In link operations in which the shareable image is
included, the calling modules must refer to the universal symbol by its universal
alias name to enable the linker to resolve the symbolic reference.

Creating Shareable Images (Alpha and VAX) 8–11

Creating Shareable Images (Alpha and VAX)
8.3 Declaring Universal Symbols in Alpha Shareable Images

In a privileged shareable image, calls from within the image that use the alias
name result in a fix-up and subsequent vectoring through the privileged library
vector (PLV), which results in a mode change. Calls from within the shareable
image that use the internal name are done in the caller’s mode. (Calls from
external images always result in a fix-up.) For more information about creating a
PLV, see the HP OpenVMS Programming Concepts Manual.

8.3.6 Improving the Performance of Installed Shareable Images (Alpha Linking
Only)

For Alpha linking, you can improve the performance of an installed shareable
image by installing it as a resident image (by using the /RESIDENT qualifier of
the Install utility). INSTALL moves the executable, read-only pages of resident
images into system space where they reside on huge pages. Executing your image
in huge pages improves performance.

8–12 Creating Shareable Images (Alpha and VAX)

9
Interpreting an Image Map File (Alpha and VAX)

This chapter describes how to interpret the information returned in an image
map on Alpha and VAX systems and describes the combinations of linker
qualifiers used to obtain a map.

For information about interpreting an image map file on OpenVMS I64 systems,
see Chapter 5.

9.1 Overview of Alpha/VAX Linker Map
At your request, the linker can generate information that describes the contents
of the image and the linking process itself. This information, called an image
map, can be helpful when locating link-time errors, studying the layout of the
image in virtual memory, and keeping track of global symbols.

You can obtain the following types of information about an image from its image
map:

• The names of all modules included in the link operation, both explicitly in the
LINK command and implicitly from libraries

• The names, sizes, and other information about the image sections that
comprise the image

• The names, sizes, and locations of program sections within an image

• The names and values of all the global symbols referenced in the image,
including the name of the module in which the symbol is defined and the
names of the modules in which the symbol is referenced

• Statistical summary information about the image and the link operation itself

You determine which information the linker includes in a map file by specifying
qualifiers in the LINK command line. If you specify the /MAP qualifier, the map
file includes certain information by default (called the default map). You can
also request a map file that contains less information about the image (called a
brief map) or a map file that contains more information about the image (called
a full map). Table 9–1 lists the LINK command qualifiers that affect map file
production.

Interpreting an Image Map File (Alpha and VAX) 9–1

Interpreting an Image Map File (Alpha and VAX)
9.1 Overview of Alpha/VAX Linker Map

Table 9–1 LINK Command Map File Qualifiers

/MAP Directs the linker to create a map file. This is the default
for batch jobs. /NOMAP is the default for interactive link
operations.

/BRIEF When used in combination with the /MAP qualifier, directs the
linker to create a map file that contains only a subset of all the
possible information.

/FULL When used in combination with the /MAP qualifier, directs
the linker to create a map file that contains all the possible
information.

/CROSS_REFERENCE When used in combination with the /MAP qualifier, directs the
linker to replace the Symbols By Name section with a Symbol
Cross-Reference section, in which all the symbols in each module
are listed with the modules in which they are called. You cannot
request this type of listing in a brief map file.

9.2 Components of an Image Map File (Alpha/VAX)
The linker formats the information it includes in a map file into sections.
Table 9–2 lists the sections of a map file in the order in which they appear in
the file. The table also indicates whether the section appears in a brief map, full
map, or default map file.

Table 9–2 Image Map Sections

Section Name Description
Default
Map

Full
Map

Brief

Map

Object Module Synopsis† Lists all the object modules in the
image.

Yes Yes Yes

‡Module Relocatable
Reference Synopsis

Specifies the number of .ADDRESS
directives in each module.

– Yes –

Image Section Synopsis Lists all the image sections and clusters
created by the linker.

– Yes –

Program Section Synopsis† Lists the program sections and their
attributes.

Yes Yes –

Symbols By Name† Lists global symbol names and values. Yes Yes –

Symbol Cross-Reference† Lists each symbol name, its value, the
name of the module that defined it,
and the names of the modules that
refer to it. Replaces the Symbols By
Name section when the /CROSS_
REFERENCE qualifier is specified.

Yes Yes –

Symbols By Value Lists all the symbols with their values
(in hexadecimal representation).

– Yes –

Image Synopsis Presents statistics and other
information about the output image.

Yes Yes Yes

Link Run Statistics Presents statistics about the link run
that created the image.

Yes Yes Yes

†In a full map file, these sections include information about modules that were included in the link
operation from libraries but were not explicitly specified on the LINK command line.
‡VAX specific

9–2 Interpreting an Image Map File (Alpha and VAX)

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

The following sections describe each of the image map sections in detail. The
examples of the map sections are taken from the map file created in a link
operation of the executable image in Chapter 8.

9.2.1 Object Module Synopsis (Alpha/VAX)
The first section that appears in a map file is the Object Module Synopsis. This
section lists the name of each module included in the link operation in the order
in which it was processed. Note that shareable images included in the link
operation are listed here as well. This section of the map file also includes other
information about each module, arranged in columns, as in the following example:

+------------------------+
! Object Module Synopsis !
+------------------------+

Module Name ! Ident " Bytes # File $ Creation Date % Creator &
----------- ----- ----- ----- ------------- -------
MY_MATH V1.0 0 WORK:[PROGS]MY_MATH.EXE;11 3-NOV-2000 12:27 Linker T10-37
MY_MAIN V1.0 553 WORK:[PROGS]MY_MAIN.OBJ;15 3-NOV-2000 12:27 COMPAQ C X1.1-048E
DECC$SHR V1.0 0 [SYSLIB]DECC$SHR.EXE;2 9-JUL-2000 07:49 Linker T10-03
SYS$PUBLIC_VECTORS

X-26 0 [SYSLIB]SYS$PUBLIC_VECTORS.EXE;2 9-JUL-2000 07:34 Linker T10-03

! Module Name. The name of each object module included in the link operation.
The modules are listed in the order in which the linker processed them. If the
linker encounters an error during its processing of an object module, an error
message appears on the line directly following the line containing the name of
that object module.

" Ident. The text string in the IDENT field in an object module or in the image
header of a shareable image.

Bytes. The number of bytes the object module contributes to the image.
Because shareable images are activated at run time, the linker cannot
calculate the size of their contributions to the image. Thus, the value 0 (zero)
is associated with shareable images.

$ File. Full file specification of the input file, including device and directory. If
the specification is longer than 35 characters, it is shortened by dropping the
device portion of the file specification or both the device and directory portions
of the file specification.

% Creation Date. The date and time the file was created.

& Creator. Identification of the language processor or other utility that created
the file.

The order in which the modules are listed in this section reflects the order in
which the linker processes the input files specified in the link operation. Note
that the order of processing can be different from the order in which the files
were specified in the command line. For more information about how the linker
processes input files, see Chapter 6.

9.2.2 Module Relocatable Reference Synopsis (VAX Linking Only)
For VAX linking, the information contained in the Module Relocatable Reference
Synopsis section varies with the type of image being created. For shareable
images, this section lists all of the modules that contain at least one .ADDRESS
directive. For executable or system images, this section lists the names of all
object modules containing at least one .ADDRESS reference to a shareable image.
The section lists the modules in the order in which the linker processes them,

Interpreting an Image Map File (Alpha and VAX) 9–3

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

including the number of .ADDRESS references found. The linker formats the
information as in the following example:

+---------------------------------------+
! Module Relocatable Reference Synopsis !
+---------------------------------------+

Module Name ! Number " Module Name Number Module Name Number
----------- ------ ----------- ------ ----------- ------

MAIN1 1

! Module Name. The name of each object module included in the link operation.
The modules are listed in the order in which the linker processed them.

" Number. The number of .ADDRESS references found.

Note that you can reduce linker and image activator processing time by removing
.ADDRESS directives from input files.

9.2.3 Image Section Synopsis Section (Alpha/VAX)
The Image Section Synopsis section of the linker map file lists the image sections
created by the linker. The image sections appear in the order in which the linker
created them, which is the same order as the clusters in the linker’s cluster list.
(For more information about clusters, see Chapter 6.) The section includes other
information about these image sections, formatted in columns, as in the following
example:

++++++++++++++++++++++++++
! Image Section Synopsis !
++++++++++++++++++++++++++

 Cluster Type Pglts Base Addr Disk VBN PFC Protection and Paging Global Sec. Name Match Majorid Minorid
 ------- ---- ----- --------- -------- --- --------------------- ---------------- ----- ------- -------

MY_MATH 2 1 00000000R 0 0 READ WRITE COPY ON REF MY_MATH_001 EQUAL 113 5598831
 2 1 00010000R 0 0 READ WRITE COPY ON REF MY_MATH_002 EQUAL 113 5598831
 3 1 00020000R 0 0 READ ONLY MY_MATH_003 EQUAL 113 5598831
 4 1 00030000R 0 0 READ WRITE COPY ON REF MY_MATH_004 EQUAL 113 5598831
 2 1 00040000R 0 0 READ WRITE FIXUP VECTORS MY_MATH_005 EQUAL 113 5598831

DEFAULT_CLUSTER 0 1 00010000 3 0 READ WRITE NONSHAREABLE ADDRESS DATA
 0 1 00020000 4 0 READ ONLY
 0 1 00030000 5 0 READ WRITE FIXUP VECTORS
 253 20 7FFF0000 0 0 READ WRITE DEMAND ZERO

DECC$SHR 2 132 00000000-R 0 0 READ WRITE COPY ON REF DECC$SHR_001 LESS/EQUAL 1 0
 2 4 00020000-R 0 0 READ WRITE COPY ON REF DECC$SHR_002 LESS/EQUAL 1 0
 3 11 00030000-R 0 0 READ ONLY DECC$SHR_003 LESS/EQUAL 1 0
 3 965 00040000-R 0 0 READ ONLY DECC$SHR_004 LESS/EQUAL 1 0
 4 7 000C0000-R 0 0 READ WRITE COPY ON REF DECC$SHR_005 LESS/EQUAL 1 0
 4 71 000D0000-R 0 0 READ WRITE COPY ON REF DECC$SHR_006 LESS/EQUAL 1 0

4 1 P-000E0000-R 0 0 READ WRITE COPY ON REF DECC$SHR_007 LESS/EQUAL 1 0
 2 9 000F0000-R 0 0 READ WRITE FIXUP VECTORS DECC$SHR_008 LESS/EQUAL 1 0

SYS$PUBLIC_VECTORS
 2 15 00000000-R 0 0 READ ONLY SYS$PUBLIC_VECTO EQUAL 113 14651409
 1 24 00004000-R 0 0 READ WRITE COPY ON REF SYS$PUBLIC_VECTO EQUAL 113 14651409
 2 1 00008000-R 0 0 READ WRITE FIXUP VECTORS SYS$PUBLIC_VECTO EQUAL 113 14651409

 Key for special characters above:
 +++++++++++++++++++++
 ! R Relocatable !
 ! P Protected !
 +++++++++++++++++++++

VM-0318A-AI

1 2 3 4 5 6 7 8 9 10 11

The items in the following list correspond to the numbered items in the preceding
figure:

! Cluster. The name of each cluster the linker created, listed in the order in
which the linker created them.

9–4 Interpreting an Image Map File (Alpha and VAX)

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

" Type. The type of image section, expressed as one of the following codes:

Code Image Section Type

1 Shareable fixed image section

2 Private fixed image section

3 Shareable position-independent image section

4 Private position-independent image section

253 Stack image section

For more information about the types of image sections the linker creates, see
Section 7.3.5.

Pages or pagelets. The length of each image section, expressed in pages or
pagelets.

$ Base Address. The base address assigned to the image section. Note that
if the cluster is relocatable, the image activator relocates the base address.
In this case, the base address entry for each image section in the cluster
MY_MATH has the letter ‘‘R’’ appended to it, indicating that the base address
entry is an offset to be added to the cluster base address assigned by the
image activator.

For Alpha linking, when images are installed as resident images, the
Install utility moves image sections containing code into system space.
This invalidates the base addresses listed for these image sections in this
section of the map file. Note, however, that the relative positions of the
program sections within the image section, listed in the Program Section
Synopsis section of the map file, remain valid when the image section is
moved into system space.

% Disk VBN (virtual block number). The virtual block number of the image
file on disk where the image section begins. The number 0 indicates that the
image section is not in the image file.

& Page fault cluster (PFC). The number of pagelets read into memory by the
operating system when the initial page fault occurs for that image section.
The number 0 indicates that the system parameter PFCDEFAULT determines
this value, rather than the linker.

’ Protection and Paging. A keyword phrase that characterizes the settings
of certain attributes of the image section, such as the attributes that affect
protection and paging. The following table lists the keywords used by the
linker to indicate these characteristics of an image section:

Keyword Meaning

COPY ON REF Indicates that the image section is a copy-on-reference image
section. Because a copy-on-reference image section is readable
and writable, but not shareable, each process receives a copy of
it.

DEMAND ZERO Indicates that the image section is a demand-zero image
section. (For more information, see Section 7.4.3.)

EXECUTABLE Indicates that the image section contains code.

Interpreting an Image Map File (Alpha and VAX) 9–5

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

Keyword Meaning

FIXUP VECTORS Indicates that the image section contains the fix-up section.
There is always a change-protection fix-up for the fix-up section,
so that when the image activator is done, the image activator
changes the protection of the image section to READ ONLY.

NON-SHAREABLE
ADDRESS DATA

Indicates that the linker set a READ ONLY page in the image
section to WRITE so that the image activator can fix up address
references (.ADDRESS) in the image section. The linker creates
a change-protection fix-up for these image sections that causes
the image activator to set the attributes of the image section
back to READ ONLY when it finishes processing the address
references.

READ ONLY Indicates that the image section is protected against write
access.

READ WRITE Indicates that the image section allows both read and write
access.

The linker may use more than one keyword to describe an image section. For
example, to describe an image section that contains code, the linker uses the
READ ONLY and EXECUTABLE keywords.

Note that a program section that you may have protected from write access
(by setting the NOWRT program section attribute) may appear in the map
file as writable (with the READ WRITE keyword). If this program section
also has the NON-SHAREABLE ADDRESS DATA keyword (as the first image
section in DEFAULT_CLUSTER illustrates), the linker has enabled write
access to the program section to allow the image activator to fix up address
references in the image section at run time. The image activator resets the
program section attributes to READ ONLY after it is finished.

(Global Section Name. The name assigned by the linker to each image section
comprising a shareable image. The linker creates the names by appending
the characters ‘‘_00x’’ after the file name, where ‘‘x’’ is an integer, starting
with 1, and incremented for each image section in a shareable image.

) Match. The algorithm the image activator uses when comparing identification
numbers in a shareable image, expressed by the keyword LESS/EQUAL,
EQUAL, or ALWAYS. For more information about this topic, see the
description of the GSMATCH= option in Part 2.

+> Majorid. An identification number assigned to the image. The linker assigns
the number to the image if it is not specified as part of the link operation in
the GSMATCH= option.

+? Minorid. An identification number assigned to the image. The linker assigns
the number to the image if it is not specified as part of the link operation in
the GSMATCH= option.

9.2.4 Program Section Synopsis Section (Alpha/VAX)
The Program Section Synopsis section lists the program sections that comprise
the image, with information about the size of the program section, its starting-
and ending-addresses, and its attributes. The Module Name column in this
section lists the modules that contribute to each program section. The following
example illustrates this format:

9–6 Interpreting an Image Map File (Alpha and VAX)

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

 ++++++++++++++++++++++++++++
 ! Program Section Synopsis !
 ++++++++++++++++++++++++++++

Psect Name Module Name Base End Length Align Attributes

$LINK$ 00010000 000100BF 000000C0 (192.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 00010000 000100BF 000000C0 (192.) OCTA 4

MY_DATA 00010010 00010013 00000004 (4.) OCTA 4 NOPIC,OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MATH 00010010 00010010 00000000 (0.) OCTA 4
 MY_MAIN 00010010 00010013 00000004 (4.) OCTA 4

$LITERAL$ 000100C0 00010108 00000049 (73.) OCTA 4 PIC,CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 000100C0 00010108 00000049 (73.) OCTA 4

$READONLY$ 00010110 00010110 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 00010110 00010110 00000000 (0.) OCTA 4

BSS 00020000 00020000 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MAIN 00020000 00020000 00000000 (0.) OCTA 4

$DATA$ 00020000 00020000 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MAIN 00020000 00020000 00000000 (0.) OCTA 4

$CODE$ 00020000 0002011B 0000011C (284.) OCTA 4 PIC,CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
 MY_MAIN 00020000 0002011B 0000011C (284.) OCTA 4

VM-0319A-AI

1 2 3 4 5 6 7

The items in the following list correspond to the numbered items in the preceding
figure:

! Psect Name. The name of each program section in the image in ascending
order of its base virtual address.

" Module Name. The names of the modules that contribute to the program
section whose name appears on the line directly above in the Psect Name
column. If a shareable image appears in this column, the linker processed the
program section as a shareable image reference.

Base. The starting virtual address of the program section or of a module that
contributes to a program section.

$ End. The ending virtual address of the program section or of a module that
contributes to a program section.

% Length. The total length of the program section or of a module that
contributes to a program section.

& Align. The type of alignment used for the entire program section or for an
individual program section contribution. The alignment is expressed in two
ways. In the first column, the alignment is expressed using a predefined
keyword, such as OCTA. In the second column, the alignment is expressed as
an integer that is the power of 2 that creates the alignment. For example,
octaword alignment would be expressed as the keyword OCTA and as the
integer 4 (because 24 = 16).

If the linker does not support a keyword to express an alignment, it puts the
text ‘‘2 **’’ in the column in which the keyword usually appears. When read
with the integer in the second column, it expresses these alignments, such as
2 ** 5.

’ Attributes. The attributes associated with the program section. For a list of
all the possible attributes, see Chapter 7.

Interpreting an Image Map File (Alpha and VAX) 9–7

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

For Alpha linking, the linker includes the MOD attribute in the list of
program section attributes (as illustrated in the example). To make room
in the display for this attribute, the linker leaves out the Readability
(RD/NORD) and User Library (USR/LIB) attributes, which are reserved
for future use.

For VAX linking, the list of attributes includes the Readability (RD/NORD)
and User Library (USR/LIB) attributes. The Modified (MOD/NOMOD)
attribute, which is not supported for VAX images, is not included.

Note that, if a routine is extracted from the default system library to resolve a
symbolic reference, the Program Section Synopsis section in a full map contains
information about the program sections comprising that routine. The Program
Section Synopsis section in a default map does not.

9.2.5 Symbols By Name Section (Alpha/VAX)
The Symbols By Name section lists the global symbols contained in all the
modules included in the link operation. The section includes the value of the
symbol, in the following format:

+-----------------+
! Symbols By Name !
+-----------------+

Symbol ! Value " Symbol Value Symbol Value Symbol Value
------ ----- ------ ----- ------ ----- ------ -----
DECC$EXIT 00001FD0-RX
DECC$GPRINTF 00001710-RX
DECC$MAIN 000007D0-RX
MAIN 00010000-R
MYSUB 00000010-RX
MY_SYMBOL 00000050-RX
SYS$IMGSTA 00000340-RX
__MAIN 00010078-R

! Symbol. The names of the image’s global symbols in alphabetical order.

" Value. The value of the symbol, expressed in hexadecimal. The linker
appends characters to the end of the symbol value to describe other
characteristics of the symbol. For an explanation of these symbols, see
Section 9.2.7.

Note that this section is replaced by the Symbol Cross-Reference section when
you specify the /CROSS_REFERENCE qualifier in the LINK command. The
Symbols by Value section, described in Section 9.2.7, lists the same symbols by
value.

9.2.6 Symbol Cross-Reference Section (Alpha/VAX)
The Symbol Cross-Reference Section, which is produced in place of the Symbols
By Name section when you specify the /CROSS_REFERENCE qualifier, lists all
of the symbols referenced in the image, along with the module in which they are
defined and with all the modules that reference them. The section formats this
information as in the following example:

9–8 Interpreting an Image Map File (Alpha and VAX)

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

+------------------------+
! Symbol Cross Reference !
+------------------------+

Symbol ! Value " Defined By # Referenced By ... $
------ ----- ---------- -----------------
DECC$EXIT 00001FD0-RX DECC$SHR MY_MAIN
DECC$GPRINTF 00001710-RX DECC$SHR MY_MAIN
DECC$MAIN 000007D0-RX DECC$SHR MY_MAIN
MAIN 00010000-R MY_MAIN
MYSUB 00000010-RX MY_MATH MY_MAIN
MY_SYMBOL 00000050-RX MY_MATH MY_MAIN
SYS$IMGSTA 00000340-RX SYS$PUBLIC_VECTORS
__MAIN 00010078-R MY_MAIN

! Symbol. The name of the global symbol.

" Value. The value of the global symbol, expressed in hexadecimal. The
linker appends characters to the end of the symbol value to describe other
characteristics of the symbol. For an explanation of these symbols, see
Section 9.2.7.

Defined By. The name of the module in which the symbol is defined. For
example, the symbol mysub is defined in the module named MY_MATH.

$ Referenced By.... The name or names of all the modules that contain at least
one reference to the symbol.

9.2.7 Symbols By Value Section (Alpha/VAX)
The Symbols By Value section lists all the global symbols in the image in order
by value, in ascending numeric order. The linker formats the information into
columns, as in the following example:

+------------------+
! Symbols By Value !
+------------------+

Value ! Symbols..."
----- ----------
00000010 RX-MYSUB
00000050 RX-MY_SYMBOL
00000340 RX-SYS$IMGSTA
000007D0 RX-DECC$MAIN
00001710 RX-DECC$GPRINTF
00001FD0 RX-DECC$EXIT
00010000 R-MAIN
00010078 R-__MAIN

! Value. The value of each global symbol, expressed in hexadecimal, in
ascending numerical order.

" Symbols... The names of the global symbols. If more than one symbol has
the same value, the linker lists them on more than one line. The characters
prefixed to the symbol names indicate other characteristics of the symbol,
suchas its scope. Table 9–3 lists these codes.

Interpreting an Image Map File (Alpha and VAX) 9–9

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

Table 9–3 Symbol Characterization Codes (Alpha/VAX)

Code Meaning

asterisk(*) Symbol is undefined.

†A Symbol is the alias name for a universal symbol.

†I Symbol is the internal name of a symbol that has a universal alias name.

U Symbol is a universal symbol.

R Symbol is a relocatable symbol.

X Symbol is an external symbol.

WK Symbol is a weak symbol. (For more information, see Chapter 6.)

†Alpha specific

9.2.8 Image Synopsis Section (Alpha/VAX)
The Image Synopsis section contains miscellaneous information about the image,
such as its name and identification numbers, and a summary of various attributes
of the image, such as the number of files used to build the image. The following
example illustrates the format of this section of a map file. The list following
the example provides more information about items in this section that are not
self-explanatory.

+----------------+
! Image Synopsis !
+----------------+

Virtual memory allocated:! 00010000 0003FFFF 00030000 (196608. bytes, 384. pages)
Stack size: 20. pages
Image header virtual block limits: 1. 2. (2. blocks)
Image binary virtual block limits: 3. 5. (3. blocks)
Image name and identification: MY_MAIN V1.0
Number of files: 7.
Number of modules: 4.
Number of program sections: 11.
Number of global symbols: 944.
Number of cross references: 13.
Number of image sections: 20.
User transfer address: 00010078
Debugger transfer address: 00000340
Number of code references to shareable images: 6.
Image type: EXECUTABLE.
Map format: FULL WITH CROSS REFERENCE in file WORK:[PROGS]MY_MAIN.MAP;15
Estimated map length: 148. blocks

The following list explains the information returned in each line of the Image
Synopsis section:

! Virtual memory allocated. This line contains the following information:

• The starting-address of the image (base-address)

• The ending-address of the image

• The total size of the image, expressed in bytes, in hexadecimal radix

The numbers in parentheses at the end of the line indicate the total size of the
image, expressed in bytes and in pagelets. Both these values are expressed in
decimal.

9–10 Interpreting an Image Map File (Alpha and VAX)

Interpreting an Image Map File (Alpha and VAX)
9.2 Components of an Image Map File (Alpha/VAX)

9.2.9 Link Run Statistics Section (Alpha/VAX)
The Link Run Statistics section contains miscellaneous statistical information
about the link operation, such as performance indicators, formatted as in the
following example:

+---------------------+
! Link Run Statistics !
+---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------

Command processing: 93 00:00:00.18 00:00:00.81
Pass 1: 345 00:00:00.55 00:00:12.04
Allocation/Relocation: 9 00:00:00.04 00:00:00.30
Pass 2: 29 00:00:00.14 00:00:00.62
Map data after object module synopsis: 3 00:00:00.05 00:00:00.31
Symbol table output: 0 00:00:00.00 00:00:00.10

Total run values: 479 00:00:00.96 00:00:14.18

Using a working set limited to 2048 pages and 946 pages of data storage (excluding image)

Total number object records read (both passes): 167
of which 0 were in libraries and 0 were DEBUG data records containing 0 bytes

Number of modules extracted explicitly = 0
with 0 extracted to resolve undefined symbols

5 library searches were for symbols not in the library searched

A total of 0 global symbol table records was written

LINK/MAP/FULL/CROSS MY_MAIN,SYS$INPUT/OPT
my_math/share

Interpreting an Image Map File (Alpha and VAX) 9–11

Part IV
LINK Command Reference

LINK

LINK

Invokes the OpenVMS Linker utility to link one or more input files into a
program image and defines the execution characteristics of the image.

Format

LINK file-spec [,...]

Qualifiers Defaults

/ALPHA Platform dependent (Alpha and VAX),
see reference description.

/BASE_ADDRESS[=address] /NOBASE_ADDRESS (I64 only)
/BPAGE[=page-size-indicator] Platform dependent,

see reference description.
/BRIEF None.
/CONTIGUOUS /NOCONTIGUOUS
/CROSS_REFERENCE None.
/DEBUG[=file-spec] /NODEBUG
/DEMAND_ZERO[=PER_PAGE] /DEMAND_ZERO (I64 and Alpha)
/DNI /DNI (I64 only)
(Display Name Information)

/DSF[=file-spec] /NODSF (I64 and Alpha)
(Debug Symbol File)

/EXECUTABLE[=file-spec] /EXECUTABLE
/FP_MODE=keyword /NOFP_MODE (I64 only)
/FULL[=(keyword[,...])] None.
/GST /GST (I64 and Alpha)
(Global Symbol Table)

/HEADER /NOHEADER (Alpha and VAX) *
/INCLUDE=(module-name[,...]) None.
/INFORMATIONALS /INFORMATIONALS
/LIBRARY None.
/MAP[=file-spec] /NOMAP (in interactive mode)
/NATIVE_ONLY /NATIVE_ONLY (I64 and Alpha)
/OPTIONS None.
/P0IMAGE /NOP0IMAGE
/PROTECT /NOPROTECT
/REPLACE /REPLACE (Alpha only) *
/SECTION_BINDING[=(CODE,DATA)] /NOSECTION_BINDING (Alpha only) *
/SEGMENT_ATTRIBUTE=(segm-attribute,[...]) None. (I64 only)
/SELECTIVE_SEARCH None.
/SHAREABLE[=file-spec] /NOSHAREABLE
/SYMBOL_TABLE[=file-spec] /NOSYMBOL_TABLE
/SYSEXE /NOSYSEXE (I64 and Alpha)
/SYSLIB /SYSLIB
/SYSSHR /SYSSHR
/SYSTEM[=base-address] /NOSYSTEM (Alpha and VAX)
/THREADS_ENABLE /NOTHREADS_ENABLE
/TRACE /TRACE
/USERLIBRARY[=(table[,...])] /USERLIBRARY=ALL
/VAX Platform dependent (Alpha and VAX),

see reference description.
* On I64, the qualifier is accepted by the linker but has no effect.

LINKER–3

LINKER Qualifiers

Parameters

file-spec [,...]
Specifies one or more input files (wildcard characters are not allowed). Input files
may be object modules, shareable images, libraries to be searched for external
references or from which specific modules are to be included, or options files to be
read by the linker. Separate multiple input file specifications with commas (,) or
plus signs (+). In either case, the linker creates a single image file.

If you omit the file type in an input file specification, the linker supplies default
file types, based on the nature of the input file. For object modules, the default
file type is .OBJ. For more information about specifying input files, see Chapter 1.

Qualifier Descriptions

This section describes the LINK command qualifiers.

LINKER–4

LINKER Qualifiers

/ALPHA (Alpha and VAX)

Directs the linker to produce an OpenVMS Alpha image.

On OpenVMS Alpha or VAX systems, when neither /ALPHA nor /VAX is specified,
the default action is to create an OpenVMS VAX image on an OpenVMS VAX
system and to create an OpenVMS Alpha image on an OpenVMS Alpha system.

Format

/ALPHA

Qualifier Values

None.

Description

This qualifier is used to instruct the linker to accept OpenVMS Alpha object files
and library files to produce an OpenVMS Alpha image.

You must inform the linker where OpenVMS Alpha system libraries and
shareable images are located with the logical names ALPHA$LOADABLE_
IMAGES and ALPHA$LIBRARY. On an OpenVMS Alpha system, these logicals
are already defined to point to the correct directories on the current system disk.
On OpenVMS VAX, you must define these logical names so that they translate to
the location of an OpenVMS Alpha system disk residing on the system where the
Alpha linking is to occur.

For more information on cross-architecture linking, see Section 1.5.

Example

$ DEFINE ALPHA$LIBRARY DKB100:[VMS$COMMON.SYSLIB]
$ DEFINE ALPHA$LOADABLE_IMAGES DKB100:[VMS$COMMON.SYS$LDR]
$ LINK/ALPHA ALPHA.OBJ

This example, which is performed on an OpenVMS VAX system, shows the
definition of logical names to point to the appropriate areas on an OpenVMS
Alpha system disk mounted on device DKB100. The qualifier /ALPHA tells the
linker to expect the object file, ALPHA.OBJ, to be an OpenVMS Alpha object
file and to link it using the OpenVMS Alpha libraries and images on DKB100, if
necessary.

LINKER–5

LINKER Qualifiers

/BASE_ADDRESS (I64 Only)

This qualifier is valid only for the OpenVMS I64 Linker.

Assigns a virtual address for executable images that are not activated by the
OpenVMS image activator, such as images used in the boot process.

Format

/BASE_ADDRESS=address

/NOBASE_ADDRESS (default)

Qualifier Values

address
The location at which you want the first segment of the executable image located.
You can express this location as decimal (%D), octal (%O), or hexadecimal (%X)
numbers. The default is hexadecimal.

Description

The /BASE_ADDRESS qualifier assigns a virtual address for executable images
that are not activated by the OpenVMS image activator, such as images used
in the boot process. The base address is the starting address that you want the
linker to assign to an executable image. The OpenVMS image activator is free to
ignore any linker-assigned starting address. This qualifier is used primarily by
system developers.

The /BASE_ADDRESS qualifier does not replace the BASE= option or the
base-address specifier in the CLUSTER= option, which is illegal on OpenVMS
I64.

For all images (executable and shareable), the starting address is determined
by the image activator. Any linker assigned address value can be changed when
activating the image.

LINKER–6

LINKER Qualifiers

/BPAGE

Specifies the page size the linker should use when it creates the segments (I64) or
image sections (Alpha and VAX) that make up an image.

Format

/BPAGE[=page-size-indicator]

Qualifier Values

page-size-indicator
An integer that specifies a page size as the power of 2 required to create a page
that size. For example, to get an 8 KB page size, specify the value 13 because 213

equals 8K. The following table lists the page sizes supported by the linker with
the defaults:

Value Page Size Defaults

9 512 bytes Default value for VAX links when the /BPAGE
qualifier is not specified.

13 8 KB Default value for VAX links when the /BPAGE
qualifier is specified without a value.

14 16 KB –
15 32 KB –
16 64 KB Default value for I64 and Alpha links when /BPAGE

is not specified or when the /BPAGE qualifier is
specified without a value.

Description

The images the linker creates are made up of segments (I64) or image sections
(Alpha and VAX) that the linker allocates on page boundaries. When you specify
a larger page size, the origin of segments or image sections increases to the next
multiple of that size.

An image linked to a page size that is larger than the page size of the CPU
generally runs correctly, but it might consume more virtual address space.

For I64 and Alpha linking, by default the linker creates segments or image
sections on 64 KB boundaries, thus allowing the images to run properly on any
I64 and Alpha system, regardless of the hardware page size.

For VAX linking, linking a shareable image to a larger page size can cause the
value of transfer vector offsets to change if they were not allocated in page 0
of the image. Do not link against a shareable image that was created with a
different page size. (You cannot determine the page size used in the creation of a
VAX image from the image.)

LINKER–7

LINKER Qualifiers

Example

$ LINK/BPAGE=16 MY_PROG.OBJ

Including the value 16 with the /BPAGE qualifier causes the linker to create
segments (I64) or image sections (Alpha and VAX) on 64 KB page boundaries.

LINKER–8

LINKER Qualifiers

/BRIEF

Directs the linker to produce a brief image map. For more information, see also
the /MAP and /FULL qualifiers.

Format

/MAP/BRIEF

Qualifier Values

None.

Description

On I64, a brief map contains the following sections:

• Object and Image Synopsis

• Image Segment Synopsis

• Link Run Statistics

On Alpha and VAX, a brief map contains the following sections:

• Object Module Synopsis

• Image Section Synopsis

• Link Run Statistics

In contrast, the default image map on I64 contains the Object and Image
Synopsis, Image Synopsis, Link Run Statistics, Program Section Synopsis, and
Symbols By Name sections. On Alpha and VAX the default image map contains
the Object Module Synopsis, Image Synopsis, Link Run Statistics, Program
Section Synopsis, and Symbols By Name sections. For more information about
image maps, see Chapter 5 (I64) and Chapter 9 (Alpha and VAX).

The /BRIEF qualifier must be specified with the /MAP qualifier and is
incompatible with the /FULL qualifier and the /CROSS_REFERENCE qualifier.

Example

$ LINK/MAP/BRIEF MY_PROG

In this example, the linker creates a brief image map with the file name MY_
PROG.MAP.

LINKER–9

LINKER Qualifiers

/CONTIGUOUS

Directs the linker to place the entire image in consecutive disk blocks. If
sufficient contiguous space is not available on the output disk, the linker reports
an error and terminates the link operation.

Format

/CONTIGUOUS

/NOCONTIGUOUS (default)

Qualifier Values

None.

Description

You can use the /CONTIGUOUS qualifier to speed up the activation time of any
type of image because images usually activate more slowly if their image disk
blocks are not contiguous. Note, however, that in most cases performance benefits
do not warrant the use of the /CONTIGUOUS qualifier.

You can also use the /CONTIGUOUS qualifier when linking bootstrap programs
for certain system images that require contiguity.

Even when you do not specify the /CONTIGUOUS qualifier, the file system
tries to use contiguous disk blocks for images, if sufficient contiguous space is
available.

Example

$ LINK/CONTIGUOUS MY_PROG

This example directs the linker to place the entire image named MY_PROG.EXE
in consecutive disk blocks.

LINKER–10

LINKER Qualifiers

/CROSS_REFERENCE

Directs the linker to replace the Symbols By Name section in a full or default
image map with the Symbol Cross-Reference section.

Format

/MAP/CROSS_REFERENCE

Qualifier Values

None.

Description

The Symbol Cross-Reference section lists, in alphabetical order, the name of each
global symbol, together with the following information about each:

• Its value

• The name of the first module in which it is defined

• The name of each module in which it is referenced

The number of symbols listed in the cross-reference section depends on whether
the linker generates a full map or a default map. In a full map, this section
includes global symbols from all modules in the image, including those extracted
from all libraries. In a default map, this section does not include global symbols
from modules extracted from the default system libraries IMAGELIB.OLB and
STARLET.OLB. For more information about image map files, see Chapter 5 (I64)
and Chapter 9 (Alpha and VAX).

The /CROSS_REFERENCE qualifier is incompatible with the /BRIEF qualifier.

Example

$ LINK/MAP/CROSS_REFERENCE MY_PROG

This example produces an image map file named MY_PROG.MAP that includes a
Symbol Cross-Reference section.

LINKER–11

LINKER Qualifiers

/DEBUG

Directs the linker to generate debug and traceback information and to give the
debugger control when the image is run.

Format

/DEBUG[=file-spec]

/NODEBUG (default)

Qualifier Values

file-spec (Alpha and VAX)
Identifies a user-written debugger module.

If you specify the /DEBUG qualifier without entering a file specification, the
OpenVMS Debugger gains control at run time. Requesting the OpenVMS
Debugger does not affect the location of code within the image because the
debugger is mapped into the process address space at run time, not at link time.
See the HP OpenVMS Debugger Manual for additional information.

On I64 systems, a file specification is not allowed.

On Alpha and VAX, if you specify the /DEBUG qualifier with a file specification,
the user-written debugger module that the file specification identifies gains
control at run time. The linker assumes a default file type of .OBJ. Requesting a
user- written debugger module does affect the location of code within the image.

Description

The /DEBUG qualifier automatically includes the /TRACE qualifier. If you specify
the /DEBUG qualifier and the /NOTRACE qualifier, the linker overrides your
specification and includes traceback information.

To debug a shareable image, you must compile and link it with the /DEBUG
qualifier and then include it in a link operation that creates a debuggable image
(that link operation must also use the /DEBUG qualifier).

On I64, the Table 3–10 indicates where global symbol definitions are written
during a link operation that uses the debug related qualifiers as /DEBUG, /DSF
or /TRACE. See also Table 3–9) how these qualifiers determine the link flags in
the generated image.

For I64 and Alpha, the Table LINKER–1 shows the effects of debug-related
qualifiers when running an image.

LINKER–12

LINKER Qualifiers

Table LINKER–1 Effects of /DEBUG, /DSF and /TRACE when Running an Image on I64 and
Alpha

RUN RUN/DEBUG RUN/NODEBUG Traceback Info Debug Info

/NoTrace
/NoDebug
/NoDSF

Start main Same as RUN Same as RUN None None

/Trace
/NoDebug
/NoDSF

Enable traceback
handler; start
main

Set initial
breakpoint; start
debugger

Same as RUN Automatic: in
image

None

/NoTrace
/Debug
/NoDSF

The linker converts /NoTrace to /Trace: see next row

/Trace
/Debug
/NoDSF

Set initial
breakpoint; start
debugger

Same as RUN Enable traceback
handler; start
main

Automatic: in
image

Automatic: in
image

/NoTrace
/NoDebug
/DSF

Start main Same as RUN Same as RUN Not used Not used

/Trace
/NoDebug
/DSF

Enable traceback
handler; start
main

Set initial
breakpoint; start
debugger

Same as RUN Automatic: in
image1

Manual: in DSF

/NoTrace
/Debug
/DSF

The linker converts /NoTrace to /Trace: see next row

/Trace
/Debug
/DSF

Set initial
breakpoint; start
debugger

Same as RUN Enable traceback
handler; start
main

Automatic: in
image1

Manual: in DSF

1I64 only, on Alpha the traceback info is in the DSF file; for a RUN, the traceback handler is enabled but it can not print
the line information, because it is not in the image.

Additional information:

• The VAX linker does not generate a DSF file. For VAX, a reduced table with
/NoDSF lines applies.

• Start main - Execution starts at the main entry of the image

• None—No traceback or debug information is generated by the linker

• Enable traceback handler—In case of an error, a traceback with source line
information is printed. if there is no handler, in case of an error, a register
dump is printed.

• Set initial breakpoint—Depending on the programming language, the initial
breakpoint may be at main or before main

• Start debugger—The debugger controls the execution of the image

• Not used—There is traceback or debug information in the image or DSF file,
however it is not used.

• Automatic—Automatically found by the debugger.

• Manual—Automatically found by the debugger if the DSF is in the same
directory as the image. Manually points to a different directory of the DSF
file with the logical DBG$IMAGE_DSF_PATH.

LINKER–13

LINKER Qualifiers

Example

$ LINK/DEBUG MY_PROG

This example produces an executable image named MY_PROG.EXE. Upon image
activation, control will be passed to the debugger.

LINKER–14

LINKER Qualifiers

/DEMAND_ZERO (I64 and Alpha)

For I64 and Alpha linking, enables demand-zero segment (I64) or image section
(Alpha) production for both executable and shareable images.

Format

/DEMAND_ZERO (default)

/DEMAND_ZERO[=PER_PAGE]

/NODEMAND_ZERO

Qualifier Values

PER_PAGE
On I64, directs the linker to compress trailing zeros for each segment (that is,
demand-zero compression of zeros on trailing pages).

On Alpha, enables the linker to perform demand-zero compression on Alpha
images on a per-page basis. If this keyword is not used, the linker performs
demand-zero compression on an image-section basis only.

Description

On I64 system, compilers identify uninitialized sections by setting the NOBITS
section type, which is interpreted by the linker as the NOMOD program section
attribute.

On Alpha systems, compilers identify to the linker which program sections have
not been initialized by setting the NOMOD program section attribute.

The linker collects these uninitialized program sections into demand-zero
segments (I64) or image sections (Alpha). (For more information about
demand-zero segment or image section production, see Section 3.4.4 for I64
and Section 7.4.3 for Alpha.)

If you specify the /NODEMAND_ZERO qualifier, the linker still gathers
uninitialized program sections into demand-zero segments or image sections
but writes them to disk. Thus, the virtual memory layout of an image is the same
when the /DEMAND_ZERO qualifier is specified and when the /NODEMAND_
ZERO qualifier is specified.

If you specify the /NODEMAND_ZERO qualifier, the linker turns the demand-
zero segments or image sections containing the NOMOD sections into regular
segments or image sections. The Alpha linker sets the copy-on-reference (CRF)
attribute if the write (WRT) attribute is set.

To force the linker to write a section to disk that otherwise would be included in
a demand-zero segment or image section, turn off the NOMOD attribute of the
section by using the PSECT_ATTRIBUTE= option, as in the following example:

PSECT_ATTRIBUTE=psect-name,MOD

Note that only language processors can set the NOMOD attribute of a section.

LINKER–15

LINKER Qualifiers

Examples

1. $ LINK/NODEMAND_ZERO

In this example, the linker does not perform demand-zero compression.

2. $ LINK/DEMAND_ZERO

In this example, the linker by default performs demand-zero compression on
a per-segment (I64) or per-image-section (Alpha) basis.

3. $ LINK/DEMAND_ZERO=PER_PAGE

In this example, on I64, the linker performs demand-zero compression on both
a per-segment and per-trailing-pages basis. On Alpha, the linker performs
demand-zero compression on both a per-image-section basis and a per-page
basis.

LINKER–16

LINKER Qualifiers

/DNI (Display Name Information, I64 Only)

Controls the processing of the demangling information. Specify /DNI (the default)
to allow the linker to attempt symbol name demangling and move the necessary
demangling information into the shareable image being created.

Format

/DNI (default)

/NODNI

Qualifier Values

None.

Description

The /DNI qualifier controls the processing of the demangling information.

The object modules generated by the HP C, HP C++, GNAT Pro Ada, and possibly
other compilers can have symbol names in the symbol table that have been
altered; a process is commonly referred to as "mangling". These names are the
symbol names visible to the linker, which the linker uses for symbol resolution.

The reason for mangling can be an overload feature in the programming language
or simply the need to uniquely shorten names. When you link such modules and
get an undefined-symbol message, the linker displays only the symbol name from
the object module’s symbol table (that is, the mangled name). This processing
makes it difficult to match the undefined, mangled symbol with the unmangled,
source code name. The linker displays the source code name; that is, the linker
can "demangle" the undefined symbol name. Further, if there is demangling
information for universal symbols (that is, those to be exported from a shareable
image), the linker can include that information in the generated shareable images
so that when you link against the shareable image at a later time, the linker can
demangle the name when it issues an error message.

The symbol resolution process remains unchanged. The linker still uses the
mangled symbol names for symbol definitions and to resolve symbol references.
The symbol vector option remains the same as well; it still requires the names
found in the symbol tables (the mangled names).

Specify /DNI (the default) to allow the linker to attempt symbol name demangling
and move the necessary demangling information into the shareable image being
created. Specify /NODNI when:

• You do not want the demangled names to be displayed in error messages.

• You do not want the demangling information to be moved into the shareable
image.

LINKER–17

LINKER Qualifiers

/DSF (Debug Symbol File, I64 and Alpha Only)

For I64 and Alpha linking, directs the linker to create a file called a debug symbol
file (DSF) for use by the OpenVMS Debugger or the OpenVMS System-Code
Debugger.

Format

/DSF[=file-spec]

/NODSF (default)

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the debug
symbol file. If you do not include a file type in the character string, the linker
appends the .DSF file type to the file name.

If you specify the /DSF qualifier without the file specification, the linker creates
a debug symbol file with the file name of the first input file and the default file
type .DSF. If you append the /DSF qualifier to one of the input file specifications,
the linker creates a debug symbol file with the file name of the file to which the
qualifier is appended and with the default file type .DSF.

The OpenVMS Debugger (whether you use it in System-Code Debugger mode or
user mode) requires that the name of the DSF file be the same as the name of the
image file, except that the file extension is .DSF. If you use the /EXECUTABLE or
/SHAREABLE qualifier and a file name with the LINK command, you must also
include the same file name with the /DSF qualifier. (You must also use the .DSF
file type.)

Description

The /DSF qualifier directs the linker to create a separate file to contain the debug
information used by the OpenVMS Debugger. The /DSF qualifier can be used
with the /NOTRACE qualifier to suppress the call of SYS$IMGSTA at activation
time. For I64 linking, the /DSF qualifier determines link flags and if traceback
information is written into the image file (see Table 3–9). For Alpha linking,
the /DSF qualifier has no effect on the contents of the image, including the
image header. For more information on the effects of using /DSF combined with
/DEBUG and /TRACE, see /DEBUG.

To use the information in the DSF file when you run the image and in case the
DSF file is not in the same directory as the image file, you must define the logical
name DBG$IMAGE_DSF_PATH to point to disk and directory where the DSF file
resides. For more information, see the HP OpenVMS Debugger Manual.

Example

$ LINK/DSF/NOTRACE MY_PROG.OBJ

In this example, the linker creates the files MY_PROG.DSF and MY_PROG.EXE.

LINKER–18

LINKER Qualifiers

/EXECUTABLE

Directs the linker to create an executable image, as opposed to a shareable image
or a system image.

Format

/EXECUTABLE[=file-spec] (default)

/NOEXECUTABLE

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the
image file produced by the link operation. If you do not specify a file type in the
character string, the linker assigns the .EXE file type by default.

If you do not specify a file name with the /EXECUTABLE qualifier, the linker
creates an executable image with the file name of the first input file. If you
append the /EXECUTABLE qualifier to an input file specification, the linker
creates an executable image with the file name of the file to which the qualifier is
appended.

Description

The /NOEXECUTABLE qualifier directs the linker to perform the linking
operation but to not create an image file. Use the /NOEXECUTABLE qualifier
to have the linker process the input files you specify without creating an image
file to check for errors in your LINK command syntax or other link-time errors.
You can also use the linker to produce a map file or symbol table file only
by specifying the /NOEXECUTABLE qualifier with the /MAP qualifier or the
/SYMBOL_TABLE qualifier.

The linker assumes the /EXECUTABLE qualifier as the default unless you specify
the /NOEXECUTABLE qualifier, the /SHAREABLE qualifier, or the /SYSTEM
qualifier. Note, however, that on Alpha and VAX, when used with the /SYSTEM
qualifier, you can use the /EXECUTABLE qualifier to specify the name of a
system image.

Examples

1. $ LINK/NOEXECUTABLE MY_PROG

This example directs the linker to link the object module in the file MY_
PROG.OBJ without creating an image file.

2. $ LINK/EXECUTABLE MY_PROG

This example directs the linker to produce an executable image named MY_
PROG.EXE. (The command line $ LINK MY_PROG will yield the same result
because the /EXECUTABLE qualifier is the default.)

3. $ LINK/EXECUTABLE=MY_IMAGE MY_PROG

This example directs the linker to produce an executable image with the
name MY_IMAGE.EXE instead of the name MY_PROG.EXE.

LINKER–19

LINKER Qualifiers

/FP_MODE (I64 Only)

Determines the program’s initial floating-point mode when one is not provided by
the module that provides the main transfer address.

Format

/FP_MODE=keyword

/NOFP_MODE (default)

Qualifier Values

keyword
The OpenVMS I64 Linker accepts the following keywords to set the floating-point
mode:

Keyword Description

D_FLOAT, G_FLOAT Sets VAX floating-point modes.
IEEE_FLOAT[=ieee_behavior] Sets the IEEE floating-point mode

to the default or a specific behavior.
The OpenVMS I64 Linker accepts the
following IEEE behavior keywords:

FAST
UNDERFLOW_TO_ZERO
DENORM_RESULTS (default)
INEXACT

LITERAL=fp_ctrl_mask Sets the floating-point mode to a literal
control mask. You can express this
mask as a decimal (%D), octal (%O),
or hexadecimal (%X) value (for example
%X09800000, which is equivalent to
the default, IEEE_FLOAT=DENORM_
RESULTS).

Description

The OpenVMS I64 Linker determines the program’s initial floating-point mode
using the floating point mode provided by the module that provides the main
transfer address. Use the /FP_MODE qualifier to set an initial floating point
mode only if the module that provides the main transfer address does not provide
an initial floating-point mode. The /FP_MODE qualifier does not override an
initial floating point mode provided by the main transfer module.

For more information about the initial floating-point mode, see the HP OpenVMS
Calling Standard Manual.

LINKER–20

LINKER Qualifiers

/FULL

Directs the linker to create a full image map file. For more information, see also
the /MAP, /CROSS_REFERENCE, and /BRIEF qualifiers.

Format

/MAP/FULL[=(keyword[,...])]

Qualifier Values

keyword (I64 only)
The OpenVMS I64 Linker accepts the following keywords to tailor the map (the
default is /FULL=SECTION_DETAILS):

Keyword Description

ALL For the OpenVMS I64 Linker, the ALL
keyword is equivalent to specifying the
DEMANGLED_SYMBOLS, GROUP_
SECTIONS and SECTION_DETAILS
keywords.

DEMANGLED_SYMBOLS For the I64 linker, when display
name information is available and
processed (DNI), directs the linker to
add a translation table to the map file.
The table contains both mangled and
demangled names for global symbols.

GROUP_SECTIONS Directs the OpenVMS I64 Linker to list
all processed groups.

[NO]SECTION_DETAILS Directs whether or not the OpenVMS
I64 Linker suppresses zero length
contributions in the Program Section
Synopsis.

Description

On I64, a full map contains the following sections:

• Object and Image Synopsis

• Cluster Synopsis

• Image Segment Synopsis

• Program Section Synopsis

• Symbols By Name (and the Symbol Cross-Reference section if the
/CROSS_REFERENCE qualifier is specified)

• Symbols By Value

• Image Synopsis

• Link Run Statistics

LINKER–21

LINKER Qualifiers

On Alpha and VAX, a full map contains the following sections:

• Object Module Synopsis

• Module Relocatable Reference Synopsis (VAX linking only)

• Image Section Synopsis

• Program Section Synopsis

• Symbols By Name (and the Symbol Cross-Reference section if the
/CROSS_REFERENCE qualifier is specified)

• Symbols By Value

• Image Synopsis

• Link Run Statistics

By default, a full linker map on I64, Alpha, and VAX systems lists all the module
contributions in the Program Section Synopsis.

The full map also contains information about modules included from the default
system libraries STARLET.OLB and IMAGELIB.OLB in the Object Module
Synopsis, Program Section Synopsis, and Symbols By Name sections. For more
information about image map files, see Chapter 5 (I64) and Chapter 9.

The /FULL qualifier is valid only if you also specify the /MAP qualifier in
the LINK command. The /FULL qualifier is compatible with the /CROSS_
REFERENCE qualifier, but it is not compatible with the /BRIEF qualifier.

On I64, you can request a map section containing a translation table for the
global symbol definitions. This table correlates the mangled symbol names with
their demangled equivalents. By default, the linker does not generate this section
in the map file. To request this section, specify the keyword DEMANGLED_
SYMBOLS to the /FULL qualifier. As with other keywords for the /FULL
qualifier, specify the /MAP qualifier. You should not specify the /NODNI qualifier.
The translation table in the map can be helpful to verify the symbol vector
entries.

Example

$ LINK/MAP/FULL MY_PROG

This example directs the linker to produce a full image map named
MY_PROG.MAP.

LINKER–22

LINKER Qualifiers

/GST (I64 and Alpha)

For Alpha and I64 linking, directs the linker to include in the global symbol table
(GST) of a shareable image those symbols that have been declared as universal
symbols in a symbol vector.

Format

/GST (default)

/NOGST

Qualifier Values

None.

Description

By default, the linker lists in the GST of a shareable image the global symbols
in the image that have been declared universal. By listing these symbols in
the GST, the linker allows them to be referenced in link operations where the
shareable image is specified as an input file.

To create a shareable image that can be activated by the images that linked
against it, but that cannot be used to resolve symbolic references in a link
operation, you can specify the /NOGST qualifier. When this qualifier is specified,
the linker creates the image with an empty GST. (The linker still creates a GST.)
By using the /NOGST qualifier, you can create a run-time version of a shareable
image without having to remove the symbol vector from the link operation.

The images that were linked against the shareable image can still access symbols
within the image because the /NOGST qualifier does not affect the symbol vector
in the image.

This qualifier is valid only when used with the /SHAREABLE qualifier to create
a shareable image.

Example

$ LINK/NOGST/SHAREABLE MY_SHARE,UNIVERSALS/OPTIONS

This example creates the shareable image MY_PROG.EXE without listing entries
for universal symbols in its global symbol table. The image contains an empty
global symbol table.

LINKER–23

LINKER Qualifiers

/HEADER (Alpha and VAX)

On Alpha and VAX systems, when specified with the /SYSTEM qualifier, directs
the linker to include an image header in a system image.

This qualifier is ignored by the OpenVMS I64 Linker.

Format

/HEADER

/NOHEADER (default)

Qualifier Values

None.

Description

On Alpha and VAX systems, the linker always creates executable images and
shareable images with headers; a required component of those image files. The
linker creates system images without a header by default. To create a system
image with a header, you must specify the /HEADER qualifier along with the
/SYSTEM qualifier on the command line.

The linker ignores the /HEADER qualifier if it is specified for any other type of
image (executable or shareable).

Example

$ LINK/SYSTEM/HEADER MY_SYS

This example directs the linker to produce a system image named MY_SYS.EXE
with an image header. For more information about when to specify the /HEADER
qualifier with the /SYSTEM qualifier, see the description of the /SYSTEM
qualifier.

LINKER–24

LINKER Qualifiers

/INCLUDE

Identifies the input file specification to which it is appended as a library file and
directs the linker to include in the link operation the module or modules specified
as the value of the qualifier.

Format

library-name/INCLUDE=(module-name[,...])

Qualifier Values

library-name
Specifies the name of the library from which you want a module or modules
extracted. The file name must specify a library file. The linker assumes the
default file type of .OLB.

module-name
Specifies the module or modules that you want to extract from the library. To
specify more than one module, enclose the list in parentheses and separate the
module names with commas.

Description

Note that the /INCLUDE qualifier does not cause the linker to process the library
for the definitions of unresolved symbolic references. If you want the linker to
search the library for definitions of unresolved symbols, you must also specify the
/LIBRARY qualifier before the /INCLUDE qualifier.

Examples

1. $ LINK MY_PROG,MY_LIB/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to include modules MOD1, MOD2, and MOD5
from the library MY_LIB.OLB in the link operation with MY_PROG.

2. $ LINK MY_PROG,MY_LIB/LIBRARY/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to extract modules MOD1, MOD2, and MOD5
from the library MY_LIB.OLB and then to search that library for symbol
definitions that are unresolved in all four modules.

LINKER–25

LINKER Qualifiers

/INFORMATIONALS

Directs the linker to output informational messages produced by a link operation.

Format

/INFORMATIONALS (default)

/NOINFORMATIONALS

Qualifier Values

None.

Description

The linker outputs informational messages by default. To suppress informational
messages, specify the /NOINFORMATIONALS qualifier.

Example

$ LINK/NOINFORMATIONALS MY_PROG

When the /NOINFORMATIONALS qualifier is specified, informational messages
are suppressed.

LINKER–26

LINKER Qualifiers

/LIBRARY

Identifies the input file specification to which it is appended as a library file
and directs the linker to process the library’s name table as part of its symbol
resolution processing. When the linker finds in the library the definition of a
symbol referenced in a previously processed input file, the linker includes from
the library the module in which the symbol is defined.

Format

library-name/LIBRARY

Qualifier Values

library-name
Specifies the name of the library to be included in the link operation. You must
specify a library file. The linker assumes the default file type of .OLB.

Description

The order in which a library file is specified in the command string (or in an
options file) is important because the linker uses the library file to resolve
undefined symbols in previously processed (not subsequently processed) modules
only. For more information about how the linker processes input files to resolve
symbolic references, see Chapter 2 (I64) and Chapter 6 (Alpha and VAX).

Note that shareable image libraries do not contain a copy of an image. They
contain the image’s name, the image’s identification information and a table
including the image’s universal symbols. The identification information is
provided by the GSMATCH= option, when the shareable image is linked. (See the
GSMATCH= option for more information).

It is possible that a shareable image is relinked but a library is not updated. To
handle this case, the linker looks for compatibility. On Alpha and VAX, the linker
makes the same verification that the image activator does; that is, it uses the
GSMATCH criteria to verify compatibility.

On VAX, the linker also compares against the date and time, signaling LINK-I-
DATMISMCH, if they are different.

On Alpha, the initial behavior of the linker was the same as the VAX linker. The
check was seen as too sensitive and the default behavior was changed to use only
the GSMATCH criteria. If you prefer, you can obtain the former VAX behavior by
setting the logical name LINK$SHR_DATE_CHECK.

Examples

1. $ LINK MY_PROG,MY_LIB/LIBRARY,PROG2,PROG3

In this example, the linker uses the library MY_LIB.OLB to resolve undefined
symbols in MY_PROG, but not in PROG2 or PROG3.

2. $ LINK MY_PROG,PROG2,PROG3,MY_LIB/LIBRARY

In this example, the linker can resolve undefined symbols in MY_PROG,
PROG2, and PROG3 from the library MY_LIB.OLB.

LINKER–27

LINKER Qualifiers

/MAP

Directs the linker to create an image map file. For more information, see also the
/BRIEF, /CROSS_REFERENCE, and /FULL qualifiers.

Format

/MAP[=file-spec]/NOBRIEF/NOCROSS_REFERENCE/NOFULL (default in batch mode)

/NOMAP (default in interactive mode)

Qualifier Values

file-spec
If you enter a file specification with the /MAP qualifier, the linker creates an
image map file with that file name. If you do not enter a file type after the file
name, the linker assumes a file type of .MAP.

If you do not enter a file specification with the /MAP qualifier, the linker creates
an image map file with the file name of the first input file specified on the
command line and the file type .MAP. (If there are no input files specified on the
command line, the linker names the map file .MAP.)

If you append the /MAP qualifier to one of the input file specifications, the linker
creates an image map file with the file name of the file to which the qualifier is
appended, using the .MAP file type.

Description

On OpenVMS I64, the /MAP qualifier causes the linker to produce a default
image map file containing the following sections:

• Object and Image Synopsis

• Program Section Synopsis

• Symbols By Name

• Image Synopsis

• Link Run Statistics

On OpenVMS Alpha and VAX, the /MAP qualifier causes the linker to produce a
default image map file containing the following sections:

• Object Module Synopsis

• Program Section Synopsis

• Symbols By Name

• Link Run Statistics

See Chapter 5 (I64) and Chapter 9 (Alpha and VAX) for more information about
image map files.

Examples

1. $ LINK/MAP MY_PROG

This example directs the linker to produce an image map with the default
name of MY_PROG.MAP.

LINKER–28

LINKER Qualifiers

2. $ LINK/MAP=MY_MAP MY_PROG

This example directs the linker to produce an image map with the name of
MY_MAP.MAP instead of the default name of MY_PROG.MAP.

3. $ LINK MY_PROG,MY_SUB/MAP

This example directs the linker to produce an image map with the default
name of MY_SUB.MAP.

4. $ LINK MY_PROG,SYS$INPUT/OPTIONS/MAP
MY_SHARE/SHAREABLE

Ctrl/Z

This example directs the linker to produce an image map with the default
name of .MAP, because SYS$INPUT is a device specification without a file
name.

LINKER–29

LINKER Qualifiers

/NATIVE_ONLY (I64 and Alpha)

For I64 and Alpha systems, prevents the linker from generating procedure
signature information.

Format

/NATIVE_ONLY (default)

/NONATIVE_ONLY

Qualifier Values

None.

Description

For I64 and Alpha systems, prevents the linker from generating procedure
signature information. Procedure signatures are required to allow the native code
being linked to interoperate with images translated from either VAX or Alpha
binary code. To build an executable or shareable image that calls or can be called
by translated code, link it using /NONATIVE_ONLY. Code that is to interoperate
with translated images must also be compiled using the /TIE qualifier. (See the
associated compiler documentation for details.)

Example

$ LINK/NATIVE_ONLY MY_PROG

In this example, the linker creates an image, named MY_PROG.EXE, that cannot
interoperate with translated OpenVMS images.

$ LINK/NONATIVE_ONLY MY_PROG

In this example, the linker creates an image, named MY_PROG.EXE, that can
interoperate with translated OpenVMS images.

LINKER–30

LINKER Qualifiers

/OPTIONS

Identifies the input file specification to which it is appended as a linker options
file.

Format

options-file-name/OPTIONS

Qualifier Values

options-file-name
The file specification of a linker options file. The linker assumes the file type
.OPT by default.

Description

A linker options file can contain linker option specifications and input file
specifications. For information about creating an options file, see Chapter 1.

Examples

1. $ LINK MY_PROG,MY_OPTIONS/OPTIONS

This example directs the linker to use an options file named MY_
OPTIONS.OPT to produce an executable image named MY_PROG.EXE.

2. $ LINK MY_PROG,SYS$INPUT/OPTIONS
MY_SHARE/SHAREABLE

Ctrl/Z

This example illustrates how to create an options file interactively by
specifying SYS$INPUT as the file specification. After entering the options,
press Ctrl/Z to end the options file.

LINKER–31

LINKER Qualifiers

/P0IMAGE

Directs the linker to place an executable image entirely in P0 address space.
When the /P0IMAGE qualifier is specified, the user stack and OpenVMS RMS
buffers, which usually reside in P1 space, are placed in P0 space by the image
activator.

Format

/P0IMAGE

/NOP0IMAGE (default)

Qualifier Values

None.

Description

For Alpha and VAX, note that the address of the stack shown in the map of an
image linked with the /P0IMAGE qualifier does not reflect the true address of the
stack at run time because, when /P0IMAGE is specified, the virtual address space
for the stack is dynamically allocated at the end of P0 space at run time.

/P0IMAGE is used to create executable images that modify P1 address space.

Example

$ LINK/P0IMAGE MY_PROG

This example directs the linker to set up an executable image named
MY_PROG.EXE to be run entirely in the P0 address space.

LINKER–32

LINKER Qualifiers

/PROTECT

Directs the linker to protect an entire shareable image from user-mode write
access and supervisor-mode write access. Can be specified only with the
/SHAREABLE qualifier.

Format

/PROTECT

/NOPROTECT (default)

Qualifier Values

None.

Description

The /PROTECT qualifier protects an entire shareable image from user-mode
write access and supervisor-mode write access. To protect only specific segments
(I64) or image sections (Alpha) within a shareable image, but not the entire
shareable image, use the PROTECT= option. For more information about using
the PROTECT= option, see its description later in this section.

The /PROTECT qualifier is commonly used to protect shareable images that
are used to implement user-written system services (called privileged shareable
images) from user-mode access.

For I64, HP recommends that you protect the whole image with the /PROTECT
qualifier; see Section 4.4.)

The /PROTECT qualifier is incompatible with the /EXECUTABLE qualifier and
the /SYSTEM qualifier.

Example

$ LINK/SHAREABLE/PROTECT MY_SHARE

This example directs the linker to produce a privileged shareable image named
MY_SHARE.EXE.

LINKER–33

LINKER Qualifiers

/REPLACE (Alpha Only)

For Alpha linking, specifies that the linker should perform certain optimizations
to improve the performance of the resultant image, when instructed by the
compiler.

This qualifier is ignored by the OpenVMS I64 Linker.

Format

/REPLACE (default)

/NOREPLACE

Qualifier Values

None.

Description

For Alpha linking, it is more efficient to execute a procedure call as a branch,
using the BSR (Branch to Subroutine) instruction sequence, than it is to execute
the call as a jump, using the JSR (Jump to Subroutine) instruction sequence. In
a BSR instruction, the destination can be expressed as an offset, requiring fewer
memory fetches than a JSR instruction sequence.

Compilers cannot always take advantage of the efficiency of the BSR instruction
because the information needed to calculate the offset is not available until link
time, when the linker lays out the image sections that make up the image. To
achieve this performance enhancement, compilers flag uses of the JSR instruction
sequence and the linker examines each use and attempts to replace it with the
BSR instruction sequence wherever possible.

In addition to code replacement, the linker can also specify hints to improve the
performance of the JSR instructions that remain in the image. A hint is used to
index the instruction cache and can improve performance. Hints are generated
for JSR instructions within the image and for JSR instructions to shareable
images.

LINKER–34

LINKER Qualifiers

/SECTION_BINDING (Alpha Only)

For Alpha linking, directs the linker to create an image that can be installed as a
resident image and to flag coding practices in the image that would prevent this.

This qualifier is ignored by the OpenVMS I64 Linker. The I64 linker always
produces images that can be installed as resident images.

Format

/[NO]SECTION_BINDING[=(CODE,DATA)]

/NOSECTION_BINDING (default)

Qualifier Values

CODE
Prevents the linker from replacing the Jump to Subroutine (JSR) instruction
sequence with the more efficient Branch to Subroutine (BSR) instruction sequence
when the target of the branch crosses an image section boundary.

DATA
Directs the linker to check for address calculations that create dependencies on
the layout of data image sections. The linker reports such occurrences.

When the /SECTION_BINDING qualifier is specified without either the CODE or
DATA keyword, the linker performs both types of checking by default.

Description

For Alpha linking, you can improve the performance of an installed image by
installing it as a resident image (by using the /RESIDENT qualifier of the Install
utility). The Install utility moves portions of resident images into system space
where they reside on a large single page with granularity hints set (called a
granularity hint region or GHR), thus improving performance.

For an image to be installed as a resident image, it must not contain any
dependencies on the layout of image sections, such as branch instructions that
cross image section boundaries. The offsets calculated by the linker for such
branches depend on the layout of the image sections. The relative position of
the code image sections changes when they are moved to system space and the
accuracy of the offsets calculated by the linker is destroyed. (These dependencies
are created by the linker when it replaces the JSR instruction sequence with
the BSR instruction sequence. For more information, see the description of the
/REPLACE qualifier.)

When the /SECTION_BINDING qualifier is specified, the linker does not replace
JSR instructions when the destination crosses an image section boundary. The
linker still replaces the JSR instruction sequence for calls that stay within the
boundaries of an image section.

In addition to eliminating image section layout dependencies in code image
sections, the linker can also check the data image sections in an image to see if
they contain coding practices that produce dependencies on image section layout.

LINKER–35

LINKER Qualifiers

The image activator can reposition data image sections to eliminate the gaps
in virtual memory left by the code image sections that were moved to system
space. However, data image sections can also contain dependencies on image
section layout. For example, when an image initializes an address by performing
arithmetic on two addresses that reside in two different image sections, the
address calculation creates a dependency on the layout of the data image sections,
as in the following example:

OWN
FOO: INITIAL (FOO - BAR)

If the linker detects the compiler adding or subtracting two intra-image
addresses, it assumes that a relative branch is being calculated and displays
the following warning:

%LINK-W-BINDFAIL, failed to bind reference at %X00030000 between sections
at locations %X00030000 and %X00010000
in module X file WORK:[TEST]X.OBJ;6

The warning message produced by the linker indicates the two addresses being
operated on and the virtual address where it was trying to write the result. To
find the source code that is creating the dependency, examine the map file to
determine what entities reside at these addresses and then search the source
code for places where they are used in calculations. In this example, module X
contained a data cell, FOO, initialized with the difference between FOO’s address
and BAR’s (as in the previous code example). In the image map, FOO resides
at %X00030000 and BAR at %X00010000. Because these addresses appear in
different image sections, the calculation introduces a dependency on the layout
of image sections. To fix this dependency, rewrite the source code to remove the
calculation or move the two data cells into the same image section by using the
COLLECT= option or the PSECT_ATTRIBUTE= option.

The linker issues a message for each address calculation in data image sections
that create dependencies on the layout of image sections, as in the following
example:

%LINK-W-BINDISABLE, section binding of data has been disabled
%LINK-W-BINDFAIL, failed to bind reference at %X0000865D between sections

at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

%LINK-W-BINDFAIL, failed to bind reference at %X00008665 between sections
at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

%LINK-W-BINDFAIL, failed to bind reference at %X0000866D between sections
at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

Example

$ LINK/SHAREABLE/SECTION_BINDING MY_PROG

In this example, the linker creates the image MY_PROG.EXE and processes it so
that it can be installed as a resident image.

LINKER–36

LINKER Qualifiers

/SEGMENT_ATTRIBUTE (I64 Only)

Instructs the OpenVMS I64 linker to set certain attributes for segments.

Format

/SEGMENT_ATTRIBUTE=(segm-attribute[,...])

Qualifier Values

segm-attribute
The I64 Linker accepts the following keywords to set segment attributes

CODE=address_region
DYNAMIC=address_region
SHORT=WRITE
SYMBOL_VECTOR=[NO]SHORT

where an address_region can be specified with keywords P0 and P2.

Description

By default, the linker puts the dynamic segment, which contains information for
the image activator, into P2 space. For images not activated by the OpenVMS
image activator, DYNAMIC=P0 forces the linker to put the dynamic segment into
P0 space. This qualifier is primarily used by system developers.

With the CODE=P2 keyword, the I64 Linker allows you to assign code segments
to P2 space. When the image activator activates the image, the code segments
will be placed in P2 space. If you use this keyword, be aware that all code
addresses will be 64 bits wide. Your exception handlers must use only the 64-bit
versions of the signal and mechanism arrays and should be prepared to handle a
64-bit PC.

The SHORT_DATA=WRITE keyword allows you to combine the read-only and
the read-write short data segments into a single segment, reclaiming up to
65,535 bytes of unused, read-only space (when /BPAGE=16, the default value).
When setting SHORT_DATA to WRITE, your program may accidentally write to
formerly read-only data. Therefore, this qualifier is recommended only if your
short data segment has reached the limit of 4 MB.

By default, for shareable images, the linker stores the symbol vector into the
read-only short data segment. By specifying SYMBOL_VECTOR=NOSHORT,
the linker collects the symbol vector into a read-only data segment of the default
cluster. If the shareable image has none, such a segment is created. This frees up
the short data of the symbol vector entries. This qualifier is recommended only if
your short data segment has reached the limit of 4 MB.

LINKER–37

LINKER Qualifiers

/SELECTIVE_SEARCH

When this qualifier is appended to an input file specification, the linker processes
only those symbols in the input file that have been referenced by previously
processed input files.

Format

input-file-name/SELECTIVE_SEARCH

Qualifier Values

input-file-name
The input file you want included in the link operation. The /SELECTIVE_
SEARCH qualifier works with object modules and shareable images only.
This qualifier is illegal with library files. (To process the modules in a library
selectively, you specify the /SELECTIVE_SEARCH qualifier when inserting the
files into the library. For more information, see the HP OpenVMS Command
Definition, Librarian, and Message Utilities Manual.)

Description

If you do not specify the /SELECTIVE_SEARCH qualifier with an input file, the
linker includes all the input file’s global symbols in the linker’s internal global
symbol table for symbol resolution by default.

Note that the /SELECTIVE_SEARCH qualifier does not affect the size of the
resultant image. The entire object module is included in the image, even if only
a subset of the symbols in its global symbol table are needed to resolve symbolic
references. Specifying the /SELECTIVE_SEARCH qualifier can improve the
performance of a link operation and conserve the linker’s use of virtual memory.

Examples

1. $ LINK/MAP MY_MAIN,MY_PROG/SELECTIVE_SEARCH

In this example, the linker processes the object module MY_PROG.OBJ
selectively. You can verify this processing by checking the list of symbols
in the image map file created in this link. The only symbols from the file
MY_PROG.OBJ that will appear in the map file are those symbols that were
referenced by MY_MAIN.OBJ.

2. $ LINK/MAP=MY_MAIN/EXECUTABLE=MY_MAIN SYS$INPUT/OPTIONS
CLUSTER=MY_MAIN_CLUS,,,MY_MAIN
MY_SHARE/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

In this example, the linker processes the shareable image MY_SHARE.EXE
selectively. Note that, to ensure that the linker processes references to
symbols in the shareable image before it processes the shareable image
selectively, the input file MY_MAIN.OBJ is placed in a named cluster (MY_
MAIN_CLUS), using the CLUSTER= option. If the object modules had been
specified on the LINK command line, the linker would have put it in the
default cluster. The linker processes named clusters before it processes the
default cluster.

LINKER–38

LINKER Qualifiers

3. $ LIBRARIAN/INSERT/SELECTIVE_SEARCH MY_LIB MY_PROG
$ LINK MY_PROG,MY_LIB/LIBRARY

In this example, the object module MY_PROG.OBJ is inserted into the library
MY_LIB.OLB selectively. When the library is specified in a link operation,
the linker processes the object module selectively. This link operation is
equivalent to the link operation in example 1.

LINKER–39

LINKER Qualifiers

/SHAREABLE

When specified anywhere on the LINK command line, the /SHAREABLE qualifier
directs the linker to create a shareable image. When the /SHAREABLE qualifier
is appended to a file specification in a linker options file, it identifies the input file
as a shareable image.

Format

/SHAREABLE[=file-spec]

/NOSHAREABLE (default)

shareable-image-file-name/SHAREABLE

Qualifier Values

file-spec
When the /SHAREABLE qualifier is used to create a shareable image, this
parameter specifies the name you want the linker to assign to the shareable
image being created. If you do not include a file specification, the linker assigns
the shareable image the name of the file to which the /SHAREABLE qualifier
is appended in the LINK command line. If the /SHAREABLE qualifier is not
appended to an input file specification, the linker assigns to the shareable image
the name of the first input file specified on the command line using the extension
.EXE.

If you designate a file name but omit the file type, the linker assigns the
shareable image the file type .EXE.

shareable-image-file-name
Specifies the name of a shareable image. Note that you can use the
/SHAREABLE qualifier to identify a shareable image only in a linker options
file. It is illegal to include a shareable image in a link operation by specifying it
on the LINK command line.

Description

The linker creates executable images by default; you must specify the
/SHAREABLE qualifier to create a shareable image. The /SHAREABLE qualifier
is incompatible with the /SYSTEM qualifier.

For more information about creating and using shareable images, see Chapter 4
(I64) and Chapter 8 (Alpha and VAX).

Examples

1. $ LINK/SHAREABLE MY_SHARE,UNIVERSALS/OPTIONS

This example directs the linker to produce a shareable image named MY_
SHARE.EXE. The options file UNIVERSALS.OPT contains declarations of the
universal symbols in the shareable image.

2. $ LINK/SHAREABLE=MY_APP MY_SHARE,UNIVERSALS/OPTIONS

This example directs the linker to produce a shareable image named MY_
APP.EXE using the object module MY_SHARE.OBJ as input.

LINKER–40

LINKER Qualifiers

3. $ TYPE MY_OPTIONS.OPT
MY_SHARE/SHAREABLE
$ LINK MY_PROG,MY_OPTIONS.OPT/OPTIONS

In this example, a shareable image is included in a link operation. The
shareable image is specified in the options file MY_OPTIONS.OPT, which is
specified as an input file on the LINK command line.

4. $ LINK MY_PROG,SYS$INPUT/OPTIONS
MY_SHARE/SHAREABLE

Ctrl/Z

This example shows how the shareable image MY_SHARE.EXE is used,
together with the object file MY_PROG.OBJ, to create an executable image
named MY_PROG.EXE.

Note how you can specify options interactively at the command line by
identifying the logical name SYS$INPUT as an options file. The linker
interprets the lines following the LINK command as the contents of an
options file, until you terminate the options by entering the Ctrl/Z key
sequence.

LINKER–41

LINKER Qualifiers

/SYMBOL_TABLE

Directs the linker to create a symbol table file.

Format

/SYMBOL_TABLE[=file-spec]

/NOSYMBOL_TABLE (default)

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the
symbol table file. If you do not include a file type in the character string, the
linker appends the .STB file type to the file name.

If you specify the /SYMBOL_TABLE qualifier without the file specification, the
linker creates a symbol table file with the file name of the first input file and the
default file type .STB. If you append the /SYMBOL_TABLE qualifier to one of the
input file specifications, the linker creates a symbol table file with the file name
of the file to which the qualifier is appended, with the default file type .STB.

Description

A symbol table file contains a copy of the image’s global symbol table, excluding
definitions from shareable images, in object module format.

For I64 and Alpha linking, you cannot specify symbol table files as input files
in a link operation. Symbol table files of images are intended only as an aid
in debugging crash dumps using the OpenVMS System Dump Analyzer utility
(SDA). For more information, see Section 1.2.4.

For I64 and Alpha linking, note that you can direct the linker to include global
symbols in a symbol table file associated with a shareable image by specifying the
SYMBOL_TABLE=GLOBALS option. When you specify this option, the linker
includes global symbols as well as universal symbols in a symbol table file by
default.

For VAX linking, a global symbol table produced by a link that creates a shareable
image contains only universal symbols. A global symbol table produced by a link
that creates an executable image contains all the global symbols in the image.

For VAX linking, you can specify symbol table files as input files in link operations
if they were produced in an operation in which an executable or system image
was created. Symbol table files produced in a link operation in which a shareable
image was created do not always contain enough information to be used as input
files in link operations. (For more information, see Section 1.2.4.)

Examples

1.
$ LINK/SYMBOL_TABLE/NOEXECUTABLE MY_PROG

In this example, the linker produces a symbol table file named MY_
PROG.STB without producing an executable image.

LINKER–42

LINKER Qualifiers

2.
$ LINK/SYMBOL_TABLE=MY_PROG_SYMB_TAB MY_PROG

In this example, the linker produces a symbol table file named MY_PROG_
SYMB_TAB.STB. An executable image file named MY_PROG.EXE is also
produced.

3.
$ LINK/SHAREABLE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MYPROC=PROCEDURE, -

MYDATA=DATA, -
MYPROC2=PROCEDURE)

SYMBOL_TABLE=GLOBALS
Ctrl/Z

In this example, the linker creates a symbol table file on an I64 and Alpha
system, named MY_SHARE.STB, that contains both global symbols and
universal symbols because the linker option SYMBOL_TABLE=GLOBALS is
specified in the options file.

LINKER–43

LINKER Qualifiers

/SYSEXE (I64 and Alpha)

For I64 and Alpha linking, directs the linker to process the system shareable
image, SYS$BASE_IMAGE.EXE, in a link operation. The linker looks for
SYS$BASE_IMAGE.EXE in the directory pointed to by the logical name
IA64$LOADABLE_IMAGES (I64) and ALPHA$LOADABLE_IMAGES (Alpha).

Format

/SYSEXE[=[NO]SELECTIVE]

/NOSYSEXE (default)

Qualifier Values

SELECTIVE (default)
When the /SYSEXE qualifier is specified with no keyword, the linker processes
the SYS$BASE_IMAGE.EXE file selectively.

When you specify /SYSEXE with the SELECTIVE keyword, the linker processes
the SYS$BASE_IMAGE.EXE file selectively, including only those symbols from
the global symbol table of the SYS$BASE_IMAGE.EXE file that were referenced
by input files previously processed in the link operation.

NOSELECTIVE
When you specify the NOSELECTIVE keyword, the linker includes all the
symbols from the SYS$BASE_IMAGE.EXE global symbol table in the link
operation.

Description

When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_
IMAGE.EXE file selectively after processing the system shareable image library,
IMAGELIB.OLB, and before processing the system object library, STARLET.OLB,
and the system service shareable image, SYS$PUBLIC_VECTORS.EXE,
which is associated with STARLET.OLB. (By default, the linker processes
IMAGELIB.OLB, STARLET.OLB, and SYS$PUBLIC_VECTORS.EXE, in that
order, to resolve symbols that remain undefined after all the files specified in
the LINK command have been processed and after any user-specified libraries
have been processed.) Note that the linker qualifiers that determine whether
the linker processes the default system libraries, /SYSSHR and /SYSLIB, do not
affect SYS$BASE_IMAGE.EXE processing.

If you want the linker to process SYS$BASE_IMAGE.EXE before processing
IMAGELIB.OLB, specify SYS$BASE_IMAGE.EXE in an options file, as you
would any other shareable image. If you specify SYS$BASE_IMAGE.EXE in your
options file, do not specify the /SYSEXE qualifier in the LINK command.

For more information about linking against the OpenVMS executive, see
Section 2.4 (I64) and Section 6.4 (Alpha).

LINKER–44

LINKER Qualifiers

Example

$ LINK/SHAREABLE/SYSEXE MY_SHARE, SYS$INPUT/OPTIONS
SYMBOL_VECTOR=(MY_PROC=PROCEDURE)

Ctrl/Z

In this example, the linker processes the OpenVMS system executive file,
SYS$BASE_IMAGE.EXE, to create a shareable image named MY_SHARE.EXE.

LINKER–45

LINKER Qualifiers

/SYSLIB

Directs the linker to process the default system shareable image library,
IMAGELIB.OLB, and the default system object module library, STARLET.OLB,
to resolve symbolic references that remain undefined after all specified input files
and any default user libraries have been processed.

Format

/SYSLIB (default)

/NOSYSLIB

Qualifier Values

None.

Description

The linker first searches IMAGELIB.OLB, the default system shareable image
library, then STARLET.OLB, the default system object library.

For I64 and Alpha linking, the linker also searches the shareable image
SYS$PUBLIC_VECTORS.EXE to resolve references to system services. (For
more information about processing SYS$PUBLIC_VECTORS.EXE, see the
description of the /SYSEXE qualifier.) The linker looks for these default
libraries in the directory pointed to by the logical name IA64$LIBRARY (I64)
or ALPHA$LIBRARY (Alpha).

For VAX linking, the linker looks for these default libraries in the directory that
the logical name SYS$LIBRARY points to.

If you specify the /NOSYSLIB qualifier and the /SYSSHR qualifier, the /SYSSHR
qualifier is ignored.

If you want the linker to search IMAGELIB.OLB but not STARLET.OLB, specify
the /NOSYSLIB qualifier (to inhibit the default search of both default system
libraries), and then specify IMAGELIB.OLB in the LINK command line or in an
options file.

Example

$ LINK/NOSYSLIB MY_PROG

In this example, the linker creates the executable image MY_PROG.EXE without
referencing the default system libraries IMAGELIB.OLB or STARLET.OLB.

LINKER–46

LINKER Qualifiers

/SYSSHR

Directs the linker to process the default system shareable image library
(IMAGELIB.OLB) to resolve symbolic references that remain undefined after
all specified input files and any default user libraries have been processed.

Format

/SYSSHR (default)

/NOSYSSHR

Qualifier Values

None.

Description

The linker searches IMAGELIB.OLB, the default system shareable image library,
and resolves symbolic references that remain undefined after all specified input
files and any default user libraries have been processed.

If you want the linker to skip processing the default shareable image
library, IMAGELIB.OLB, but still process the default system object library,
STARLET.OLB, specify the /NOSYSSHR qualifier.

See the description of the /SYSLIB qualifier for information about controlling how
the linker processes the default system libraries.

Example

$ LINK/NOSYSSHR MY_PROG

In this example, the linker processes the default system object library
(STARLET.OLB), but does not process the default system shareable image
library (IMAGELIB.OLB), to resolve symbolic references while producing an
executable image named MY_PROG.EXE.

LINKER–47

LINKER Qualifiers

/SYSTEM (Alpha and VAX)

On Alpha and VAX systems, directs the linker to create a system image and
optionally allows you to specify the address at which the image should be loaded
into memory. A system image cannot be activated with the RUN command; it
must be bootstrapped or otherwise loaded into memory.

Format

/SYSTEM[=base-address]

/NOSYSTEM (default)

Qualifier Values

base-address
Specifies the address at which the image is to be loaded in virtual memory. You
can specify a base address in hexadecimal (%X), octal (%O), or decimal (%D)
format. The default base address is %X80000000.

Note that if you specify the /HEADER qualifier, the linker adjusts the base
address to the next highest page boundary if it is not already a page boundary.
The next highest page boundary is the smallest number that is greater than
the value specified in the base-address parameter and that is divisible by the
default page size (which is architecture specific) or the page size specified using
the /BPAGE qualifier.

Description

System images are intended for special purposes, such as standalone operating
system diagnostics. When the linker creates a system image, it orders the
program sections in alphanumeric order and ignores all program section
attributes.

The linker creates the system image with the file name of the first input file and
the file type .EXE. If you want a different output file specification, specify that
file specification with the /EXECUTABLE qualifier.

If you specify the /SYSTEM qualifier, you cannot specify the /SHAREABLE
qualifier or the /DEBUG qualifier.

Example

$ LINK/SYSTEM MY_SYS

This example directs the linker to produce a system image named MY_SYS.EXE
based at address %X80000000.

LINKER–48

LINKER Qualifiers

/THREADS_ENABLE

Kernel threads allow a multithreaded application to have a thread executing
on every CPU in a multiprocessor system. The /THREADS_ENABLE qualifier
allows you to turn kernel threads on and off on a per-image basis.

When you specify this qualifier, the OpenVMS linker sets the appropriate bits in
the dynamic segment (I64) or the image header (Alpha and VAX) of the image
being linked. These bits control the following:

• Whether the image is allowed to enter a multiple kernel threads environment

• Whether the image can receive upcalls from the OpenVMS scheduler

Format

/THREADS_ENABLE[=(MULTIPLE_KERNEL_THREADS,UPCALLS)]

/NOTHREADS_ENABLE (default)

Qualifier Values

MULTIPLE_KERNEL_THREADS
On I64 and Alpha systems, this keyword sets the MULTIPLE_KERNEL_
THREADS bit in the dynamic segment (I64) or the image header (Alpha) of the
image being built. This bit indicates to the image activator that the image can be
run in a multiple kernel threads environment.

If you specify this keyword for OpenVMS VAX links, it is ignored.

UPCALLS
This qualifier sets the UPCALLS bit in the OpenVMS dynamic segment (I64)
or image header (Alpha and VAX) of the image being built. This bit indicates
to the image activator that the process can receive upcalls from the OpenVMS
scheduler.

When the /THREADS_ENABLE qualifier is specified without either the
MULTIPLE_KERNEL_THREADS or UPCALLS keyword, the linker sets both
bits by default.

Description

The principal benefit of threading is to allow you to launch multiple paths of
execution within a process. With threading, you can have some threads running
while others are waiting for an external event to occur, such as I/O. The multi-
threading kernel of OpenVMS can place threads on separate central processing
units for concurrent execution; this enables a process to run faster.

The set bits allow you to control your threads environment on a per-process basis
rather than systemwide. The image activator examines these bits to determine
the environment in which the image is to run.

Caution

The OpenVMS linker does no analysis whatsoever to determine if the
image can be safely placed in a multiple kernel threads environment. The
linker only sets the bits.

LINKER–49

LINKER Qualifiers

For more information on kernel threads, see the Guide to the POSIX Threads
Library.

Examples

1.
$ LINK /NOTHREADS_ENABLE

This command, which is the default, keeps the MULTIPLE_KERNEL_
THREADS and UPCALLS bits clear in the image being built.

2. $ LINK /THREADS_ENABLE

For this command, the result on I64 and Alpha systems is different from the
result on VAX systems:

• On I64 and Alpha systems, this command sets the UPCALLS and
MULTIPLE_KERNEL_THREADS bits in the image being built.

• On VAX systems, the command sets only the UPCALLS bit in the image
being built.

3. $ LINK /THREADS_ENABLE=UPCALLS

This command sets the UPCALLS bit in the OpenVMS I64, Alpha, and VAX
images being built.

4. $ LINK /THREADS_ENABLE=MULTIPLE_KERNEL_THREADS

For this command, the result on I64 and Alpha systems is different from the
result on VAX systems:

• On I64 and Alpha systems, the command sets the MULTIPLE_KERNEL_
THREADS bit in the image being built.

• On VAX systems, the qualifier and keyword are ignored.

5. $ LINK /THREADS_ENABLE=(MULTIPLE_KERNEL_THREADS,UPCALLS)

For this command, the result on I64 and Alpha systems is different from the
result on VAX systems:

• On I64 and Alpha systems, the command sets the UPCALLS and
MULTIPLE_KERNEL_THREADS bits in the image being built.

• On VAX systems, the command sets only the UPCALLS bit in an image
being built.

LINKER–50

LINKER Qualifiers

/TRACE

Directs the linker to include traceback information in the image file. If you
specify the /DEBUG qualifier, the linker includes traceback information by
default, overriding the /NOTRACE qualifier if it is specified.

Format

/TRACE (default)

/NOTRACE

Qualifier Values

None.

Description

Traceback is a facility that displays information from the call stack when a
program error occurs. The output shows which modules were called before the
error occurred.

For more information on the effects of using /TRACE combined with /DEBUG and
/DSF, see /DEBUG.

Example

$ LINK/NOTRACE MY_PROG

In this example, the linker does not include traceback information in the
executable image named MY_PROG.EXE.

LINKER–51

LINKER Qualifiers

/USERLIBRARY

Directs the linker to process one or more default user libraries to resolve
symbolic references that remain undefined after all specified input files have
been processed.

Format

/USERLIBRARY[=(table[,...])]

/NOUSERLIBRARY

/USERLIBRARY=ALL (default)

Qualifier Values

table
Specifies the logical name tables that the linker searches for default user
libraries. The following keywords are the only acceptable parameter values:

Keyword Description

ALL Directs the linker to search the process, group, and system logical
name tables for default user library definitions. This is the
default.

GROUP Directs the linker to search the group logical name table for
default user library definitions.

NONE Directs the linker not to search any logical name table;
the /USERLIBRARY=NONE qualifier is equivalent to the
/NOUSERLIBRARY qualifier.

PROCESS Directs the linker to search the process logical name table for
default user library definitions.

SYSTEM Directs the linker to search the system logical name table for
default user library definitions.

Description

A default user library may be an object module library or a shareable image
library.

To define a default user library, you must use the DCL command DEFINE or
ASSIGN to equate the logical name LNK$LIBRARY to the file specification of the
library, because the linker looks for this logical name to determine if a default
user library exists.

Further, to control access to the library, you can define LNK$LIBRARY in the
process, group, or system logical name tables by using the /PROCESS qualifier,
the /GROUP qualifier, and the /SYSTEM qualifier, respectively, in the DEFINE
command.

LINKER–52

LINKER Qualifiers

For example, if you want the library MY_LIB to be your default user library, the
library GROUP_LIB to be the default user library of everyone else in your group,
and the library ANY_LIB to be the default user library of everyone else on the
system, you would issue the following commands:

$ DEFINE LNK$LIBRARY DB2:[MARK]MY_LIB
$ DEFINE/GROUP LNK$LIBRARY DB2:[PROJECT]GROUP_LIB
$ DEFINE/SYSTEM LNK$LIBRARY SYS$LIBRARY:ANY_LIB

Note that the GRPNAM and SYSNAM privileges are required to use the /GROUP
qualifier and the /SYSTEM qualifier, respectively.

If you are defining more than one library in a single logical name table, use the
logical names LNK$LIBRARY for the first library, LNK$LIBRARY_1 for the
second library, LNK$LIBRARY_2 for the third, and so on, up to the last possible
logical name of LNK$LIBRARY_999. However, you must specify these logical
names in numeric order without skipping any, because when the linker does not
find the next sequential logical name, it stops searching in that logical name
table.

The search of default user libraries proceeds as follows:

1. If you specify the /USERLIBRARY=PROCESS qualifier or the
/USERLIBRARY qualifier, the linker searches the process logical name
table for the name LNK$LIBRARY. If this entry exists, the linker
translates the logical name and searches the specified library for unresolved
strong references. If you exclude PROCESS from the table list in the
/USERLIBRARY qualifier or if no entry exists for LNK$LIBRARY, the linker
proceeds to step 4 (searching the group logical name table).

2. If any unresolved strong references remain, the linker searches the process
logical name table for the name LNK$LIBRARY_1 and follows the logic of
step 1. If no entry exists for LNK$LIBRARY_1, the linker proceeds to step 4
(searching the group logical name table).

3. If any unresolved strong references remain, the linker follows the logic of step
1 for LNK$LIBRARY_2, LNK$LIBRARY_3, and so on, until it finds no match
in the process logical name table, at which point it proceeds to step 4.

4. If you specify the /USERLIBRARY=GROUP qualifier or the /USERLIBRARY
qualifier, the linker follows the logic in steps 1 through 3 using the group
logical name table. If you exclude GROUP from the table list in the
/USERLIBRARY qualifier or when any logical name translation fails, the
linker proceeds to step 5.

5. If you specify the /USERLIBRARY=SYSTEM qualifier or the /USERLIBRARY
qualifier, the linker follows the logic in steps 1 through 3 using the system
logical name table. If you exclude SYSTEM from the table list in the
/USERLIBRARY qualifier or when any logical name translation fails, the
search of default user libraries is complete. By default, the linker proceeds to
search the default system libraries if any unresolved references remain.

Search lists are not recognized in LNK$LIBRARY* logical names. Instead, use
LNK$LIBRARY_nnn with a single library specification.

LINKER–53

LINKER Qualifiers

Example

$ LINK/USERLIBRARY=(GROUP) MY_PROG

In this example, the linker searches only the group logical name table to translate
the logical names LNK$LIBRARY, LNK$LIBRARY_1, LNK$LIBRARY_2, and so
on.

LINKER–54

LINKER Qualifiers

/VAX (Alpha and VAX)

Directs the linker to produce an OpenVMS VAX image. The default action, when
neither /ALPHA nor /VAX is specified, is to create an OpenVMS VAX image on an
OpenVMS VAX system and to create an OpenVMS Alpha image on an OpenVMS
Alpha system.

Format

/VAX

Qualifier Values

None.

Description

This qualifier is used to instruct the linker to accept OpenVMS VAX object, image
and library files to produce an OpenVMS VAX image.

You must inform the linker where OpenVMS VAX system libraries and shareable
images are located. On an OpenVMS VAX system, you use the logical name
SYS$LIBRARY to do this. On an OpenVMS Alpha system, you use the logical
name VAX$LIBRARY to do this. Therefore, if the link is to occur on an OpenVMS
Alpha system, you must define the logical VAX$LIBRARY so that it translates to
the location of an OpenVMS VAX system disk residing on the system where the
VAX linking is to occur.

For more information on cross-architecture linking, see Section 1.5.

Example

$ DEFINE VAX$LIBRARY DKB200:[VMS$COMMON.SYSLIB]
$ LINK/VAX VAX.OBJ

This example, performed on an OpenVMS Alpha system, shows the definition
of the logical name VAX$LIBRARY to point to an OpenVMS VAX system disk
mounted on device DKB200 in the appropriate area. The qualifier tells the linker
to expect the object file, VAX.OBJ, to be an OpenVMS VAX object file and to link
it using the OpenVMS VAX libraries and images on DKB200, if necessary.

LINKER–55

LINKER Options

Option Descriptions

This section describes the linker options that you can specify in a linker options
file. For information about creating and using linker options files, see Chapter 1.

You can express numeric parameters in decimal (%D), hexadecimal (%X), or octal
(%O) radix by prefixing the number with the corresponding radix operator. If no
radix operator is specified, the linker assumes decimal radix.

The default and maximum numeric values in this manual are expressed in
decimal numbers, as are the values in any linker messages relating to these
options.

Options Defaults

BASE=address See reference description. (VAX only)
CASE_SENSITIVE=YES/NO NO
CLUSTER=cluster-name None.
COLLECT=cluster-name None.
DZRO_MIN=number-of-pages Platform specific (Alpha and VAX),

see reference description.
GSMATCH=keyword,major-id,minor-id See reference description.
IDENTIFICATION=id-name See reference description.
IOSEGMENT=number-of-pagelets[,[NO]P0BUFS] 0,NOP0BUFS
ISD_MAX=number-of-image-sections Approximately 96 (Alpha and VAX)
NAME=image-name Name of the image
PROTECT=YES/NO NO
PSECT_ATTRIBUTE=psect-name,attribute-keyword[,...] None.
RMS_RELATED_CONTEXT=YES/NO YES
STACK=number-of-pagelets 20
SYMBOL=symbol-name,symbol-value None.
SYMBOL_TABLE=GLOBALS/UNIVERSALS UNIVERSALS (I64 and Alpha)
SYMBOL_VECTOR=([alias/]name=entry-type[,...]) None. (I64 and Alpha)
UNIVERSAL=symbol-name[,...] None. (VAX only)

LINKER–56

LINKER Options
BASE= (VAX Only)

BASE= (VAX Only)

For VAX linking, specifies the base address (starting address) that you want the
linker to assign to the image.

Format

BASE=address

Option Values

address
The address at which you want the image based. You can express the number in
decimal (%D), octal (%O), or hexadecimal (%X) notation. If the address specified
is not divisible by 512, the linker automatically adjusts it upward to the next
multiple of 512, that is, to the next highest page boundary. Do not attempt
to base an image linked with a larger page size (specified using the /BPAGE
qualifier).

The linker bases shareable images at address 0, by default, and bases system
images at address %X80000000, by default.

Description

The BASE= option is illegal in a link operation that produces a system image. To
specify a base address for a system image, use the /SYSTEM qualifier.

The BASE= option is not supported for I64 and Alpha linking. On I64, you cannot
create any based image. On Alpha, however, you can create a based executable
image but you cannot create a based shareable image.

On Alpha, you can set the base address for an executable image by specifying the
base address argument to the CLUSTER=cluster-name,base-address option. On
I64, the base address argument must be omitted in a CLUSTER= option.

In general, the use of based images is not recommended. The image activator,
a component of the OpenVMS operating system, cannot relocate a based image
in the virtual address space, which can result in conflicts in the address space:
when two or more based images overlap. It can also result in fragmentation of
the used virtual address space.

The linker processes the BASE= option by assigning the specified base address to
the default cluster. If the linker creates additional clusters before it searches the
default libraries, which it does if a CLUSTER= or COLLECT= option is specified
or if a shareable image is explicitly specified, the following effects may occur:

• If the additional clusters are based (that is, if the CLUSTER= option specifies
a base address or if the shareable image is a based shareable image), the
linker must check that memory requirements for each based cluster do not
conflict. Memory requirements conflict when more than one cluster requires
the same section of address space. If they do conflict, the linker issues an
error message and aborts the linking operation. If they do not conflict, the
linker allocates each cluster the memory space it requests.

LINKER–57

LINKER Options
BASE= (VAX Only)

• If the additional clusters are not based, there will be no conflicting memory
requirements. However, the linker will place each additional cluster at an
address higher than that of the default cluster (because the base address
of the default cluster must be the base address of the entire image).
Consequently, the location of clusters (relative to each other) in the image
will differ from what you would expect based on the position of each cluster
in the cluster list. (Remember that the additional clusters precede the default
cluster on the cluster list and that the linker typically allocates memory for
clusters beginning at the first cluster on the cluster list, then the second,
and so on.) For more information about the linker’s clustering algorithm,
see Chapter 6. For more information about the linker’s memory allocation
algorithm, see Chapter 7.

LINKER–58

LINKER Options
CASE_SENSITIVE=

CASE_SENSITIVE=

Directs the linker to preserve the mixture of uppercase and lowercase characters
used in character string arguments to linker options.

Format

CASE_SENSITIVE=YES/NO

CASE_SENSITIVE=NO (default)

Option Values

YES
Enables case sensitivity. You can use any mixture of uppercase and lowercase
characters when specifying the keyword YES.

NO
Disables case sensitivity. Note that you must use only uppercase characters when
specifying the keyword NO because case sensitivity is enabled and the linker does
not accept mixed case in keywords.

Description

Once case sensitivity has been enabled, the linker preserves the case of all
succeeding character string arguments to linker options until you explicitly
disable it. When the CASE_SENSITIVE= option is disabled (which is the
default), the linker changes all the characters in a character string to uppercase
before processing the string.

Note that the CASE_SENSITIVE= option only affects how the linker processes
arguments to linker options. When it searches object files and shareable image
files for symbols that need to be resolved, the linker preserves the case used in
the symbol names (created by the language compilers). Also, the names of the
linker options (all the characters preceding the equal sign, as in the NAME=
option) are unaffected by the case-sensitivity option. The linker changes all the
characters in option names to uppercase characters before processing the option,
even if case sensitivity has been enabled.

Carefully delimit the section of a linker options file in which you use case
sensitivity to avoid unintentional side effects. For example, if you include options
in the case sensitive region that accept keyword arguments, such as YES, NO,
EXE, and SHR, make sure the keywords are specified using uppercase characters.
Because these keywords appear after the equal sign, they are affected by case
sensitivity. Similarly, character string arguments used to name a program
section, cluster, or image are also affected by case sensitivity.

Symbol names issued by compilers are uppercased by default. But you can use
compiler switches to preserve mixed-case source code names. Be aware that this
may result in mixed-case module or program section names as well. For example,
if you have a library include statement and the module names in the library are
mixed-case, then set CASE_SENSITIVE=YES. to operate on mixed-case names in the
options file,

LINKER–59

LINKER Options
CASE_SENSITIVE=

The following excerpt from an options file illustrates how the linker changes or
preserves the syntactical elements of an option line. The example contains mixed-
case names that you want to preserve by setting the linker to case-sensitive
mode:

case=Yes
My_Lib/library/include=(Add_Func, Sub_Func)
symbol_vector=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
case=NO

When processed by the linker, the text appears as follows:

CASE=YES
MY_LIB/LIBRARY/INCLUDE=(Add_Func,Sub_Func)
SYMBOL_VECTOR=(Add_Func=PROCEDURE,PAGE_COUNT=DATA)
CASE=NO

The case of all names to the right of the first equal sign in each option remains
the same.

Note

HP recommends that you switch to case sensitivity only when needed.

Example

$ LINK/SHAREABLE/MAP/FULL TEST,SYS$INPUT/OPTIONS
CASE_SENSITIVE=YES
NAME=ImageName
SYMBOL=OneSymbol,1
CASE_SENSITIVE=NO
SYMBOL_VECTOR=(myroutine=PROCEDURE)

Ctrl/Z

In the example, the CASE_SENSITIVE= option with the value YES enables case
sensitivity in the linker options file. Because case sensitivity has been enabled,
the linker preserves the mix of uppercase and lowercase characters used in
character string arguments to all succeeding linker options. In the example, this
includes the character string ImageName passed to the NAME= option and the
character string OneSymbol passed to the SYMBOL= option.

Specifying the CASE_SENSITIVE= option with the value NO turns off case
sensitivity. Note that you must use uppercase characters when specifying the
keyword NO. Because case sensitivity has been disabled, the linker changes all
the characters in the universal symbol myroutine to uppercase. The following
excerpt from the map file produced by this link illustrates how these identifiers
were stored by the linker:

ImageName
OneSymbol
MYROUTINE

LINKER–60

LINKER Options
CLUSTER=

CLUSTER=

Directs the linker to create a cluster. (The linker groups input files into clusters
before processing their contents.)

Format

CLUSTER=cluster-name[,base-address[,pfc[,file-spec[,...]]]]

Option Values

cluster-name
The name you want assigned to the cluster.

base-address
The base virtual address for the cluster. If you omit the base-address value, you
must still enter the comma.

On I64 systems, the base address must be omitted.

For Alpha linking, it is illegal to specify a base address for a cluster when
creating a shareable image.

pfc (page fault cluster)
The number of pagelets read into memory by the operating system when the
initial page fault occurs for a page in the cluster. If you do not specify the pfc
parameter, the operating system uses the default value established by the system
parameter PFCDEFAULT. If you omit the page fault cluster value, you must still
enter the comma.

file-spec
The file you want the linker to place in the cluster. Note that you should not
specify in the LINK command itself any file that you specify with the CLUSTER=
option (unless you want to include two copies of the file in the final image).

Description

You can use the CLUSTER= option in the following ways:

• To control the order in which the linker processes input files

• To cause specified modules to be placed close together in virtual memory

If you do not specify the CLUSTER= option, the linker always creates at least
one cluster, called the default cluster. For more information about how the linker
creates clusters, see Chapter 2 (I64) and Chapter 6 (Alpha and VAX).

You can also create a cluster by specifying the COLLECT= option

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS CLUSTER=MY_CLUSTER,,,PROG2,PROG3

In this example, the linker creates a cluster, named MY_CLUSTER, that contains
the input files named PROG2.OBJ and PROG3.OBJ.

LINKER–61

LINKER Options
COLLECT=

COLLECT=

Directs the linker to place the specified program section (or program sections) into
the specified cluster.

Format

COLLECT=cluster-name[/ATTRIBUTES=(RESIDENT,INITIALIZATION_CODE)],psect-name[,...]

Option Values

cluster-name
Name of the cluster.

psect-name
Name of the program sections (psects) you want placed in the cluster.

Qualifier

/ATTRIBUTES
For I64 and Alpha linking, directs the linker to mark the cluster ’cluster-name’
with the indicated qualifier keyword value. Attributes set by this qualifier are
only evaluated by the loader. This qualifier is used to build OpenVMS drivers.
See Writing OpenVMS Alpha Device Drivers in C for guidelines for using this
qualifier.

Qualifier Values

RESIDENT
Marks the cluster ’cluster-name’ as RESIDENT so that the segment (I64)
or image section (Alpha) created from that cluster has the RESIDENT flag
set. This will cause the loader to map the segment or image section into
non-paged memory.

INITIALIZATION_CODE
Marks the cluster ’cluster-name’ as INITIALIZATION_CODE so that the
segment (I64) or image section (Alpha) created from that cluster has the
INITALCOD flag set. The initialization code will be executed by the loader.
This keyword is specifically intended for use with program sections from
modules SYS$DOINIT and SYS$DRIVER_INIT in STARLET.OLB.

Description

If the specified cluster does not already exist, the linker creates the cluster when
it processes the COLLECT= option.

The linker sets the global (GBL) attribute for all the program sections specified,
if they do not already have this attribute set. Program sections exported from a
shareable image referenced in the options file with the /SHAREABLE qualifier
cannot be specified in the COLLECT= option.

LINKER–62

LINKER Options
COLLECT=

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
COLLECT=MY_CLUSTER,PSECT2,PSECT3

Ctrl/Z

In the example, the linker creates the cluster named MY_CLUSTER, if it does
not already exist, and puts the program sections named PSECT2 and PSECT3 in
the cluster.

LINKER–63

LINKER Options
DZRO_MIN= (Alpha and VAX)

DZRO_MIN= (Alpha and VAX)

On Alpha and VAX systems, specifies the minimum number of contiguous,
uninitialized pages that the linker must find in an image section before it can
extract the pages from the image section and place them in a newly created
demand-zero image section. By creating demand-zero image sections (image
sections that do not contain initialized data), the linker can reduce the size of
images.

Format

DZRO_MIN=number-of-pages

Option Values

number-of-pages
Specifies the minimum number of contiguous pages.

For VAX linking, the linker, by default, uses a minimum of 5 pages. Each VAX
page equals 512 bytes.

For Alpha linking, the linker, by default, uses a minimum of 1 page. The size of
an Alpha page is CPU-specific. The initial set of Alpha systems uses an 8 KB
page. The page size used is that of the current link operation. (See the /BPAGE
qualifier.)

The number of pages must be equal to or greater than the value specified in the
parameter.

Description

A demand-zero image section contains uninitialized, writable pages, which do not
occupy physical space in the image file on disk, but which, when accessed during
program execution, are allocated memory and initialized with binary zeros by
the operating system. (For more information about demand-zero compression on
Alpha and VAX, see Chapter 7.)

When specifying a value for this option, be aware that a low value (less than the
default value) increases the likelihood that the linker will encounter the required
number of contiguous, uninitialized pages and thus may increase the number of
demand-zero image sections the linker creates for the image (depending on the
contents of the object modules). While this can reduce the size of the image file
on disk, it can also decrease the image’s paging performance during execution.
Conversely, a value higher than the default value decreases the likelihood that
the linker will encounter the required number of contiguous, uninitialized pages;
decreases the number of demand-zero image sections the linker creates; and may
increase the size of the image file on disk but provide better paging performance
during execution.

The linker stops creating demand-zero image sections when the total number of
image sections in the image reaches the value specified by the ISD_MAX= option
or the default value. (For more information, see the description of the ISD_MAX=
option.)

The DZRO_MIN= option is illegal in a link operation that produces a system
image.

LINKER–64

LINKER Options
DZRO_MIN= (Alpha and VAX)

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
DZRO_MIN=15

Ctrl/Z

In this example, the value of the DZRO_MIN= is set to 15.

LINKER–65

LINKER Options
GSMATCH=

GSMATCH=

Sets match control parameters for a shareable image and specifies the match
algorithm. This option allows you to control whether executable images that
link with a shareable image must be relinked each time the shareable image is
updated and relinked.

Format

GSMATCH=keyword,major-id,minor-id

GSMATCH=EQUAL,link-time-derived-major-id,link-time-derived-minor-id (default)

Option Values

keyword
Identifies the match algorithm used by the image activator. Specify one of the
following keywords:

Keyword Meaning

EQUAL Directs the image activator to allow the image to map to the
referenced shareable image when one condition is met:

• the major and minor ID for the shareable image, as saved
at link time in the image file, are equal to the IDs found
in the actual shareable image file at activation time.

LEQUAL Directs the image activator to allow the image to map to the
referenced shareable image when two conditions are met:

• the major ID for the shareable image, as saved at link
time in the image file, is equal to the major ID found in
the actual shareable image file at activation time

• the minor ID for the shareable image, as saved at link
time in the image file, is less than or equal to the minor
ID found in the actual shareable image file at activation
time.

ALWAYS Directs the image activator to unconditionally allow the
image to map to the referenced shareable image:

• regardless of the values of the major and minor ID for the
shareable image, as saved at link time in the image file,
and the values of the IDs found in the actual shareable
image file at activation time.
Note that you must still specify values for the major ID
and minor ID parameters to satisfy the requirements of
the option syntax.

major-id
Specifies the major identification number.

LINKER–66

LINKER Options
GSMATCH=

minor-id
Specifies the minor identification number.

When a shareable image is created without specifying a GSMATCH= option, the
linker by default creates one. It sets the EQUAL match control and uses portions
of the image creation time, as a binary value, for the major and minor IDs. In
general this is sufficient to set a unique value for the IDs each time the shareable
image is linked. On I64, the linker uses bits 40 through 54 of the binary time
value for the major ID and bits 8 through 39 for the minor ID. On Alpha and
VAX, the linker uses bits 32 through 46 of the binary time value for the major ID
and bits 16 through 31 for the minor ID.

Description

The GSMATCH= option causes a major identification parameter (major-id), a
minor identification parameter (minor-id), and a match control keyword to be
stored in the shareable image file. The control keyword together with the IDs is
called the GSMATCH information.

When an image is linked with a shareable image, together with the reference to
the shareable image its GSMATCH information is saved in the image file.

When the image is run, the image activator encounters the reference to the
shareable image. At this time, the image activator compares the GSMATCH
information as saved in the image with the GSMATCH information retrieved
from the actual shareable image. The implementation details on I64 and Alpha
are slightly different, the mechanism and its effects are the same.

The following information describes the GSMATCH mechanism for an executable
image linked against a shareable image. "Executable" is used to clearly
differentiate between the referencing image and the referenced image, the
shareable image. However, in general any image, executable or shareable, can be
linked against a shareable image and the described mechanism applies.

• On I64, the GSMATCH= option causes a major identification parameter
(major-id), a minor identification parameter (minor-id), and a match control
keyword to be stored in the dynamic segment of the shareable image. It is
the DT_VMS_IDENT field which holds this information.

When an executable image is linked with a shareable image, the dynamic
segment of the executable image contains the name of the shareable image.
This information is saved in the field DT_NEEDED. The name is accompanied
by the GSMATCH information of the shareable image, taken at link time.
This information is saved in the field DT_VMS_NEEDED_IDENT.

When the executable image is run and the image activator begins processing
the dynamic segment of the executable image, the image activator encounters
the name of the shareable image. At that time, the image activator looks
up the shareable image file based on this name, either as a logical name,
pointing to a file, or as a filename in the directory SYS$LIBRARY. If an
image file was found, the image activator continues to process the GSMATCH
information.

• On Alpha and VAX, the GSMATCH= option causes a major identification
parameter (major-id), a minor identification parameter (minor-id), and a
match control keyword to be stored in the image header of the shareable
image.

LINKER–67

LINKER Options
GSMATCH=

When an executable image is linked with a shareable image, the image
header of the executable image contains an image section descriptor (ISD) for
the shareable image (as well as an ISD for each image section in the image).
The ISD for the shareable image contains a major ID, minor ID, and match
control keyword, which the linker copies from the shareable image at link
time.

When the executable image is run and the image activator begins processing
the ISDs in the image header of the executable image, the image activator
encounters the ISD for the shareable image. As such, the image activator
looks up the shareable image file based on its name, either as a logical name,
pointing to a file, or as a filename in the directory SYS$LIBRARY. If an image
file was found, the image activator compares the image section name in the
ISD to the image section name in the image header of the current shareable
image file. If the image section names do not match, the image activator does
not allow the executable image to map to the shareable image, regardless of
the GSMATCH parameters. If the image section names match, the image
activator continues to process the GSMATCH information.

• To process the GSMATCH information, the image activator compares the
major ID parameters. If they do not match, the image activator does
not allow the executable image to map to the shareable image unless
GSMATCH=ALWAYS has been specified.

If the major ID parameters match, the image activator compares the minor ID
parameters. If the relation between the minor ID parameters does not satisfy
the relation specified by the match control keyword, the image activator does
not allow the executable image to map to the shareable image. Then the
image activator issues an error message stating that the executable image
must be relinked.

The match control keyword must be the same in both the shareable and
executable image files. If it is different, then the more restrictive match is
used. For example, if a shareable image is linked with ALWAYS, and an
executable image contains EQUAL (from an earlier version of the shareable
image), then the test at activation time will be EQUAL.

Thus, to create an upwardly compatible shareable image, increment only the
value of the minor ID and leave unchanged the value of the major ID. If the
match control keyword is LEQUAL, the executable image that links against
it will run. (If the major ID is changed, executable images can never map to
the shareable image unless ALWAYS is specified.) By using this convention,
you can ensure that executable images that linked with an older version of
the shareable image can map to the newer version.

On Alpha and VAX, the linker uses the same GSMATCH mechanism to check the
compatibility of the information in a shareable image library and the shareable
image file. For more information, see the description of the /LIBRARY qualifier
in /LIBRARY.

On I64 and Alpha, the image activator verifies the index (I64) or offset (Alpha) of
a referenced symbol in a shareable image; the index or offset is then confirmed if
it is within the symbol vector.

This additional step makes it possible to avoid relinking of some images. To
illustrate the feature, consider a shareable image with an exported routine
MY_ADD, created with a SYMBOL_VECTOR=(MY_ADD=PROCEDURE) option.
Consider also an updated version of the shareable image with an improved MY_
ADD routine but also with an additional routine MY_SUB. That is, a shareable

LINKER–68

LINKER Options
GSMATCH=

image created with a SYMBOL_VECTOR=(MY_ADD=PROCEDURE,MY_
SUB=PROCEDURE) option.

The usual way to make such a change upward compatible is by changing the
minor ID in the GSMATCH= option. (This method is also the required way on
VAX.) Now consider linking your application, which only calls MY_ADD, with
the new shareable image and shipping it to a customer site, where only the
old shareable image is available. This image will not be activated with the old
shareable image because of the GSMATCH mechanism. It does not matter that
the new symbol is not referenced and that the application - if activated - would
correctly work. To resolve this GSMATCH conflict, the appliaction image needs
to be relinked with the old shareable image at the customer site or the updated
shareable image needs to be shipped with the application.

On I64 and Alpha, this condition can be avoided. By using an unchanged
minor ID in the GSMATCH= option, the updated shareable image is downward
compatible. Again, the application image only uses the old interface (MY_ADD,
in this example). Such images, although linked against the new shareable image,
can be activated with the old shareable image. Any application image using the
additional interface (MY_SUB, in this example) will not be activated with the
old shareable image; the check fails, the index or offset of the new symbol is not
within the symbol vector of the old shareable image. The image activation aborts
with the secondary message -LOADER-E-BADSVINDX (I64) or with the error
message %IMGACT-F-SYMVECMIS (Alpha).

In such a situation, where you only add interfaces at the end of the symbol vector,
you can safely leave the minor ID of the updated shareable image the same and
rely on the check of the image activator.

Examples

1. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000

Ctrl/Z

In this example, the GSMATCH= option sets the major and minor
identification numbers for this shareable image.

2. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1001

Ctrl/Z

In this example, the shareable image created in the previous example is
relinked and the minor identification number is incremented. Note that
executable images that link with the new version cannot map to the old
version, whereas executable images that link with the old version can map to
the new version.

3. $ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=ALWAYS,0,0

Ctrl/Z

By specifying the keyword ALWAYS, an executable image can run with any
version of the shareable image (newer or older).

LINKER–69

LINKER Options
IDENTIFICATION=

IDENTIFICATION=

Sets the image-id field in the image file. The image identification usually holds
a version number of the image, but can be used for any text to identify the
generated image.

Format

IDENTIFICATION=id-name

Option Values

id-name
The maximum length of the identification character string is 15 characters. If the
string contains characters other than uppercase and lowercase A through Z, the
numerals 0 through 9, the dollar sign, and the underscore, enclose it in quotation
marks.

Description

On I64, the identification string is saved in the NOTE section. On Alpha and
VAX, the text is saved in the image header.

When the IDENTIFICATION= option is not specified, the linker always creates
and saves a default identification. Because object modules have identification
strings as well, the linker tries to use them for the image. If that fails, the linker
uses the file type, explicitly or implicitly specified for the image file. In such a
case you may see the identification ".EXE".

For the default image ID, the linker takes the first non-empty identification
string from an object module, when processing the input files. Thereafter, the
default image ID is only changed, if the linker encounters an object module that
provides the transfer address. (A transfer address is the main entry point for
the image.) The providing module is seen as the main contributor and therefore
should determine the default image ID.

Because shareable images normally do not have a main entry point, the default
image ID usually remains as the ID of the first object module processed.

On Alpha and VAX, when linking system image with /SYSTEM and
/NOHEADER, the IDENTIFICATION= option is accepted but is not saved in
the image file.

Example

$ LINK /EXECUTABLE=IA64_LINKER LINKER/OPTIONS,SYS$INPUT/OPTIONS
IDENTIFICATION="I02-31"

Ctrl/Z

In this example, it is shown how a version number of the I64 linker is specified
with the IDENTIFICATION= option. With the Analyze utility, the image can be
identified as the second major release of the I64 linker with version 31.

LINKER–70

LINKER Options
IOSEGMENT=

IOSEGMENT=

Specifies the amount of space to be allocated for the image I/O segment, which
holds the buffers and OpenVMS RMS control information for all files used by the
image.

Format

IOSEGMENT=number-of-pagelets[,[NO]P0BUFS]

IOSEGMENT=0,NOP0BUFS (default)

Option Values

number-of-pagelets
Specifies the number of pagelets (512-byte units) to be allocated for the image I/O
segment. By default, the operating system uses the value set by the IMGIOCNT
system parameter to determine the size of the image I/O space.

[NO]P0BUFS
By default, the operating system allocates the I/O segment in the P1 region of
the process space and, if additional space is needed, at the end of the P0 region.
If you specify NOP0BUFS, you deny OpenVMS RMS additional pages in the P0
region.

Description

Specifying the value of number-of-pagelets to be greater than the value of
IMGIOCNT ensures the contiguity of P1 address space, providing that OpenVMS
RMS does not require more pages than the value specified. If OpenVMS RMS
requires more pagelets than the value specified, the pagelets in the P0 region
would be used (by default).

Note that if you specify NOP0BUFS and if OpenVMS RMS requires more pagelets
than have been allocated for it, OpenVMS RMS issues an error message.

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
IOSEGMENT=100,P0BUFS

Ctrl/Z

LINKER–71

LINKER Options
ISD_MAX= (Alpha and VAX)

ISD_MAX= (Alpha and VAX)

On Alpha and VAX systems, specifies the maximum number of image sections
allowed in the image.

Format

ISD_MAX=number-of-image-sections

ISD_MAX=96 (default, approximate value)

Option Values

number-of-image-sections
The maximum number of image sections that may be created. You can specify
the value in hexadecimal (%X), decimal (%D), or octal (%O) radix. The default is
decimal radix.

Description

This option is used to control the linker’s creation of demand-zero image sections
by imposing an upward limit on the number of total image sections. Thus, if the
linker is creating demand-zero image sections, and if the total number of image
sections reaches the ISD_MAX= value, demand-zero image section creation ceases
at that point. (For more information about how the linker creates demand-zero
image sections, see Section 7.4.3.)

The ISD_MAX= option may be specified only in a link operation that produces
an executable image. The ISD_MAX= option is illegal in a link operation that
produces either a shareable or a system image.

The default value for ISD_MAX= is approximately 96. Note that any value you
specify is also an approximation. The linker determines an exact ISD_MAX=
value based on characteristics of the image, including the different combinations
of section attributes. The exact value, however, will be equal to or slightly greater
than what you specify; it will never be less.

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
ISD_MAX=126

Ctrl/Z

LINKER–72

LINKER Options
NAME=

NAME=

Sets the image-name field in the image file. The image name is used on Alpha
and VAX systems to resolve self-references in the shareable image list.

Format

NAME=image-name

Option Values

image-name
A character string up to 39 characters in length. If the name contains characters
other than uppercase and lowercase A through Z, the numerals 0 through 9, the
dollar sign, and the underscore, enclose it in quotation marks.

Description

If the NAME= option is not specified, the string specified with /SHAREABLE or
/EXECUTABLE is used for the image-name field. If no string was specified to
/SHAREABLE or /EXECUTABLE, the name of the first module processed is used.

The NAME= option does not affect the name of the image file.

The image-name field is not used by the linker or librarian.

For Alpha and VAX linking, if a shareable image references its own exported
symbol (on Alpha, created with a SYMBOL_VECTOR clause that contains an
ALIAS keyword), the linker always uses the string from the NAME= option to
name the image in the shareable image list. When using a different name than
the image file, the to be generated shareable image will not show in its own
shareable image list. The image-name field will not change when the image file
is renamed. This way the image activator can always resolve a self-reference.

On I64 systems, self-references is expressed differently. There is no entry in
the shareable image list for the current image. Self-references are referred to
with a special index value into the shareable image list (-1 in the DT_VMS_
FIXUP_NEEDED field) that results in a set of DT_NEEDED entries. However,
the NAME= option is supported for compatibility reasons.

The following conventions describe the various names that apply to an image:

• File name - Images are given an image file specification (for example,
FOO.EXE) that can be changed with the DCL command RENAME.

• Image name - The image name as specified with the NAME= option and
stored in the image file. This name can be different than the image file
specification name. However, if you do not use the NAME= option, the name
defaults to the image file specification name. The Analyze utility displays this
name as the "Image name". Once written to the image file, you cannot change
this name.

• Global Symbol Table Name - An additional name for the image is associated
with the global symbol table (GST) and stored in the image for example in I64
images it is in a note of type NT_VMS_GSTNAM. The linker sets this name
to be the same as the image file specification name. This name is used by the
Librarian when you insert an image into an image library. It is displayed by

LINKER–73

LINKER Options
NAME=

the Analyze utility as the Global Symbol Table Name. Once written to the
image file, you cannot change this name.

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
NAME=MY_IMAGE

Ctrl/Z

LINKER–74

LINKER Options
PROTECT=

PROTECT=

Specifies that the segments (I64) or image sections (Alpha/VAX) in one or more
clusters in a shareable image should be protected from user-mode or supervisor-
mode write access.

Format

PROTECT=YES/NO

PROTECT=NO (default)

Option Values

YES
Enables protection for all the clusters defined in subsequent lines in the options
file by the CLUSTER= option or the COLLECT= option, up to a line containing
another PROTECT= option.

NO
Disables protection for all clusters specified on subsequent lines of a linker
options file by the CLUSTER= option or the COLLECT= option, up to the line
containing another PROTECT=YES option. Protection is disabled by default.

Description

This option is used to protect segments or image sections that contain privileged
code or data in shareable images that implement user-written system services
(called privileged shareable images). For more information about creating
user-written system services, see the HP OpenVMS Programming Concepts
Manual.

Note that the protection applies to the segments and image sections the linker
creates from the cluster, not the cluster itself. A cluster is an internal construct
the linker uses to organize how it processes input files. The linker communicates
the actual memory requirements of an image, including its protection, to the
image activator as segment or image section specifications.

If the entire shareable image needs to be protected, specify the /PROTECT
qualifier.

For I64, HP recommends that you protect the whole image with the /PROTECT
qualifier; see Section 4.4.)

Example

$ LINK/SHAREABLE=MY_SHARE SYS$INPUT/OPTIONS
PROTECT=YES
CLUSTER=A,,,MOD1,MOD2
SYMBOL_VECTOR=(ENTRY=PROCEDURE)
PROTECT=NO
CLUSTER=B,,,MOD3
COLLECT=A,PSECTX,PSECTY,PSECTZ

Ctrl/Z

In this example, the segments or image sections, created from the modules MOD1
and MOD2 in cluster A are protected; the segments or image sections, created
from the module MOD3 in cluster B are not protected; the segments or image

LINKER–75

LINKER Options
PROTECT=

sections into which the program sections PSECTX, PSECTY, and PSECTZ are
collected in cluster A are protected. Note that other linker options, such as the
SYMBOL_VECTOR= option in the example, are not affected. Please note, the
symbol vector, which is a NOWRT program section by default, is not protected
with this scheme. Its program section is collected onto the default cluster.

LINKER–76

LINKER Options
PSECT_ATTRIBUTE=

PSECT_ATTRIBUTE=

Specifies the attributes of a program section.

Format

PSECT_ATTRIBUTE=psect-name,attribute-keyword[,...]

Option Values

psect-name
Specifies the name of the program section whose attributes you want to set. The
name may be a character string up to 31 characters in length.

attribute-keyword
One or more attributes, identified by a keyword or a number, separated by
commas. For a complete description of the program section attributes see
Section 3.2 (I64) and Section 7.2 (Alpha and VAX).

Settable attributes

• Alignment - Specify the alignment of the program section as an integer that
represents the power of 2 required to generate the desired alignment or
specify a keyword, if available.

Power
of 2 Keyword Meaning

0 BYTE Alignment on byte boundaries.
1 WORD Alignment on word boundaries.
2 LONG Alignment on longword boundaries.
3 QUAD Alignment on quadword (8-byte) boundaries.
4 OCTA Alignment on octaword (16-byte) boundaries.
51 HEXA Alignment on hexadecimal word (32-byte) boundaries.
61 – Alignment on 64-byte boundaries.
71 – Alignment on 128-byte boundaries.
8 – Alignment on 256-byte boundaries.
9 – Alignment on 512-byte boundaries.
13 – Alignment on 8 KB boundaries.
14 – Alignment on 16 KB boundaries.
15 – Alignment on 32 KB boundaries.
16 – Alignment on 64 KB boundaries.
– PAGE Alignment on the default target page size, see the /BPAGE

qualifier

1I64 only

• ALLOC_64BIT/NOALLOC_64BIT (I64 only) - Allocate section in P2 space

• EXE/NOEXE - Executability

• GBL/LCL - Global/Local

LINKER–77

LINKER Options
PSECT_ATTRIBUTE=

• MOD (I64 and Alpha) - Unmodified

• OVR/CON - Overlaid/Concatenated

• PIC/NOPIC (Alpha and VAX) - Position Independence

• REL/ABS - Relocatable/Absolute

• SHORT (I64 only) - Short Data

• SHR/NOSHR - Shareability

• SOLITARY - Solitary

• VEC/NOVEC - Protected Vectors

• WRT/NOWRT - Writability

Description

Attributes not specified in a PSECT_ATTRIBUTE= option remain unchanged.

If you specify a program section alignment that is greater than the target page
size, the linker issues a warning and adjusts the alignment to be equal to the
target page size.

By default, the linker aligns program sections, at a minimum, on the boundary
specified by the compiler.

The PSECT_ATTRIBUTE= option aligns the program section on the specified
boundary which should be equal to or greater than that which the compiler
specified. The linker does not align each individual contribution to the section;
rather, it aligns the total program section. The linker follows the compiler’s
alignment specification when it aligns each individual contribution.

Do not specify a smaller program section alignment with the PSECT_
ATTRIBUTE= option than the alignment that the compiler gave to the program
section.

On I64 systems, If you specify a smaller alignment for a program section than
any compiler-assigned alignment from all contributions to this program section,
the linker issues a warning. For example:

$ lINK HI,SYS$INPUT/OPTIONS
PSECT_ATTRIBUTE=$LITERAL$,BYTE

Ctrl/Z

%ILINK-W-CONFALGN, PSECT option alignment (1) less than compiler
assigned (16);
alignment ignored

section: $LITERAL$
module: HI
file: DISK$USER:[JOE]HI.OBJ;3

Please note, the alignment number in the linker message indicates a multiple-of-
bytes alignment, where 1 is a byte alignment and 16 is an octaword alignment.

On Alpha and VAX systems, the linker inappropriately aligns the program section
on the boundary that you specified ("byte", in the preceding code example),
and places all the contributions to that program section (from other modules
you might have linked with "HI", in the example) on boundaries that were not
specified by the compiler. The linker does not issue an error message.

LINKER–78

LINKER Options
PSECT_ATTRIBUTE=

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
PSECT_ATTRIBUTE=MY_CONST,NOWRT

Ctrl/Z

In this example, the linker protects the program section MY_CONST from write
access and leaves all other attributes of MY_CINST unchanged.

LINKER–79

LINKER Options
RMS_RELATED_CONTEXT=

RMS_RELATED_CONTEXT=

Enables or disables RMS related name context processing. This is also known
as file specification "stickiness." The default is to have RMS related name
context processing enabled. This default applies at the start of each options
file regardless of the setting in a previous options file. The related name context
itself (the collection of data structures RMS maintains to supply the most recently
specified fields) does not carry over from one linker options file to the next. That
is, previously specified fields in the previous options file are not used to fill in
absent fields for file specifications in the current options file.

Format

RMS_RELATED_CONTEXT=YES/NO

RMS_RELATED_CONTEXT=YES (default)

Option Values

YES
Enables RMS related name context processing. If an option RMS_RELATED_
CONTEXT=NO is in effect, its saved related name context is restored. If RMS
related name context processing is already enabled, this option has no effect.

RMS related name context processing is enabled by default. Therefore command
line file specifications are processed with RMS related name context. Also, RMS
related name context processing is enabled at the start of each options file. The
related name context is limited to a single options file. That is, the saved related
name context is cleared at the start of each options file.

NO
Disables RMS related name context processing. If an option RMS_RELATED_
CONTEXT=YES is in effect, the current name context is saved for a possible
future RMS_RELATED_CONTEXT=YES option. If RMS related name context
processing is already disabled, specifying RMS_RELATED_CONTEXT=NO has no
effect.

Description

When RMS related name processing is enabled (by default and at the beginning
of each options file), file specifications that do not have all fields of the file
specification present will have the missing fields replaced with the corresponding
fields most recently specified in earlier file specifications. When disabled, fields in
the file specification that are absent are not replaced with corresponding fields of
previous file specifications.

When the RMS related name context processing is switched from enabled to
disabled, the current related name context is saved. Vice versa, if the RMS
related name context processing is switched from disabled to enabled, the saved
related name context is restored.

In combination with logical names and search lists, determining a missing input
file with RMS related name context processing enabled may take long. To the
user the link operations seems to hang or to loop. To identify such a situation
and to resolve it by determining which file is missing, follow these steps:

LINKER–80

LINKER Options
RMS_RELATED_CONTEXT=

1. Specify SYS$INPUT/OPTIONS in the LINK command and press Return.
(The linker waits for you to enter option clauses for the link operation from
the terminal.)

2. Enter the option clauses and include the following information:

• On the first line, specify: RMS_RELATED_CONTEXT=NO

With the RMS_RELATED_CONTEXT= option set to NO, any missing file
listed in this options file generates an immediate "file not found" message.

• On subsequent lines, specify the files to be linked, using full file
specifications in the form disk:[dir]filename.ext for every file. Full file
specifications are required because when you specify RMS_RELATED_
CONTEXT=NO, file name "stickiness" is disabled.

3. Press Ctrl/Z.

Example

$ LINK DSK:[TEST]A.OBJ, B.OBJ

In this example the RMS related name context processing is enabled by default.
The specified input file B.OBJ gets the name context DSK:[TEST] from the
previous input file DSK:[TEST]A.OBJ.

$ LINK/EXECUTABLE=A.EXE SYS$INPUT/OPTIONS
RMS_RELATED_CONTEXT=NO
DSK:[TEST]A.OBJ, DSK:[TEST]B.OBJ

Ctrl/Z

In this example the RMS related name context processing is disabled. The full
file specifications for both object modules are required. The link operation is the
same as in the previous example.

$ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]!
$ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$,

ROOT4$, ROOT5$, DISK_READ$:[SYS.]
$ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST]
$ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
$ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
$ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
$ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP]
$ LINK/MAP/FULL/CROSS_REFERENCE/EXECUTABLE=ALPHA.EXE RESD$:[TMPOBJ]A.OBJ,-

_$ RESD$:[SRC]B.OBJ,C,DSKD$:[OBJ]D.OBJ,E,RESD$:[TMPSRC]F.OBJ,-
_$ RESD$:[TEST]G.OBJ,RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ

Ctrl/T"
NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.04 PF=5154 IO=254510 MEM=134

Ctrl/T

NODE6::_FTA183: 15:49:46 LINK CPU=00:02:30.05 PF=5154 IO=254513 MEM=134
Ctrl/T

NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.27 PF=5154 IO=268246 MEM=134
Ctrl/T

NODE6::_FTA183: 15:50:02 LINK CPU=00:02:38.28 PF=5154 IO=268253 MEM=134
Ctrl/T

NODE6::_FTA183: 15:50:14 LINK CPU=00:02:44.70 PF=5154 IO=278883 MEM=134

In this example, the linker appears to loop. The file DOES_NOT_EXIST.OBJ, as
included in the argument list, does not exist. An RMS_RELATED_CONTEXT=
option is not specified (and, therefore, defaults to YES). With multiple logical

LINKER–81

LINKER Options
RMS_RELATED_CONTEXT=

names and a search list for the logical RESD$, determining that this file is
missing takes very long.

! These commands define logical names and equivalents.

" Each time you press Ctrl/T, the CPU and IO values increase, but the MEM
and PF values do not, indicating that LIB$FIND_FILE has been called with
RMS related name context.

$ DEFINE DSKD$ WORK4:[TEST.LINKER.OBJ.]
$ DEFINE RESD$ ROOT$, ROOT2$, ROOT3$, ROOT4$, ROOT5$, DISK_READ$:[SYS.]
$ DEFINE ROOT$ WORK4:[TEST.PUBLIC.TEST.]
$ DEFINE ROOT2$ WORK4:[TEST.LINKER.]
$ DEFINE ROOT3$ WORK4:[TEST.UTIL32.]
$ DEFINE ROOT4$ WORK4:[TEST.PUBLIC.]
$ DEFINE ROOT5$ WORK4:[TEST.PUBLIC.TMP.]
$ LINK/MAP/FULL/CROSS_REFERENCE/EXECUTABLE=ALPHA.EXE SYS$INPUT/OPTIONS

RMS_RELATED_CONTEXT=NO
RESD$:[TMPOBJ]A.OBJ,RESD$:[SRC]B.OBJ,RESD$:[SRC]C,DSKD$:[OBJ]D.OBJ
DSKD$:[OBJ]E,RESD$:[TMPSRC]F.OBJ,RESD$:[TEST]G.OBJ
RESD$:[SRC.OBJ]H,RESD$:[COM]DOES_NOT_EXIST.OBJ

Ctrl/Z

%LINK-F-OPENIN, error opening DISK_RESD$:[SYS.][COM]DOES_NOT_EXIST.OBJ; as input
-RMS-E-FNF, file not found

$

In this example, using an options file with RMS_RELATED_CONTEXT set to
NO, causes the link operation to finish immediately because it determines quickly
the missing file.

LINKER–82

LINKER Options
STACK=

STACK=

Specifies the size of the user-mode stack.

Format

STACK=number-of-pagelets

STACK=20 (default)

Option Values

number-of-pagelets
Specifies the size of the stack in pagelets (512-byte units).

Description

If you do not specify the STACK= option, the linker allocates 20 pagelets (512-
byte units) for the user-mode stack. Note that the stack is usually located at
the lower end of the used P1 space and that additional space for the user-mode
stack is automatically allocated - growing into unused, lower P1 space, if needed,
during program execution.

The STACK= option is primarily used to set the stack size for images that are
linked with the /P0IMAGE qualifier, where the stack growth is limited by the
mapped images. Depending on the layout of the images, the stack can grow into
a writable data segment (I64) or image section (Alpha and VAX) and corrupt the
data.

The STACK= option may be specified only in a link operation that produces an
executable image. Shareable images share the stack with the executable image.

LINKER–83

LINKER Options
SYMBOL=

SYMBOL=

Directs the linker to define an absolute global symbol with the specified name
and assign it the specified value. You can use this option to specify a link-time
constant.

Format

SYMBOL=symbol-name,symbol-value

Option Values

symbol-name
A character string up to 31 characters in length.

symbol-value
The value you want to assign to the symbol. An absolute global symbol has a
fixed numeric value and is therefore not relocatable. Thus, the value must be a
number.

On I64, the numeric value is a 64-bit value.

Description

The definition of a symbol specified by the SYMBOL= option constitutes the first
definition of that symbol, and it overrides subsequent definitions of the symbol in
input object modules. In particular:

• If the symbol is defined as relocatable in an input object module, the linker
ignores this definition, uses the definition specified by the SYMBOL= option,
and issues a warning message.

• If the symbol is defined as absolute in an input object module, the linker
ignores this definition and uses the definition specified by the SYMBOL=
option; however, it does not issue a warning message.

For more information about symbol resolution, see Chapter 2 (I64) and Chapter 6
(Alpha and VAX).

Note

The SYMBOL= option cannot be used to define a symbol used in the
SYMBOL_VECTOR= option or the UNIVERSAL= option.

Example

$ LINK MY_PROG,SYS$INPUT/OPTIONS
SYMBOL=ITERATIONS,15

Ctrl/Z

In this example, the program MY_PROG contains a loop, which is performed
ITERATIONS times. In this link operation, for the image MY_PROG, the value
of ITERATIONS, even if defined in an object module, is set to 15.

LINKER–84

LINKER Options
SYMBOL_TABLE= (I64 and Alpha)

SYMBOL_TABLE= (I64 and Alpha)

For I64 and Alpha linking, specifies whether the linker should include global
symbols in a symbol table file produced in a link operation in which a shareable
image is created. By default, the linker includes only universal symbols in a
symbol table file associated with a shareable image.

Format

SYMBOL_TABLE=GLOBALS/UNIVERSALS

SYMBOL_TABLE=UNIVERSALS (default)

Option Values

GLOBALS
Specifies that the linker should include global symbols and universal symbols in
the symbol table file associated with the shareable image.

UNIVERSALS
Specifies that the linker should include only universal symbols in the symbol
table file associated with the shareable image.

Description

This option may be specified only in the creation of a shareable image. Note
that the symbol table file affected by this option cannot be used as input in a
subsequent link operation but is intended to be used with the OpenVMS System
Dump Analyzer utility (SDA) as an aid to debugging.

Example

$ LINK/SHAREABLE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(PROC1=PROCEDURE,-

PROC2=PROCEDURE,-
PROC4=PROCEDURE)

SYMBOL_TABLE=GLOBALS
Ctrl/Z

In the example, the symbols PROC1, PROC2, and PROC4 are declared as
universal symbols. Normally, these symbols would be the only symbols to appear
in a symbol table file associated with this shareable image. (The symbol table
file duplicates the global symbol table of the shareable image.) However, because
the SYMBOL_TABLE=GLOBALS option is specified, the linker also puts all the
global symbols in the shareable image into the symbol table file. You must specify
the /SYMBOL_TABLE qualifier to obtain a symbol table file.

LINKER–85

LINKER Options
SYMBOL_VECTOR= (I64 and Alpha)

SYMBOL_VECTOR= (I64 and Alpha)

For I64 and Alpha linking, declares universal symbols in shareable images.

Format

SYMBOL_VECTOR=([alias/]name=entry-type[,...])

Option Values

alias
Optionally specifies an alias name for the symbol you want to declare universal.
When specified, the alias name appears in the global symbol table (GST) of
the image and values associated with the name specified in the symbol-name
parameter appear in the symbol vector of the image.

Note that you can specify alias names only for symbol vector entries declared
using the DATA or PROCEDURE keywords. For more information about symbol
vector entry types, see the following table.

name
Specifies the name of the symbol or the name of a program section in the
shareable image that you want to declare universal.

entry-type
Specifies the type of the symbol vector entry. The following table lists the types of
symbol vector entries supported by the linker along with the keyword you use to
specify them:

Keyword Function

DATA1 Creates a symbol vector entry for data (relocatable
or constant). The linker creates an entry for the
symbol in the GST of the shareable image.

PROCEDURE1 Creates a symbol vector entry for a procedure and
creates an entry for the symbol in the GST of the
shareable image.

PRIVATE_DATA Creates a symbol vector entry for data; however, the
linker does not create an entry for the data in the
GST of the shareable image. Thus, the symbol is
not available for other modules to link against.

PRIVATE_PROCEDURE Creates a symbol vector entry for a procedure;
however, the linker does not create an entry for the
procedure in the GST of the shareable image. Thus,
the symbol is not available for other modules to link
against.

1You can specify an alias name for this type of symbol vector entry.

LINKER–86

LINKER Options
SYMBOL_VECTOR= (I64 and Alpha)

Keyword Function

PSECT Creates a symbol vector entry for a program section
and creates an entry for the program section in the
GST of the shareable image.2

SPARE Use this keyword to create a placeholder. SPARE
allows you to preserve the order of the symbol
vector entries when you need to create an upwardly
compatible shareable image. The SPARE keyword is
used alone; it is not preceded by a symbol name and
equal sign.

2Although not a symbol, the name of an exported program section is part of the GST, which
implements the public interface of the shareable image.

Description

The linker creates an entry in the GST of a shareable image for each name listed
in the SYMBOL_VECTOR= option, unless the symbol is declared private, the
/NOGST qualifier is specified, or the symbol is the internal name for an alias.
Symbols and program sections that appear in the GST of a shareable image
are available for external modules to link against. For more information about
creating and using shareable images, see Chapter 4 (I64) and Chapter 8 (Alpha).

Example

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1000
SYMBOL_VECTOR=(MY_ADD=PROCEDURE,-

MY_SUB=PROCEDURE,-
SPARE,-
SPARE,-
MY_DATA=DATA,-
MY_DATA_PSECT=PSECT)

Ctrl/Z

This example creates a symbol vector with entries for procedures, data, and a
program section.

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,1001
SYMBOL_VECTOR=(MY_ADD=PRIVATE_PROCEDURE,-

DEPRECATED_SUB=PRIVATE_PROCEDURE,-
MY_ADD/UPDATED_ADD=PROCEDURE,-
MY_SUB/UPDATED_SUB=PROCEDURE,-
MY_DATA=DATA,-
MY_DATA_PSECT=PSECT)

Ctrl/Z

This example creates a symbol vector to be upward compatible with the shareable
image from the last example. Images linked against the old shareable image
continue to work. For calling MY_ADD and MY_SUB, they use the first and
second entry. The old MY_ADD is still available, but no longer public. The old
MY_SUB is replaced by DEPRECATED_SUB. Newly linked images will always
use the third and fourth entry for MY_ADD and MY_SUB, the updated public
interfaces. For MY_DATA and MY_DATA_PSECT, all images use entries 5 and 6
to reference the unchanged data interfaces.

LINKER–87

LINKER Options
SYMBOL_VECTOR= (I64 and Alpha)

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
GSMATCH=LEQUAL,1,200
CASE_SENSITIVE=YES
SYMBOL_VECTOR=(my_mul=PROCEDURE,-

MY_MUL/my_mul=PROCEDURE,-
my_div=PROCEDURE,-

MY_DIV/my_div=PROCEDURE,-
my_data=DATA,-

MY_DATA/my_data=DATA)
CASE_SENSITIVE=NO

Ctrl/Z

This example creates a symbol vector or a shareable image with all the symbols
in the GST as lowercase and uppercase names. This is useful if applications built
in the traditional way (compilers uppercase global names) and built as in the
Open Source environment (global names as-is) link against that shareable image.

LINKER–88

LINKER Options
UNIVERSAL= (VAX Only)

UNIVERSAL= (VAX Only)

For VAX linking, declares a symbol in a shareable image as universal, causing
the linker to include it in the global symbol table of a shareable image.

Format

UNIVERSAL=symbol-name[,...]

Option Values

symbol-name
The name of the symbol or symbols you want to declare universal.

Description

This option may be specified only in the creation of a shareable image.

For more information about declaring universal symbols, refer to Chapter 8.

Example

$ LINK/SHAREABLE MY_SHARE,SYS$INPUT/OPTIONS
UNIVERSAL=MY_SYMBOL

Ctrl/Z

In this example, the linker includes the universal symbol MY_SYMBOL in the
global symbol table of the shareable image MY_SHARE.EXE.

LINKER–89

Glossary

This glossary defines key terms for the OpenVMS Linker. The OpenVMS Linker
is part of the OpenVMS operating system which is available on Integrity, Alpha,
and VAX hardware platforms. Certain terminology commonly used by the linker
on Alpha and VAX might be different on OpenVMS I64. Where applicable,
cross-references are made between Alpha/VAX systems and I64 systems.

based cluster

Alpha and VAX systems. A cluster located at a base address using the
CLUSTER= option.

brief map

Information produced by the linker when the /BRIEF qualifier is specified with
the /MAP qualifier. A brief map contains only a subset of the default map. See
also image map.

default map

Information produced by the linker when the /MAP qualifier is specified without
the /BRIEF and /FULL qualifiers. See also image map.

demangler

A compiler tool that translates mangled names back to their source-name
equivalents. Recent compilers are able to include demangling information when
they generate their object modules. See also mangled name.

ELF

See Executable and Linkable Format (ELF).

Executable and Linkable Format (ELF)

The object and image format as described in System V Application Binary
Interface. The ELF format is extensible; that is, it can contain hardware and
software extensions. For I64 systems, a hardware extension is used as described
in the Intel Itanium Processor-specific Application Binary Interface. Based on
that interface, a software extension to ELF is provided for OpenVMS systems (see
the IPF/VMS Object/Image File Functional Specification). In the OpenVMS I64
extension, ELF is the object and image file format for object and image binaries.
Compilers, assemblers, and other language processors whose output is used by
the used by the OpenVMS Linker Utility must produce object files that conform
to the OpenVMS extension of the ELF specification.

executable image

The primary type of image created from a link operation. This image can be
executed from the DCL command line. See also shareable image.

Glossary–1

fix-up

Executable and shareable images can have references to shareable images. At
link time, when symbols are resolved, the address values are not known. They
become visible when the image activator maps the shareable image. At that time,
the image activator "fixes up" the references with the address values.

full map

Information produced by the linker when the /FULL qualifier is specified with
the /MAP qualifier. To tailor the full information, you can use keywords to add or
suppress specific information. See also image map.

function descriptor

An I64 term. As defined in the OpenVMS I64 Calling Standard, a function
descriptor is the pairing of a code address and a global pointer. With this
information, a call to the function (or procedure) can be made, and the called
function can access its data by way of the global pointer.

hard definition

A symbol with compiler-supplied storage that is not in an overlaid section.

header table

An ELF term. The ELF format describes portions of the object and image
modules, as well as their attributes, using section and segment headers. These
headers are contained in two arrays of headers called the Section Header Table
(for section headers) and the Program Header Table (for program segment
headers). Only one header, the main ELF header, is not listed in either of these
tables. It is located at the beginning of the module. See also Executable and
Linkable Format.

image file

A file containing binary code and data of a program for an OpenVMS system;
essentially, an image of what is in memory when the program is started. Also
called an image.

image header

An Alpha and VAX term. The part of an executable or shareable image that
describes the contents of the image file (the image sections). It is located at the
beginning of the file.

image initialization

The part of the link operation where the linker, after it resolves references and
obtains memory requirements, initializes the image by filling it with the compiled
binary code and data.

image map

Information generated by the linker that describes the contents of the image
and the linking process. The image map helps you determine programming and
link-time errors, study the layout of the image in virtual memory, and keep track
of global symbols. You control the information generated by the map by accepting
the default map, or by specifying either a brief or full map. See also default map,
full map, brief map.

Glossary–2

image optimization

An I64 and Alpha term. Actions the linker takes to improve run-time
performance of an image it creates. For example, for OpenVMS I64 images, the
linker can optimize data references to the short data segment.

image relocations

Address suggested by the linker that that image activator uses to relocate the
image. See relocations.

linkage pair

An Alpha term. A compiler-generated small data structure to implement a call.
A linkage pair consists of the required information to make a call: the code
address and the procedure descriptor address of a procedure. The linkage pair
is not defined in the OpenVMS Alpha Calling Standard. It is an implementation
detail used by compilers and understood by the linker.

local function descriptor

An I64 term. As defined in the OpenVMS I64 Calling Standard, a function
descriptor is the pairing of a code address and a global pointer. With this
information, a call to the function (or procedure) can be made and the called
function can access its data by way of the global pointer. The calling standard
requires a local function descriptor for each call to another image. Local function
descriptors are set up by the linker. Although for each call a different local
function descriptor can be used, the linker sets up and re-uses one local function
descriptor per target function. The linker creates a fix-up for each local function
descriptor. See also fix-up, official function descriptor.

mangled names

The process where some compilers create abbreviated symbol names to
implement language features or to use shortened, unique names. For example,
C++ compilers mangle symbol names to guarantee unique names for overloaded
functions. See also demangler.

object file

A file produced from a source language by a language processor (compiler,
assembler, etc.) that contains one or more object modules that serves as input to
the linker. See also image file.

official function descriptor

An I64 term. As defined in the OpenVMS I64 Calling Standard, a function
descriptor is the pairing of a code address and a global pointer. With this
information, a call to the function (or procedure) can be made and the called
function can access its data via the global pointer. The linker sets up an official
function descriptor to implement calls to the function (or procedure). As such,
an official function descriptor is an entry point. An entry is unique: there can
be only one official function descriptor per function (or procedure). See also local
function descriptor.

OpenVMS system

An HP system running the HP OpenVMS operating system. These include
OpenVMS I64, Alpha, and VAX operating systems. See also system.

Glossary–3

OpenVMS Alpha system

An HP Alpha system running the OpenVMS Alpha operating system. Also
referred to as Alpha system or Alpha.

OpenVMS I64 system

An HP Integrity server running the OpenVMS I64 operating system. Also
referred to as I64 system or I64.

OpenVMS VAX system

An HP VAX system running the OpenVMS VAX operating system. Also referred
to as VAX system or VAX.

platform

A generic term referring to all systems of a specific processor architecture. For
example, Intel Itanium. (See also system.)

privileged shareable image

A shareable image containing privileged code. For example, user-written system
services allow user-mode programs to call routines that can perform functions
that require privileges. These services are implemented in shareable images.
Because of the presence of privileged code, they are referred to as privileged
shareable images. See also protected shareable image.

program section

An area of memory that has a name, a length, and other attributes describing
the intended or permitted usage of that portion of memory. Program sections are
part of an object module. At link time, the user can set or change some of the
attributes so the linker combines them in a manner that the user controls.

program segment

An I64 term. A chunk of the image binary, usually data or code. In general,
everything that needs to be available to activate and run the image. See also
image section.

protected shareable image

A shareable image created with the /PROTECT qualifier. Privileged shareable
images must be protected from user-mode and supervisor-mode write access. See
also privileged shareable image.

psect

See program section.

relaxed definition

See tentative definition.

relocations

The linker combines object binaries (code and data) from different object modules.
The language processors do not know where their modules will be located in
virtual address space. Therefore, the language processors generate information
packets for the linker, called relocations, so that code execution and data
references will work from any linker-chosen memory location. The linker applies
these relocations to data. Because the image activator can place an image at

Glossary–4

any memory location, the linker produces relocations, called "image relocations",
to assist the image activator. Code is always position independent, that is, it
requires no relocations.

shareable image

A collection of data and program services that is a product of a link operation and
is not directly executed from the DCL command line. To make use of a shareable
image, it must first be included as input in a link operation that produces an
executable image. See also executable image.

symbol resolution

The process of resolving references to symbols whose definitions are external to
the module.

system

The computer hardware; the server. Distinguish from the operating system (for
example, OpenVMS Alpha). See also platform.

system image

An Alpha and VAX term. A product of a link operation producing an image
that can be run as a standalone program, without operating system support.
Therefore, these images typically do not contain image activation information.
On OpenVMS I64, images always contain image activation information. As a
result, the I64 linker does not create system images. See also executable image.

tentative definition

A symbol definition without compiler supplied storage or storage in overlaid
sections. There can be tentative definitions for a symbol in several modules. If no
hard definition for the symbol is encountered, one of the tentative definitions for
that symbol is selected by the linker to be the defining instance. See also hard
definition.

Glossary–5

Index

A
.ADDRESS directive

count in Alpha/VAX image map file, 9–4
.ADDRESS directive (Alpha/VAX)

image activator’s processing of, 7–25
linker’s processing of, 7–25

Address ranges
aligning on page boundaries, 3–31, 7–24

Alias names
specifying for universal symbols, 4–9,

LINKER–86
specifying for universal symbols (Alpha linking),

8–11
ALLOC_64BIT attribute, 3–20
ALPHA$LIBRARY logical name, 1–12, 1–24
ALPHA$LOADABLE_IMAGES logical name,

1–24, 6–19, LINKER–44
on I64, 2–20

Alpha images
creating, 1–23
specifying in link operations, LINKER–5

/ALPHA qualifier, 1–24
ANALYZE/IMAGE command

examining image files, 1–15
listing the image sections in an image, 7–21
listing the segments in an image (I64), 3–28

ANALYZE/OBJECT command
examining object modules, 1–8

Architecture
linker options, 1–23

ASSIGN command
defining the LNK$LIBRARY logical name,

LINKER–52
/ATTRIBUTES qualifier, LINKER–62
Attribute terms

ELF, 3–18
traditional OpenVMS, 3–18

B
BASE= option, LINKER–57
Base addresses

defaults for images, LINKER–57
specifying using the CLUSTER= option,

LINKER–61
system image, LINKER–48

Based images
creation of, LINKER–57
memory allocation for, LINKER–57

Based images (Alpha/VAX)
processing of, 7–9

Based images (VAX)
shareable, 8–7

/BASE_ADDRESS qualifier, LINKER–6
/BPAGE qualifier, LINKER–7
Branch instruction, normal

See Trampoline, 3–11
Brief image map files, LINKER–9
/BRIEF qualifier, LINKER–9
BSR instruction

substituting for the JSR instruction,
LINKER–34

C
Case sensitivity

in options file, LINKER–59
CASE_SENSITIVE= option, LINKER–59
C extern common model, 2–2
C language

extensions, 2–4
extern common model, 2–2
tentative defintions, 2–3

CLUSTER= option, LINKER–61
basing images, LINKER–57
controlling segment creation, 3–30
controlling the order of input file processing,

6–18
controlling the order of input file processing

(I64), 2–19
CLUSTER= option (Alpha/VAX)

controlling image section creation, 7–23
CLUSTER= option (VAX)

fixing position of transfer vector in image, 8–7
Clustering of input files

controlling image section creation, 7–23
controlling segment creation, 3–30
I64

effect on image creation, 3–15
in a based image, LINKER–57
using the COLLECT= option, LINKER–62

Index–1

Clustering of input files (Alpha/VAX)
effect on image creation, 7–9
processing based images, 7–9

Clusters
See Clustering of input files
See Clustering of input files, VAXcluster

environments, and OpenVMS Cluster
systems

Cluster synopsis section
listed in I64 Linker map file, 5–6

COLLECT= option, LINKER–62
controlling segment creation, 3–30
controlling the order of input file processing,

6–18
controlling the order of input file processing

(I64), 2–20
COLLECT= option (Alpha/VAX)

controlling image section creation, 7–23
Concatenated (CON) attribute, 3–25
/CONTIGUOUS qualifier, LINKER–10
$CRMPSC system service

See SYS$CRMPSC system service
Cross-architecture

linking, 1–23, 1–24
logical names, 1–23

Cross-reference section
format in Alpha/VAX image map file, 9–8
format in I64 image map file, 5–12

Cross-reference section of image map files,
LINKER–11

/CROSS_REFERENCE qualifier, LINKER–11

D
Data alignment

specifying alignment of program sections, 7–4
Data alignment (I64)

specifying alignment of sections, 3–5
DATA keyword

workaround for linker overlay restriction, 4–6,
8–9

Debugging
enabling at link time, LINKER–12
including global symbols in a symbol table file,

LINKER–85
including traceback information, LINKER–51
specifying a user-written debugger,

LINKER–12
Debugging (Alpha/VAX)

including debugger information in an image,
7–24

Debugging (I64)
including debugger information in an image,

3–39
Debugging With Attribute Record Format

See DWARF

/DEBUG qualifier, LINKER–12
Debug symbol files

See also /DSF qualifier
creating, 1–17, LINKER–18

DEFINE command
defining the LNK$LIBRARY logical name,

LINKER–52
Demand-zero compression, 3–37, 7–26

controlling, 7–26, LINKER–64
Demand-zero image sections

creating, 7–26, LINKER–15, LINKER–64
definition, LINKER–64
disabling creation of, LINKER–15
maximum number of, LINKER–72

Demand-zero segments
controlling creation of, 3–38
creating, 3–37, LINKER–15
disabling creation of, LINKER–15

/DEMAND_ZERO qualifier, LINKER–15
controlling demand-zero segment production,

3–38
Demangler, 5–20
/DNI qualifier, LINKER–17
DSF files

See Debug symbol files
/DSF qualifier, LINKER–18
DWARF, 3–39
DZRO_MIN= option, LINKER–64

controlling demand-zero compression, 7–26

E
ELF symbol table (I64)

in object modules, 2–1
Executable images

creating, 1–15
definition, 1–2
specifying a base address, LINKER–57

Executable image segments
determined by section attributes, 3–20

/EXECUTABLE qualifier, LINKER–19
Executive images

linking against, LINKER–44

F
Fix-ups

definition, 1–5
Fix-ups (Alpha/VAX)

creation of, 7–25
Fix-ups (I64)

creation of, 3–37
image activator’s processing of, 3–37
linker’s generation of, 3–37

/FP_MODE qualifier, LINKER–20

Index–2

Full image map files
creating, LINKER–21

/FULL qualifier, LINKER–21
Function descriptors

local, 3–12
official, 3–12

G
GBL program section attribute

effect on image creation, 3–15
implicit setting by linker, 6–18

GBL section attribute
implicit setting by linker (I64), 2–20

Global (GBL) program section attribute
effect on image creation, 7–9

Global section (Alpha/VAX)
linker-assigned names of, 9–6

Global symbol directories
See GSDs

Global symbol directory
see GSD, 7–3

Global symbols
defining with the SYMBOL= option,

LINKER–84
definition, 6–1
I64

determining the address of, 3–26
implemented as overlaid program sections, 6–2
including in a symbol table file, LINKER–85
strong reference to, 6–20
weak reference to, 6–20

Global symbols (Alpha/VAX)
declaring as universal symbols, 8–1
determining the address of, 7–18

Global symbols (I64)
declaring as universal symbols, 4–1
definition, 2–1
implemented as overlaid sections, 2–2
strong reference to, 2–24
weak reference to, 2–25

Global symbol table
see GST, 8–8

Global symbol tables
See GSTs

Granularity hint regions
See GHRs

Group symbol (I64), 2–2
HP C++ compiler-generated, 2–25
processing, 2–26

GSD (Global symbol directory), 7–3
GSDs (global symbol directories)

in object modules, 6–1
GSMATCH= option, LINKER–66
GST

controlling contents of (Alpha linking), 8–11
creating on Alpha, 8–8

GST (cont’d)
deleting entries in Alpha linking, 8–10

/GST qualifier, LINKER–23
creating run-time kits with, 4–8
creating run-time kits with (Alpha linking),

8–11
GSTs (global symbol tables)

controlling contents of, 4–8, LINKER–23,
LINKER–87

creating, 4–4
definition, 6–1
deleting entries in, 4–8

H
/HEADER qualifier, LINKER–24

I
IDENTIFICATION= option, LINKER–70
Image

base address of, in Alpha/VAX map, 9–10
length of, Alpha/VAX in map, 9–10
length of, in I64 map, 5–16
synopsis of in Alpha/VAX image map file, 9–10
synopsis of in I64 image map file, 5–15

image activator, 7–2
Image activator

description, 1–6
determining base address for segment, 3–25
GSMATCH processing, LINKER–68
performing image optimizations, 4–10
performing image optimizations (Alpha linking),

8–12
shareable image ID processing, LINKER–68

Image file creation (Alpha/VAX)
overview, 7–1

Image I/O segments, LINKER–71
IMAGELIB.OLB file, 2–16, 6–13, LINKER–22

included in image map files, LINKER–11
order of processing, 6–19
order of processing (I64), 2–21
processing by linker, LINKER–46, LINKER–47

Image map file (Alpha/VAX)
brief, 9–2
components of, 9–2
creating, 9–1
default, 9–2
full, 9–2
image section synopsis, 9–4
image synopsis, 9–10
link run statistics, 9–11
listing symbols by name, 9–8
listing symbols by value, 9–9
module relocatable reference synopsis (VAX

only), 9–3
object module synopsis, 9–3
program section synopsis, 9–6

Index–3

Image map file (Alpha/VAX) (cont’d)
symbol characterization codes, 9–9
symbol cross-reference section, 9–8

Image map file (I64)
brief, 5–3
cluster section synopsis, 5–6
components of, 5–3
creating, 5–1
default, 5–3
full, 5–3
image segment synopsis, 3–27, 5–7
image synopsis, 5–15
linker’s writing of, 3–40
link run statistics, 5–16
listing symbols by value, 5–13
object and image synopsis, 5–4
program section synopsis, 5–10
shortened names in cross reference section,

5–19
symbol cross-reference section, 5–12
translation table for mangled names, 5–20

Image map files
brief, LINKER–9
creating, 1–17, LINKER–28
full, LINKER–21
image section synopsis, 7–20
linker’s writing of, 7–25
naming, LINKER–28
object module synopsis

verifying order of processing, 6–18
symbol cross-reference section, LINKER–11

Image map files (I64)
object and image synopsis

verifying order of processing, 2–20
Image relocations (I64)

image activator’s processing of, 3–37
linker’s generation of, 3–37

Images
See also Executable images and Executable

images (I64); Shareable images and
Shareable images (I64)

activation of, LINKER–67, LINKER–68
building for Alpha and VAX architectures, 1–24
creating an image map file, LINKER–21,

LINKER–28
creating resident images, LINKER–35
I/O segment, LINKER–71
I64, activation of, LINKER–67
initializing, 1–4
initializing on Alpha/VAX systems, 7–24
initializing on I64 systems, 3–31
naming, LINKER–19
operating with translated VAX images,

LINKER–30
optimizing performance, 1–5, LINKER–34
reducing the size of, LINKER–15
reducing the size of on Alpha/VAX, 7–26
specifying Alpha in link operations, LINKER–5

Images (cont’d)
specifying identification character string,

LINKER–70
specifying stack size, LINKER–83
specifying value of name field in image header,

LINKER–73
specifying VAX in link operations, LINKER–55
storing in contiguous disk blocks, LINKER–10
using ANALYZE/IMAGE command to examine,

1–15
Images (I64)

reducing the size of, 3–37
Image section (Alpha/VAX)

listed in map file, 9–4
Image sections

binding address to, LINKER–36
demand-zero, LINKER–15, LINKER–64
listed in map file, 7–20
maximum number of, LINKER–72
protection of, LINKER–75
specifying the base address of, LINKER–61
using CLUSTER= option to control, 7–23

Image sections (Alpha/VAX)
allocating memory for, 7–17
attributes, 7–18

demand-zero attribute, 7–19
determined by program section attributes,

7–12
controlling creation of, 7–22
creating, 7–9
creating from program sections, 7–10
determining the address of, 7–18
determining the program sections in, 7–16
examining with the ANALYZE/IMAGE utility,

7–21
filling with binary information, 7–24
fix-up, 7–25
listed in map file, 7–15
order, in cluster, 7–13
type designations, 7–20

Image segment attributes (I64)
determining executable, 3–20
determining shareable, 3–21

Image segments (I64)
fix-up, 3–37
listed in map file, 3–23

Image segment synopsis
listed in I64 Linker map file, 5–7

IMGIOCNT system parameter
overriding at link time, LINKER–71

/INCLUDE qualifier, LINKER–25
effect on symbol resolution processing, 6–13
effect on symbol resolution processing (I64),

2–15
specified with the /LIBRARY qualifier, 6–13
specified with the /LIBRARY qualifier (I64),

2–15
specifying libraries as linker input, 1–12

Index–4

/INFORMATIONALS qualifier, LINKER–26
Initialization

Alpha/VAX images, 7–24
I64 images, 3–31
images, 1–4

Input files
types of, 1–6

Installing images
resident images, LINKER–35

IOSEGMENT= option, LINKER–71
ISD_MAX= option, LINKER–72

controlling demand-zero compression, 7–26

J
Jacket routines

link-time considerations, LINKER–30
JMP instruction

in transfer vectors, 8–6
JSR instruction

calculating hints for, LINKER–34
replacing with the BSR instruction,

LINKER–34

K
Kernel threads

entering environment, LINKER–49
Kitting shareable images, LINKER–23

controlling universal symbol declarations, 4–8,
8–11

L
Library files

containing object modules, 1–11
containing shareable images, 1–11
creating, 1–10
default system libraries

order of processing, 6–19
processing, 6–13, LINKER–46,

LINKER–47
examining contents of, 1–11
name table, 6–21
processing during symbol resolution, 6–11
selective processing of, 6–15
specifying as linker input, 1–11, LINKER–25,

LINKER–27
specifying default user libraries, 6–13,

LINKER–52
types of libraries accepted as linker input,

1–10
Library files (I64)

default system libraries
order of processing, 2–21
processing, 2–16

name table, 2–22
processing during symbol resolution, 2–14

Library files (I64) (cont’d)
selective processing of, 2–17
specifying default user libraries, 2–16

/LIBRARY qualifier, LINKER–27
effect on symbol resolution processing, 6–12
effect on symbol resolution processing (I64),

2–14
specified with the /INCLUDE qualifier, 6–13
specified with the /INCLUDE qualifier (I64),

2–15
specifying libraries as linker input, 1–11

LINK command
clustering of input files, 6–16, 6–18,

LINKER–61
in command procedure, 1–14
invoking, LINKER–3
qualifiers, 1–18
specifying input files, LINKER–4
specifying library files, LINKER–27

LINK command (I64)
clustering of input files, 2–18, 2–19

Linker messages
DIFTYPE, 2–29
RELODIFTYPE, 2–29

Linker utility
architecture, 1–23
clustering of input files, 6–16
glossary, Glossary–1
how to invoke, 1–5
image map, 7–20
options summary, 1–21
overview, 1–1
qualifiers, 1–18
specifying input files, LINKER–4
symbol resolution processing, 6–1
symbol resolution processing (I64), 2–1
terminology, 1–1
types of input files, 1–2, 1–6
types of output files, 1–2, 1–14
workaround for restricted use of global symbols,

7–25
Linker utility (I64)

clustering of input files, 2–18
Link operation

obtaining Alpha/VAX statistical information,
9–11

obtaining I64 statistical information, 5–16
LNK$LIBRARY logical name, LINKER–53

processing of, 6–13
processing of (I64), 2–16

LNK$OPEN_LIB logical name
open systems library processing, 6–14

Index–5

M
Major ID

specifying value of, LINKER–66
Mangled names

shown in I64 linker map, 5–20
Map files

See Image map files; Image map files (I64)
Mapping virtual memory

using SOLITARY program section attribute,
7–24

using SOLITARY program section attribute on
I64, 3–31

/MAP qualifier, LINKER–28
Memory (Alpha/VAX)

absolute program section, 7–4
relocatable program section, 7–4

Memory (I64)
absolute program section, 3–5
relocatable program section, 3–5

Memory allocation
for based images, LINKER–57
for images, 1–4
information in Alpha/VAX map, 9–10
information in I64 map, 5–16

Memory resident databases
implementing as shareable image, 1–9

$MGBLSC system service
See SYS$MGBLSC system service

Minor ID
specifying value of, LINKER–67

Module/image synopsis section
listed in I64 Linker map file, 5–4

N
NAME= option, LINKER–73
Naming images, LINKER–19
Naming shareable images, LINKER–40
NAS (Network Application Support)

open systems library processing, 6–14
/NATIVE_ONLY qualifier, LINKER–30
NOMOD program section attribute

resolving conflicts, 7–26
NOMOD section attribute

resolving conflicts, 3–38
setting, 3–38

O
Object modules

as linker input file, 1–8
including in a link operation from a library,

LINKER–25, LINKER–27
in libraries, 1–11
in symbol resolution processing, 6–6

Object modules (cont’d)
listed in Alpha/VAX map file, 9–3
using ANALYZE/OBJECT utility to examine,

1–8
Object modules (I64)

in symbol resolution processing, 2–8
Open systems library

support for NAS in linker, 6–14
OpenVMS Alpha System-Code Debugger

creating debug symbol file for, LINKER–18
Options files

as linker input, 1–13
case sensitivity of option arguments,

LINKER–59
creating, 1–13
specifying in a link operation, 1–13,

LINKER–31
specifying on the command line, 1–14
use of radix operators, LINKER–56

/OPTIONS qualifier, LINKER–31
Overlaid (OVR) attribute, 3–25

P
/P0IMAGE qualifier, LINKER–32
Page faults

specifying page fault clusters, LINKER–61
Page sizes

specifying in link operations, LINKER–7
Performance

improving, 1–5
PFCDEFAULT system parameter

overriding default value, LINKER–61
PLV (privileged library vector), 4–10, 8–12
Privileged library vector

See PLV
Privileged shareable images

declaring universal symbols in, 4–10
declaring universal symbols in (Alpha linking),

8–12
protecting, LINKER–33
protecting image sections in, LINKER–75

Procedure signature blocks
See PSBs

Procedure signature information, 3–34
Program section attributes (Alpha/VAX), 7–3

determining image section attributes, 7–12
effects on image section creation, 7–11

Program sections
collecting into image sections, LINKER–62
implicit setting of GBL attribute by linker,

6–18
isolating in an image section, 7–23
overlaid, 6–2
SOLITARY attribute, 7–23
specifying values of attributes, LINKER–77

Index–6

Program sections (Alpha/VAX)
absolute, 7–4
alignment of, 7–4
as universal symbols, 8–4
attributes

conflicting, 7–26
modifying, 7–22

collecting into image sections, 7–10, 7–23
concatenated, 7–17
creation of, 7–3
declaring as universal symbols on Alpha, 8–10
determining image section location, 7–16
determining the address of, 7–18
in ANALYZE/OBJECT listing, 7–6
listed in map file, 7–16
modifying program section attributes, 7–22
NOMOD attribute

resolving conflicts, 7–26
overlaid, 7–17, 8–4
relocatable, 7–4
SHR attribute, 8–4
significant attributes of, 7–13
sorting by attributes, 7–11

Program section synopsis
listed in Alpha/VAX map file, 9–6
listed in I64 Linker map file, 5–10

PROTECT= option, LINKER–75
Protecting image sections

using the PROTECT= option, LINKER–75
Protecting shareable images, LINKER–33
/PROTECT qualifier, LINKER–33
PSBs (procedure signature blocks), LINKER–30
PSECT_ATTR= option

controlling image section creation on Alpha/VAX
systems, 7–22

controlling segment creation, 3–29
PSECT_ATTRIBUTE= option, LINKER–77

R
Radix operators

used with linker options, LINKER–56
Relocatable references

listed in VAX map file, 9–3
Relocating symbols

definition, 1–5
/REPLACE qualifier, LINKER–34
Resident images

creating, LINKER–35
effect on Alpha/VAX image map file, 9–5
effect on data image sections, LINKER–35

RMS_RELATED_CONTEXT= option, LINKER–80
Run-time kitting

creating shareable images for, LINKER–23

S
Sections

declaring as universal, 4–7
Sections (I64)

absolute, 3–5
alignment of, 3–5
attributes, 3–3

effects on segment creation, 3–19
name mappings, 3–3

collecting into segments, 3–16, 3–30
concatenated, 3–25
conflicting attributes, 3–38
containing unwind data, 3–14
controlling demand-zero segment production,

3–38
created by linker, 3–10
creation of, 3–3
determining segment location, 3–23
determining the address of, 3–26
embedded in code segments, 3–10
for symbol vector, 3–14
handling initialized overlaid sections, 3–32
implicit setting of GBL attribute by linker,

2–20
in ANALYZE/OBJECT listing, 3–7
isolating in a segment, 3–31
listed in map file, 3–23
modifying attributes, 3–29
modifying section attributes, 3–29
NOMOD attribute

resolving conflicts, 3–38
overlaid, 2–2, 3–25
relaxed symbol definitions, 3–10
relocatable, 3–5
short data, 3–12
significant attributes of, 3–20, 3–21
SOLITARY attribute, 3–31
sorting by attributes, 3–19

/SECTION_BINDING qualifier, LINKER–35
improving the performance of installed

shareable images (Alpha linking), 8–12
Segments

demand-zero, LINKER–15
Segments (I64)

allocating memory for, 3–25
assigning attributes, 3–26
attributes

name mappings, 3–18
clustering of input files to create, 3–15
controlling creation of, 3–28
creating from sections, 3–16
creating on I64, 3–15
determining the address of, 3–26
determining the sections in, 3–23
dynamic, 3–34

Index–7

Segments (I64) (cont’d)
examining with the ANALYZE/IMAGE utility,

3–28
filling with binary information, 3–33
listed in map file, 3–27
order, in cluster, 3–20, 3–21
short data, 3–34
signature, 3–34
using CLUSTER= option to control, 3–30

/SEGMENT_ATTRIBUTE qualifier, LINKER–37
keywords, LINKER–37

/SELECTIVE_SEARCH qualifier, 6–14,
LINKER–38

I64, 2–16
Shareable images

activating, LINKER–67, LINKER–68
as linker input files, 1–8
benefits of, 1–9
creating, 1–16, LINKER–40
creating a run-time kit, 4–8, LINKER–23
debugging, LINKER–12
declaring alias names for universal symbols,

4–9
declaring universal symbols on Alpha systems,

LINKER–86
default base address, LINKER–57
definition, 1–2
enhancing performance of, 4–10
ensuring upward compatibility, LINKER–68

on I64 systems, 4–7
I64, activating, LINKER–67
implicit processing of, 6–11
in libraries, 1–11

default location, 1–12
specifying as linker input, LINKER–25,

LINKER–27
installing, 1–10
naming, LINKER–40
privileged, 4–10
protecting, LINKER–33, LINKER–75
specifying as linker input, 1–9, LINKER–40

in libraries, LINKER–27
specifying identification numbers, LINKER–67
use of GSMATCH= option, LINKER–69

Shareable images (Alpha/VAX)
creating, 8–1
creating a run-time kit (Alpha linking), 8–11
creating a VAX based shareable image, 8–7
declaring alias names for universal symbols

(Alpha linking), 8–11
declaring universal symbols on VAX systems,

8–2
enhancing performance of (Alpha linking),

8–12
ensuring upward compatibility (VAX linking),

8–4
ensuring upward compatibility on Alpha, 8–10

deleting universal symbols, 8–10

Shareable images (Alpha/VAX) (cont’d)
ensuring upward compatibility on VAX

guidelines, 8–6
privileged, 8–12
resident images

effect on image map file, 9–5
symbol vector program section, 7–3

Shareable images (I64), 2–28
creating, 4–1
declaring universal symbols, 4–2
ensuring upward compatibility

deleting universal symbols, 4–8
implicit processing of, 2–13

Shareable image segments (I64)
attributes determined by section attributes,

3–21
/SHAREABLE qualifier, LINKER–40

creating shareable images on Alpha and VAX,
8–1

creating shareable images on I64, 4–1
STACK= option, LINKER–83
STARLET.OLB file, 2–16, 6–13, LINKER–22

included in image map files, LINKER–11
order of processing, 6–19
order of processing (I64), 2–21
processing by linker, LINKER–46

Strong symbol
definition, 6–20
definition (I64), 2–25
reference, 6–20
reference (I64), 2–25

Symbol
cross-referenced in Alpha/VAX image map file,

9–8
cross-referenced in I64 image map file, 5–12
listed by name in Alpha/VAX image map file,

9–8
listed by value in Alpha/VAX image map file,

9–9
listed by value in I64 image map file, 5–13

SYMBOL= option, LINKER–84
Symbol processing (I64)

overview, 2–22
Weak and strong global symbols, 2–22

Symbol resolution (I64), 2–26
Symbol resolution processing

definition, 1–4
description, 6–2
handling undefined symbols, 2–7, 6–5
of object modules, 6–6
ordering of input files, 6–16
overview, 6–1
processing default libraries, 6–13
processing files selectively, 6–14
specifying selective processing, LINKER–38
types of input files included, 6–5

Index–8

Symbol resolution processing (I64)
description, 2–4
of object modules, 2–8
ordering of input files, 2–17
overview, 2–1
processing default libraries, 2–16
processing files selectively, 2–16
types of input files included, 2–7

Symbols
See also Global symbols and Global Symbols

(I64); Symbol resolution processing
and Symbol resolution processing (I64);
Universal symbols

declaring universal symbols on I64 systems,
4–3

declaring universal symbols on VAX systems,
8–2

global, 6–1
determining the address of on Alpha/VAX

systems, 7–18
determining the address of on I64 systems,

3–26
implemented as overlaid program sections, 6–2
local, 6–1
strong, 6–1, 6–20

definition of, 6–21
symbol resolution processing, 6–2
types of, 6–1
universal, 6–1
weak, 6–1, 6–20

definition of, 6–21
Symbols (Alpha/VAX)

declaring universal symbols on Alpha systems,
8–8

Symbols (I64)
compiler-generated, 2–28
examples of symbol resolution, 2–26
global, 2–1
group symbol processing, 2–26
HP C++ compiler-generated weak and group,

2–25
implemented as overlaid sections, 2–2
local, 2–1
Processing strong global, 2–22
Processing UNIX-style weak, 2–22
Processing VMS-style weak, 2–22
strong, 2–2, 2–25

definition of, 2–25
strong definition, 2–22
symbol resolution processing, 2–4
types of, 2–1
universal, 2–2
UNIX-style weak, 2–2
UNIX-style weak definition, 2–23
VMS-style weak, 2–2
VMS-style weak definition, 2–23
weak, 2–25

definition of, 2–25

Symbol table files
as linker input files, 1–12
controlling the contents of, LINKER–85
creating, 1–16, LINKER–42
naming, LINKER–42

Symbol vectors, 3–14
creating, 4–3, LINKER–86
creating on Alpha, 8–8
declaring alias names for universal symbols,

4–9
declaring alias names for universal symbols

(Alpha linking), 8–11
ensuring upward compatibility on Alpha

systems, 8–10
ensuring upward compatibility on I64 systems,

4–7
guidelines, 4–7
guidelines on Alpha systems, 8–10
run-time flow of control, 4–5

Symbol vectors (Alpha/VAX)
in program section, 7–3
run-time flow of control, 8–8

SYMBOL_TABLE= option, LINKER–85
/SYMBOL_TABLE qualifier, LINKER–42
SYMBOL_VECTOR= option, LINKER–86

declaring universal symbols, 4–3
declaring universal symbols on Alpha, 8–8

$SYMVECT program section, 7–3
SYS$BASE_IMAGE.EXE file

linking against, 6–19
order of processing, 6–19, LINKER–44
order of processing (I64), 2–21

SYS$CRMPSC system service
using SOLITARY program section attribute

with, 3–31, 7–24
SYS$LIBRARY logical name, 1–12, 1–24, 6–13
SYS$MGBLSC system service

using SOLITARY program section attribute
with, 3–31, 7–24

SYS$PUBLIC_VECTORS.EXE file
order of processing, 6–19, LINKER–44
order of processing (I64), 2–21
processing, 6–14, LINKER–46
processing (I64), 2–16

SYS.STB file
linking against, 6–19

/SYSEXE qualifier, LINKER–44
linking against the executive image, 6–19
linking against the executive image (I64), 2–20

/SYSLIB qualifier, LINKER–46
effect on default library processing, 6–19
effect on default library processing (I64), 2–21

/SYSSHR qualifier, LINKER–47
effect on default library processing, 6–19
effect on default library processing (I64), 2–21

System images
creating, 1–16, LINKER–48
creating a header for, LINKER–24

Index–9

System images (cont’d)
default base address, LINKER–57
definition, 1–2
naming, LINKER–48

System library files
including in image map files, LINKER–11,

LINKER–22
linker processing of, 6–13, LINKER–46

order of processing, 6–19
open systems support library, 6–14

System library files (I64)
linker processing of, 2–16

order of processing, 2–21
/SYSTEM qualifier, LINKER–48
System services

linking user-written on I64, 4–10
resolving references to, 6–14, 6–19,

LINKER–44, LINKER–46
resolving references to (I64), 2–16
user-written, 4–10

System services (Alpha/VAX)
user-written, 8–12

System services (I64)
resolving references to, 2–21

T
/THREADS_ENABLE qualifier, LINKER–49
Traceback facility

link-time considerations, LINKER–51
/TRACE qualifier, LINKER–51
Trampoline, 3–11
Transfer vectors

including data in, 8–5
Transfer vectors (VAX)

comparison to UNIVERSAL= option, 8–5
creating, 8–5
ensuring upward compatibility, 8–6
example program, 8–7
including in a link operation, 8–7
providing upward compatibility, 8–4

Translation table
for mangled names, 5–20

U
UNIVERSAL= option, LINKER–89

comparison to transfer vectors (VAX), 8–5
declaring universal symbols in VAX shareable

images, 8–2
specifying on Alpha, 8–8

Universal alias names
specifying, 4–9, LINKER–86
specifying on Alpha, 8–11

Universal symbols
declaring alias names for, 4–9
declaring alias names for (Alpha linking), 8–11
declaring on Alpha systems, 8–8

Universal symbols (cont’d)
declaring on I64, 4–2
declaring on VAX systems, 8–2, LINKER–89
definition, 6–1
for symbols that represent data, 8–5

Universal symbols (I64)
definition, 2–2

Universal symbols (VAX)
for symbols that represent procedures, 8–4

Unwind data, 3–14
Unwind segments, 3–34
Unwind table, 3–14
User library files

limiting scope of linker processing, LINKER–52
linker’s search of, LINKER–53
specifying, 6–13, LINKER–52

User library files (I64)
specifying, 2–16

/USERLIBRARY qualifier, LINKER–52
User-written system services

implemented as privileged shareable images,
4–10, 8–12

linking on I64, 4–10

V
VAX$LIBRARY logical name, 1–24
VAX images

creating, 1–23
specifying in link operations, LINKER–55

/VAX qualifier, 1–24, LINKER–55
Virtual memory

allocating for Alpha/VAX images, 7–17
allocating for images, 1–4, 3–25

W
Weak symbol

definition, 6–20
definition (I64), 2–25
HP C++ compiler-generated (I64), 2–25
reference, 6–20
reference (I64), 2–25

Index–10

