HP Open Source Security for OpenVMS
Volume 1: Common Data Security Architecture

CDSA Version 2.2 for OpenVMS
based on the Intel Version 2.0 Release 3 Reference Platform

OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

This manual supersedes HP Open Source Security for OpenVMS
Common Data Security Architecture, Version 7.3-2

O)

invent

Manufacturing Part Number: BA554-90006
July 2006

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

See Appendix A Open Source Notice for information regarding certain open source code included in this
product.

UNIX is a registered trademark of The Open Group in the U.S. and/or other countries.
Windows, Windows NT, and MS Windows are U.S. registered trademarks of Microsoft Corporation.
All other product names mentioned herein may be trademarks of their respective companies.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

The HP OpenVMS documentation set is available on CD-ROM.
ZK6660

Contents

1. Introduction to CDSA

1.1 What Is CDS A . .o e e e e 15
1.2 CDSA OVeIVIBW. o o v vttt ettt e et e et e e e e e e e e e e e 16
1.2.1 Common Security Services Manager (CSSM).ttt 17
1.2.2 Service Provider Modules. i e 17
1.2.3 Elective Module Managers (EMMS).ot et 22
1.2.4 Module Directory Services (MDS) i e e e 22
1.3 Maintaining CDSA Integrityt e e e e 23
1.3.1 Self-Check e e 23
1.3.2 Bilateral Authentication. i e 23
1.3.3 Secure Linkage Check i e 23

2. Installation and Initialization

2.1 Installation of CDSA on OpenVMS Alpha and 164 Version 8.3 and higher 25
2.2 Installation of CDSA on OpenVMS Alpha and 164 Version 8.2 26
2.3 Installation of CDSA on OpenVMS Alpha Version 7.3-2c0 ... 26
2.4 Installation of CDSA Version 2.2 on OpenVMS Versions Earlier than Version 8.3 26
2.4.1 CDSA Version 2.2 Setup and Initialization............... 26
2.4.2 Warning Against Uninstalling CDSA from OpenVMS Alpha Version 7.3-1 or Higher 28
2.5 DPost-Installation Tasks. e 28
2.5.1 Defining CDSA Symbols. e e 28
2.5.2 Backingup the CDSA Databaset 28

3. Secure Delivery

3.1 Introduction. e 29
3.2 PCSIand Secure Deliveryttt e e e e 29
3.2.1 PCSI History File (Product Database)., 31
3.3 Fundamentals of Secure Delivery i e 32
3.3.1 CDSA Architecture.t e e e e e e e 32
3.3.2 The Certificateo e e 32
3.3.3 The Manifest e 32
3.3.4 CDSA Secure Delivery Programs.ttt 33
3.4 Creating Manifests e e e 33
3.4.1 The Signing Processottt e e e e e 34
3.4.2 The CDSA$SD_SIGN.COM Procedureccuuirininet e, 34
3.4.3 The CDSASREVOKE.EXE Fileo\ttt ettt e 35
3.5 Validating Files and Authenticating Signers i, 35
3.5.1 Validation Examples.t e e 36
3.5.2 The CDSA$VALIDATE _LIBSHR.EXE Fileot 36

4. CDSA Utility Programs

4.1 CDSASCERTGEN.EXEttt e e e e 37
4.1.1 SYNOPSIS .. 37
4.1.2 OPTIONS . . 37
4.1.3 EXAMPLE. .. . 39

4.2 CDSASISSUER.EXE. ittt et e e e e e e e 39

Contents

4.2.1 SYNOPSIS ... e 39
4.2.2 OPTIONS .. 39
4.2.3 EXAMPLE. ... 40
4.3 CDSASMDS _INSTALL.EXEttt e e e e e e e e 40
4.3.1 SYNOPSIS .. 40
4.3.2 OPTIONS .. 40
4.3.3 EXAMPLE. e 41
4.4 CDSASMOD _INSTALL.EXEttt e e e e e e e e 41
44,1 SYNOPSIS .. e 41
4.4.2 OPTIONS .. 41
4.4.3 EXAMPLE. e 41
4.5 CDSASOUTPUT_ERROR.EXE ittt et 42
45,1 SYNOPSIS ... e 42
4.5.2 OPTIONS .. e 42
4.5.3 EXAMPLES. ... e 42
4.6 CDSASREVOKE. EXE.ttt e e e e e e e e e 43
4.6.1 SYNOPSIS ... e e 43
4.6.2 OPTIONS .. 43
4.6.3 RETURN VALUE S e e e e e e e 43
4.7 CDSASSIGN.EXE . ..ottt e e e e 43
471 Integrity Signing.t e e e e e 43
4.7.2 ExXPOrt Signing i e e e 45
4.8 CDSASVALIDATE.EXE ittt e e e et e e e e e 47
4.8.1 SYNOPSIS ... e 47
4.8.2 OPTIONS .. e 47
4.8.3 DESCRIPTION e e 47
4.8.4 EXAMPLE. 47
4.8.5 RETURN VALUE S e e e e e e 47
4.9 CDSASXB092XML.EXE\ttt e e e 47
4.9.1 SYNOPSIS ... e 48
4.9.2 OPTIONS .. e 48
4.9.3 EXAMPLE. ... e 48

5. CDSA Programming Concepts

5.1 Overview of CDSA Programming on OpenVMS 49
5.1.1 Compiling a CDSA Programttt 49
5.1.2 Linking a CDSA Programttt e 49
5.1.3 CDSA Integrity Checking.ttt e e e e e 49

5.2 Writing Signed Applications. e e 50
5.2.1 The Signing Environment e e 51
5.2.2 The Signing Tools it e e e 51
5.2.3 The Signing Processot i e e e e 52

5.3 Deploying Signed Applications and Service Provider Modules 55

5.4 CDSA Example Programsttt e e 56
5.4.1 AES Encryption/Decryption Example Program 57
5.4.2 DES Encryption/Decryption Example Program 58

Contents

5.4.3 MDS Example Program e e 59
5.4.4 DES2 Encryption/Decryption Example Program 60
5.4.5 DES3 Example Program i e 61
5.4.6 ADDIN Example Program it e 62
5.4.7 DUMMY Example Programsttt 62
CDSA API FUnctionsooieeeeeeeeeeeessnnnnsonsssssssssssssssssssssssncss 65
EMM AP FUNCHiONS . . oo vt iiitinteseeeerosseneossessessssesssscsssssnsssssssans 523
HRS API FUunctions. . .. oot ttitteeeeeeeeeeesnnnsssssssssssssssssssssssssssnss 535

A. Open Source Notice
A.1 Intel Open Source License for CDSA/CSSM Implementation

(BSD License with Export Notice) e et 591
GlOSSaAIY v vt itiettneeeoeesoseesosssssssessseessssesossssssssssssssssocssones 593
INdeX ¢ i vviiiiiiiiiineeeeeeeeeeeeeesessssssssssssssnnssssssssssssssssssssess 599

Contents

Table 2-1. CDSA Installation and Configuration Summarycuuuio.....

Table 3-1. CDSA Secure Delivery Programs

Tables

Figure 1-1. CDSA Layered Architecture.

Figure 3-1. Information Combined Into Manifest

Figures

10

Preface

Intended Audience

This document is for application developers who want to use the Common Data Security Architecture (CDSA)
to add security to their programs.

This is not a tutorial manual. The reader should already have a basic understanding of fundamental
cryptographic terms and principles, as well as a broad overview of CDSA services and architecture.

Document Structure

This manual consists of the following chapters:

Chapter 1 contains a broad overview of CDSA.

Chapter 2 provides important information about installation and initialization of CDSA.

Chapter 3 describes Secure Delivery for OpenVMS, a new features included in CDSA Version 2.2. Secure
Delivery creates digital signatures for files, so that the file and associated manifest can be delivered over an
unsecured channel such as a web download.

Chapter 4 describes administrative and development utilities provided with CDSA.
Chapter 5 includes programming information and examples of using CDSA.

Following the chapters are three reference sections: the CDSA and MDSUTIL application programming
interface functions (API functions), the Elective Module Manager (EMM) API functions, and the Human
Recognition Service (HRS) API functions.

Following the reference sections are an appendix containing the open source notice and a glossary.

Related Documents

The following documents are recommended for further information:

e HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS.

e HP Open Source Security for OpenVMS, Volume 3: Kerberos.

e DCL Help file for the API functions. (Enter the HELP CDSA command at the DCL prompt.)

¢ Release Notes for CDSA. For Versions 7.2-2 and higher, the release notes for CDSA can be found in
SYS$HELP:CDSA022. RELEASE_NOTES.

¢ Intel CDSA documents, found in SYS$COMMON:[CDSA.DOCS]:

— Intel Common Data Security Architecture Application Developer's Guide:
CDSA$APP_DEV_GUIDE.PDF

— Intel Common Data Security Architecture Service Provider Developer's Guide:
CDSA$SP_DEV_GUIDE.PDF

— Intel Common Data Security Architecture Manifest Signing Tools User’s Guide:
CDSA$MST_GUIDE.PDF

e CDSA Technical Standard, available from The Open Group at the following Web site:

http://www.opengroup.org/onlinepubs/009609799

11

e FIPS 186 Standard, available from the following Web site:
http://www.itl.nist.gov/fipspubs/fipl86.htm

For additional information about HP OpenVMS products and services, see the following World Wide Web
address:

http://www.hp.com/go/openvms

For additional information about CDSA, visit the following Web sites:

http://sourceforge.net/projects/cdsa
http://www.intel.com/labs/archive/cdsa.htm

Reader's Comments
HP welcomes your comments on this manual.

Please send comments to either of the following addresses::

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZK03-4/U08

110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following World Wide Web address :

http://www.hp.com/go/openvms/doc/order

Conventions

The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:
— Additional optional arguments in a statement have been omitted.

— The preceding item or items can be repeated one or more times.

— Additional parameters, values, or other information can be entered.

12

Convention

Meaning

@)

bold type

italic type

UPPERCASE TYPE

Example

numbers

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines /PRODUCER=name), and in
command parameters in text (where (dd) represents the predefined par code
for the device type).

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX command and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes — binary, octal, or hexadecimal — are explicitly
indicated.

13

14

Introduction to CDSA
What Is CDSA?

1 Introduction to CDSA

This chapter provides an overview of key components of the Common Data Security Architecture (CDSA) and
its set of integrity services.

1.1 What Is CDSA?

The Common Data Security Architecture (CDSA) is a multiplatform, industry-standard security
infrastructure. Starting with Version 7.3-1, HP provides CDSA as part of the OpenVMS operating system.
CDSA is compatible with OpenVMS Alpha Version 7.2-2 and higher, and OpenVMS 164 Version 8.2 and
higher.

CDSA provides a stable, standards-based programming interface that enables applications to access
operating system security services. With CDSA, you can create cross-platform, security-enabled applications.
Security services, such as cryptography and other public key operations, are available through a dynamically
extensible interface to a set of add-in modules. These modules can be supplemented or changed as business
needs and technologies evolve.

CDSA is security middleware that provides flexible mix-and-match solutions across a variety of applications
and security services. CDSA insulates you from the issues of incorporating security into applications, freeing
you to focus on the applications themselves. The security underpinnings are transparent to the user.

CDSA was originally developed by Intel® Architecture Labs and was released to the OpenSource community
in May 2000. HP's CDSA implementation is based on the Intel V2.0 Release 3 reference platform, which
implements CDSA V2.0 with Corrigenda, as defined in The Open Group's Technical Standard C914, May
2000.

15

Introduction to CDSA
CDSA Overview

1.2 CDSA Overview

The CDSA layered architecture is shown in Figure 1-1 on page 16.

Figure 1-1 CDSA Layered Architecture

CDSA Applications in C and C++

CSSM Security API EMAPI
Integrity Services Security Context
CSP TP Module | |AC Module| | CL Module | (DL Module [| =e%™ve &
Manager Manager Manager Manager Manager Managers o
[s [T ™ [JTar [JTeu] Jou] & Em &
7\ 7\ 7\ 7\ 7\ A

Certificate

l::\‘

(@) \‘
z &
5}
7

Service Library Storage 1Categories :-:'.:"
Provider Library Library Library 1 of Service "
e o 0
Data Stores
VM-1059A-Al

Applications call the Common Security Services Manager (CSSM), which implements the CDSA APIs. The
CSSM also implements the CDSA integrity services and security contexts. The managers for each of the
CDSA add-ins are also part of CSSM. CSSM is described in more detail in Section 1.2.1.

In addition to the CSSM, CDSA includes the following:

e Service provider modules - See Section 1.2.2
¢ Elective module Managers (EMMs) - See Section 1.2.3
e Module directory Services (MDS) - See Section 1.2.4

Chapter 5, “CDSA Programming Concepts,” on page 49 provides sample C programs that illustrate the use of
CDSA.

For additional information about CDSA, see the web links listed in the Preface.

16

Introduction to CDSA
CDSA Overview

1.2.1 Common Security Services Manager (CSSM)

The Common Security Services Manager (CSSM) is the heart of CDSA. It is a shared library (in
SYS$SHARE:CDSA$INCSSM300_SHR.EXE) to which applications can link to obtain security services. It
defines both the API and the service provider interface (SPI) for add-in security service modules. CSSM
includes a set of core services that are common to all categories of security services. These services perform
functions such as:

¢ Dynamic attach of an add-in security module

e Enforced integrity, authentication, and exemption verification when dynamically attaching services
e Secure linkage checks on calls to service provider modules

¢ General integrity services

Applications call functions in the CSSM API, which is fully specified by the CDSA Technical Standard
(located at http://www.opengroup.org/onlinepubs/009609799/). API function names are prefaced with CSSM_
and are sometimes followed by the designation of the module that will actually handle the request. For
instance, applications call CSSM_DI, DbOpen () to direct a DL module to open a data store. The associated SPI
for this module is DI._DbOpen (). (The SPI interface is not directly callable by CDSA applications.)

An application begins by initializing its connection to CSSM using the CSSM_Init () routine. The application
can use Module Directory Services (MDS) to inquire about available modules and their supported
functionality (see an MDS example in Section 5.4.3) or it can directly access a specific service provider by
using its global unique identifier (GUID). The application loads the desired module using the
CSSM_ModuleLoad () routine and then attaches to it using the CSSM_ModuleAttach () routine.

The CSSM is implemented as a sharable image on OpenVMS. Header files (in
CDSA_SYSDIR:[INCLUDES]*.H) define the CSSM API.

1.2.2 Service Provider Modules

There are several types of add-ins for CDSA, each supporting a different security task:
¢ Cryptographic Service Provider (CSP) modules (see Section 1.2.2.1)

e Trust Policy (TP) modules (see Section 1.2.2.2)

e Authorization Computation (AC) modules (see Section 1.2.2.3)

e Certificate Library (CL) modules (see Section 1.2.2.4)

¢ Data Storage Library (DL) modules (see Section 1.2.2.5)

On OpenVMS, service providers are implemented as sharable images.

1.2.2.1 Cryptographic Service Providers (CSPs)

The Cryptographic Service Providers (CSPs) are add-in modules to the Common Security Services Manager
(CSSM). CSPs perform cryptographic operations and securely store cryptographic keys for the applications
that call them through the CSSM API. A CSP can be in the form of software, hardware, or both.

Applications call these CSPs to provide authentication, data integrity, data and communication privacy, and
nonrepudiation of messages to users.

CSPs implement the following cryptographic algorithms, among others, in one or more modes:
¢ Bulk encryption algorithm in modes AES, DES, Triple DES, DESX, RC2, RC4, and RC5
¢ Digital signature algorithm in modes RSA and DSS

17

Introduction to CDSA
CDSA Overview

¢ Key negotiation algorithm in modes Diffie-Hellman and DSA
¢ Cryptographic hash algorithm in modes MD4, MD5, and SHA1

CSPs also provide the following services:

¢ Unique identification number: hard coded or random generated
e Random number generator: attended and unattended

e Encrypted data: symmetric keys and private keys

e Secure key storage

¢ (Custom facilities unique to the CSP

The CSP module manager administers the CSPs that are installed on the local system. It defines a common
API to access all of the Cryptographic Service Providers that can be attached and used by any caller in the
system.

The specific security services API functions that are defined by the CSP module manager include the
following service categories:

SignData
VerifyData
DigestData
EncryptData
DecryptData
GenerateKeyPair
GenerateRandom
WrapKey
UnwrapKey

CDSA on OpenVMS provides CSPs based on OpenSSL and RSA BSAFE:
e OpenSSL CSP
— Message authentication based on MD5 and SHA1
— Symmetric encryption based on DES, Triple DES, and AES
e RSA BSAFE CSP
— Message authentication based on MD5 and SHA1
— Symmetric encryption based on DES, triple DES, DESX, and RC2, RC4, and RC5.
— Asymmetric encryption based on RSA, DSA, and Diffie-Hellman
The following sections discuss these topics:
e Establishing a session to use a CSP (see Section 1.2.2.1.1)
¢ Defining the security context (see Section 1.2.2.1.2)
¢ Using keys (see Section 1.2.2.1.3)

1.2.2.1.1 Establishing a Session An application establishes a session to select a particular CSP. Once
attached, the application can initiate a cryptographic login session with the CSP. The application requests
additional credentials, such as a passphrase or PIN, to gain access to specific keys and services managed by
the CSP.

Within a module attach session or a cryptographic login session, an application creates, uses, and discards
cryptographic contexts. A cryptographic context carries the parameters required to perform a cryptographic
service. The cryptographic context can be used for the following:

18

Introduction to CDSA
CDSA Overview

¢ A one-step cryptographic operation in which only one call is needed to obtain the result.

¢ A cryptographic session of a multistaged cryptographic service, in which an initialization call is followed
by one or more update calls, ending with a completion (final) call. For most cryptographic operations, the
result is available after the final function completes its execution. An exception is staged
encryption/decryption, in which each update call generates a portion of the result.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. In addition to specifying an algorithm when creating the context, the application can
also initialize a session key, pass an initialization vector, or pass padding information to complete the
description of the session. A successful return value from the create function indicates that the desired CSP is
available.

Functions are also provided to manage the created context. The cryptographic context contains most or all of
the input parameters required for an operation. Some cryptographic service functions accept input
parameters in addition to the CSP handle and the context handle. These input parameters always take
precedence over any duplicate or conflicting parameters in the cryptographic context. When a context is no
longer required, the application calls a DeleteContext function. Resources allocated for that context can then
be reclaimed by the operating system.

1.2.2.1.2 Defining a Security Context The application's associated security context defines parameter
values for the low-level variables that control the details of cryptographic operations. For example, an
application issuing a request to the EncryptData call can reference a security context that defines the
following parameters:

The algorithm to be used (such as DES)

Algorithm-specific parameters (such as key length)

The object on which the operation is conducted (such as a set of buffers)
¢ The cryptographic variables (such as the key)

Most applications use predefined, default contexts. Typically, a distinct context is used for encrypting,
hashing, and signing. For an initialized application, these contexts change little, if at all, during the
application's execution or between executions. This allows the application developer to implement security by
manipulating certificates, using previously defined security contexts, and maintaining a high-level view of
security operations.

1.2.2.1.3 Using Keys In CDSA, there are two main types of cryptographic algorithms that use keys:

e Asymmetric algorithms use one key to encrypt and a second key to decrypt. They are often called
public-key algorithms. One key is called the public key and the other is called the private key or secret
key. RSA (Rivest-Shamir-Adelman) is the most commonly used public-key algorithm. It can be used for
encryption and for signing.

e Symmetric algorithms use a single secret key for encryption and decryption. Both the sender and
receiver must know the secret key. Well-known symmetric functions include DES (Data Encryption
Standard) and IDEA. DES was endorsed by the U.S. Government as a standard in 1977. It's an encryption
block cipher that operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA (International Data Encryption Algorithm) uses a
128-bit key.

Every CSP implements its own secure, persistent storage and management of private keys. To support chains
of trust across application domains, CSPs support importing and exporting of public and private keys among
remote and possibly foreign systems. To transfer keys, the CSP must be able to convert one key format into
any other key format and to secure the transfer of private and symmetric keys.

19

Introduction to CDSA
CDSA Overview

Each CSP is responsible for securely storing the private keys it generates or imports from other sources.
Additional storage-related operations include retrieving a private key when given its corresponding public
key and wrapping private keys as key blobs for secure exportation to other systems.

On an OpenVMS Alpha system, the CSP stores private key files in EAYCSP.PRI and MAF_BSAFE.PRI. The
protections on the key files are OWNER:READ,WRITE ,DELETE. The key files are user-specific and are
stored in the [.CDSA.PKD] subdirectory in the user's login directory.

Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) is the state-of-the-art method, ultimately to be applied worldwide, for
secure and confidential electronic transactions. It employs public and private keys.

The two PKI algorithms in widespread use are:

e RSA-based algorithms
e DSA-based algorithms

For RSA-based algorithms, CDSA uses the PKCS#1 standard for key representation. For DSA-based
algorithms, no organization has published a standard. CDSA's representation of the DSA key is based on the
DSA algorithm definitions in the FIPS 186 standard. (See the Preface for web links to this and other
standards.)

A DSA public key is represented as a BER-encoding of a sequence list that contains the following:

PrimeModulus; /* p */
PrimeDivisor; /* q */
OrderQ; /* g */
PublicKey; /* y */

A DSA private key is represented as a BER-encoded sequence list that contains the following:

PrimeModulus; /* p */
PrimeDivisor; /* q */
OrderQ; /* g */
PrivateKey; /* x */

These key components are defined as follows by FIPS 186 and FIPS 186a:

¢ PrimeModulus. This is the public prime modulus.

p = A prime modulus, where ol-l < p< 2L for 512 <= L <= 1024, and L is a multiple of 64.
¢ PrimeDivisor. Another public prime number dividing (p-1).

2159 2160

q = A prime divisor of p-1, where <q<

¢ OrderQ. This public number has order q mod p.

g =h @14 mod p, where h is any integer with 1 <h < p-1, such that h ®V /q mod p > 1.
e PrivateKey. The private key.

x = a pseudorandomly generated integer with 0 < x < q.
e PublicKey. The public key.

y = gfmod p.

A DSA-wrapped private key is defined by the PKCS#8 specification. The PKCS#8 standard specifies the
wrapped key format resulting from encoding an algorithm object identifier (OID) with an encoded private key.

20

Introduction to CDSA
CDSA Overview

1.2.2.2 Trust Policy (TP) Modules

Trust Policy modules allow applications to request security services that require "policy review and approval"
as the first step in performing the operation. Approval can be based on the identity, integrity, and
authorization represented in a group of digital certificates.

Trust Policy modules implement policies defined by authorities and institutions. Policies define the level of
trust required before certain actions can be performed. Three basic action categories exist for all
certificate-based trust domains:

e Actions on certificates

e Actions on certificate revocation lists

¢ Domain-specific actions (such as issuing a check or writing a file)

The Trust Policy function can invoke certificate and data storage library functions to carry out the mechanics
of the approved action.

1.2.2.3 Authorization Computation (AC) Modules

Authorization Computation modules define a general authorization evaluation service that computes
whether a set of credentials and samples are authorized to perform a specific operation on a specific object.
AC modules implement an authorization evaluation mechanism based on caller inputs. Callers provide:

¢ The assumptions forming the basis of the caller's policy
¢ The request for which authorization is being checked
¢ The credentials, samples, and exhibits that could demonstrate authorization to perform the request

The Authorization Computation engine determines whether the request is authorized based on the
assumptions and caller credentials. The AC module can provide other services related to authorization
computations through the CSSM_AC_PassThrough () function.

1.2.24 Certificate Library (CL) Modules

The Certificate Library API allows applications to manipulate memory-resident certificates and certificate
revocation lists. Operations must include creating, signing, verifying, and extracting field values from
certificates. Each add-in certificate library incorporates knowledge of certificate data formats, and how to
manipulate that format.

The CSSM Certificate API defines the generic operations that should be supported by every CL. module. Each
module can choose to implement only those operations required to manipulate a specific certificate data
format, such as X.509, SDSI, etc.

The implementation of these operations is intended to be semantic-free. Semantic interpretation of
certificate values is designed to be implemented in Trust Policy modules, layered services, and applications.

The Certificate Library module provided on OpenVMS systems can manipulate X509V3 certificates and SPKI
(Simple Public Key Infrastructure) certificates.

1.2.2.5 Data Storage Library (DL) Modules

The Data Storage Library allows applications to search and select stored data objects, and to query
meta-information about each data store (such as its name, date of last modification, size of the data store, and
so on).

Data Storage Library modules provide stable storage for security-related data objects. These objects can be
certificates, certificate revocation lists, cryptographic keys, integrity and authentication credentials, policy
objects, or application-specific objects. Stable storage can be provided by one of the following:

21

Introduction to CDSA
CDSA Overview

e Commercially-available database management system product
e Native file system

e (Custom hardware-based storage device

¢ Remote directory services (e.g., LDAP)

¢ In-memory storage

Each Data Storage Library module can choose to implement only those operations required to provide
persistence under its selected model of service.

The Data Storage Library module currently provided on OpenVMS uses OpenVMS flat files.

1.2.3 Elective Module Managers (EMMs)

The CDSA architecture includes several extensibility mechanisms. Elective module managers support the
dynamic addition of entire new categories of service. Prior to requesting services from an add-in service
provider module, the application attaches to an instance of the service provider. For elective module
managers, the CSSM transparently attaches the associated module manager if it is not already loaded. Once
the manager is loaded, the APIs defined by that module are available to the application.

This process is transparent to the add-in module as well as to the application. Therefore, an add-in module
vendor should not need to modify their module implementation to work with an elective module manager
versus a basic module manager.

1.2.4 Module Directory Services (MDS)

The Module Directory Services provide facilities to describe and locate executable objects and their associated
signed manifest integrity credentials.

MDS consists of a database and a set of access methods. It is used primarily to support secure loading and the
use of add-in software modules. It is a system-wide service available to all processes. MDS defines a basic
object directory schema to name and locate software components and the signed manifest credentials
associated with those software components. Each software component in the object directory is uniquely
named by a globally unique identifier (GUID). CDSA defines an additional set of schemas to store
CDSA-specific security attributes of all CDSA components. CDSA components use the MDS-managed data to
do the following:

¢ Discover other available CDSA components

e Learn about the capabilities and properties of other CDSA components

¢ Locate the executables for CDSA components

¢ Locate the signed manifest credentials associated with a CDSA software component

New schemas can be defined to store the properties and capabilities of elective CDSA modules as they are
defined. CDSA applications can also define MDS schemas and use MDS services. CDSA components use
MDS managed data to support CDSA's software authentication and integrity checking procedure, known as
bilateral authentication.

Chapter 5, “CDSA Programming Concepts,” on page 49 provides an example of how to use MDS.

22

Introduction to CDSA
Maintaining CDSA Integrity

1.3 Maintaining CDSA Integrity

As the foundation of the security framework, CSSM provides a set of integrity services that can be used by
CSSM, module managers, add-in modules, and applications to verify their own integrity, and the integrity,
identity, and authorizations of other components in the CDSA environment.

CSSM's set of self-contained security services establishes a security perimeter around CDSA. These services
incorporate techniques to protect against malicious attacks. Because application and add-in security service
modules are dynamic components in the system, CSSM uses and requires the use of a strong verification
mechanism to screen all components as they are added to the CSSM environment.

Applications can extend CSSM's security perimeter to include themselves by using bilateral authentication,
integrity verification, and authorization checks during dynamic binding.

The establishment of integrity between two dynamically loaded, executable objects proceeds in three phases:
e Self-check
e Bilateral authentication

¢ Secure linkage check

1.3.1 Self-Check

In the first phase, the self-check phase, the software module checks its own digital signature. The Embedded
Integrity Services Library (EISL) defines a statically linked library procedure to perform self-check.

1.3.2 Bilateral Authentication

In the second phase, bilateral authentication routines in the EISL offer support for securely loading,
verifying, and linking to partner software modules. The process of bilateral authentication begins in the MDS
registry, where each program can find the credentials as well as the object code of all other CDSA modules.

Verification of other modules can be done prior to loading, or, if a module is already loaded, it can be verified
in memory. Verification prior to loading prevents activating file viruses in infected modules. Verification in
memory prevents stealth viral attacks where the file is healthy, but the loaded code is infected.

1.3.3 Secure Linkage Check

Once verified, programs can use the verified in-memory representation of the credentials to perform validity
checks of addresses to provide secure linkage to modules. The addresses of both the callers and the
procedures to be called can be verified using the Secure Linkage Check facility.

23

Introduction to CDSA
Maintaining CDSA Integrity

24

Installation and Initialization
Installation of CDSA on OpenVMS Alpha and 164 Version 8.3 and higher

2 Installation and Initialization

This chapter provides important information about CDSA installation and initialization.

NOTE You must have the SYSPRV and CMKRNL privileges to initialize CDSA. Users of CDSA
applications do not need SYSPRY, but you will likely need SYSPRYV to develop CDSA signed
applications and plugins

Table 2-1 lists the currently supported versions of CDSA, and the installation and configuration requirements
for the versions of OpenVMS that support CDSA.

Table 2-1 CDSA Installation and Configuration Summary
OpenVMS Version CDSA Version
Version 8.3 and higher 1. CDSA is automatically installed and
configured.
Version 8.2 1. CDSA Version 2.1 is automatically
installed.

2. Execute this command to configure
CDSA:

@SYS$STARTUP:CDSA$UPGRADE

Version 7.3-2 1. CDSA Version 2.0 is automatically
installed.

2. Execute this command to configure
CDSA:

@SYS$STARTUP:CDSA$UPGRADE

NOTE CDSA Version 1.0 is not supported on OpenVMS Version 7.3-2 or higher.

2.1 Installation of CDSA on OpenVMS Alpha and 164 Version 8.3 and
higher

If you install or upgrade to OpenVMS 164 or OpenVMS Alpha Version 8.3 or higher, CDSA Version 2.2 is
automatically installed and configured.

25

Installation and Initialization
Installation of CDSA on OpenVMS Alpha and 164 Version 8.2

2.2 Installation of CDSA on OpenVMS Alpha and 164 Version 8.2

If you install or upgrade to OpenVMS 164 or OpenVMS Alpha Version 8.2, CDSA Version 2.1 is automatically
installed. Before you can use CDSA Version 2.1, however, you must execute the following command to
initialize CDSA:

$ @SYSSSTARTUP:CDSASUPGRADE

Note that you must have the SYSPRV and CMKRNL privileges to execute this procedure. This command
automatically calls CDSASINITIALIZE().

2.3 Installation of CDSA on OpenVMS Alpha Version 7.3-2

If you install or upgrade to OpenVMS Alpha Version 7.3-2, CDSA Version 2.0 is automatically installed.
Before you can use CDSA Version 2.0, however, you must execute the following command to initialize CDSA:
$ @SYS$STARTUP:CDSASUPGRADE

Note that you must have the SYSPRV and CMKRNL privileges to execute this procedure. This command
automatically calls CDSASINITIALIZE().

2.4 Installation of CDSA Version 2.2 on OpenVMS Versions Earlier
than Version 8.3

Although older versions of CDSA are pre-installed on OpenVMS Version 7.3-2 and Version 8.2, you can
install and run CDSA Version 2.2.
2.4.1 CDSA Version 2.2 Setup and Initialization

If you want to run CDSA Version 2.2 on OpenVMS Version 8.2 or 7.3-2, you must manually install the CDSA
Version 2.2 kit, which is included on the OpenVMS Version 8.3 media. Use the following command to install
CDSA Version 2.2 on an OpenVMS Version 8.2 or 7.3-2 system:

$ PRODUCT INSTALL CDSA /SOURCE=disk: [directory]

The following product has been selected:
CPQ AXPVMS CDSA V2.2 Layered Product

Do you want to continue? [YES]
Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

CPQ AXPVMS CDSA V2.2

26

Installation and Initialization
Installation of CDSA Version 2.2 on OpenVMS Versions Earlier than Version 8.3

Do you want the defaults for all options? [YES]
Do you want to review the options? [NO]
Execution phase starting

The following product will be installed to destination:
CPQ AXPVMS CDSA V2.2 DISKS$SSYSTEM: [VMS$SCOMMON.]

Portion done:
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
CPQ AXPVMS CDSA V2.2 Layered Product

CPQ AXPVMS CDSA V2.2
$

Before you can use CDSA Version 2.2. you must perform the following manual procedure, for which you must
have SYSPRYV privileges. Execute the following command to initialize CDSA Version 2.0:

$ @SYSSSTARTUP:CDSASUPGRADE

This procedure automatically runs CDSA$INITIALIZE. It is not necessary to rerun any initialization
procedure when the system is rebooted; therefore, you do not need to add the initialization to the OpenVMS
startup procedures.

The CDSA$UPGRADE procedure can take a few minutes, depending on your processor and disk speeds.
When the procedure is run interactively, you will see system messages similar to the following:

CDSA-I-Init, CDSA has previously been initialized on this system.
CDSA-I-Init, Re-initializing CDSA.

CDSA-I-Init, Initializing CDSA
MDS installed successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
Module uninstalled successfully.
CDSA-I-Init, CDSA Initialization complete

CDSA-I-Init, Initializing Secure Delivery

Install completed successfully.

Install completed successfully.

Module installed successfully.

Module installed successfully.

CDSA-I-Init, Secure Delivery Initialization complete

$

27

Installation and Initialization
Post-Installation Tasks

2.4.2 Warning Against Uninstalling CDSA from OpenVMS Alpha Version 7.3-1 or
Higher

The POLYCENTER Software Installation utility command PRODUCT REMOVE is not supported for CDSA
on OpenVMS Alpha Version 7.3-1 or higher, even though there is an apparent option to remove CDSA. (This
option is due to the use of the POLYCENTER Software Installation utility in the installation.) CDSA is
installed together with the operating system and is tightly bound with it. An attempt to remove it from
Version 7.3-1 or higher would not work cleanly and could create other undesirable side effects. An attempt to
remove CDSA results in the following message:

%$PCSI-E-HRDREF, product CPQ AXPVMS CDSA Vx.X is
referenced by DEC AXPVMS OPENVMS V7.3-2
-PCSI-E-HRDRF1, the two products are tightly bound
by this software dependency

2.5 Post-Installation Tasks

Once you have installed CDSA, you should perform the tasks described in the following sections.

2.5.1 Defining CDSA Symbols

To define symbols for CDSA developers, add the following command to the SYS$MANAGER:SYLOGIN.COM
file on the system where CDSA development work is being done:

$ @SYSSMANAGER:CDSAS$SYMBOLS.COM

NOTE The file SYS$SMANAGER:CDSA$SYMBOLS.COM does not exist for CDSA Version 1.0, so it is
not present on an OpenVMS Version 7.3-1 system unless a CDSA Version 2.0 or higher kit has
subsequently been installed.

If this command is not defined at the system level in SYLOGIN.COM, individual CDSA developers should
add it to their personal LOGIN.COM file so that they can use the symbols.

2.5.2 Backing up the CDSA Database

HP recommends that you back up the CDSA database and registry files on a regular basis and when any
major changes to the data are planned. For example:

$ BACKUP CDSA_SYSDIR:
_S$ disk: [directory...
$ BACKUP CDSA_SYSDIR:
_S$ disk: [directory...

CDSAFFDB] *.* -
CDSA_DB_BACKUP.BCK/SAV
REGISTRY..] *.* -
CDSA_REGISTRY_BACKUP.BCK/SAV

28

Secure Delivery
Introduction

3 Secure Delivery

3.1 Introduction

This chapter provides an overview of Secure Delivery on OpenVMS and describes how to invoke its
components using CDSA. Secure Delivery creates digital signatures for files, so that the file and associated
manifest can be delivered over an unsecured channel such as a web download.

Support for Secure Delivery is included in CDSA beginning with OpenVMS Version 8.3.

NOTE Kits included on the OpenVMS Version 8.3 distribution media are signed using Secure
Delivery. On OpenVMS 164, SIP (System Integrated Product) or layered product kits that are
installed during or after the OpenVMS upgrade are validated. On OpenVMS Alpha, only STP
or layered product kits that are installed after the OpenVMS upgrade are validated.

Kits created before the secure delivery process was enabled in OpenVMS Version 8.3 can be
installed on OpenVMS Version 8.3. These kits are marked as unsigned, rather than as a
validated kit in the PCSI history file. Products installed before Version 8.3 have a blank
validation status in the PCSI history.

For more information, see Section 3.2.

Secure Delivery uses public key and digital signature technology to implement a system that provides
OpenVMS users with the ability to authenticate and validate the files they download from OpenVMS and
third-party OpenVMS vendors.

Secure Delivery enhances CDSA by creating a manifest of a target file so that the file and its accompanying
manifest can be delivered together over an unsecured Internet link or media format, such as a CD or DVD.
After the files are in place on the target system, the manifest can be used to authenticate the originator and
validate the contents of the target file. If the target file (or the manifest) has been tampered with in any way,
the validation process will fail. If the certificates used to sign the file have been revoked, the validation will
fail.

See the Glossary for definitions of terms used in this chapter.

3.2 PCSI and Secure Delivery

The POLYCENTER Software Installation utility (PCSI) is a software installation and management tool for
OpenVMS systems. It can package, install, remove, and manage software products. It can also save
information about software products such as system requirements and installation options.

Beginning in OpenVMS Version 8.3, PCSI checks for the existence of a manifest for kits that are being
installed. If a manifest is not found, PCSI issues a warning and asks whether or not to proceed. If a manifest
is found but does not match the kit, the installation is ended. The PCSI database contains an indication as to
whether a kit used Secure Delivery on installation. For more information, see Section 3.2.1.

29

Secure Delivery
PCSI and Secure Delivery

The PCSI utility validates kits (when a manifest is present in the source directory) for the following
commands:

PRODUCT CONFIGURE

PRODUCT COPY

PRODUCT EXTRACT {FILE | PDF | PTF | RELEASE_NOTES}
PRODUCT INSTALL

PRODUCT LIST

PRODUCT RECONFIGURE

PRODUCT REGISTER PRODUCT

In OpenVMS Version 8.3, kit validation checking can be turned off by specifying the
/OPTIONS=NOVALIDATE_KIT qualifier to the PRODUCT command.

For more information about PCSI, see the System Management Utilities Reference Manual: M-Z and the
POLYCENTER Software Installation Utility Developer's Guide.

Examples 3-1, 3-2, 3-3. and 3-4 show validation output from the PRODUCT INSTALL command.
Example 3-1 Valid Manifest

$ PRODUCT INSTALL *

Performing product kit validation ..

%PCSI-I-VALPASSED, validation of HP-I64VMS-TEST_THIS-0100--1.PCSISCOMPRESSED;1 succeeded
%PCSI-I-VALPASSED, validation of HP-I64VMS-TEST_THAT-0200--1.PCSISCOMPRESSED;1 succeeded

The following products have been selected:

HP-I64VMS-TEST_THIS V1.0 Layered Product
HP-I64VMS-TEST_THAT V2.0 Layered Product

Do you want to continue? [YES]

Example 3-2 Unsigned Kit

$ PRODUCT INSTALL *

%$PCSI-I-CANNOTVAL, cannot validate HP-I64VMS-COBOL-0100--1.PCSI;1
-PCSI-I-NOTSIGNED, product kit was created without an associated manifest
%$PCSI-I-CANNOTVAL, cannot validate HP-I64VMS-FORTRAN-0200--1.PCSI$SCOMPRESSED; 1
-PCSI-I-NOTSIGNED, product kit was created without an associated manifest

The following products have been selected:

HP-I64VMS-COBOL V1.0 Layered Product
HP-I64VMS-FORTRAN V2.0 Layered Product

Do you want to continue? [YES]

Example 3-3 Missing Manifest

$ PRODUCT INSTALL TEST

%$PCSI-W-NOVALDONE, cannot validate HP-I64VMS-TEST-0100--1.PCSISCOMPRESSED;1
-PCSI-W-NOMANFILE, associated manifest file was not found in source directory

Do you want to continue? [NO]

30

Secure Delivery
PCSI and Secure Delivery

Example 3-4 Invalid Manifest

$ PRODUCT INSTALL TEST

Performing product kit validation ..

%$PCSI-E-VALFAILED, validation of PCSIBXS$DKAQ: [KRYCKA.SD]HP-I64VMS-TEST-0100--1.PCSISCOMPRESSED;1 failed
-PCSI-E-CDSA_TEXT, CSSM_ERRCODE_MODULE_MANIFEST VERIFY_FAILED:

Modules manifest verification failed

%$PCSI-E-S-OPFAIL, operation failed

%$PCSIUI-E-ABORT, operation terminated due to an unrecoverable error condition

$

3.2.1 PCSI History File (Product Database)

The product database, or history file, is a set of binary files located in SYS$SYSDEVICE:[VMS$COMMON]
with a .PCSI$DATABASE file extension.

The history file is the single source of information about operations performed on products that use PCSI.
This information includes a history of operations performed, which products are installed, which files and
other managed objects are owned by each product, software dependencies among products, and so forth.

The PCSI history file uses the following codes relating to Secure Delivery:

Val Kit passed validation

Sys Kit installed from Operating System media
Q) Unsigned kit, not validated

(M) Kit marked as signed, but no manifest found
(D) Validation disabled by user

(C) CDSA not loaded, unable to validate

Example 3-4 shows a partial output of a PCSI history file.

Example 3-5 PCSI History File (Partial Output)

PRODUCT KITTYPE Operation VAL DATE

HP T64VMS C S7.1-13 Full LP Install (U) 03-NOV-2005
HP T64VMS CDSA T2.2-117 Full LP TInstall Val 25-0CT-2005

HP I64VMS DECNET_PHASE IV V8.3-B1lB Full LP Install Val 25-0CT-2005
HP I64VMS DWMOTIF_SUPPORT V8.3-B1B Full LP Install Val 25-0CT-2005

HP I64VMS OPENVMS V8.3-B1lB Platform Install Vval 25-0CT-2005
HP I64VMS VMS V8.3-B1B Oper Sys Install Sys 25-0CT-2005
HP I64VMS CDSA V2.1-355 Full LP Remove - 25-0CT-2005
HP I64VMS DECNET_PHASE_IV V8.3-AX0 Full LP Remove - 25-0CT-2005
HP I64VMS DWMOTIF_SUPPORT V8.3-AX0 Full LP Remove - 25-0CT-2005
HP I64VMS OPENVMS V8.3-AX0 Platform Remove - 25-0CT-2005
HP I64VMS VMS V8.3-AX0 Oper Sys Remove - 25-0CT-2005
HP I64VMS BLISSI64 V1.12-67 Full LP Install (U) 08-AUG-2005
HP I64VMS TCPIP V5.5-11 Full LP Install 17-MAY-2005
HP I64VMS TDC_RT V2.1-69 Full LP Install 17-MAY-2005
HP I64VMS VMS V8.2 Oper Sys Install 17-MAY-2005

31

Secure Delivery
Fundamentals of Secure Delivery

3.3 Fundamentals of Secure Delivery

The following sections discuss the fundamental parts of Secure Delivery, including CDSA architecture, the
certificate, the manifest, and validation routines.

3.3.1 CDSA Architecture

Secure Delivery is built on the Common Data Security Architecture (CDSA), which is a multilayered security
infrastructure that provides an integrated and dynamic set of security services to applications. CDSA
provides a secure execution environment using two mechanisms, bilateral authentication and secure linkage.

3.3.1.1 Bilateral Authentication

CDSA checks the integrity of CDSA modules as they are dynamically loaded into the CDSA environment. A
bilateral authentication procedure is designed for two entities to establish trust in the identity and integrity
of each other. When loading a service provider module CDSA requires that the attaching party participate in
this authentication protocol. If authentication fails, the module is denied the ability to be used by CDSA. Both
parties in the bilateral authentication procedure must have signed credentials that bind them to the trust
hierarchy used by CDSA.

Bilateral authentication can also be performed between applications and the CDSA. The only difference is
that the application takes on the role of the initiator and verifies CDSA before loading and using it. Secure
Delivery is an application that performs bilateral authentication.

3.3.1.2 Secure Linkage

For a CDSA application or CDSA itself, Secure Linkage checks that the address called is actually in the code
module of the shareable image. For the called component, the return address must be verified as being within
the calling module.

For the purpose of Secure Delivery, Secure Linkage is not of interest.

3.3.2 The Certificate

CDSA provides tools to generate X509 certificates. These tools are invoked along with additional features but
the format of the certificates remains the same. For information about generating CDSA certificates, see
Section 5.2.

3.3.3 The Manifest

CDSA also provides a tool to create a digital signature using the X509 certificates. The digital signature takes
the form of a separate file called a manifest. The manifest contains the encrypted digest of the target file and
the X509 certificates of the signers. This data is sufficient to guarantee the identity of the signer of a file and
the authenticity of the file's contents.

The manifest is the key part of the mechanism that is used for bilateral authentication. It is the signed
credential that each component must have to carry out the bilateral authentication.

When software kits are built, a manifest should be generated for each kit. This is the signing process. When
Secure Delivery is started, the accompanying manifest is used to accomplish the bilateral authentication.
This is the validation process.

32

Secure Delivery
Creating Manifests

3.3.4 CDSA Secure Delivery Programs

Table 3-1 lists the CDSA programs that implement Secure Delivery.

Table 3-1 CDSA Secure Delivery Programs
CDSA Program Function
CDSA$SD_SIGN.COM Generates manifests. See Section 3.4.2.
CDSA$REVOKE.EXE Revokes a certificate. See Section 4.6.

CDSA$VALIDATE.EXE (new in V2.2) Checks manifests. See Section 4.8.

CDSA$VALIDATE_LIBSHR.EXE (A Validates files programmatically. See
CDSA_FileValidate API is implemented Section 3.5.2.
in CDSA$VALIDATE_LIBSHR.EXE)

NOTE Validation programs are CDSA signed applications and are mutually authenticated with the
rest of CDSA to prevent tampering.

3.4 Creating Manifests

Secure Delivery provides a number of features to help with the creation of manifests. To create a manifest, a
vendor must first create a self-signed certificate using CDSA. This certificate provides essential information
about the party that can be integrated into all of the manifests that are created. After the self-signed
certificates are created, they must be signed by the Certificate Authority (CA). OpenVMS is currently the CA
for CDSA/Secure Delivery on OpenVMS. The signed certificates returned from the CA can then be used to
create manifests. For information about how to use CDSA$GEN_CERTS.COM to generate self-signed
certificates and get them signed by the CA, see Chapter 5.

After the certificates are signed by the CA, they should be placed in the CDSA_SYSDIR:[SIGN] directory on a
special system designated as the local signing system. At this point the CA also has a copy of this certificate
in case it ever needs to be revoked. This certificate is now ready to be used to create manifests, as described in
the following sections.

33

Secure Delivery
Creating Manifests

3.4.1 The Signing Process

The CDSA application CDSA$SIGN.EXE can be used to sign any file, including but not limited to executable
files. The signing process combines three types of information into the manifest. Figure 3-1 illustrates these
information types.

Figure 3-1 Information Combined Into Manifest

Manifest section Attribute Value pairs identifying the target file.
Attribute Value pairs identifying the digest algorithm.
Baseé4 encoded digest of the file.

Signer Information section Attribute Value pairs identifying the signer.
Attribute Value pairs identifying the digest algorithm.
Baseé4 encoded digest of the manifest section.

PKCS#7 Signature Block Signer Information section.

The encrypted digest of the Signer Information section.
The signing certificate.

The certificate(s)identified in the certificate chain.

The format used to describe both the manifest and the signer's information is a series of Name:Value pairs
(RFC 822).

Manifest Section example:

Manifest-Version: 2.0

Name: executable: cdsa$incssm300_shr.exe
SectionName: cdsa$incssm300_shr

Digest-Algorithms: SHA-1

SHA-1-Digest: sqgHfjOuHdeNYZ5A062/78fZ26£3Q=
CDSA_MODULE: CSSM

CDSA _GUID: {d6b5e820-f376-11d3-9bea-0008c74fel65}

Signer Information Section example:

Signature-Version: 2.0

CDSA_PVC_API: OFF

Name: executable: cdsa$incssm300_shr .exe
SectionName: cdsa$incssm300_shr
Digest-Algorithms: SHA-1

SHA-1-Digest: kcwgKvohlRCnRXhghNUAcgT71lvY=

The PKCS#7 Signature block for this example is almost 4800 bytes of mostly binary data.

3.4.2 The CDSA$SD SIGN.COM Procedure

The command file CDSA$SD_SIGN.COM uses CDSA$SIGN.EXE. CDSA$SD_SIGN.COM prompts for the file
to sign, the signed certificate from the CA, and a password. This password must match the password that was
used in the run files when creating the self-signed certificates.

The following is an example of calling CDSA$SD_SIGN.COM:

34

Secure Delivery
Validating Files and Authenticating Signers

S @CDSA_SYSDIR: [SIGN]CDSAS$SSD_SIGN.COM
Please enter the full name of the module to sign including directory:
SYSSKITS: [KERBEROS]HP-AXPVMS-KERBEROS-V0200-6-1.PCSI
Please enter the name of your signed certificate, located in cdsa_sysdir:[sign]: intapps.cer

Please enter the password, it must match the password used to create self-signed certificates:
* Kk ok k ok k ok k

Invoking cdsa$sign.exe. Please wait.
Signed Manifest

Copy the manifest file to the same location as the file being signed. At this point, both files should be
considered an inseparable pair. For example, if the original file is mastered onto a CD for distribution, the
manifest should also be placed in the same directory on the CD. This allows the subsequent verification to
take place, since the verification process looks in the directory where the original file being verified is located
to find the manifest file.

3.4.3 The CDSASREVOKE.EXE File

In some instances, you might need to revoke one of your certificates. If a certificate is compromised or is
rendered invalid for any reason, you can use CDSA$REVOKE .EXE to revoke the certificate.

Input to this application is the name of a file containing a list of certificates (by name) to be revoked. The
application simply writes the certificates to the data file along with other bookkeeping information so that the
CA can interpret the file.

The resulting revocation file is saved in the CDSA_SYSDIR:[CRL]ICDSA$REVOCATION_REQ.CRR file.
The following is an example of using CDSA$REVOKE.EXE:

S REVOKE :== $SYSSSYSTEM:CDSASREVOKE.EXE ! see SYSSMANAGER:CDSASSYMBOLS.COM
S REVOKE CDSA_SYSDIR: [CRL]REVOKE_EX.DAT;1

2 Certificates written to cdsaSrevocation_req.crr.

CDSA_SYSDIR: [CRL]CDSASREVOCATION_REQ.CRR successfully created.

$

The CDSAS$REVOCATION_REC.CRR file can then be sent to the CA, where the data file is available to the
CRL generation program. The CRL generation program updates the directory tree, and the certificate is
considered revoked.

3.5 Validating Files and Authenticating Signers

The objective of validation is to determine the authenticity of the signer and the contents of the target file.
These tasks are just two of the many pieces of functionality that CDSA uses to perform bilateral
authentication of the calling and called programs. Secure Delivery performs both authentication and
validation.

CDSA performs file validation in two ways:

e The CDSA$VALIDATE utility. The user invokes this utility specifying a target file argument. This
utility is described in Section 4.8.

e The CDSA$VALIDATE_LIBSHR.EXE shareable image, which validates files programmatically. This
shareable image is described in Section 3.5.2.

35

Secure Delivery
Validating Files and Authenticating Signers

3.5.1 Validation Examples

The following two examples illustrate CDSA file validation. The first example validates a file called
HP-AXPVMS-KERBEROS-V0200-6-1.PCSI$COMPRESSED and its associated manifest
HP-AXPVMS-KERBEROS-V0200-6-1.PCSI _ESW.

$ VALIDATE :== SYSSSYSTEM:CDSASVALIDATE.EXE ! see SYSSMANAGER:CDSAS$SYMBOLS.COM
$ VALIDATE /SYSSKIT/KERBEROS/HP-AXPVMS-KERBEROS-V0200-6-1.PCSI$SCOMPRESSED
Validation of /SYS$SKIT/KERBEROS/HP-AXPVMS-KERBEROS-V0200-6-1.PCSI$SCOMPRESSED SUCCEEDED.

In the next example the same validation is attempted but the certificate used to create the manifest is
revoked.

$ VALIDATE SYSSKIT/KERBEROS/HP-AXPVMS-KERBEROS-V0200-6-1.PCSISCOMPRESSED

validation of /SYSSKIT/KERBEROS/HP-AXPVMS-KERBEROS-V0200-6-1.PCSISCOMPRESSED FAILED.
Error: CSSMERR_TP_CERT_REVOKED

Certificate has been revoked

3.5.2 The CDSASVALIDATE_LIBSHR.EXE File

For applications that validate files programmatically, there is no need to call CDSA$VALIDATE.EXE.
Applications that link directly with CDSA$VALIDATE_LIBSHR.EXE can call the routine CDSA_FileValidate
for their validation needs. Note that CDSA_FileValidate also returns an OpenVMS style return:
SS$_NORMAL indicating success and 0 indicating failure. In addition, if CDSA_Ret_Status is not a NULL
value passed in, then the address of a CDSA return status is assigned. The calling application must allocate
and deallocate memory for CDSA_Ret_Status. Currently, the target file must be passed in as a UNIX style
path name as in CDSA$VALIDATE .EXE.

In order for the validation process to succeed, the latest signed CRL published by the CA must be in the
CDSA$SYSDIR:[CRL] directory. This file is CDSA$SECURE_DELIVERY.S_CRL and is used to make sure
that the manifest file was not signed by a certificate that has already been revoked.

For more information, see the API “CDSA_FileValidate” on page 73.

36

CDSA Utility Programs
CDSASCERTGEN.EXE

4 CDSA Utility Programs

This chapter describes a number of administrative and development utilities that are provided with CDSA.
Note that some of these programs are typically called only from the CDSA initialization command file unless
new add-in modules are being provided.

The CDSA utility programs comprise the following:

e CDSA$CERTGEN.EXE - Generates digital certificates.

e CDSAS$ISSUER.EXE - Generates the issuer key functions.

e CDSA$MDS_INSTALL.EXE - Creates the MDS database.

e CDSA$MOD_INSTALL.EXE - Adds entries to the MDS database.

e CDSA$OUTPUT_ERROR.EXE - Translates numeric CDSA error codes into text.
e CDSA$SIGN.EXE - Creates manifests.

e CDSA$VALIDATE.EXE - Validates Secure Delivery manifests.

e CDSA$REVOKE.EXE - Packages certificates to be revoked for shipment back to the Certificate Authority
(HP OpenVMS).

e CDSA$X5092XML.EXE - Extracts the subject name from an X509 certificate.

The shortened program names listed in this chapter's Synopsis sections are defined in the file
SYS$MANAGER:CDSA$SYMBOLS.COM. The following command should be added to the
SYS$MANAGER:SYLOGIN.COM file on the system where CDSA development work is being done:

$ @SYSSMANAGER:CDSASSYMBOLS.COM

If this command is not defined at the system level, individual CDSA developers should add it to their personal
LOGIN.COM file so that they can use the shortened program names.

4.1 CDSA$SCERTGEN.EXE

The certgen utility allows the user to create digital certificates in the form runfilename. cer. Private keys
will be placed in [.CDSA.PKD]csp-name. PRT under the login directory of the current process.

This program generally is called by CDSA_SYSDIR:[SIGN]CDSA$GEN_CERTS.COM.

4.1.1 SYNOPSIS

certgen [runfilename]

4.1.2 OPTIONS

runfilename This optional parameter specifies the name of the run file that contains
the parameters that certgen needs to create a certificate. If no run file is
specified, the default run file is certgen.run in the current directory.

37

CDSA Utility Programs
CDSASCERTGEN.EXE

A certgen run file contains the following items as appropriate, each on a separate line:
certype location

certtype can be one of the following:

-s Indicates a self-signed certificate.
-1 Indicates a certificate signed by another certificate.
-v Indicates that the created certificate takes its subject

and public key from a certificate issued by another
vendor. You cannot use this option to create a self-signed
certificate.

Jlocation Indicates where the issuer certificate is read from if -i or
-v is specified.

filename

If certtypeis -s or -1, filename indicates the location of the XML template that contains
the Subject Name that must go into this certificate. If certtypeis -v, filename indicates
the location of the Vendor Certificate.

algorithm

Indicates the algorithm used to generate the key pair associated with the certificate being
created. The specified algorithm must be supported by one of the Cryptographic Service
Providers available in the local implementation of CDSA. The algorithm can be either DSA
or RSA. This parameter is not valid if -v is specified for certtype.

keysize

Specifies the logical key size (in bits) of the key pair being generated. Typical examples are
128, 256, 512, 1024, and so on. The specified key size must be supported by one of the
Cryptographic Service Providers available in the local implementation of CDSA. This
parameter is not valid if -v is specified for certtype.

cspguid

The globally unique identifier of the Cryptographic Service Provider that is being used.
certfile

The output file into which the created certificate is to be written.
subject_password

The password used to protect a key pair if one is being generated. This parameter is not
valid if -v is specified for certtype.

issuer. password

The password used to unlock the private key required to sign the generated certificate. This
parameter is not valid if -s is specified for certtype.

validity period

The validity period for the certificate. This parameter contains a start and end date for the
validity period in the form YYMMDDHHMMSS YYMMDDHHMMSS. The validity period
cannot extend beyond the year 2049. If validity periodis not specified, the validity
period for the certificate lasts for exactly one year.

38

CDSA Utility Programs
CDSASISSUER.EXE

4.1.3 EXAMPLE

S certgen intmods.run

The following is an example of a run file (intmods . run) that creates a certificate named intmods.cer, which
is signed by intmanf .cer and generates a 1024-bit DSA key pair.

-1 intmanf.cer

intmods .xml

dsa

1024
{67ef50d0-fe74-11d2-a8e6-0090271d266f}
intmods.cer

intmods

intmanf

001013000000 101013000000

4.2 CDSASISSUER.EXE

The issuer utility is used to create a set of functions that are embedded into CSSM, or are used by EISL. A
CDSA application developer needs to create only the EISI,_RetrieveSelfCheckKey () function. The other
functions noted here are applicable only for CDSA vendors (in this case, HP).

This program generally is called by CDSA_SYSDIR: [SIGN]CDSASGEN_CERTS.COM().

4.2.1 SYNOPSIS

issuer option certfile codefile functionname

4.2.2 OPTIONS

option
A code that defines the function to be created. Specify one of the following values:
-1 Creates a function that returns an issuer name from the
certificate.
-s Creates a function that returns a signer name from the
certificate.
-k Creates a function that returns a trusted public key.
Note: A CDSA application developer who is creating the EISI,_RetrieveSel fCheckKey ()
function should specify -k. The other codes are used only by CDSA vendors who are
building CDSA itself rather than a CDSA application or service provider module.
certfile
A text file that contains the name of the certificate to be used.
codefile

The file to which the generated function is written.

39

CDSA Utility Programs
CDSASMDS_INSTALL.EXE

functionname
Name of the function to be generated.

Note: CDSA application developers need to create only the

EISL_RetrieveSelfCheckKey () function (the last item in the following list). The full set of
functions is listed here to provide a complete overview of the issuer utility. The other
functions are applicable only for CDSA vendors. Those who want to learn more about export
chains can refer to the Intel Common Data Security Architecture Manifest Signing Tools
User's Guide.

® cssm_GetIntegrityRootKeys () (or cssm_GetExportRootKeys () for export)
® cssm_GetIntegrityRootNames () (or cssm_GetExportRootNames () for export)

® EISL_RetrieveSelfCheckKey ()

4.2.3 EXAMPLE

The following example extracts the public key from the certificate intmods.cer and creates a function named
EISL_RetrieveSelfCheckKey () in the file modselfkey.h.

S create intmodscertfile.

intmods.cer

S!

S issuer -k intmodscertfile. modselfkey.h -
_$ "EISL_RetrieveSelfCheckKey"

4.3 CDSAS$SMDS_INSTALL.EXE

The mds_install utility is used to create (install) or delete (uninstall) the Module Directory Services database
used by CDSA.

This program generally is called by SYS$STARTUP:CDSASINITIALIZE.COM.

4.3.1 SYNOPSIS

mds_install [[-s source] [-d dbdest] 1 [-u]

4.3.2 OPTIONS

NOTE OpenVMS users can specify only the -u option (or no option). However, the other options are
described here for completeness for users who are accustomed to seeing them on another
platform.

-s source Specifies the MDS DLL source location (not used by OpenVMS).

-d dbdest Specifies the destination file specification for the MDS database to be

created. This parameter is currently hardcoded on OpenVMS, and should
not be changed.

40

CDSA Utility Programs
CDSASMOD_INSTALL.EXE

-u Specifies that the operation is an uninstall of MDS, rather than an install.
This parameter cannot be used with the -s and -d parameters.

4.3.3 EXAMPLE

The following command creates an empty CDSA MDS database. (If it is run against an already existing
database, it does nothing.)

mds_install

44 CDSA$SMOD_INSTALL.EXE

The mod_install utility is used to add information about CDSA modules into the Module Directory Services
database.

This program generally is called by SYS$STARTUP:CDSASINITIALIZE.COM.

4.4.1 SYNOPSIS

mod_install [-f] option [-s file] [-d path]

4.4.2 OPTIONS

-f Specifies not to warn about unsigned or corrupt modules.
option Specifies the action to be taken by the mod_install utility:

-i Install the module.

-u Uninstall the module.

-r Refresh the installation information.
-s file Specifies the full file specification (in UNIX® directory format) of the

source file to be installed.

-d path Specifies the destination path (in UNIX directory format) of the source file
to be installed.

4.4.3 EXAMPLE

The following example installs the add-in module stubcsp300_shr.exe in the CDSA MDS database. The
logical definition in the first command is necessary because the shareable image is not in SYS$LIBRARY and
it will be invoked as part of the installation process.

S define stubcsp300_shr "cdsa_tempdir:[addin]stubcsp300_shr.exe"
$ mod_install -i -s /cdsa_tempdir/addin -
_S$S /stubcsp300_shr.exe -d /cdsa_tempdir/addin

41

CDSA Utility Programs
CDSASOUTPUT_ERROR.EXE

4.5 CDSA$OUTPUT_ERROR.EXE

The CDSA implementation on OpenVMS supplies a special program that can be used to translate numeric
CDSA error codes to text messages. This program resides in the SYS$SYSTEM directory and is called
CDSA$OUTPUT_ERROR.EXE. It uses the routines described in this section to convert a numeric error code
to its associated text label and error string. A foreign command, cdsa_error, has been defined in
SYS$MANAGER:CDSA$SYMBOLS.COM to invoke this program. For details about using cdsa_error and its
options, see Chapter 4, “CDSA Utility Programs,” on page 37.

Note that this utility is defined as cdsa_error by CDSA$SYMBOLS.COM. The cdsa_error utility converts a
CDSA numeric error code into its corresponding text strings. The text is output to SYS$OUTPUT.

4.5.1 SYNOPSIS

cdsa_error base_flag error_code

4.5.2 OPTIONS

base_flag The mathematical base in which the error code is represented:

-d Specifies that the numeric value of error_codeis
decimal (base 10).

-0 Specifies that the numeric value of error_codeis octal
(base 8).
-h Specifies that the numeric value of error_codeis

hexadecimal (base 16).

If you specify something other than these options, you will get an error
message that lists the correct options. (See Example 2.)

error_code The error code stated in the numerical base specified by the base-flag
parameter.

4.5.3 EXAMPLES

1. $ cdsa_error -h 3135
Error: CSSMERR_DIL_STALE_UNIQUE_RECORD
The record returned has been changed by someone and is stale

2.$ cdsa_error -?
dka300: [sys0.syscommon.] [sysexe]cdsa$Soutput_error.exe;1:

illegal option -- ?

cdsa$output_error -d|o|h <Error Code>
options:

-d : Error code is a decimal number

-0 : Error code is an octal number

-h : Error code is a hexadecimal number

42

CDSA Utility Programs
CDSASREVOKE.EXE

4.6 CDSASREVOKE.EXE

Packages certificates to be revoked for shipment back to the Certificate Authority (HP OpenVMS).

4.6.1 SYNOPSIS

$ CDSASREVOKE filename

4.6.2 OPTIONS

filename The OpenVMS-style name of the file containing a list of certificates (by
name) to be revoked.

4.6.3 RETURN VALUES
CDSAS$REVOKE creates the file CDSA_SYSDIR:[CRL]JCDSA$REVOCATION_REQ.CRR.

4.7 CDSAS$SIGN.EXE

Note that this utility is defined as cdsa_sign by CDSA$SYMBOLS.COM. The cdsa_sign utility takes a service
provider product, application, or CSSM binary, plus the manufacturer certificates generated using certgen,
and creates a manifest file. Manifest files have a file extension of . ESW.

This utility can be used for Integrity signing and for Export signing. Integrity signing creates a new manifest,
while Export signing adds signers to an existing manifest. The options for each function are totally different,
so they are described here in separate sections. Integrity signing for a module must always be done before
Export signing.

4.7.1 Integrity Signing

Integrity signing is optional for applications and mandatory for add-in modules.

4.7.1.1 SYNOPSIS

cdsa_sign module_name subdirectory type signer_ cert password cert_chain
module guid access_tag pvcapi_tag pvcspi_tag priv_tag

4.7.1.2 OPTIONS

module_name The name of the module being signed.

subdirectory The subdirectory (in UNIX directory format) containing the module being
signed.

type The module type, which can be one of the following:
A Service provider module
C CSSM

43

CDSA Utility Programs
CDSASSIGN.EXE

signer._cert

password

cert_chain

module_guid

access_tag

pvcapi_tag

pvcspi_tag

D Application sharable image
E Elective Module Manager
G Generic file

X Application executable

The name of the certificate being used to sign the module.

The password for the private key of the certificate being used to sign the
module.

A text file identifying the certificates to be embedded. This file has the
following form:

number
certl
cert2

where number is the number of certificates being embedded, and cert1
and cert2 are the names of certificates to be embedded; for example:

2
introot.cer
intmanf.cer

The string version of the globally unique identifier of the module being
signed (as installed in MDS).

For installer modules, this is the base-64 encoded, unsigned, 32-bit value
(in big-endian) of the access type defined for CDSA_DB_ACCESS_TYPE.
For modules other than installers, specify "XX" for this parameter.

Specifies whether pointer validation checking is to be done on the
application program interface boundaries. (Read more about PVC in
Section 5.1.3.2.) The values for the CDSA_PVC_API tag are as follows:

“EXEMPT” Specifies an application manifest,
where the program can set the PVC
flag in cssm Init().

“OFF” Specifies a CSSM manifest, where the
PVC flag is not applicable.
“XX” Specifies that the CDSA_PVC_API tag

is not in the manifest.

Specifies whether pointer validation checking is to be done on the service
provider interface boundaries. (Read more about PVC in Section 5.1.3.2.)
The values for the CDSA_PVC_SPI tag are as follows:

“EXEMPT” Specifies a service provider manifest,
where the program can set the PVC
flag in cssm Init ().

“OFF” Specifies a CSSM manifest, where the
PVC flag is not applicable.

44

CDSA Utility Programs
CDSASSIGN.EXE

“XX” Specifies that the CDSA_PVC_SPI tag
is not in the manifest.
priv_tag The CDSA_PRIV tag in the manifest. No CDSA_PRIV tag values are

defined, so specify "XX" to indicate that this tag is not in the manifest.

4.7.1.3 EXAMPLE

The following is an example of the cdsa_sign command for Integrity signing:

S define cdsa_sign "/cdsa_tempdir/addin"

S set default cdsa_sysdir:[sign]

S cdsa_sign stubcsp300_shr cdsa_sign A intmods.cer -

_S$ intmods intchain. {79BDEOF0-4541-11d3-A8F3-0090271D266F} -
_$ "XX" "EXEMPT" "XX" "XX"

The first command defines the logical cdsa_sign (which is used internally by the code) in UNIX directory
format as the directory where the executable to be signed can be found.

¢ stubcsp300_shr is the name of the module being signed.

e cdsa_sign is the logical pointing to the directory containing the module.

e Aindicates that stubcsp300_shr is a service provider module.

® intmods.cer is the name of the certificate being used to sign the module.

* intmods is the password for the private key of the certificate (intmods.cer) being used to sign the module.
¢ intchain. is the name of the text file containing the names of the certificates in the certificate chain.
e {79BDE0F0-4541-11d3-A8F3-0090271D266F} is the GUID of the service provider module.

e "XX"is the access tag, which indicates that this is not an installer module.

e "EXEMPT" is the CDSA_PVC_API tag specifying that this is an application manifest.

o "XX" specifies that the CDSA_PVC_SPI tag is not in the manifest.

o "XX" specifies that the CDSA_PRIV tag is not in the manifest.

4.7.2 Export Signing

Export signing is optional. Before you can do Export signing for a module, you must already have done
Integrity signing and a manifest must exist. For more information about Export signing, refer to the Intel
Common Data Security Architecture Manifest Signing Tools User’s Guide.

4.7.2.1 SYNOPSIS

cdsa_sign manifest_path signer cert password cert_chain usee_tag priv_tag pvcapi_tag
pvcspi_tag

4.7.2.2 OPTIONS

manifest_path The path (in UNIX directory format) to the manifest created in the
Integrity signing phase.

signer_cert The name of the certificate being used to sign the module.

password The password for the private key of the certificate being used to sign the
module.

45

CDSA Utility Programs
CDSASSIGN.EXE

cert_chain

usee_tag

priv_tag

pvcapi_tag

pvcspi_tag

4.7.2.3 EXAMPLE

A text file identifying the certificates to be embedded. This file has the
following form:

number
certl
cert2

where number is the number of certificates being embedded, and certl
and cert2 are the names of certificates to be embedded; for example:

2
introot.cer
intmanf.cer

The base-64 encoded value of the CSSM_USEE_TAG value. This value
must be enclosed within double quotation marks.

The CDSA_PRIV tag in the manifest. No CDSA_PRIV tag values are
defined, so specify "XX" to indicate that this tag is not in the manifest.

Specifies whether pointer validation checking is to be done on the
application program interface boundaries. (Read more about PVC in
Section 5.1.3.2.) The values for the CDSA_PVC_API tag are as follows:

“EXEMPT” Specifies an application manifest,
where the program can set the PVC
flag in cssm_Init.

“OFF” Specifies a CSSM manifest, where the
PVC flag is not applicable.
“XX” Specifies that the CDSA_PVC_API tag

is not in the manifest.

Specifies whether pointer validation checking is to be done on the service
provider interface boundaries. (Read more about PVC in Section 5.1.3.2.)
The values for the CDSA_PVC_SPI tag are as follows:

“EXEMPT” Specifies a service provider manifest,
where the program can set the PVC
flag in cssm_Init.

“OFF” Specifies a CSSM manifest, where the
PVC flag is not applicable.
“XX” Specifies that the CDSA_PVC_SPI tag

is not in the manifest.

The following is an example of the cdsa_sign command for Export signing:

S cdsa_sign /cdsa_tempdir/des2/des2.esw exapps.cer secret exchain. -
_$ "AAAAAQ==" "XX" "EXEMPT" "XX"

In this example:

e /cdsa_tempdir/des2/des2.esw is the path (in UNIX directory format) to the manifest created during

Integrity signing.

46

CDSA Utility Programs
CDSAS$VALIDATE.EXE

e exapps.cer is the name of the certificate being used to sign the module.

e secret is the password for the private key of the certificate being used to sign the module.

e exchain. is the name of the text file identifying the certificates to be embedded in the signature.
e "AAAAAQ=="1is the base-64 encoded value of the CDSA_USEE_DOMESTIC tag.

o "XX" specifies that the CDSA_PRIV tag is not in the manifest.

e "EXEMPT" is the CDSA_PVC_API tag specifying that this is an application manifest.

o "XX" specifies that the CDSA_PVC_SPI tag is not in the manifest.

4.8 CDSASVALIDATE.EXE

4.8.1 SYNOPSIS

S CDSASVALIDATE filename

4.8.2 OPTIONS

filename The name of the file that is the target of validation. Currently, the filename must be a UNIX
style path in order to be compatible with CDSA.

4.8.3 DESCRIPTION
CDSA$VALIDATE is a signed CDSA application. It will collect the input parameters, file specs for target file

and manifest, and pass them on to CDSA_Filevalidate routine that is part of
CDSA$VALIDATE_LIBSHR.EXE.
4.8.4 EXAMPLE

S validate :== Ssyssystem:cdsaS$validate.exe ! see SYSSMANAGER:CDSA$SYMBOLS.COM
$ validate userl/mydirectory/myfile.pcsi

4.8.5 RETURN VALUES

CDSA$VALIDATE returns SS$_NORMAL for success and 0 if the validation fails, or an error occurs. If a
problem is encountered during the validation process, CDSA$VALIDATE prints a CDSA error message.

4.9 CDSA$X5092XML.EXE

The x5092xml utility reads an X509 certificate file, extracts the subject name, and writes the name as XML to
an XML file. This tool is useful for producing example template files that can be modified.

47

CDSA Utility Programs
CDSA$X5092XML.EXE

4.9.1 SYNOPSIS

x5092xml infile outfile

4.9.2 OPTIONS

infile The name of the X509 certificate file from which the subject name is being extracted.

outfile The name of the XML file to which the name is to be written.

4.9.3 EXAMPLE

x5092xml introot.cer introot.xml

48

CDSA Programming Concepts
Overview of CDSA Programming on OpenVMS

9 CDSA Programming Concepts

This chapter provides an overview of programming with CDSA on OpenVMS. This chapter should be read in
conjunction with the Intel Common Data Security Architecture Application Developer's Guide, the Intel
Common Data Security Architecture Service Provider Developer’s Guide, and the Intel Common Data Security
Architecture Manifest Signing Tools User’s Guide.

This chapter covers the following topics:

e An overview of building a CDSA application on OpenVMS (see Section 5.1)

¢ Details about writing a signed CDSA application or add-in module (see Section 5.2)
e Steps to deploy signed applications and service provider modules (see Section 5.3)
¢ Descriptions of the CDSA example programs (see Section 5.4)

¢ Information about CDSA errors and how to get a meaningful error return (see “Decode_CDSA_Error” on
page 258 and “Print_CDSA_Error” on page 415.)

5.1 Overview of CDSA Programming on OpenVMS

CDSA programming on OpenVMS works much the same as on any other platform. The following sections
indicate differences and important information.

5.1.1 Compiling a CDSA Program

When you compile your program, you need to add the /INCLUDE=CDSA_SYSDIR:[INCLUDES] qualifier to
your compiler command line. The following command is taken from the BUILD_DES.COM example in this
chapter (see Section 5.4.2):

$ CC/LIST/INCLUDE=CDSA_SYSDIR: [INCLUDES]/PREFIX=ALL DO_DES

5.1.2 Linking a CDSA Program

Most CDSA applications must link with SYS$SHARE:CDSA$INCSSM300_SHR.EXE. If the application uses
MDS, you might need to include SYS$SHARE:CDSA$MDS300_SHR.EXE and
SYS$SHARE:CDSA$MDS UTIL_API.OLB as well.

Because CDSA routines are located in shareable libraries, the use of a link options file is recommended. For
details about using link options files, refer to the OpenVMS Linker Utility Manual. The CDSA example
programs described in Section 5.4 provide examples of using link options files for CDSA applications.

5.1.3 CDSA Integrity Checking

CDSA provides two types of integrity checking: bilateral authentication and pointer validation checking.

49

CDSA Programming Concepts
Writing Signed Applications

5.1.3.1 Bilateral Authentication

Bilateral authentication checks the integrity of modules as they are dynamically loaded into the system. A
bilateral authentication procedure is designed for two entities to establish trust in the identity and integrity
of each other. When loading a service provider module or an elective module manager, CDSA requires that the
attaching module participate in this authentication protocol. Both modules in the bilateral authentication
procedure must have signed credentials that bind them to the trust hierarchy used by CDSA. These
credentials are stored in the CDSA MDS database during module installation.

Refer to the Intel Common Data Security Architecture Application Developer's Guide (Chapter 11, Integrity)
and the Intel Common Data Security Architecture Manifest Signing Tools User's Guide for more detailed
explanations of the bilateral authentication process.

5.1.3.2 Pointer Validation Checking
Pointer validation checking (PVC) entails validating addresses under the following circumstances:
e Before calling across the application interface into CDSA (PVC is optional on OpenVMS in this case.)

e Before calling across the CDSA interface to an add-in module (PVC is required on OpenVMS in this case.)

The Pointer Validation Policy is established using the PvcPolicy parameter in the CSSM_Init call. The
parameter values can be derived using the constants in the file CSSMTYPE.H in
CDSA_SYSDIR:[INCLUDES]. Starting with OpenVMS Alpha Version 7.3-2, the values for the PvcPolicy
parameter that are valid for CDSA are as described in the following table.

Value Description

2 PVC validation is performed on service provider modules only. CSSM_PVC_SP is used for
PVC validation on service provider modules.

3 PVC validation is performed on both service provider and application modules. The bitwise
OR of CSSM_PVC_APP and CSSM_PVC_SP is used for PVC validation on both service
provider and application modules; for example, (CSSM_PVC_APP | CSSM_PVC_SP).

For more information about pointer validation checking, see the description of the cssM_Tnit () APL

5.2 Writing Signed Applications

Two types of applications can be developed to use CDSA integrity checking:

¢ An application that calls into CDSA to use one or more of the services that it provides.

CDSA applications developed on OpenVMS can optionally participate with CDSA in bilateral
authentication.

e A service provider module that “plugs-in” or “adds-in” to CDSA to provide a set of security related
functions that an application program can in turn use. On OpenVMS, service provider modules are
implemented as shareable images.

All CDSA add-in modules developed on OpenVMS must participate in bilateral authentication (see
Section 5.1.3.1) and pointer validation checking (see Section 5.1.3.2).

50

CDSA Programming Concepts
Writing Signed Applications

The Intel Common Data Security Architecture Application Developer's Guide and the Intel Common Data
Security Architecture Service Provider Developer’s Guide have in-depth information about developing
applications and add-in modules for CDSA.

The development process includes generating certificates and key pairs to be used in the signing process and
later in the integrity checking process. The public keys are extracted from the certificate into a code module
that is included in the application. The private keys remain on the signing system. After the code is built, the
certificate is used to “sign” the application or service provider module. The product of the signing is a
manifest, which is typically kept with the executable.

The following sections summarize the steps for building a signed CDSA application or add-in module on
OpenVMS.

5.2.1 The Signing Environment

To create manifests used for authentication of CDSA modules, you must have a working version of CDSA and
the signing tools installed on a machine. It is good practice to dedicate a specific machine or set of machines to
be the signing center. Certificates for signing should be generated on the signing machine, and the signing of
generated modules must be done there. The tools, applications, CDSA stack, and private keys used to
generate certificates should not be modified or reinstalled after the certificate generation process has
completed. Doing so will invalidate the keys used to make the certificates and will cause any modules signed
to fail integrity checking.

Development and testing of modules should be conducted on other machines so as not to disrupt the signing
environment.

The signing directory on an OpenVMS system is CDSA_SYSDIR:[SIGN].

On OpenVMS, the account that is used to create certificates must be the same account that is used for signing
developed applications and service-provider modules. This is required because the private keys are stored in
the namespace of that user account and must be accessible by the code performing those functions. Note that
this account requires the SYSPRYV privilege to access the signing directory.

5.2.2 The Signing Tools

The following programs are used in developing CDSA applications or add-ins:

Program Name Description

SYS$SYSTEM:CDSA$CERTGEN.EXE Certificate creation tool

SYS$SYSTEM:CDSA$ISSUER.EXE Public key extraction tool

SYS$SYSTEM:CDSA$SIGN.EXE Signing tool

The following files in CDSA_SYSDIR:[SIGN] are named according to Intel naming conventions. Their names
can be changed to suit any other development conventions. If the names introot.cer or intmanf.cer are
changed, intchain must be updated to reflect the new names. The new certificate names will also be used as
parameters to cdsa_sign.

File Name Description

introot.cer The CDSA Integrity Root certificate containing the public key of the root of the
integrity chain.

51

CDSA Programming Concepts
Writing Signed Applications

File Name Description
intmanf.cer The CDSA Integrity Manufacturing certificate containing the public key of the
manufacturer.
ssintapps.run The run file that is input to the certificate creation tool

(CDSA$CERTGEN.EXE) to create a self-signed application certificate.

ssintapps.xml The X509 formatted identification of the signer of the application certificate.

ssintmods.run The run file that is input to the certificate creation tool
(CDSA$CERTGEN.EXE) to create a self-signed add-in module certificate.

ssintmods.xml The X509 formatted identification of the signer of the add-in module certificate

intchain. A list of certificates comprising the integrity certificate chain; that is,
introot.cer and intmanf.cer

The file CDSA_SYSDIR:[SIGN]CDSA$GEN_CERTS.COM is used to generate the digital certificates and
keypairs that are used by CDSA applications.

5.2.3 The Signing Process

The first five of the following nine steps need to be done only once for each application or add-in module being
developed. However, each time the application is changed, a new manifest must be created and the
application must be reinstalled in the CDSA MDS database (steps 8 and 9).

If you are building the example programs provided with CDSA Version 2.0 or later, some of the following
steps have been done in example code or accompanying command procedures. Read
SYS$COMMON:[SYSHLP.EXAMPLES.CDSAJREADME.TXT for details.

1. Generate a GUID.

Each signed application and service provider module should have a global unique identifier (GUID). This
GUID should be written to a header file in the application development directory — either as an
individual header file or included in another header file. (See the model in DESGUID.H in the DES2 or
DES3 examples: Section 5.4.4 or Section 5.4.5.)

If your development environment is OpenVMS Version 7.3-2 or higher, you can simply execute the GUID
generating command procedure in CDSA_SYSDIR:[SIGN] and the procedure will output a GUID as
shown in the following example:

$ @CDSA_SYSDIR: [SIGN]CDSASUUIDGEN
KXXKXKKXKK—KKKXK~XKXK~XXKK -~ KXXXXXKKKKKK

The string form of the GUID is used as input to the signing tool, CDSA$SIGN.EXE, when the application
or add-in module is signed.

The string form of a GUID is expressed as follows:
"{FD52A3EA-D9EC-1159-916B-08002BC48051}"
The numeric form of the same GUID (as defined by the data structure CSSM_GUID) would be:

{0xfd52a3ea,

0xd9ec,

0x1159,

{0x91, 0x6b, 0x08, 0x0, O0x2b, Oxc4, 0x80, 0x51}}

52

CDSA Programming Concepts
Writing Signed Applications

Add a GUID variable pointer to the calls to CSSM_TInit () and, if you are using them, to
CSSM_Introduce () and CSSM_Unintroduce ().

NOTE If you are developing on a system earlier than OpenVMS Version 7.3-2, you must find

another method to generate a GUID that conforms to the preceding format.

. Generate a Certificate.

The first step in the process of creating credentials is to generate a self-signed certificate by running
CDSA$CERTGEN.EXE. This is always done on the signing system. The default directory must be set to
CDSA_SYSDIR:[SIGN] and the user must have read/write access to this directory. (Steps 3 and 8,
generating the key and the manifest, must also be done in this directory.)

This step produces a private key and a public key for the application. The private key always remains on
the signing system. The matching public key is embedded in the generated certificate.

A RUN file and an .XML file are input to CDSA$CERTGEN.EXE. The following samples of these files
can be found in CDSA_SYSDIR:[SIGNI:

e ssintapps.run and ssintapps.xml (input to generate an application certificate)

¢ ssintmods.run and ssintmods.xml (input to generate a service provider module certificate)

The .RUN file contains input to the certificate generation process, including the name of the XML file.
The . XML file contains attributes to identify the issuer of a certificate in machine-readable X500 format.
The following table shows the attributes that are used. The attribute name is not used in the . XML file
but is included in the table for human readability. Note that only one value is specified for each attribute

in the XML file.

Attribute OID Attribute Name Example Value OpenVMS Value
2.5.4.3 Common Name Senior Technician Hewlett-Packard
2.5.4.10 Organization Name XYZ Company BCS (Business Critical

Servers)
254.11 Organizational Unit ABC Division OpenVMS
Name

254.1 Aliased Entry Name XYZ Security Product | HP OpenVMS Integrity Root
2.5.4.9 Street Address 110 Maple Street 110 Spit Brook Road
2.5.4.7 Locality Anytown Nashua
2.5.4.8 State or Province XX NH
2.5.4.6 Country USA USA
2.5.4.17 Postal Code 54321 03062
2.5.4.23 Telephone Number 777-666-4321 (not used)
1.2.840.113549.1.9.1 | Email Address role@xyz.com OpenVMSSecurity@hp.com

Make the desired changes to the attributes in the .XML file to identify the issuer of the certificates.
Chapter 3 of the Intel Common Data Security Architecture Manifest Signing Tools User's Guide explains
the XML syntax used here.

53

CDSA Programming Concepts
Writing Signed Applications

You can run CDSA$CERTGEN.EXE by itself or you can execute the command procedure
CDSA_SYSDIR:[SIGN]CDSA$GEN_CERTS.COM to run both CDSA$CERTGEN.EXE to generate a
certificate and CDSA$ISSUER.EXE to generate the key code (see Step 3).

. Generate Key Code.

CDSAS$ISSUER.EXE generates the code that embeds the public key in the application. You can run this
program by itself in directory CDSA_SYSDIR:[SIGN] or you can let it execute as part of
CDSA_SYSDIR:[SIGN]CDSA$GEN_CERTS.COM. CDSA$ISSUER.EXE extracts the public key into a C
structure to be included in the developed program. It generates two certificates, ssintapps.cer and
ssintmods.cer.

Because the generated certificates are self-signed, they also need to be signed with the private key of the
root of the integrity certificate chain being used for CDSA. This root is the private key originally
generated by OpenVMS. This certificate signing is accomplished by sending email to
OpenvVMSSecurity@hp.com. The response will provide details on how to proceed with having your
certificates signed by the OpenVMS integrity root.

CDSAS$ISSUER.EXE also generates the following include files:
e APPSELFKEY.H (used to develop an application)
e MODSELFKEY.H (used to develop a service provider module)

Copy these two files into the application development area.

. Generate SelfCheck code.

For an application:

As part of the self-check process, you must modify the following three procedures in the CALLOUTS.C
module found in each CDSA example directory:

® EISL_RetrieveSelfCheckSectionName ()
® EISL_RetrieveSelfCheckCredentials ()
® EISL_RetrieveSelfCheckCredentialsSize ()

Modify these procedures to use the application GUID in calls to mdsutil_GetModuleCredentialInfo().
In the DES2 and DES3 examples in this chapter (see Section 5.4.4 and Section 5.4.5), the application
GUID is defined by including a file called DESGUID.H.

Define the constant SECTION to be the name of the application executable.
CALLOUTS.H contains function prototypes for all the self-check procedures that will be invoked.

For an add-in module:

Change the definition of ADDIN_SELF_CHECK_SECTION in the MAF_CONFIG.H module in the
example directory to the name of the shareable image (with no extension).

. Add CDSA procedures to the Application.

Before making any calls to CSSM, insert a call to EISL,_SelfCheck () to validate the integrity of the
application itself. After a successful return, call EISI_RecycleVerifiedModuleCredentials () to release
the structures that were created.

If you want to ensure the integrity of CDSA, you can load it dynamically and let the code perform
integrity checking on it before any CSSM code is executed. One way to do this is by using the Application
Adaptation Layer. All code to use this layer is provided in the DES3 example program. Call
AALProxyLoadCssm() after EISI,_SelfCheck (), and before making any calls to CSSM.

54

CDSA Programming Concepts
Deploying Signed Applications and Service Provider Modules

If you want to perform pointer validation checking across the API boundary, you must call the APIs in the
following order so that the necessary data structures are set up:

® (CSSM_TInit()
® (CSSM_Introduce ()
® (CSSM_ModuleLoad ()

When processing ends, the application should call CSSM_Unintroduce () (if you used it) before calling
CSSM_Terminate () and then AALProxyUnloadCssm().

CDSA Add-in Modules

The integrity checking process for add-in modules is provided by the Multi-service Add-in Framework. In
fact, the MAF*.* modules provide a framework for developing an add-in module.

Development of a CDSA service provider add-in module is beyond the scope of this document. The
OpenVMS CDSA example application ADDIN illustrates the development of a Cryptographic Service
Provider add-in module. The Intel Common Data Security Architecture Service Provider Developer's Guide
provides complete details for developing an add-in module for CDSA.

. Compile and link the application or add-in module.
. Build the code to install the application.

A service provider module can be installed in the CDSA MDS database using
SYS$SYSTEM:CDSA$MOD_INSTALL.EXE.

An application must build a program to perform the installation. The two signed example applications
DES2 and DESS3 include an installation program that demonstrates the basics of installing an
application.

. Generate the manifest.

In directory CDSA_SYSDIR:[SIGN] on the signing system, sign the application by generating a set of
credentials. The application credentials are contained in a manifest, application.ESW, which
accompanies the application. Input to the credential generation includes the application executable and
the certificate being used to sign the application. For more details, refer to the Intel Common Data
Security Architecture Manifest Signing Tools User's Guide.

Each of the example programs described in this chapter includes a procedure called example SIGN.COM
that demonstrates how to generate a manifest.

The manifests are typically kept with the application executable.
. Install the application in the CDSA MDS database.

Each of the example programs includes code that produces an application program and a procedure called
example INSTALL.COM that demonstrates how to install an application in the CDSA MDS database.

5.3 Deploying Signed Applications and Service Provider Modules

To deploy a CDSA signed application or service provider module, you must deliver the following items to the
system where they are to be used:

The executable

55

CDSA Programming Concepts
CDSA Example Programs

¢ The manifest (filename.ESW) containing the credentials of the executable

¢ The installation program (for an application, a service provider module can use
CDSA$MOD_INSTALL.EXE)

After the files are in place, run the installation program.

5.4 CDSA Example Programs

Eight example programs are provided with CDSA on OpenVMS. Command procedures to build, sign, and
install them are provided along with individual README files for each example.

The following table lists the example programs and describes what aspect of CDSA each program is designed
to convey.

Example Program | Signed Description Section

AES No Simple AES encryption/decryption Section 5.4.1
program

DES No Simple DES encryption/decryption Section 5.4.2
program

MDS No Program to query MDS database for Section 5.4.3
CDSA services

DES2 Yes DES example with integrity checking, | Section 5.4.4
explicitly linked

DES3 Yes DES example with integrity checking, | Section 5.4.5
using AAL (dynamically loaded)

ADDIN Yes An add-in module written to the CSP | Section 5.4.6
Service Provider Interface, with
integrity checking

DUMMYEMM Yes An Elective Module Manager to Section 5.4.7.1

define a new Service Provider
Interface, wtih integrity checking

DUMMYEMMADDIN | Yes An add-in module written to the SPI Section 5.4.7.2
made available by DUMMYEMM,
with integrity checking

Before you build the example programs, please read the following README files:
e For an overview of all the CDSA examples: SYS$COMMON:[SYSHLP.EXAMPLES.CDSA]JREADME.TXT

¢ For details about an individual example program, see the README file in each example directory. For
example, the README file for DES is in the following location:
SYS$COMMON:[SYSHLP.EXAMPLES.CDSA.DESIREADME.TXT

You must initialize CDSA before running any example program. See Chapter 2 for more information.

56

CDSA Programming Concepts
CDSA Example Programs

Pay special attention to Section 5.2 if you plan to build one of the signed examples or are developing a CDSA
add-in module.

The examples are designed to be organized under a local build area or directory such as
disk:[directory.example].

Define the rooted logical CDSA_TEMPDIR as disk:[directory.] using the following command:
$ DEFINE/TRANSLATION=CONCEALED CDSA_TEMPDIR disk:[directory.]

Under this directory, the command procedures expect to find individual directories for each example; for
example:

DISK1: [EXAMPLES.DES]
DISK1: [EXAMPLES.MDS]
DISK1l: [EXAMPLES.DES2]

5.4.1 AES Encryption/Decryption Example Program

This example is a simple AES encryption/decryption program that uses CDSA, along with the necessary files
to build it on OpenVMS. It consists of two source files (AES.C and DO_AES.C), and two build files
(AES_BUILD.COM and AES.OPT).

The AES example program can be built by copying the example files into a local build area, and executing the
AES_BUILD command file, as follows:

S copy SYSS$SSYSROOT: [SYSHLP.EXAMPLES.CDSA.AES]*.* local_build area
S SET DEF local_build _area
$ @AES_BUILD

The resulting AES.EXE file can be run as a foreign command. This can be set up by entering the following
command:

S AES :== $ local_build area AES.EXE

You can then execute the program with the following options:

Option Description
-e Encrypt with supplied key (requires -k option)
-d Decrypt with supplied key (requires -k option).
-h The supplied key is up to a 64 character hexadecimal number.
-k "key" Use key "key" (single quotes are necessary if used with -h).
NOTE Up to 64 characters are used for 256 bit AES (this example is included in CDSA). Up to 48

characters are used for 192 bit AES. Up to 32 characters are used for 128 bit AES.

For example, to encrypt MYFILE.TXT using an ascii key with the AES example program, issue the following
command:

$ AES -e -k "xyzzy" MYFILE.TXT MYFILE.AES
To decrypt the same file, enter the following command:

$ AES -d -k "xyzzy" MYFILE.AES MYFILE.TXT

57

CDSA Programming Concepts
CDSA Example Programs

To encrypt/decrypt using a hexadecimal key, use a key length of exactly 64 typed characters (32 hex bytes),
and the -h switch as follows:

$ AES -e -k 0l2abcdell2abcde -h MYFILE.TXT MYFILE.AES
$ AES -d -k 0l2abcdell2abcde -h MYFILE.AES MYFILE.TXT

To change this example to a 128 or 192 bit AES example, perform the following steps.
1. Edit AES. For 192 bit AES, change the key size as follows:

key[32]
to
key[24]

For 128 bit AES, change the key size as follows:

key[32]
to
key[16]

2. Edit DO_AES. For 192 bit AES, change the following:
key .KeyHeader .AlgorithmId

to
key.KeyHeader .AlgorithmId

CSSM_ALGID_EVP_AES_ 256;

CSSM_ALGID_EVP_AES_192;
For 128 bit AES, change the following:

key.KeyHeader .AlgorithmId
to
key.KeyHeader .AlgorithmId

3. Rebuild the example.

CSSM_ALGID_EVP_AES_ 256;

CSSM_ALGID_EVP_AES 128;

5.4.2 DES Encryption/Decryption Example Program

This example is a simple DES encryption/decryption program that uses CDSA with no integrity checking. It
links explicitly against CDSA$INCSSM300_SHR.EXE.

The DES example includes two source files (DES.C and DO_DES.C) and two build files (BUILD_DES.COM
and DES.OPT).

Copy the example files into a local build area and then execute the BUILD_DES command file, as follows:

S COPY SYSS$SSYSROOT: [SYSHLP.EXAMPLES.CDSA.DES]*.* disk:[directory.DES]
S SET DEFAULT disk:[directory.DES]
¢ @BUILD_DES

It is easiest to run the resulting DES.EXE file as a foreign command. Define a symbol for this command as
follows:

S DES :== $ disk:[directory.DES]DES.EXE

You can now execute the program using any of the following applicable options:

Option Description

-e Encrypt with supplied key (requires -k option)

58

CDSA Programming Concepts

CDSA Example Programs
Option Description
-d Decrypt with supplied key (requires -k option).
-k "key" Supplies a key, which must be enclosed within double quotation marks if it is ASCII
and case sensitive; no quotation marks are allowed for hexadecimal numbers.
-h The supplied key is a 16-character hexadecimal number.

For example, to encrypt MYFILE.TXT using an ASCII key with the DES example program, enter the
following command using double quotation marks, as shown, if the key is case sensitive:

$ DES -e -k "xyzzy" MYFILE.TXT MYFILE.DES
To decrypt the same file, enter the following command:
$ DES -d -k "xyzzy" MYFILE.DES MYFILE.TXT

To encrypt or decrypt with a hexadecimal key, use the -h option and make sure the key length is exactly 16
typed characters (8 hexadecimal bytes). No quotation marks, either single or double, are allowed. For
example:

$ DES -e -k 0l2abcdell2abcde -h MYFILE.TXT MYFILE.DES
$ DES -d -k 0l2abcdell2abcde -h MYFILE.DES MYFILE.TXT

5.4.3 MDS Example Program

This program uses some of the MDS and CSSM services of CDSA, with no integrity checking. It links
explicitly against CDSA$INCSSM300_SHR.EXE.

The MDS example includes one source file (MDS_EXAMPLE.C) and two build files
(BUILD_MDS_EXAMPLE.COM and MDS_EXAMPLE.OPT).

The program follows the descriptions and code fragments from the Intel Common Data Security Architecture
Application Developer's Guide.

Build the MDS example program by copying the example files into a local build area and then executing the
BUILD_MDS_EXAMPLE command file, as follows:

S COPY SYSS$SSYSROOT: [SYSHLP.EXAMPLES.CDSA.MDS]*.* disk:[directory.MDS]
S SET DEFAULT disk:|[directory.MDS]
$ @BUILD_MDS_EXAMPLE

The resulting MDS_EXAMPLE.EXE file takes no parameters and can be executed as follows:
$ RUN disk:[directory.MDS]MDS_EXAMPLE
The following is an excerpt of output from the program:

$ RUN MDS_EXAMPLE.EXE

Module 0) Name: SSLeay Crypto Based CSP

Module 0) ModuleGuid: {67ef50d0-fe74-11d2-a8e6-0090271d266f}
Module 0) Version: 3.1

Module 0) CompatibleCSSMVersion: 2.1

Module 0) Description: SSLeay Crypto Based CSP

Module 0) Vendor: Hewlett-Packard Company

Module 0) Flags: 0x0

Module 0) ServiceMask: 0x2
Service 0) Description: SSLeay Crypto Based CSP

59

CDSA Programming Concepts
CDSA Example Programs

Service 0) Type: CSSM_SERVICE_CSP
Service 0) Flags: 0x0
SubService 0) ModuleType: 0
SubService 0) SubServiceId: 0
This is a SOFTWARE subservice with 30 capabilities
Context Type: CSSM_ALGCLASS_RANDOMGEN
Algorithm Type: CSSM_ALGID_MD5Random

Attribute Type: CSSM_ATTRIBUTE_BLOCK_SIZE
Attribute Type: CSSM_ATTRIBUTE_DESCRIPTION

Context Type: CSSM_ALGCLASS_DIGEST
Algorithm Type: CSSM_ALGID_MD5

Module
Module
Module
Module
Module

PR PR R

Module 1)
Module 1)
Module 1)

Service

Service
Service

Attribute Type: CSSM_ATTRIBUTE_OUTPUT_SIZE
Attribute Type: CSSM_ATTRIBUTE_DESCRIPTION

Name: CDSA Adaptation Layer CSP for the BSafe Toolkit from RSA DSI
ModuleGuid: {d6b5e822-f376-11d3-9bea-0008c74fel65}

Version: 3.1

CompatibleCSSMVersion: 2.1

Description: CDSA Adaptation Layer CSP for the BSafe Toolkit from RSA

DSI
Vendor: Hewlett-Packard Company
Flags: 0x0

ServiceMask: 0x2

0) Description: CDSA Adaptation Layer CSP for the BSafe Toolkit from RSA
DSI

0) Type: CSSM_SERVICE_CSP

0) Flags: 0x0

SubService 0) ModuleType: 0

SubService 0) SubServiceId: 0

This is a SOFTWARE subservice with 33 capabilities
Context Type: CSSM_ALGCLASS_RANDOMGEN
Algorithm Type: CSSM_ALGID_MD2Random

Attribute Type: CSSM_ATTRIBUTE_DESCRIPTION

Context Type: CSSM_ALGCLASS_RANDOMGEN
Algorithm Type: CSSM_ALGID_MD5Random

Attribute Type: CSSM_ATTRIBUTE_DESCRIPTION

5.4.4 DES2 Encryption/Decryption Example Program

The DES2 example program is nearly identical to the DES example except that it uses integrity checking in
addition to the encryption/decryption CDSA calls. It links explicitly against CDSA$INCSSM300_SHR.EXE.
This example is designed to be signed using the CDSA signing tools.

The necessary files to build the example on OpenVMS are included, with the exception of APPSELFKEY.H.
This include file must be generated from the certificate created for the application.

See Section 5.2 for complete instructions. A signed CDSA application will not execute until the proper
credentials are generated.

60

CDSA Programming Concepts
CDSA Example Programs

After you generate the application credentials and the include file, APPSELFKEY.H, you can build the DES2
example program by copying the example files into a local build area and executing the DES2_BUILD
command file, as follows:

DEFINE/TRANS=CONCEALED CDSA_TEMPDIR disk:[directory.]
SET DEFAULT CDSA_TEMPDIR: [DES2]

COPY SYSS$SYSROOT: [SYSHLP.EXAMPLES.CDSA.DES2]*.* []
COPY CDSA_SYSDIR: [SIGN]APPSELFKEY.H []

@DES2_BUILD

vy Uy Ur Ur Ur

The resulting image, DES2.EXE, must be signed. On the signing system, run the following command
procedure to generate the manifest:

S @DES2_SIGN
Finally, on the development system, run the command procedure to install the module, as follows:
S @DES2_INSTALL

It is easiest to run the application DES2.EXE file as a foreign command. Define a symbol for this command as
follows:

$ DES2 :== $CDSA_TEMPDIR: [DES2]DES2.EXE

The options and program usage are the same as for the DES example.

5.4.5 DES3 Example Program

The DES3 example program is nearly identical to the DES2 example except that it links dynamically at
run-time against CDSA$INCSSM300_SHR.EXE using the CDSA Application Adaption Layer.

This example is designed to be signed using the CDSA signing tools.

The files necessary to build the example on OpenVMS are included, with the exception of APPSELFKEY.H.
This include file must be generated from the certificate created for the application.

See Section 5.2 for complete instructions on writing a signed application. A signed CDSA application will not
execute until the proper credentials are generated.

After you generate the application credentials and the include file APPSELFKEY.H, you can build the DES3
example program by copying the example files into a local build area and executing the DES3_BUILD
command file, as follows:

DEFINE/TRANS=CONCEALED CDSA_TEMPDIR disk:[directory.]
SET DEFAULT CDSA_TEMPDIR: [DES3]

COPY SYSS$SYSROOT: [SYSHLP.EXAMPLES.CDSA.DES3]*.* []
COPY CDSA_SYSDIR: [SIGN]APPSELFKEY.H []

@DES3_BUILD

vy Uy Ur Ur Ur

The resulting image, DES3.EXE, must be “signed”. On the signing system, run the following command
procedure to generate the manifest:

$ @DES3_SIGN
Finally, on the development system, run the command procedure to install the module, as follows:
S @DES3_INSTALL

It is easiest to run the resulting DES3.EXE file as a foreign command. Define a symbol for this command as
follows:

S DES3 :== $ disk:[directory]DES3.EXE

61

CDSA Programming Concepts
CDSA Example Programs

The options and usage of the program are the same as for the DES example.

5.4.6 ADDIN Example Program

The ADDIN example shows how to provide a new add-in for an existing category of service.

This CDSA example is an add-in (plug-in) module written to the CDSA CSP service provider interface with
integrity checking. The add-in would be “loaded” and “attached” by an application, as in the DES examples,
using CSSM_ModulelLoad (), CSSM_ModuleAttach (), and so forth. This example demonstrates the mechanics
of developing a CDSA add-in module, which is a shareable image on OpenVMS.

This example also provides the CDSA code files that are necessary to build an add-in module. The installation
procedure registers the module in the CDSA MDS database, including its credentials, properties, and
capability attributes. It attaches the module and executes RegisterCDSAModule () (the definition of
INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

See Section 5.2 for complete instructions on writing a signed application. A signed CDSA application will not
execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
ADDIN example program by copying the example files to a local build directory and executing the
ADDIN_BUILD command file, as follows:

DEFINE/TRANS=CONCEALED CDSA_TEMPDIR disk:[directory.]
SET DEFAULT CDSA_TEMPDIR: [ADDIN]

COPY SYSS$SYSROOT: [SYSHLP.EXAMPLES.CDSA.ADDIN]*.* []
COPY CDSA_SYSDIR: [SIGN]MODSELFKEY.H []

@ADDIN_BUILD

The resulting shareable image, STUBCSP300_SHR.EXE, must be signed. On the signing system, run the
following command procedure to generate the manifest:

vy Uy Ur Ur U

S @ADDIN_SIGN
Finally, on the development system, run the command procedure to install the module, as follows:
S @ADDIN_INSTALL

The add-in module is now ready to be invoked by an application program.

5.4.7 DUMMY Example Programs

The DUMMYEMM and DUMMYEMMADDIN programs together demonstrate how to provide a new category
of service for CDSA. DUMMYEMM, an elective module manager (EMM), contains the logic for handling the
generic types of operations for the new service, and the add-in (DUMMYEMMADDIN) contains logic that is
specific to the particular operation being performed.

The ADDIN example (see the Section 5.4.6) shows how to provide a new add-in for an existing category of
service. DUMMYEMM and DUMMYEMMADDIN are designed to provide an entirely new category of service.
5.4.7.1 DUMMYEMM Example Program

This CDSA example is an elective module manager (EMM) that extends the functionality of CDSA by
providing an additional category of service. The example defines a new service provider interface (SPI) with
integrity checking.

62

CDSA Programming Concepts
CDSA Example Programs

The purpose of this example is to demonstrate the mechanics of developing a CDSA EMM, which is a
shareable image on OpenVMS. The example also provides the CDSA code files that are necessary to build an
EMM.

The installation procedure registers the module in the CDSA MDS database, including its credentials,
properties, and capability attributes. It attaches the module and executes RegisterCDSAModule () (the
definition of INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

Refer to Section 5.2 for complete instructions on writing a signed application. A signed CDSA application will
not execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
DUMMYEMM example program by copying the example files to a local build directory and executing the
DUMMYEMM_BUILD command file, as follows:

$ DEFINE/TRANS=CONCEALED CDSA_TEMPDIR disk:[directory.]
$ SET DEFAULT CDSA_TEMPDIR: [DUMMYEMM]

$ COPY SYSSSYSROOT: [SYSHLP.EXAMPLES.CDSA.DUMMYEMM] *.* []
$ COPY CDSA_SYSDIR: [SIGN]MODSELFKEY.H []

$ @DUMMYEMM_BUILD

The resulting shareable image, DUMMYEMM_SHR.EXE, must be signed. On the signing system, run the
following command procedure to generate the manifest:

$ @DUMMYEMM_ SIGN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @DUMMYEMM_ TINSTALL

When an application program loads an add-in module that is written to the SPI of this EMM, the EMM will
be automatically loaded.

5.4.7.2 DUMMYEMMADDIN Example Program

This CDSA example is an elective module manager (EMM) that extends the functionality of CDSA by
providing an additional category of service. It provides an add-in module with integrity checking, written to
the SPI made available by the DUMMYEMM example.

The purpose of this example is to demonstrate the mechanics of developing a CDSA service provider module
for a category of service defined by an EMM. It also provides the necessary CDSA code files that are necessary
to build the module.

The installation procedure registers the module in the CDSA MDS database, including its credentials,
properties, and capability attributes. It attaches the module and executes RegisterCDSAModule () (the
definition of INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

See Section 5.2 for complete instructions on writing a signed application. A signed CDSA application will not
execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
DUMMYEMMADDIN example program by copying the example files to a local build area and executing the
DUMMYEMMADDIN_BUILD command file, as follows:

63

CDSA Programming Concepts

CDSA Example Programs
¢ DEFINE/TRANS=CONCEALED CDSA_TEMPDIR disk:[directory.]
$ SET DEFAULT CDSA_TEMPDIR: [DUMMYEMMADDIN]
$ COPY SYS$SYSROOT: [SYSHLP.EXAMPLES.CDSA.DUMMYEMMADDIN] *.* []
$ COPY CDSA_SYSDIR: [SIGN]MODSELFKEY.H []

$ @DUMMYEMMADDIN_BUILD

The resulting shareable image, DUMMYEMMADDIN_SHR.EXE, must be signed. On the signing system, run
the following command procedure to generate the manifest:

$ @DUMMYEMMADDIN_SIGN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @DUMMYEMMADDIN_INSTALL

The add-in module is now ready to be invoked by an application program.

64

CDSA API Functions

This reference section contains descriptions of the CDSA API functions.

These descriptions are also available from online help. To access help, enter the HELP CDSA command at the
system prompt.

The MDSUTIL API functions are a special group of functions described in the following paragraphs.

MDS Utility Library API Functions

Although the MDS API is a required part of any CDSA implementation, the MDSUTIL functions are not.
This library of functions was provided with the Intel CDSA reference implementation to encapsulate many
common queries that applications typically make to MDS. CDSA on OpenVMS implements the Intel CDSA
version of the MDS utility library. Other vendors may supply their own utility libraries built on top of MDS.

To use the MDS utility library, you must include two header files, MDS_UTIL_API.H and
MDS_UTIL_HELPER.H, which are in the CDSA_SYDIR:[INCLUDES] directory. You must also link with the
library files CDSA$MDS300_SHR.EXE and CDSA$MDS_UTIL_API.OLB, which are located in SYS$SHARE.

The MDS example program provides two special routines for deciphering CDSA error codes within a user
program. Because the CDSA include file that specifies error codes (CDSA_SYSDIR:[INCLUDES]
CSSMERR.H) does not allow for easy translation from the numeric code to the associated error string, these
routines can make the job of debugging a CDSA application easier. These routines are Decode_CDSA_Error
and Print_CDSA_Error.

For further information, see the Intel Common Data Security Architecture Application Developer's Guide,
Chapter 2 (Module Directory Services), under the heading MDS Utility Library.

65

AC_AuthCompute

NAME
AC_AuthCompute — Compute authorization (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMACI CSSM_AC_AuthCompute
(CSSM_AC_HANDLE ACHandle,

const CSSM_TUPLEGROUP *BaseAuthorizations,
const CSSM_TUPLEGROUP *Credentials,

uint32 NumberOfRequestors,

const CSSM_LIST *Requestors,

const CSSM_LIST *RequestedAuthorizationPeriod,
const CSSM_LIST *RequestedAuthorization,
CSSM_TUPLEGROUP_PTR AuthorizationResult)

SPI:

CSSM_RETURN CSSMACI AC_AuthCompute
(CSSM_AC_HANDLE ACHandle,

const CSSM_TUPLEGROUP *BaseAuthorizations,
const CSSM_TUPLEGROUP *Credentials,

uint32 NumberOfRequestors,

const CSSM_LIST *Requestors,

const CSSM_LIST *RequestedAuthorizationPeriod,
const CSSM_LIST *RequestedAuthorization,
CSSM_TUPLEGROUP_PTR AuthorizationResult)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ACHandle (input)

The handle that describes the authorization computation module used to perform this
function.

BaseAuthorizations (input)

A pointer to a CSSM_TUPLEGROUP containing at least one ACL certificate, specifying the
authorization granted to certain root keys, named entities or combinations thereof. A NULL
group of BaseAuthorizations always results in a NULL AuthorizationResult.

Credentials (input/optional)

A pointer to a CSSM_TUPLEGROUP containing a group of certificates, in TUPLE form.
The tuple-certificates define the delegation of authorizations from the Baseauthorizations
to the Requestors. If no additional authorization-granting tuples are provided, then this
value is NULL and the BaseAuthorizations are the only source of trusted authorizations
used as input to the authorization computation.

66

NumberOfRequestors (input)
The number of entries in the Requestors array.
Requestors (input)

A pointer to a list of requestors that define the "who" portion of the request. The list can be
of type CSSM_LIST TYPE_SEXPR. Typical exhibits include:

e Public keys

e Hashes of keys

¢ Hashes of other objects offered for proof.
RequestedAuthorizationPeriod (input/optional)

A list defining a validity period or NULL (implying "all time"). This is the "when" portion of
the request.

If the list is of type CSSM_LIST _TYPE_SEXPR, then the validity interval is specified as a
two-element list containing the values ((not-before <datel>)(not-after <date2 >)). Note that
each element is a two-element sublist. The <date> is represented by an ASCII byte-string,
in the format (for example) "1998-11-24_15:06:16" and is assumed to be GMT. Open-ended
time intervals are specified by omitting either of the interval ends. For example, ((not-before
1997-1-1_00:00:0)) specifies all dates and times beginning on January 1, 1997 going forward
indefinitely. For programming convenience, when testing for authorization at a single point
in time, the date is represented by a one-element list containing (<date>).

RequestedAuthorization (input)
A list defining the "what" portion of the authorization being requested.

If the list is of type CSSM_LIST_TYPE_SEXPR, then the list presents an authorization
request in SPKI format. If a specific authorization is being requested, then this input is a
two-element SEXPR list containing (tag <req>). The valid values for <req> are
application-specific. If this is a request to derive all possible authorizations based on the
BaseAuthorizations, Credentials, and Requestors, then this input value must be the
two-element list containing (tag (*)). This list corresponds to "all authorizations". With this
input, the function tests the provided ACL and certificates against the Requestors (and
possibly RequestedAuthorizationPeriod) to yield all authorizations for which the
provided Exhibits qualify.

AuthorizationResult (output)

A CSSM_TUPLEGROUP structure, giving the result of the authorization computation.
Typically there will be one result, but there could be as many as there are entries in the
BaseAuthorizations. Each of these results says, in effect: "for this machine, under this
ACL and the provided certificates, relative to the specified Requestors, the following
authorizations have been deduced". Those authorizations are available only on the current
platform (and possibly only for the application providing the ACL), and are therefore in the
form of an ACL. They are not intended to be used by any other machine or application
instance, necessarily, and need to be converted into certificates signed by some private key
available to the caller if they are to be so used.

DESCRIPTION

This function performs an authorization computation and returns the results as a group of tuple certificates.
The computation is based on the following input values:

67

Requestors

One or more items that identify the requestor. These items are matched against subject
fields in BaseAuthorizations or Credentials. These will be of any form that occurs in an
ACL or certificate, and the class of entries is extensible. AuthCompute uses these fields to
compare against Subject fields of TUPLES but does not interpret them, so it does not need
to be aware of these extensions. Requestors, taken together with
RequestedAuthorization and RequestedAuthorizationPeriod, form request tuples of
the form "who requests what, when." Requestors can be public keys that verify some signed
request, hashes of objects submitted for proof of permission, etc. In general, there will be
only one Requestor, typically the public key of some keyholder signing a request or
authenticating a connection.

RequestedAuthorization

The authorization against which the Requestors are being tested in this computation.
RequestedAuthorizationPeriod

The time range of an authorization computation.
BaseAuthorizations

The group of ACL entries (unsigned certificates) provided as the basis for this computation.
Credentials

A group of tuple-certificates used with the BaseAuthorizations to grant authorizations to
the Requestors.

Kind of Subject Example Requestor

Public key (public-key (rsa-pkcsl-shal (e #03#) (n ##)))
Hash of object, key, template, etc. (hash md5 #900150983cd24fb0d6963{7d28e17{72#)

The most likely Requestor is a public key that signs a request. In common practice there will be one
Requestor per computation, but it is possible for an ACL or certificate to require multiple signatures or other
forms of identification before an action is authorized. In that case, there must be multiple Requestors. This
function can be used in the following modes:

e To verify the authorization of a specific request, backed up by specific Requestors

¢ To compute the set of authorizations that a particular set of Requestors has been granted by the
BaseAuthorizations and Credentials.

When using this function to verify an authorization, the Requestedauthorization is the specific
authorization being requested and the RequestedauthorizationPeriod gives the date and time of that
request (typically the current date and time) using both NOT_BEFORE and NOT_AFTER dates. The result,
if any, should be an ACL entry with the same authorization that was requested. If such an ACL entry is
produced by the computation, then the request is authorized.

68

Requested Authorization Example

(http http://private.cdsa.hp.com/local-data.html)

(ftp ftp://private.cdsa.hp.com/users/cme/private/test.txt write)

Requested Authorization Period Example

(valid (not-before "1999-07-28_17:00:44") (not-after "1999-07-28_17:00:44"))

When using this function to compute the full set of possible authorizations from a set of credentials, rather
than to verify a specific access request, the inputs should be of the following form:

® RequestedAuthorizationPeriod is either an empty list or the list "valid", indicating "all time".
¢ RequestedAuthorization is the list "*", indicating all possible authorizations.

The result of this computation, if any, will be one or more ACL entries representing all the granted
authorizations for the indicated requestor.

The scope of ACLs output from this function is limited to the local system. Each ACL should be interpreted to
mean: "for this machine, under these base authorization ACLs and the provided certificates, relative to the
specified requestors, the following authorizations have been deduced". Those authorizations are available
only on the current platform (and possibly only for the application providing the ACL) and are therefore in
the form of an ACL. They are not intended to be used by any other machine or application instance. However,
the resulting ACLs can be transferred and used outside of the local scope by an entity with authority in the
target scope/environment. The transfer and use is a three-step process:

1. Convert the ACL into one or more certificates. The certificates must be signed by some private key with
appropriate authority in the target scope/environment.

2. Transfer the certificates to the target environment.
3. Use the signed certificates as input Credentials to this function in the target scope/environment.

If the function is successful, check (*AuthorizationResult)->NumCerts to determine the precise number of
authorizations granted by this computation. If 0, then the requestors were not authorized.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_AC_INVALID_ BASE_ACLS
CSSMERR_AC_INVALID_ENCODING
CSSMERR_AC_INVALID_ REQUESTOR
CSSMERR_AC_INVALID_REQUEST DESCRIPTOR
CSSMERR_AC_INVALID_ TUPLE_CREDENTIALS
CSSMERR_AC_INVALID_ VALIDITY_PERIOD

69

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Reference Pages

Functions for the CSSM API:

CSSM_TP_CertGroupToTupleGroup, CSSM_TP_TupleGroupToCertGroup
Functions for the AC SPI:

TP_CertGroupToTupleGroup, TP_TupleGroupToCertGroup

70

AC_PassThrough

NAME
AC_PassThrough: CSSM_AC_PassThrough — Call exported module-specific operations (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_AC_PassThrough
(CSSM_AC_HANDLE ACHandle,
CSSM_TP_HANDLE TPHandle,

CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DL_DB_LIST *DBList,

uint32 PassThroughId,

const void *InputParams,

void **QutputParams)

SPI:

CSSM_RETURN CSSMACI AC_PassThrough
(CSSM_AC_HANDLE ACHandle,
CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DL_DB_LIST *DBList,
uint32 PassThroughId,

const void *InputParams,

void **QutputParams)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ACHandle (input)

The handle that describes the authorization computation module used to perform this
function.

TPHandle (input/optional)

The handle that describes the trust policy module that can be used by the authorization
computation service to implement this function. If no trust policy module is specified, the
AC module uses an assumed TP module, if required.

CLHandle (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the subject certificate and anchor certificates. If no certificate library module is
specified, the AC module uses an assumed CL module, if required.

CCHandle (input/optional)

71

The handle that describes the cryptographic context containing a handle that describes the
add-in Cryptographic Service Provider module that can be used to perform cryptographic
operations as required to perform the requested operation. If no cryptographic context is
specified, the AC module uses an assumed cryptographic context and CSP module, if
required.

DBList (input/optional)

A list of handle pairs specifying a data storage library module and a data store managed by
that module. These data stores can contain certificates, CRLs, and policy objects for use by
the AC module. If no DL and DB handle pairs are specified, the AC module uses an assumed
DL module and an assumed data store for this operation.

PassThroughlId (input)
An identifier assigned by the AC module to indicate the exported function to perform.
InputParams (input)

A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested AC module. If the passthrough
function requires access to a private key located in the CSP referenced by CSPHandle, then
InputParams should contain a passphrase, or a callback or cryptographic context that can
be used to obtain the passphrase.

OutputParams (output/optional)

A pointer to a module, implementation-specific structure containing the output data. The
service provider will allocate the memory for this structure. The application must free the
memory for the structure.

DESCRIPTION

This function allows applications to call authorization computation module-specific operations that have been
exported. Such operations might include queries or services specific to the domain represented by the AC
module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_AC_INVALID_CL_HANDLE
CSSMERR_AC_INVALID_CONTEXT_HANDLE
CSSMERR_AC_INVALID_DBLIST_POINTER
CSSMERR_AC_INVALID_DB_LIST
CSSMERR_AC_INVALID_DB_HANDLE
CSSMERR_AC_INVALID_DL_HANDLE
CSSMERR_AC_INVALID_PASSTHROUGH_ID
CSSMERR_AC_INVALID_TP_HANDLE

SEE ALSO

Intel CDSA Application Developer's Guide

72

CDSA _FileValidate
NAME

CDSA_FileValidate: FileValidate — Validate a manifest file against its target file

SYNOPSIS

#include <cssm.h>

int CDSA_FileValidate(char *target_file,
CSSM_RETURN *CDSA_Ret_Status);

LIBRARY

CDSA$VALIDATE_LIBSHR.EXE

PARAMETERS

target_file (input) The full UNIX file specication of the file to be validated.

CDSA_Ret_Status (output) A CDSA status code. If non-zero, the status can be decoded using the
routine Decode_CDSA_Error.

DECRIPTION

CDSA_FileValidate validates a target file using the associated manifest file. It is the callable equivalent of
CDSA$VALIDATE.EXE.

RETURN VALUE
VMS_Success or VMS_Failure.

ERRORS

Errors are described in the CDSA technical standard.

CSSM_OK

CSSM_ERRCODE_SELF_CHECK_FAILED
CSSMERR_SD_NO_TARGETFILE
CSSMERR_SD_NO_MANIFESTFILE
CSSM_ERRCODE_MEMORY_ERROR
CSSMERR_SD_MANIFESTFILE_OPEN_FAILED
CSSMERR_SD_MANIFESTFILE_READ_FAILED
CSSMERR_SD_TARGETFILE_STRING_NOT_FOUND
CSSMERR_SD_TARGETFILE_TERMINATOR_NOT_FOUN

CL_CertAbortCache

NAME
CL_CertAbortCache: CSSM_CL_CertAbortCache — Terminate a certificate cache handle (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortCache
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CertHandle)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortCache
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CertHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
CertHandle (input)

The handle that identifies the cached certificate.

DECRIPTION

This function terminates a certificate cache handle created and returned by the function
CSSM_CL_CertCache () (CSSM API) or CL._CertCache () (CL SPI). The Certificate Library module releases all
cache space and state information associated with the cached certificate.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CACHE_HANDLE

74

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Reference Pages

Functions for the CSSM API:
CSSM_CL_CertCache
Functions for the CLI SPI:
CL_CertCache

75

CL_CertAbortQuery

NAME
CL_CertAbortQuery: CSSM_CL_CertAbortQuery function — Terminate a results handle (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortQuery
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertAbortQuery
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

ResultsHandle (input)

A pointer to the handle that identifies the results of a CSSM_CL_GetFieldvalue () (CSSM
API), or CL_GetFieldvalue () (CLI SPI) request.

DESCRIPTION

This function terminates a results handle used to access multiple certificate fields identified by a single OID.
The ResultsHandle was created and returned by CSSM_CI_CertGetFirstFieldvalue () (CSSM API), or
CL_CertGetFirstFieldvalue () (CL SPI), or CSSM_CI,_CertGetFirstCachedFieldvalue () (CSSM API), or
CL_CertGetFirstCachedFieldvalue () (CL SPI).

The CL releases all intermediate state information associated with the repeating-value query. Once this
function has been invoked, the results handle is invalid.

Applications must invoke this function to terminate the ResultsHandle. Using
CSSM_CI_CertGetNextFieldvalue () (CSSM API), or CI._CertGetNextFieldvalue () (CL SPI), or
CSSM_CL_CertGetNextCachedFieldvalue () (CSSM API), or CL_CertGetNextCachedFieldvalue () (CL
SPI), to access all of the attributes named by a single OID does not terminate the ResultsHandle.

This function can be invoked to terminate the results handle without accessing all values identified by the
single OID.

76

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_RESULTS_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertGetNextFieldValue,
CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL_CertGetNextCachedFieldValue

Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertGetNextFieldValue, CL_CertGetFirstCachedFieldValue,
CL_CertGetNextCachedFieldValue

77

CL_CertCache

NAME
CL_CertCache: CSSM_CL_CertCache — Cache a copy of a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertCache
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,
CSSM_HANDLE_PTR CertHandle)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertCache
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,
CSSM_HANDLE_PTR CertHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
Cert (input)

A pointer to the CSSM_DATA structure containing the encoded certificate.
CertHandle (output)

A pointer to the CSSM_HANDLE that should be used in all future references to the cached
certificate.

DESCRIPTION

This function caches a copy of a certificate for subsequent accesses using the functions
CSSM_CL_CertGetFirstCachedFieldvalue () (CSSM API), or CL_CertGetFirstCachedFieldvalue () (CL
SPI), and CSSM_CL_CertGetNextCachedFieldvalue () (CSSM API), or
CL_CertGetNextCachedFieldvalue () (CL SPI).

The input certificate must be in an encoded representation. The Certificate Library module can cache the
certificate in any appropriate internal representation. Parsed or incrementally parsed representations are
common. The selected representation is opaque to the caller.

The application must call CSSM_CL_CertaAbortCache () (CSSM API), or CL_CertaAbortCache () (CL SPI), to
remove the cached copy when additional get operations will not be performed on the cached certificate.

78

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL_CertGetNextCachedFieldValue,
CSSM_CL_CertAbortQuery, CSSM_CL_CertAbortCache

Functions for the CLI SPI:

CL_CertGetFirstCachedFieldValue, CL_CertGetNextCachedFieldValue, CL_CertAbortQuery,

CL_CertAbortCache

79

CL_CertCreateTemplate
NAME

CL_CertCreateTemplate: CSSM_CL_CertCreateTemplate — Allocate and initialize memory for a
certificate template (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CIL_CertCreateTemplate
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CertFields,
CSSM_DATA_PTR CertTemplate)

SPI:

CSSM_RETURN CSSMCLI CL_CertCreateTemplate
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CertFields,
CSSM_DATA_PTR CertTemplate)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
NumberOfFields (input)

The number of certificate field values specified in the CertFields.
CertFields (input)

A pointer to an array of OID/value pairs that identify the field values to initialize a new
certificate.

CertTemplate (output)

A pointer to a CSSM_DATA structure that will contain the unsigned certificate template as
a result of this function.

DESCRIPTION

This function allocates and initializes memory for an encoded certificate template output in
CertTemplate->Data. The template values are specified by the input OID/value pairs contained in
CertFields. The initialization process includes encoding all certificate field values according to the
certificate type and certificate encoding supported by the certificate library module.

80

The memory for CertTemplate->Data is allocated by the service provider using the calling application's
memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_FIELD_POINTER
CSSMERR__ CL_UNKNOWN_TAG
CSSMERR_CL_INVALID NUMBER_OF_FIELDS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGetAllTemplateFields, CSSM_CL_CertSign
Functions for the CLI SPI:

CL_CertGetAllTemplateFields, CL_CertSign

81

CL_CertDescribeFormat

NAME

CL_CertDescribeFormat: CSSM_CL_CertDescribeFormat — Return a list of the CSSM_OID values
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertDescribeFormat
(CSSM_CL_HANDLE CLHandle,

uint32 *NumberOfOids,

CSSM_OID_PTR *0OidList)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertDescribeFormat
(CSSM_CL_HANDLE CLHandle,

uint32 *NumberOfOids,

CSSM_OID_PTR *0OidList)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

Number0f0ids (output)
The length of the returned array of OIDs.
0OidList (output)

A pointer to the array of CSSM_OIDs that represent the supported certificate format. The
OID list is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function returns a list of the CSSM_OID values this certificate library module uses to name and
reference fields of a certificate. Multiple CSSM_OID values can correspond to a single field. These OIDs can
be provided as input to CSSM_CL_CertGetFirstFieldvalue () (CSSM API), or
CL_CertGetFirstFieldvalue () (CL SPI), to retrieve field values from the certificate. The OID also implies
the data format of the returned value. When multiple OIDs name the same field of a certificate, those OIDs
have different return data formats associated with them.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

82

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

CSSM_CL_CertGetAllFields, CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertGetFirstCachedFieldValue

Functions for the CLI SPI:
CL_CertGetAllFields, CL_CertGetFirstFieldValue, CL_CertGetFirstCachedFieldValue

83

CL_CertGetAllFields

NAME
CL_CertGetAllFields: CSSM_CL_CertGetAllFields — Return a list of input certificate values (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetAllFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *FieldList)

SPI:

CSSM_RETURN CSSMCLI CL_CertGetAllFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *FieldList)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (input)

A pointer to the CSSM_DATA structure containing the certificate whose fields will be
returned.

NumberOfFields (output)
The length of the returned array of fields.
FieldList (output)

A pointer to an array of CSSM_FIELD structures that contain the values of all fields of the
input certificate. The field list is allocated by the service provider and must be deallocated
by the application by calling CSSM_CI,_FreeFields () (CSSM API), or CL._FreeFields ()
(CL SPI).

DESCRIPTION

This function returns a list of the values stored in the input certificate.

84

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

For the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFields
For the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertDescribeFormat, CL_FreeFields

85

CL_CertGetAllTemplateFields

NAME

CL_CertGetAllTemplateFields: CSSM_CL_CertGetAllTemplateFields — Extract and return values
stored in CertTemplate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetAllTemplateFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *CertTemplate,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *CertFields)

SPI:

CSSM_RETURN CSSMCLI CL_CertGetAllTemplateFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *CertTemplate,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *CertFields)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)
The handle that describes the certificate library module used to perform this function.
CertTemplate (input)

A pointer to the CSSM_DATA structure containing the packed, encoded certificate
template.

NumberOfFields (output)
The length of the output array of fields.
CertFields (output)

A pointer to an array of CSSM_FIELD structures which contains the OIDs and values of the
fields of the input certificate template.

DESCRIPTION

This function extracts and returns a copy of the values stored in the encoded CertTemplate. The memory for
the CertFields output is allocated by the service provider using the calling application's memory
management routines. The application must deallocate the memory by calling CSSM_CI_FreeFields ()
(CSSM API), or CL,_FreeFields () (CL SPI).

86

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_FreeFields, CSSM_CL_CertCreateTemplate
Functions for the CLI SPI:

CL_FreeFields, CL_CertCreateTemplate

87

CL_CertGetFirstCachedFieldValue

NAME

CL_CertGetFirstCachedFieldValue: CSSM_CL_CertGetFirstCachedFieldValue — Return values
from the cached certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetFirstCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CertHandle,

const CSSM_OID *CertField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Fieldvalue)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetFirstCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CertHandle,

const CSSM_OID *CertField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Fieldvalue)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CertHandle (input)

A handle identifying a certificate that the application has temporarily cached with the
Certificate Library module. The referenced certificate is searched for the field value named
by CertField

CertField (input)
A pointer to an object identifier that identifies the field value to be extracted from the Cert.
ResultsHandle (output)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

NumberOfMatchedFields (output)

The total number of fields that match the CertField OID. This count includes the first
match, which was returned by this function.

88

Fieldvalue (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at I "(*FieldValue)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API), or CL,_FreeFieldvalue() (CL SPI), function can
be used to deallocate Fieldvalue and (*Fieldvalue) ->Data.

DESCRIPTION

This function returns a single structure containing a set of field values from the cached certificate identified
by CertHandle. The selected fields are designated by the CSSM_OID CertField and returned in the output
parameter Fieldvalue. The OID also identifies the data format of the values returned to the caller. If
multiple OIDs designate the same certificate field, then each such OID defines a distinct data format for the
returned values. The function CSSM_CI._CertDescribeFormat () (CSSM API), or CI._CertDescribeFormat ()
(CL SPI), provides a list of all CSSM_OID values supported by a certificate library module for naming fields
of a certificate.

The CertField OID can identify a single occurrence of a set of certificate fields, or multiple occurrences of a
set of certificate fields. If the CertField OID matches more than one occurrence, this function outputs the
total number of matches and a ResultsHandle to be used as input to
CSSM_CertGetNextCachedFieldvalue () (CSM API), or CertGetNextCachedFieldvalue () (CL SPI), to
retrieve the remaining matches. The first match is returned as the return value of this function.

This function determines the complete set of matches. The number of matches and the selected field values do
not change between this function and subsequent calls to CSSM_CIL_CertGetNextCachedFieldvalue ()
(CSSM API), or CL_CertGetNextCachedFieldvalue () (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CACHE_HANDLE
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetNextCachedFieldValue, CSSM_CL_CertAbortCache, CSSM_CL_CertAbortQuery,
CSSM_CL_CertGetAllFields, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

89

CL_CertGetNextCachedFieldValue, CL_CertAbortCache, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat, CL_FreeFieldValue

90

CL_CertGetFirstFieldValue

NAME

CL_CertGetFirstFieldValue: CSSM_CL_CertGetFirstFieldValue — Return the value of the
certificate field (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetFirstFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_OID *CertField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Value)

SPI:

CSSM_RETURN CSSMCLI CL_CertGetFirstFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_OID *CertField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Value)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate.
CertField (input)

A pointer to an object identifier which identifies the field value to be extracted from the
Cert.

ResultsHandle (output)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

NumberOfMatchedFields (output)

The total number of fields that match the CertField OID. This count includes the first
match, which was returned by this function.

91

Value (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at I "(*Value)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API) or CL_FreeFieldvalue () (CL SPI) function can
be used to deallocate *Value and (*Value)->Data.

DESCRIPTION

This function returns the value of the certificate field designated by the CSSM_OID CertField. The OID also
identifies the data format for the field value returned to the caller. If multiple OIDs name the same certificate
field, then each such OID defines a distinct data format for the returned field value. The function
CSSM_CI_CertDescribeFormat () (CSSM API), or CL_CertDescribeFormat () (CL SPI), provides a list of all
CSSM_OID values supported by a certificate library module for naming fields of a certificate.

If more than one field matches the CertField OID, the first matching field will be returned. The number of
matching fields is an output parameter, as is the ResultsHandle to be used to retrieve the remaining
matching fields.

The set of matching fields is determined by this function. The number of matching fields and the field values
do not change between this function and subsequent calls to CSSM_CL_CertGetNextFieldvalue () (CSSM
API), or CL_CertGetNextFieldvalue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR__ CL_UNKNOWN_TAG
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetNextFieldValue, CSSM_CL_CertAbortQuery, CSSM_CL_CertGetAllField,
CSSM_CL_FreeFieldValue, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CertGetNextFieldValue, CL_CertAbortQuery, CL_CertGetAllField, CL_FreeFieldValue,
CL_CertDescribeFormat, CL_FreeFieldValue

92

CL_CertGetKeylInfo

NAME

CL_CertGetKeyInfo: CSSM_CL_CertGetKeyInfo — Return the public key and integral information
(CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetKeyInfo
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

CSSM_KEY_PTR *Key)

SPI:

CSSM_RETURN CSSMCLI CL_CertGetKeyInfo
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

CSSM_KEY_PTR *Key)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (input)

A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Key (output)

A pointer to the CSSM_KEY structure containing the public key and possibly other key
information. The CSSM_KEY structure and its substructures are allocated by the service
provider and must be deallocated by the application.

DESCRIPTION

This function returns the public key and integral information about the key from the specified certificate. The
key structure returned is a compound object. It can be used in any function requiring a key, such as creating a
cryptographic context.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

93

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGetFirstFieldValue, CSSM_CL_FreeFieldValue
Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_FreeFieldValue

94

CL_CertGetNextCachedFieldValue

NAME
CSSM_CL_CertGetNextCachedFieldValue — Return the value of a certificate field (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetNextCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *FieldvValue)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetNextCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *FieldvValue)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
ResultsHandle (input)

The handle that identifies the results of a certificate query.
Fieldvalue (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at I "(*FieldValue)->Data" are allocated by the service provider. The
CSSM_CL_FreeFieldvalue () (CSSM API), or CL_FreeFieldvalue () (CL SPI) function can
be used to deallocate *Fieldvalue and (*Fieldvalue)->Data.

DESCRIPTION

This function returns the value of a certificate field, when that field occurs multiple times in a certificate.
Certificates with repeated fields (such as multiple signatures) have multiple field values corresponding to a
single OID. A call to the function CSSM_CI_CertGetFirstCachedFieldvalue () (CSSM API), or
CL_CertGetFirstCachedFieldvalue () (CL SPI), returns a ResultsHandle identifying the size and values
contained in the result set. The CSSM_CI_CertGetNextCachedFieldvalue () (CSSMAPI), or
CL_CertGetNextCachedFieldvalue () (CL SPI), function can be called repeatedly to obtain these values, one
at a time. The result set does not change in size or value between calls to this function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

95

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ RESULTS_HANDLE
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL_CertAbortCache, CSSM_CL_CertAbortQuery,
CSSM_CL_CertGetAllFields, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CertGetFirstCachedFieldValue, CL_CertAbortCache, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat, CL_FreeFieldValue

96

CL_CertGetNextFieldValue

NAME

CL_CertGetNextFieldValue: CSSM_CL_CertGetNextFieldValue — Return the value of a certificate
field (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGetNextFieldvValue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *Value)

SPI:

CSSM_RETURN CSSMCLI CL_CertGetNextFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *Value)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

ResultsHandle (input)
The handle that identifies the results of a certificate query.
Value (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at I "(*Value)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API) or CL_FreeFieldvalue () (CL SPI), function can
be used to deallocate *Value and (*Value)->Data.

DESCRIPTION

This function returns the value of a certificate field, when that field occurs multiple times in a certificate.
Certificates with repeated fields (such as multiple signatures) have multiple field values corresponding to a
single OID. A call to the function CSSM_CIL_CertGetFirstFieldvalue () (CSSM API), or
CL_CertGetFirstFieldvalue () (CL SPI), returns a results handle identifying the size and values contained
in the result set. The CSSM_CI_CertGetNextFieldvalue () (CSSM API), or CI_CertGetNextFieldvalue()
(CL SPI), function can be called repeatedly to obtain these values, one at a time. The result set does not
change in size or value between calls to this function.

97

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ RESULTS_HANDLE
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertAbortQuery, CSSM_CL_FreeFieldValue
Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertAbortQuery, CL_FreeFieldValue

98

CL_CertGroupFromVerifiedBundle

NAME

CL_CertGroupFromVerifiedBundle: CSSM_CL_CertGroupFromVerifiedBundle — Verify the
signature of a bundle (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertGroupFromVerifiedBundle
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CERT_BUNDLE *CertBundle,

const CSSM_DATA *SignerCert,

CSSM_CERTGROUP_PTR *CertGroup)

SPI:

CSSM_RETURN CSSMCLI CL_CertGroupFromVerifiedBundle
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CERT_BUNDLE *CertBundle,

const CSSM_DATA *SignerCert,

CSSM_CERTGROUP_PTR *CertGroup)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandle (input/optional)
The handle of the cryptographic context to control the verification operation.
CertBundle (input)

A structure containing a reference to a signed, encoded bundle of certificates and to
descriptors of the type and encoding of the bundle. The bundled certificates are to be
separated into a certificate group (list of individual encoded certificates). If the bundle type
and bundle encoding are not specified, the add-in module might either attempt to decode the
bundle assuming a default type and encoding or might immediately fail.

SignerCert (input/optional)

The certificate to be used to verify the signature on the certificate bundle. If the bundle is
signed but this field is not specified, then the module will assume a default certificate for
verification.

CertGroup (output)

99

A pointer to the certificate group, represented as an array of individual, encoded
certificates. The certificate group and CSSM_CERTGROUP substructures are allocated by
the serivce provider and must be deallocated by the application. The group contains all
certificates contained in the certificate bundle.

DESCRIPTION

This function accepts as input a certificate bundle (a codified and signed aggregation of the certificates in the
group), verifies the signature of the bundle (if a signature is present), and returns a certificate group (as an
array of individual certificates) including every certificate contained in the bundle. The signature on the
certificate aggregate is verified using the cryptographic context and possibly using the input signer
certificate. The CL module embeds the knowledge of the verification scope for the bundle types that it
supports. A CL module's supported bundle types and encodings are available to applications by querying the
CSSM registry. The type and encoding of the certificate bundle must be specified with the input bundle. If
signature verification is successful, the certificate aggregate will be parsed into a certificate group whose
order corresponds to the certificate aggregate ordering. This certificate group will then be returned to the
calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_ BUNDLE_POINTER
CSSMERR_CL_INVALID_ BUNDLE_TINFO
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_INVALID_ CERTGROUP_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGroupToSignedBundle
Functions for the CLI SPI:
CL_CertGroupToSignedBundle

100

CL_CertGroupToSignedBundle

NAME

CL_CertGroupToSignedBundle: CSSM_CL_CertGroupToSignedBundle — Convert a certificate
group to a certificate bundle (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_CL_CertGroupToSignedBundle
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CERTGROUP *CertGroupToBundle,

const CSSM_CERT_BUNDLE_HEADER *BundleInfo,
CSSM_DATA_PTR SignedBundle)

SPI:

CSSM_RETURN CSSMCLI CL_CertGroupToSignedBundle
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CERTGROUP *CertGroupToBundle,

const CSSM_CERT_BUNDLE_HEADER *BundleInfo,
CSSM_DATA_PTR SignedBundle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandle (input/optional)

The handle of the cryptographic context to control the signing operation. The operation will
fail if a signature is required for this type of bundle and the cryptographic context is not
valid.

CertGroupToBundle (input)

An array of individual, encoded certificates. All certificates in this list will be included in the
resulting certificate bundle.

BundleInfo (input/optional)

A structure containing the type and encoding of the bundle to be created. If the type and the
encoding are not specified, then the module will use a default bundle type and bundle
encoding.

SignedBundle (output)

101

The function returns a pointer to a signed certificate bundle containing all certificates in the
certificate group. The bundle is of the type and encoding requested by the caller or is the
default type defined by the library module if the BundleInfo was not specified by the caller.
The SignedBundle->Data is allocated by the service provider and must be deallocated by
the application.

DESCRIPTION

This function accepts as input a certificate group (as an array of individual certificates) and returns a
certificate bundle (a codified and signed aggregation of the certificates in the group). The certificate group will
first be encoded according to the BundleInfo input by the user. If BundleInfo is NULL, the library will
perform a default encoding for its default bundle type. If possible, the certificate group ordering will be
maintained in this certificate aggregate encoding. After encoding, the certificate aggregate will be signed
using the input context. The CL module embeds knowledge of the signing scope for the bundle types it
supports. The signature is then associated with the certificate aggregate according to the bundle type and
encoding rules and is returned as a bundle to the calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_ CERTGROUP_POINTER
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_ BUNDLE_POINTER
CSSMERR_CL_INVALID_ BUNDLE_INFO

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGroupFromVerifiedBundle
Functions for the CLI SPI:
CL_CertGroupFromVerified Bundle

102

CL_CertSign

NAME
CSSM_CL_CertSign — Sign a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertSign
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertTemplate,
const CSSM_FIELD *SignScope,
uint32 ScopeSize,

CSSM_DATA_PTR SignedCert)

SPI:

CSSM_RETURN CSSMCLI CL_CertSign
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertTemplate,
const CSSM_FIELD *SignScope,
uint32 ScopeSize,

CSSM_DATA_PTR SignedCert)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandle (input)

A signature context defining the CSP, signing algorithm, and private key that must be used
to perform the operation. The passphrase for the private key is also provided.

CertTemplate (input)

A pointer to a CSSM_DATA structure containing a certificate template in the default
format supported by this CL. The template contains values that are currently contained in
or will be contained in a signed certificate.

SignScope (input/optional)

A pointer to the CSSM_FIELD array containing the OID/value pairs of the fields to be
signed. A null input signs all the fields provided by CertTemplate.

ScopeSize (input)

The number of entries in the SignScope list. If the sign scope is not specified, the input
value for scope size must be zero.

103

SignedCert (output)
A pointer to the CSSM_DATA structure containing the signed certificate.

DESCRIPTION

This function signs a certificate using the private key and signing algorithm specified in the CCHandle. The
result is a signed, encoded certificate in SignedCert. The certificate field values are specified in the input
certificate template. The template is constructed using CSSM_CI, CertCreateTemplate () (CSSM API), or
CL_CertCreateTemplate () (CL SPI). The template is in the default format for this CL.

The CCHandle must be a signature context created using the function

CSSM_CSP_CreateSignatureContext () (CSSM API), or CSP_CreateSignatureContext () (SPI). The context
must specify the Cryptographic Services Provider (CSP) module, the signing algorithm, and the signing key
that must be used to perform this operation. The context must also provide the passphrase or a callback
function to obtain the passphrase required to access and use the private key.

The fields included in the signing operation are identified by the OIDs in the optional SignScope array.

The memory for the SignedCert->Data output is allocated by the service provider using the calling
application's memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_ FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID_SCOPE
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertVerify, CSSM_CL_CertCreateTemplate
Functions for the CLI SPI:

CL_CertVerify, CL_CertCreateTemplate

104

CL_CertVerify

NAME
CL_CertVerify: CSSM_CL_CertVerify — Verify a signed certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CertVerify
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertToBeVerified,
const CSSM_DATA *SignerCert,

const CSSM_FIELD *VerifyScope,

uint32 ScopeSize)

SPI:

CSSM_RETURN CSSMAPI CSSM_CL_CertVerify
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertToBeVerified,
const CSSM_DATA *SignerCert,

const CSSM_FIELD *VerifyScope,

uint32 ScopeSize)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandle (input/optional)
The handle that describes the context of this cryptographic operation.
CertToBeVerified (input)

A pointer to the CSSM_DATA structure with a certificate containing at least one signature
for verification. An unsigned certificate template cannot be verified.

SignerCert (input/optional)

A pointer to the CSSM_DATA structure containing the certificate used to sign the subject
certificate. This certificate provides the public key to use in the verification process and if
the certificate being verified contains multiple signatures, the signer's certificate indicates
which signature is to be verified.

VerifyScope (input/optional)

105

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be used
in verifying the signature. (This should include all fields that were used to calculate the
signature.) If the verify scope is null, the certificate library module assumes that its default
set of certificate fields were used to calculate the signature, and those same fields are used
in the verification process.

ScopeSize (input)

The number of entries in the verify scope list. If the verification scope is not specified, the
input value for scope size must be zero.

DESCRIPTION

This function verifies that the signed certificate has not been altered since it was signed by the designated
signer. Only one signature is verified by this function. If the certificate to be verified includes multiple
signatures, this function must be applied once for each signature to be verified. This function verifies a digital
signature over the certificate fields specified by VerifyScope. If the verification scope fields are not specified,
the function performs verification using a preselected set of fields in the certificate.

The caller can specify a Cryptographic Service Provider (CSP) and verification algorithm that the CL can use
to perform the verification. The handle for the CSP is contained in the cryptographic context identified by
CCHandle.

The verification process requires that the caller must specify the necessary verification algorithm
parameters. These parameter values are specified in one of two locations:

e As afield value in the SignerCert parameter
¢ As a set of algorithm parameters contained in the cryptographic context identified by CCHandle

If both of the preceding arguments are supplied, a consistency check is performed to ensure that they result
in the same verification algorithm parameters. If they are not consistent, an error is returned. If only one of
the above arguments is supplied, that argument is used to generate the verification algorithm parameters. If
no algorithm parameters are found, the certificate cannot be verified and the operation fails.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID_SCOPE
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR_CL_VERIFICATION_FAILURE

106

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertSign
Functions for the CLI SPI:
CL_CertSign

107

CL_CertVerifyWithKey

NAME
CL_CertVerifyWithKey: CSSM_CL_CertVerifyWithKey — Verify with a key (CDSA)

SYNOPSIS

include <cssm.h>
API:

CSSM_RETURN CSSMAPI CSSM_CL_CertVerifyWithKey
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertToBeVerified)

SPI:

CSSM_RETURN CSSMCLI CL_CertVerifyWithKey
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CertToBeVerified)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library service module used to perform this
function.

CCHandle (input)

A signature verification context defining the CSP, verification algorithm, and public key
that must be used to perform the operation.

CertToBeVerified (input)

A signed certificate whose signature is to be verified.

DESCRIPTION

This function verifies that the CertToBeVeri fied parameter was signed using a specific private key and that
the certificate has not been altered since it was signed using that private key. The public key corresponding to
the private signing key is used in the verification process.

The CcCHandle, must be a signature verification context created using the function
CSSM_CSP_CreateSignatureContext () (CSSM API), or CSP_CreateSignatureContext () (SPI). The context
must specify the Cryptographic Services Provider (CSP) module, the verification algorithm, and the public
verification key that must be used to perform this operation.

108

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_VERIFICATION_FAILURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertVerify, CSSM_CL_CrlVerify
Functions for the CLI SPI:

CL_CertVerify, CL_CrlVerify

109

CL_CrlAbortCache

NAME
CL_CrlAbortCache: CSSM_CL_CrlAbortCache — Terminate a CRL cache handle (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortCache
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CrlHandle)

SPI:

CSSM_RETURN CSSMCLI CL_CrlAbortCache
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CrlHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
CrlHandle (input)

The handle that identifies the cached CRL.

DESCRIPTION

This function terminates a CRL cache handle created and returned by the function CSSM_CI._CrlCache ()
(CSSM API), or CL,_cCrlcache() (CL SPI). The Certificate Library module releases all cache space and state
information associated with the cached CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CACHE_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

110

Online Help

Functions for the CSSM API:

CSSM_CL_CriCache
Functions for the CLI SPI:
CL_CriCache

111

CL_CrlAbortQuery

NAME
CL_CrlAbortQuery: CSSM_CL_CrlAbortQuery — Terminate a query (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortQuery
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle)

SPI:

CSSM_RETURN CSSMCLI CL_CrlAbortQuery
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

ResultsHandle (input)
The handle that identifies the results of a CRL query.

DESCRIPTION

This function terminates the query initiated by CSSM_CI_CrlGetFirstFieldvalue () or
CSSM_CI_CrlGetFirstCachedFieldvalue () function (or their CL SPI equivalents), and allows the CL to
release all intermediate state information associated with the repeating-value get operation. Once this
function has been invoked, the results handle is invalid.

Applications must invoke this function to terminate the ResultsHandle. Using
CSSM_CI_CrlGetNextFieldvalue () or CSSM_CIL_CrlGetNextCachedFieldvalue () (or their CL SPI
equivalents), to access all of the attributes named by a single OID does not terminate the ResultsHandle.
This function can be invoked to terminate the results handle without accessing all of the values identified by
the single OID.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

112

CSSMERR_CL_INVALID_ RESULTS_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstFieldValue, CSSM_CL_CriGetNextFieldValue,
CSSM_CL_CrilGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue

Functions for the CL SPI:

CL_CrlGetFirstFieldValue, CL_CriGetNextFieldValue, CL_CrilGetFirstCachedFieldValue,
CL_CrlGetNextCachedFieldValue

113

CL_CrlAddCert

NAME
CL_CrlAddCert: CSSM_CL_CrlAddCert — Revoke an input certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CIL_CrlAddCert
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *Cert,

uint32 NumberOfFields,

const CSSM_FIELD *CrlEntryFields,
const CSSM_DATA *0ldCrl,
CSSM_DATA_PTR NewCrl)

SPI:

CSSM_RETURN CSSMCLI CL_CrlAddCert
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *Cert,

uint32 NumberOfFields,

const CSSM_FIELD *CrlEntryFields,
const CSSM_DATA *0ldCrl,
CSSM_DATA_PTR NewCrl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandle (input)

The handle that describes the context of this cryptographic operation.
Cert (input)

A pointer to the CSSM_DATA structure containing the certificate to be revoked.
NumberOfFields (input)

The number of OID/value pairs specified in the CrlEntryFields input parameter.
CrlEntryFields (input)

An array of OID/value pairs specifying the initial values for descriptive data fields of the
new CRL entry.

0ldcrl (input)

114

A pointer to the CSSM_DATA structure containing the CRL to which the newly revoked
certificate will be added.

NewCrl (output)

A pointer to the CSSM_DATA structure containing the updated CRL. The NewCrl->Data is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function revokes the input certificate by adding a record representing the certificate to the CRL. The
values for the new entry in the CRL are specified by the list of OID/value input pairs. The reason for
revocation is a typical value specified in the list. The new CRL entry is signed using the private key and
signing algorithm specified in the CCHandle.

The CCHandle must be a context created using the function CSSM_CSP_CreateSignatureContext () (CSSM
API), or CSP_CreateSignatureContext () (CL SPI). The context must specify the Cryptographic Services
Provider (CSP) module, the signing algorithm, and the signing key that must be used to perform this
operation. The context must also provide the passphrase or a callback function to obtain the passphrase
required to access and use the private key.

The operation is valid only if the CRL has not been closed by the process of signing the CRL, by calling
CSSM_CIL_CrlSign () (CSSM API), or CL,_Crl1Sign() (CL SPI). Once the CRL has been signed, entries cannot
be added or removed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_CRL_ALREADY_SIGNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CriRemoveCert

115

Functions for the CLI SPI:
CL_CriRemoveCert

116

CL_CrlCache

NAME
CL_CrlCache: CSSM_CL_CrlCache — Cache a copy of a certificate revocation list (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlCache
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,
CSSM_HANDLE_PTR CrlHandle)

SPI:

CSSM_RETURN CSSMCLI CL_CrlCache
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,
CSSM_HANDLE_PTR CrlHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the certificate library module used to perform this function.
Crl (input)

A pointer to the CSSM_DATA structure containing the encoded CRL.
CrlHandle (output)

A pointer to the CSSM_HANDLE that should be used in all future references to the cached
CRL.

DESCRIPTION

This function caches a copy of a CertificateRevocationList (CRL) for subsequent accesses using the
functions CSSM_CL_CrlGetFirstFieldvValue() and CSSM_CL_CrlGetNextFieldvalue () (or their CL SPI
equivalents).

The input CRL must be in an encoded representation. The Certificate Library module can cache the CRL in
any appropriate internal representation. Parsed or incrementally parsed representations are common. The
selected representation is opaque to the caller.

The application must call CSSM_CL_CrlCacheabort () (CSSM API), or CIL_CrlcCacheabort () (CL SPI), to
remove the cached copy when additional get operations will not be performed on the cached CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

117

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue,
CSSM_CL_IsCertInCachedCrl, CSSM_CL_CrlAbortQuery, CSSM_CL_CrlAbortCache

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CrlGetNextCachedFieldValue, CL_IsCertInCachedCrl,
CL_CrlAbortQuery, CL_CrlAbortCache

118

CL_CrlCreateTemplate
NAME

CL_CrlCreateTemplate: CSSM_CL_CrlCreateTemplate — Create an unsigned, memory-resident
CRL (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlCreateTemplate
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CrlTemplate,
CSSM_DATA_PTR NewCrl)

SPI:

CSSM_RETURN CSSMCLI CL_CrlCreateTemplate
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CrlTemplate,
CSSM_DATA_PTR NewCrl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

NumberOfFields (input)
The number of OID/value pairs specified in the CrlTemplate input parameter.
CrlTemplate (input)

An array of OID/value pairs specifying the initial values for descriptive data fields of the
new CRL.

NewCrl (output)

A pointer to the CSSM_DATA structure containing the new CRL. The NewCrl-> Data is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function creates an unsigned, memory-resident CRL. Fields in the CRL are initialized with the
descriptive data specified by the OID/value input pairs. The specified OID/value pairs can initialize all or a
subset of the general attribute fields in the new CRL. Subsequent values can be set using the
CSSM_CIL,_CrlSetFields () (CSSM API) or the CL._CrlSetFields () (CL SPI) function. The new CRL contains
no revocation records.

119

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_INVALID_CRL_POINTER

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlSetFields, CSSM_CL_CrlAddCert, CSSM_CL_CrlSign, CSSM_CL_CertGetFirstFieldValue
Functions for the CLI SPI:

CL_CrlSetFields, CL_CrliAddCert, CL_CrilSign, CL_CertGetFirstFieldValue

120

CL_CrlDescribeFormat

NAME

CL_CrlDescribeFormat: CSSM_CL_CrlDescribeFormat — Return a list of the CSSM_OID values
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlDescribeFormat
(CSSM_CL_HANDLE CLHandle,

uint32 *NumberOfOids,

CSSM_OID_PTR *0OidList)

SPI:

CSSM_RETURN CSSMCLI CL_CrlDescribeFormat
(CSSM_CL_HANDLE CLHandle,

uint32 *NumberOfOid,

CSSM_OID_PTR *0OidList)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

Number0f0ids (output)
The length of the returned array of OIDs.
0OidList (output)

A pointer to the array of CSSM_OIDs that represent the supported CRL format. The OID
list is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function returns a list of the CSSM_OID values the Certificate Library module uses to name and
reference fields of a CRL. Multiple CSSM_OID values can correspond to a single field. These OIDs can be
provided as input to CSSM_CL_CrlGetFirstFieldvalue () (CSSM API), or CL_CrlGetFirstFieldvValue ()
(CL SPI), calls to retrieve field values from the CRL. The OID also implies the data format of the returned
value. When multiple OIDs name the same field of a CRL, those OIDs have different return data formats
associated with them.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

121

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO
Intel CDSA Application Developer's Guide

122

CL_CrlGetAllCachedRecordFields

NAME

CL_CrlGetAllCachedRecordFields: CSSM_CL_CrlGetAllCachedRecordFields — Return field values
from a CRL record (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetAllCachedRecordFields
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CrlHandle,

const CSSM_DATA *CrlRecordIndex,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *Fields)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetAllCachedRecordFields
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE CrlHandle,

const CSSM_DATA *CrlRecordIndex,

uint32 *NumberOfFields,

CSSM_FIELD_PTR *Fields)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in certificate library module used to perform this
function.

CrlHandle (input)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL must contain the CRL record identified by
CrlRecordIndex.

CrlRecordIndex (input)

An index value identifying a particular revocation record in a cached CRL.
NumberOfFields (output)

The number of OID-value pairs returned by this function.
Fields (output)

A pointer to an array of CSSM_FIELD structures, describing the contents of the preselected
CRL record using OID-value pairs. The field list is allocated by the service provider and
must be deallocated by the application by calling CSSM_CI,_FreeFields () (CSSM API), or
CL_FreeFields () (CL SPI).

123

DESCRIPTION

This function returns all field values from a prelocated, cached CRL record. The scanned CRL record is
identified by CrlRecordIndex, which is returned by the function CSSM_CI._IsCertInCachedCrl () (CSSM
API), or CL._IsCertInCachedcrl () (CL SPI).

Fields are returned as a set of OID-value pairs. The OID identifies the CRL record field and the data format
of the value extracted from that field. The Certificate Library module defines and uses a preferred data
format for returning field values in this function.

Each CRL record may be digitally signed when it is added to the CRL using the function
CSSM_CL_CrladdCert () (CSSM API), or CL,_CrladdCert () (CL SPI). This function does not perform any
signature verification on the CRL record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CACHE_HANDLE
CSSMERR_CL_INVALID_ CRL_INDEX

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_IsCertInCachedCrl, CSSM_CL_CriCache, CSSM_CL_CrlAbortCache, CSSM_CL_FreeFields
Functions for the CLI SPI:

CL_IsCertInCachedCrl, CL_CriCache, CL_CriAbortCache, CL_FreeFields

124

CL_CrlGetAllFields

NAME
CL_CrlGetAllFields: CSSM_CL_CrlGetAllFields — Get the field values from the CRL (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetAllFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,

uint32 *NumberOfCrlFields,
CSSM_FIELD_PTR *CrlFields)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetAllFields
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,

uint32 *NumberOfCrlFields,
CSSM_FIELD_PTR *CrlFields)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

Crl (input)

A pointer to the CSSM_DATA structure that contains the encoded, packed CRL from which
field values are to be extracted.

NumberOfCrlFields (output)
The number of entries in the array Cr1Fields.
CrlFields (output)

A pointer to an array of OID-value pairs that describe the contents of the CRL. The
extracted CRL fields are returned as the value portion of each OID-value pair. The field list
is allocated by the service provider and must be deallocated by the application by calling
CSSM_CL_FreeFields () (CSSM API), or CL_FreeFields () (CL SPI).

DESCRIPTION

This function returns one or more structures. Each structure contains a set of field values from the encoded,
packed CRL contained in Crl. Each structure is returned in the Fieldvalue entry of the CSSM_FIELD
structure CrlFields. The parameter NumberOfCrlFields indicates the number of returned structures.

125

The CRL can be signed or unsigned. This function does not perform any signature verification on the CRL
fields or the CRL records. Each CRL record can be digitally signed when it is added to the CRL using the
function CSSM_CIL._CrladdCert () (CSSM API), or CI._Crladdcert () (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_FreeFields
Functions for the CLI SPI:
CL_FreeFields

126

CL_CrlGetFirstCachedFieldValue
NAME

CL_CrlGetFirstCachedFieldValue: CSSM_CL_CrlGetFirstCachedFieldValue — Get field values from

the cached CRL (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetFirstCachedFieldvalue

(CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE CrlHandle,

const CSSM_DATA *CrlRecordIndex,
const CSSM_OID *CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields,
CSSM_DATA_PTR *Fieldvalue)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetFirstCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,
CSSM_HANDLE CrlHandle,

const CSSM_DATA *CrlRecordIndex,
const CSSM_OID *CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields,
CSSM_DATA_PTR *Fieldvalue)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this

function.

CrlHandle (input)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL is searched for the field values identified by Cr1Field.

CrlRecordIndex (input/optional)

An index value identifying a particular revocation record in a cached CRL. If an index value
is supplied, the scan for the field values identified by Cr1Field is limited to the preselected

revocation record.

CrlField (input)

A pointer to an object identifier that identifies the field value to be extracted from the CRL.

ResultsHandle (output)

127

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

NumberOfMatchedFields (output)

The total number of fields that match the Cr1Field OID. This count includes the first
match, which was returned by this function.

Fieldvalue (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at T " (*Fieldvalue)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API), or CL,_FreeFieldvalue() (CL SPI), function can
be used to deallocate *Fieldvalue and (*Fieldvalue)->Data.

DESCRIPTION

This function returns a single structure containing a set of field values from the cached CRL identified by
CrlHandle parameter. The selected fields are designated by the CSSM_OID Crl1Field parameter and
returned in the output parameter Fieldvalue. The OID also identifies the data format of the values returned
to the caller. If multiple OIDs designate the same CRL field, then each such OID defines a distinct data
format for the returned values. The function CSSM_CI._CrlDescribeFormat () (CSSM API), or
CL_CrlDescribeFormat () (CL SPI), provides a list of all CSSM_OID values supported by a CL. module for
naming fields of a CRL.

The search can be limited to a particular revocation record within the CRL. A single record is identified by the
CrlRecordIndex parameter, which is returned by the function CSSM_CI_IsCertInCachedCrl () (CSSM API),
or CL_TIsCertInCachedCrl () (CL SPI). If no record index is supplied, the search is initiated from the
beginning of the CRL.

The CRL can be signed or unsigned. This function does not perform any signature verification on the CRL
fields or the CRL records. Each CRL record can be digitally signed when it is added to the CRL using the
function CSSM_CL_CrladdCert () (CSSM API), or CL_CrladdCert () (CL SPI). The caller can examine fields
in the CRL and CRL records at any time using this function.

The CrlField OID can identify a single occurrence of a set of CRL fields or multiple occurrences of a set of
CRL fields. If the Cr1Field OID matches more than one occurrence, this function outputs the total number of
matches and a ResultsHandle to be used as input to CSSM_CrlGetNextFieldvalue () (CSSM API), or
CrlGetNextFieldvalue () (CL SPI), to retrieve the remaining matches. The first match is returned as the
return value of this function.

This function determines the complete set of matches. The number of matches and the selected field values do
not change between this function and subsequent calls to CSSM_CI._CrlGetNextFieldvalue () (CSSM API),
or CL_CrlGetNextFieldvalue () (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

128

CSSMERR_CL_INVALID_ CACHE_HANDLE
CSSMERR_CL_INVALID_ CRL_TINDEX
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetNextCachedFieldValue, CSSM_CL_IsCertInCachedCrl, CSSM_CL_CriAbortQuery,
CSSM_CL_CriCache, CSSM_CL_CriAbortCache, CSSM_CL_CrlDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CrlGetNextCachedFieldValue, CL_IsCertInCachedCrl, CL_CrlAbortQuery, CL_CriCache,
CL_CrlAbortCache, CL_CrlDescribeFormat, CL_FreeFieldValue

129

CL_CrlGetFirstFieldValue

NAME

CL_CrlGetFirstFieldValue: CSSM_CL_CrlGetFirstFieldValue — Get the value of the first CRL field
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetFirstFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,

const CSSM_OID *CrlField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Value)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetFirstFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Crl,

const CSSM_OID *CrlField,

CSSM_HANDLE_PTR ResultsHandle,

uint32 *NumberOfMatchedFields,

CSSM_DATA_PTR *Value)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

Crl (input)

A pointer to the CSSM_DATA structure that contains the CRL from which the field is to be
retrieved.

CrlField (input)
An object identifier that identifies the field value to be extracted from the CRL.
ResultsHandle (output)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

NumberOfMatchedFields (output)

The total number of fields that match the Cr1Field OID. This count includes the first
match, which was returned by this function.

130

Value (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at T " (*value)->Data" are allocated by the service provider. The
CSSM_CI,_FreeFieldvalue () (CSSM API), or CL,_FreeFieldvalue() (CL SPI), function can
be used to deallocate *Value and (*Value)->Data.

DESCRIPTION

This function returns the value of the CRL field designated by the CSSM_OID crl1Field. The OID also
identifies the data format for the field value returned to the caller. If multiple OIDs name the same CRL field,
then each OID defines a distinct data format for the returned field value. The function
CSSM_CL_CrlDescribeFormat () (CSSM API), or CL_CrlDescribeFormat () (CL SPI), provides a list of all
CSSM_OID values supported by a Certificate Library module for naming fields of a CRL.

If more than one field matches the Cr1Field OID, the first matching field will be returned. The number of
matching fields is an output parameter, as is the ResultsHandle to be used to retrieve the remaining
matching fields.

The set of matching fields is determined by this function. The number of matching fields and the field values
do not change between this function and subsequent calls to CSSM_CL_CrlGetNextFieldvalue () (CSSM
API), or CL._CrlGetNextFieldvalue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR__ CL_UNKNOWN_TAG
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetNextFieldValue, CSSM_CL_CrlAbortQuery, CSSM_CL_CriGetAllFields
Functions for the CLI SPI:

CL_CrlGetNextFieldValue, CL_CrlAbortQuery, CL_CrlGetAllFields

131

CL_CrlGetNextCachedFieldValue

NAME

CL_CrlGetNextCachedFieldValue: CSSM_CL_CrlGetNextCachedFieldValue — Get the value of the
next cached CRL field (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetNextCachedFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *FieldvValue)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetNextCachedFieldvValue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *FieldvValue)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

ResultsHandle (input)
The handle that identifies the results of a CRL query.
Fieldvalue (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at T " (*Filedvalue)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API), or CL,_FreeFieldvalue() (CL SPI), function can
be used to deallocate *Fieldvalue and (*Fieldvalue)->Data.

DESCRIPTION

This function returns the value of a CRL field, when that field occurs multiple times in a CRL. CRLs with
repeated fields (such as revocation records) have multiple field values corresponding to a single OID. A call to
the function CSSM_CL_CrlGetFirstCachedFieldvalue () (CSSM API), or
CL_CrlGetFirstCachedFieldvalue () (CL SPI), initiates the process and returns a ResultsHandle
identifying the size and values contained in the result set. The CSSM_CL_CrlGetNextCachedFieldvalue ()
(CSSM API), or CL_CrlGetNextCachedFieldvalue () (CL SPI), function can be called repeatedly to obtain
these values, one at a time. The result set does not change in size or value between calls to this function.

132

The result set selected by CSSM_CL_CrlGetFirstCachedFieldvalue () (CSSM API), or
CL_CrlGetFirstCachedFieldvalue () (CL SPI), and identified by Resul tsHandle can reference CRL fields
repeated across multiple revocation records or within one revocation record. The scope of the scan was set by
an optional Cr1RecordIndex input to the function CSSM_CI,_CrlGetFirstCachedFieldvalue () (CSSM API),
or CL,_CrlGetFirstCachedFieldvalue () (CL SPI). If the record index was specified, then the results set is
the revocation record identified by the index. If no record index was specified, then the results set can include
repeated fields from multiple revocation records in a CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ RESULTS_HANDLE
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlAbortQuery, CSSM_CL_IsCertInCachedCrl,
CSSM_CL_CriCache, CSSM_CL_CrlAbortCache, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CrlAbortQuery, CL_IsCertInCachedCrl, CL_CriCache,
CL_CrlAbortCache, CL_FreeFieldValue

133

CL_CrlGetNextFieldValue

NAME

CL_CrlGetNextFieldValue: CSSM_CL_CrlGetNextFieldValue — Get the value of the next CRL field
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlGetNextFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *Value)

SPI:

CSSM_RETURN CSSMCLI CL_CrlGetNextFieldvalue
(CSSM_CL_HANDLE CLHandle,

CSSM_HANDLE ResultsHandle,

CSSM_DATA_PTR *Value)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

ResultsHandle (input)
The handle that identifies the results of a CRL query.
Value (output)

A pointer to the structure containing the value of the requested field. The structure and the
field at T " (*value)->Data" are allocated by the service provider. The
CSSM_CIL,_FreeFieldvalue () (CSSM API), or CL,_FreeFieldvalue() (CL SPI), function can
be used to deallocate *Value and (*Value)->Data.

DESCRIPTION

This function returns the value of a CRL field, when that field occurs multiple times in a CRL. CRLs with
repeated fields (such as revocation records) have multiple field values corresponding to a single OID. A call to
the function CSSM_CL_CrlGetFirstFieldvalue () (CSSM API), or CL_CrlGetFirstFieldvalue () (CL SPI),
initiates the process and returns a results handle identifying the size and values contained in the result set.
The CSSM_CL_CrlGetNextFieldvalue () (CSSM API), or CL._CrlGetNextFieldvalue () (CL SPI), function
can be called repeatedly to obtain these values, one at a time. The result set does not change in size or value
between calls to this function.

134

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ RESULTS_HANDLE
CSSMERR_CL_NO_FIELD_ VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlGetFirstFieldValue, CSSM_CL_CrlAbortQuery
Functions for the CLI SPI:

CL_CrlGetFirstFieldValue, CL_CrlAbortQuery

135

CL_CrlRemoveCert

NAME
CL_CrlRemoveCert: CSSM_CL_CrlRemoveCert — Reinstate a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlRemoveCert
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_DATA *0ldCrl,
CSSM_DATA_PTR NewCrl)

SPI:

CSSM_RETURN CSSMCLI CL_CrlRemoveCert
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_DATA *0ldCrl,
CSSM_DATA_PTR NewCrl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (input)
A pointer to the CSSM_DATA structure containing the certificate to be reinstated.
0ldcrl (input)

A pointer to the CSSM_DATA structure containing the CRL from which the certificate is to
be removed.

NewCrl (output)

A pointer to the CSSM_DATA structure containing the updated CRL. The NewCrl->Data is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function reinstates a certificate by removing it from the specified CRL. The operation is valid only if the
CRL has not been closed by the process of signing the CRL by executing CSSM_CIL._Cr1Sign()(CSSM API), or
CL_CrlSign() (CL SPI). Once the CRL has been signed, entries cannot be added or removed.

136

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_CRL_ALREADY_SIGNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlAddCert
Functions for the CLI SPI:
CL_CrlAddCert

137

CL_CrlSetFields

NAME
CL_CrlSetFields: CSSM_CL_CrlSetFields — Set new field values (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlSetFields
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CrlTemplate,
const CSSM_DATA *01dCrl,
CSSM_DATA_PTR ModifiedCrl)

SPI:

CSSM_RETURN CSSMCLI CL_CrlSetFields
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

const CSSM_FIELD *CrlTemplate,
const CSSM_DATA *01dCrl,
CSSM_DATA_PTR ModifiedCrl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

NumberOfFields (input)
The number of OID value pairs specified in the CrlTemplate input parameter.
CrlTemplate (input)

Any array of field OID value pairs containing the values to initialize the CRL attribute
fields.

oldcrl (input)

The CRL to be updated with the new attribute values. The CRL must be unsigned and
available for update.

ModifiedCrl (output)

A pointer to the modified, unsigned CRL. The ModifiedCrl->Data is allocated by the
service provider and must be deallocated by the application.

138

DESCRIPTION

This function will set the fields of the input CRL to the new values, specified by the input OID/value pairs. If
there is more than one possible instance of an OID (for example, as in an extension or CRL record), then a
new field with the specified value is added to the CRL.

This function should be used to update any of the CRL field values. If a specified field was initialized by
CSSM_CL_CrlCreateTemplate () (CSSM API), or CI_CrlCreateTemplate () (CL SPI), the field value is set to
the new specified value. If a specified field was not initialized by the CSSM_CI,_CrlCreateTemplate () (CSSM
API), or CL._CrlCreateTemplate() (CL SPI), the field is set to the new specified value. The 01dCr1 must be
unsigned. Once a CRL has been signed using CSSM_CL_Crl1Sign () (CSSM API), or CI._CrlSign() (CL SPI),
the signed CRL's field values cannot be modified. Modification would invalidate the cryptographic signature
of the CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_CRL_ALREADY_SIGNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CriCreateTemplate, CSSM_CL_CrlAddCert, CSSM_CL_CrlSign,
CSSM_CL_CertGetFirstFieldValue

Functions for the CLI SPI:
CL_CriCreateTemplate, CL_CrlAddCert, CL_CriSign, CL_CertGetFirstFieldValue

139

CL_CrlSign

NAME
CL_CrlSign: CSSM_CL_CrlSign, CL_CrlSign - Sign a CRL (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM _CL_CrlSign
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *UnsignedCrl,
const CSSM_FIELD *SignScope,
uint32 ScopeSize,
CSSM_DATA_PTR SignedCrl)

SPI:

CSSM_RETURN CSSMCLI CL_CrlSign
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *UnsignedCrl,
const CSSM_FIELD *SignScope,
uint32 ScopeSize,
CSSM_DATA_PTR SignedCrl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandle (input)

The handle that describes the context of this cryptographic operation.
UnsignedCrl (input)

A pointer to the CSSM_DATA structure containing the CRL to be signed.
SignScope (input/optional)

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
signed. If the signing scope is null, the Certificate Library module includes a default set of
CRL fields in the signing process.

ScopeSize (input)

The number of entries in the sign scope list. If the signing scope is not specified, the input
scope size must be zero.

SignedCrl (output)

140

A pointer to the CSSM_DATA structure containing the signed CRL. The SignedCrl->Data
is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function signs a CRL using the private key and signing algorithm specified in the CCHandle parameter.
The result is a signed, encoded certificate revocation list in SignedCrl. The unsigned CRL is specified in the
input UnsignedCrl. The UnsignedCrl is constructed using the CSSM_CI._CrlCreateTemplate (),
CSSM_CL_CrlSetFields (), CSSM_CL_CrlAddCert (), and CSSM_CL_CrlRemoveCert () functions (for the
CSSM API), or their CL SPI equivalents.

The CCHandle must be context created using the function CSSM_CSP_CreateSignatureContext () (CSSM
API), or CSP_CreateSignatureContext () (SPI). The context must specify the Cryptographic Services
Provider module, the signing algorithm, and the signing key that must be used to perform this operation. The
context must also provide the passphrase or a callback function to obtain the passphrase required to access
and use the private key.

The fields included in the signing operation are identified by the OIDs in the optional SignScope array.

Once the CRL has been signed it cannot be modified. This means that entries cannot be added or removed
from the CRL through application of the CSSM_CI_CrladdCert () or
CSSM_CL_CrlRemoveCertCSSM_CL_CrlRemoveCert () (or their CL SPI equivalent operations. A signed CRL
can be verified, applied to a data store, and searched for values.

The memory for the SignedCrl->Data output is allocated by the service provider using the calling
application's memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID_SCOPE
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_CRL_ALREADY_SIGNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

141

Functions:

CSSM_CL_CrlVerify, CSSM_CL_CrilVerifyWithKey
Functions for the CLI SPI:

CL_CrlVerify, CL_CriVerifyWithKey

142

CL_CrlVerify

NAME
CL_CrlVerify: CSSM_CL_CrlVerify — Verify a signed CRL has not been altered (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlVerify
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CrlToBeVerified,
const CSSM_DATA *SignerCert,
const CSSM_FIELD *VerifyScope,
uint32 ScopeSize)

SPI:

CSSM_RETURN CSSMCLI CL_CrlVerify
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CrlToBeVerified,
const CSSM_DATA *SignerCert,
const CSSM_FIELD *VerifyScope,
uint32 ScopeSize)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandle (input/optional)

The handle that describes the context of this cryptographic operation.
CrlToBeVerified (input)

A pointer to the CSSM_DATA structure containing the CRL to be verified.
SignerCert (input/optional)

A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.
VerifyScope (input/optional)

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
verified. If the verification scope is null, the Certificate Library module assumes that a
default set of fields were used in the signing process and those same fields are used in the
verification process.

ScopeSize (input)

143

The number of entries in the verify scope list. If the verification scope is not specified, the
input value for scope size must be zero.

DESCRIPTION

This function verifies that the signed CRL has not been altered since it was signed by the designated signer.
It does this by verifying the digital signature over the fields specified by the VerifyScope parameter.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_ FIELD_POINTER
CSSMERR__CL_UNKNOWN_TAG
CSSMERR_CL_INVALID_SCOPE
CSSMERR_CL_INVALID NUMBER_OF_FIELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR_CL_VERIFICATION_FAILURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlSign
Functions for the CLI SPI:
CL_CrlSign

144

CL_CrlVerifyWithKey

NAME
CL_CrlVerifyWithKey: CSSM_CL_CrlVerifyWithKey — Verify a CRL with a specific key (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_CrlVerifyWithKey
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CrlToBeVerified)

SPI:

CSSM_RETURN CSSMCLI CL_CrlVerifyWithKey
(CSSM_CL_HANDLE CLHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CrlToBeVerified)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the Certificate Library service module used to perform this
function.

CCHandle (input)

A signature verification context defining the Cryptographic Services Provider (CSP),
verification algorithm, and public key that must be used to perform the operation.

CrlToBeVerified (input)

A signed certificate revocation list whose signature is to be verified.

DESCRIPTION

This function verifies that the Cr1ToBeVerified parameter was signed using a specific private key and that
the certificate revocation list has not been altered since it was signed using that private key. The public key
corresponding to the private signing key is used in the verification process.

The cryptographic context indicated by the CCHandle parameter must be a signature verification context
created using the function CSSM_CSP_CreateSignatureContext () (CSSM API) or
CSP_CreateSignatureContext () (CL SPI). The context must specify the Cryptographic Services Provider
(CSP) module, the verification algorithm, and the public verification key that must be used to perform this
operation.

145

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_VERIFICATION_FAILURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlVerify
Functions for the CLI SPI:
CL_CrlVerify

146

CL_FreeFields

NAME
CL_FreeFields: CSSM_CL_FreeFields — Free fields (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_FreeFields
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

CSSM_FIELD_PTR *FieldArray)

SPI:

CSSM_RETURN CSSMCLI CL_FreeFields
(CSSM_CL_HANDLE CLHandle,

uint32 NumberOfFields,

CSSM_FIELD_PTR *FieldArray)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

NumberOfFields (input)
The length of the array of fields in FieldArray.
FieldArray (input)
A pointer to an array of CSSM_FIELD structures that need to be deallocated.

DEFINITIONS

This function frees the fields in the Fieldarray by freeing the data pointers for both the Fieldoid and
Fieldvalue fields. It also frees the top level Fieldarray pointer.

This function should be used only to free CSSM_FIELD_PTR values returned from calls
CSSM_TP_CertGetAllTemplateFields (), CSSM_CL_CertGetAllTemplateFields(),
CSSM_CL_CertGetAllFields (), CSSM_CL_CrlGetAllFields(),
CSSM_CI_CrlGetAllCachedRecordFields (), or their SPI equivalent calls.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

147

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO
Intel CDSA Application Developer's Guide

148

CL_FreeFieldValue

NAME
CL_FreeFieldValue: CSSM_CL_FreeFieldValue — Free field data (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_FreeFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_OID *CertOrCrloOid,
CSSM_DATA_PTR Value)

SPI:

CSSM_RETURN CSSMCLI CL_FreeFieldvalue
(CSSM_CL_HANDLE CLHandle,

const CSSM_OID *CertOrCrloOid,
CSSM_DATA_PTR Value)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

CertOrCrloid (input)

A pointer to the CSSM_OID structure describing the type of the value to be freed.
Value (input)

A pointer to the CSSM_DATA structure containing the Data to be freed.

DESCRIPTION

This function frees the data specified by Value and value->Data. CertOrCr10id indicates the type of the
data in Value.

This function should be used only to free CSSM_DATA values returned from calls
CSSM_CL_CertGetFirstFieldvalue (), CSSM_CL_CertGetNextFieldvalue (),
CSSM_CL_CertGetFirstCachedFieldvalue (), CSSM_CL_CertGetNextCachedFieldvalue (),
CSSM_CL_CrlGetFirstFieldvalue (), CSSM_CL_CrlGetNextFieldvalue(),
CSSM_CI_CrlGetFirstCachedFieldvalue (), CSSM_CL_CrlGetNextCachedFieldvalue (), or their CLI SPI
equivalents.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

149

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR__CL_UNKNOWN_TAG

SEE ALSO

Intel CDSA Application Developer's Guide

150

CL_IsCertInCachedCrl

NAME
CL_IsCertInCachedCrl: CSSM_CL_IsCertInCachedCrl — Search cached CRL for a record (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_TIsCertInCachedCrl
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

CSSM_HANDLE CrlHandle,

CSSM_BOOL *CertFound,

CSSM_DATA_PTR CrlRecordIndex)

SPI:

CSSM_RETURN CSSMCLI CL_TIsCertInCachedCrl
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

CSSM_HANDLE CrlHandle,

CSSM_BOOL *CertFound,

CSSM_DATA_PTR CrlRecordIndex)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (input)
A pointer to the CSSM_DATA structure containing an encoded, packed certificate.
CrlHandle (input)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL is searched for a revocation record matching the
specified Cert.

CertFound (output)

A pointer to a CSSM_BOOL indicating success or failure in finding the specified certificate
in the CRL. CSSM_TRUE signifies that the certificate was found in the CRL.
CSSM_FALSE indicates that the certificate was not found in the CRL.

CrlRecordIndex (output)

A pointer to a CSSM_DATA structure containing an index descriptor for direct access to the
located CRL record. Cr1RecordIndex->Data is allocated by the service provider and must
be deallocated by the application.

151

DESCRIPTION

This function searches the cached CRL for a record corresponding to the certificate. The result of the search is
returned in CertFound. The CRL and the records within the CRL must be digitally signed. This function does
not verify either signature. The caller should use CSSM_TP_CrlvVerify() or CSSM_CL_CrlVerify () (or their
SPI equivalents) before invoking this function. Once the CRL has been verified, the caller can invoke this
function repeatedly without repeating the verification process.

If the certificate is found in the CRL, the CL. module returns an index descriptor Cr1RecordIndex for use
with other Certificate Library CRL functions. The index provides more direct access to the selected CRL
record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_UNKNOWN_FORMAT
CSSMERR_CL_INVALID_ CACHE_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue,
CSSM_CL_CrilGetAllCachedRecordField, CSSM_CL_CriCache, CSSM_CL_CrlAbortCache

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CriGetNextCachedFieldValue, CL_CriGetAllCachedRecordField,
CL_CriCache, CL_CrlAbortCache

152

CL_IsCertInCrl

NAME
CL_IsCertInCrl: CSSM_CL_IsCertInCrl — Search CRL for a certificate record (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_TIsCertInCrl
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_DATA *Crl,

CSSM_BOOL *CertFound)

SPI:

CSSM_RETURN CSSMCLI CL_TIsCertInCrl
(CSSM_CL_HANDLE CLHandle,

const CSSM_DATA *Cert,

const CSSM_DATA *Crl,

CSSM_BOOL *CertFound)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (input)

A pointer to the CSSM_DATA structure containing the certificate to be located.
Crl (input)

A pointer to the CSSM_DATA structure containing the CRL to be searched.
CertFound (output)

A pointer to a CSSM_BOOL indicating success or failure in finding the specified certificate
in the CRL. CSSM_TRUE signifies that the certificate was found in the CRL.
CSSM_FALSE indicates that the certificate was not found in the CRL.

DESCRIPTION

This function searches the CRL for a record corresponding to the certificate. The result of the search is
returned in CertFound. The CRL and the records within the CRL must be digitally signed. This function does
not verify either signature. The caller should use CSSM_TP_CrlvVerify() or CSSM_CL_CrlVerify () (or their
SPI equivalents) before invoking this function. Once the CRL has been verified, the caller can invoke this
function repeatedly without repeating the verification process.

153

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_CERT_POINTER
CSSMERR_CL_INVALID_CRL_POINTER
CSSMERR_CL_UNKNOWN_FORMAT

SEE ALSO

Intel CDSA Application Developer's Guide

154

CL_PassThrough

NAME
CL_PassThrough: CSSM_CL_PassThrough — Extend certificate library functionality (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_CL_PassThrough
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

uint32 PassThroughId,

const void *InputParams,

void **OutputParams)

SPI:

CSSM_RETURN CSSMCLI CL_PassThrough
(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,

uint32 PassThroughId,

const void *InputParams,

void **OutputParams)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CLHandle (input)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandle (input/optional)

The handle that describes the context of the cryptographic operation. If the module-specific
operation does not perform any cryptographic operations, a cryptographic context is not
required.

PassThroughId (input)
An identifier assigned by the CL module to indicate the exported function to perform.
InputParams (input/optional)

A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested CL module.

OutputParams (output/optional)

A pointer to a module, implementation-specific structure containing the output data. The
service provider allocates the memory for substructures. The application must free the
memory for the substructures.

155

DESCRIPTION

This function allows applications to call certificate library module-specific operations. Such operations might
include queries or services that are specific to the domain represented by the CL module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CL_INVALID_ CONTEXT_ HANDLE
CSSMERR_CL_INVALID_ PASSTHROUGH_ID
CSSMERR_CL_INVALID_DATA

SEE ALSO

Intel CDSA Application Developer's Guide

156

CSP_EventNotify
NAME

CSP_EventNotify — Notify service module of a context event

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSP_EventNotify
(CSSM_MODULE_HANDLE CSPHandle,
CSSM_CONTEXT_EVENT Event,
CSSM_CC_HANDLE CCHandle,

const CSSM_CONTEXT *Context)

The CSP_EventNotify() function is used by the CSSM Core to interact with the CSP module. Because this
function is exposed to CSSM only as a function pointer, the function name internal to the CSP can be assigned
at the discretion of the CSP module developer. However, the parameter list and return value types must

match those defined for this function.

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Event (input)

One of the following event types listed:

Event

Description

CSSM_CONTEXT_ EVENT_ CREATE

CSSM_CONTEXT_ EVENT DELETE

CSSM_CONTEXT_ EVENT UPDATE

A caller using this module attach handle has created
a new cryptographic context using
CSSM_Create***Context.

A caller using this module attach handle has deleted
a cryptographic context using
CSSM_DeleteContext ().

A caller using this module attach handle has updated
an existing cryptographic context.

CCHandle (input)

The cryptographic context handle for the context affected by the event.

Context

A pointer to the cryptographic context affected by the event. The results of the event are

visible in the context.

157

DESCRIPTION

This function is used to notify the service module of a context event related to a particular attach handle.
Valid events include creation, deletion, or modification of a cryptographic context. The service module can
examine the new or modified context referenced by pContext to determine whether the context is acceptable
to the service module.

If the cryptographic context is acceptable (if the service module examines the contents of the context only
upon use of the context), then the service module should return cssM_ox. If the cryptographic context is not
acceptable, then the service module should return CSSM_FATL.

Upon receiving a return value of cssM_0K, CSSM completes the operation signaled by this event and returns
to the calling application. If the return value is cssM_FATL, CSSM deletes a newly created context or
modifications to an existing context, and returns the failed result to the calling application. When deleting a
cryptographic context, CSSM always returns success to the calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions:

CSSM_CSP_CreateSignatureContext, CSSM_CSP_CreateDigestContext,
CSSM_CSP_CreateSymmetricContext, CSSM_CSP_CreateMacContext,
CSSM_CSP_CreateRandomGenContext, CSSM_CSP_CreateAsymmetricContext,
CSSM_CSP_CreateDeriveKeyContext, CSSM_CSP_CreateKeyGenContext,
CSSM_CSP_CreatePassThroughContext, CSSM_DeleteContext, CSSM_UpdateContextAttributes

158

cssm_CcToHandle

NAME
cssm_CcToHandle — Get the module attach handle (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_CcToHandle
(CSSM_CC_HANDLE Cc,
CSSM_MODULE_HANDLE_PTR ModuleHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Cc (input)
A handle identifying a cryptographic context.
ModuleHandle (output)

A service provider's module attach handle. This value will be set to
CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function returns the module attach handle identifying the service module that is managing the specified
cryptographic context.

The entry point to this function is provided to a service module in a table of upcall functions passed to the
service provider during module attach processing.

If the PVC checking for service providers is on, the service provider has to introduce itself before calling this
function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

159

CSSM_ChangeKeyAcl

NAME
CSSM_ChangeKeyAcl — Edit a stored ACL associated with the target key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ChangeKeyAcl
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_EDIT *AclEdit,

const CSSM_KEY *Key)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation

AccessCred (input)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL associated with the key. Required credentials can include
zero or more certificates, zero or more caller names, and one or more samples. If certificates
and/or caller names are provided as input, these must be provided as immediate values in
this structure. The samples can be provided as immediate values or can be obtained through
a callback function included in the AccessCred structure.

AclEdit (input)

A structure containing information that defines the edit operation. Valid operations include:
adding, replacing, and deleting entries in an ACL managed by the service provider. The
AclEdit can contain information for a new ACL entry and a handle uniquely identifying an
existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle
CSSM_ACL_EDIT_MODE_ADD Adds a new ACL entry to the set of ACL entries

associated with the specified Key. The new ACL entry is
created from the ACL entry prototype contained in
NewEntry. O1dEntryHandle is ignored for this edit mode.

CSSM_ACL_EDIT_MODE_DELETE Deletes the ACL entry identified by 01dEntryHandle
and associated with the specified Key. NewEntry is
ignored for this edit mode.

160

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT MODE_REPLACE Replaces the ACL entry identified by 0O1dEntryHandle
and associated with the specified Key. The existing ACL
is replaced based on the ACL entry prototype contained
in the NewEntry.

When replacing an existing ACL entry, the caller must replace all of the items in an ACL
entry. The replacement prototype includes:

Subject type and value

A CSSM_LIST structure containing a typed Subject. The Subject
identifies the entity authorized by this ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements,
the start time and the stop time for which the ACL entry is valid.

ACL entry tag

A CSSM_STRING containing a user-defined value associated with the
ACL entry.
Key (input)
A pointer to the target key whose associated ACL is being modified.

DESCRIPTION

This function edits the stored ACL associated with the target key. The ACL is modified according to the edit
mode and information provided in Ac1Edit.

The caller must be authorized to modify the target ACL. Caller authentication and authorization to edit the
ACL is determined based on the caller-provided AccessCred.

The caller must be authorized to add, delete, or replace the ACL entries associated with the target key. When
adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry Subject must be provided as an immediate value in Ac1Edit->NewEntry.
The ACL entry Subject can be provided as an immediate value, from a verifier with a protected data path,
from an external authentication or authorization service, or through a callback function specified in
AclEdit->NewEntry->Callback.

161

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetKeyAcl

162

CSSM_ChangeKeyOwner

NAME
CSSM_ChangeKeyOwner — Change the owner of a key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ChangeKeyOwner
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_KEY *Key,

const CSSM_ACL_OWNER_PROTOTYPE *NewOwner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

AccessCred (input)

A pointer to the set of one or more credentials used to prove the caller is the current Oowner
of the key. Required credentials can include zero or more certificates, zero or more caller
names, and one or more samples. If certificates and/or caller names are provided as input,
these must be provided as immediate values in this structure. The samples can be provided
as immediate values or can be obtained through a callback function included in the
AccessCred structure.

Key (input)

A pointer to the target key whose associated Owner is changed.
NewOwner (Input)

A CSSM_ACL_OWNER_PROTOTYPE defining the new owner of the key.

DESCRIPTION
This function takes a CSSM_ACL_OWNER_PROTOTYPE defining the new owner of the key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

163

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetKeyOwner

164

CSSM_CSP_ChangeLoginAcl

NAME
CSSM_CSP_ChangelLoginAcl — Edit a stored CSP ACL login session (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_ChangeLoginAcl
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_EDIT *AclEdit)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation

AccessCred (input)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL controlling login sessions with the CSP. Required
credentials can include zero or more certificates, zero or more caller names, and one or more
samples. Traditionally a caller name has been used to establish the context of a login
session. Certificates can be used for the same purpose. If certificates and/or caller names are
provided as input, these must be provided as immediate values in this structure. The
samples can be provided as immediate values or can be obtained through a callback
function included in the AccessCred structure.

AclEdit (input)

A structure containing information that defines the edit operation. Valid operations include
adding, replacing, and deleting entries in an ACL managed by the service provider. The
AclEdit parameter can contain information for a new ACL entry and a handle uniquely
identifying an existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT MODE_ADD Adds a new ACL entry to the set of ACL entries
controlling login sessions with the CSP. The new ACL
entry is created from the ACL entry prototype contained
in NewEntry. O1dEntryHandle is ignored for this
EditMode.

165

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_DELETE Deletes the ACL entry identified by O1dEntryHandle
and associated with login sessions with the CSP.
NewEntry is ignored for this EditMode.

CSSM_ACL_EDIT_MODE_REPLACE Replaces the ACL entry identified by 01dEntryHandle
and controlling login sessions with the CSP. The existing
ACL is replaced based on the ACL entry prototype
contained in the NewEntry.

When replacing an existing ACL entry, the caller must replace all items in an ACL entry.
The replacement prototype includes:

* Subject type and value — A CSSM_LIST structure containing a typed subject. The
subject identifies the entity authorized by this ACL entry.

¢ Delegation flag — A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

¢ Authorization array — A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the subject.

e Validity period — A CSSM_ACL_VALIDITY_PERIOD structure containing two
elements, the start time and the stop time for which the ACL entry is valid.

¢ ACL entry tag — A CSSM_STRING containing a user-defined value associated with the
ACL entry.

DESCRIPTION

This function edits the stored ACL controlling login sessions for a Cryptographic Service Provider (CSP). The
ACL is modified according to the edit mode and information provided in Ac1Edit.

The caller must have a login session in process and must be authorized to modify the target ACL. Caller
authentication and authorization to edit the ACL is determined based on the caller-provided AccessCred.

The caller must be authorized to add, delete, or replace the ACL entries controlling login to the CSP. When
adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry Subject, must be provided as an immediate value in Ac1Edit.NewEntry.
The ACL entry Subject can be provided as an immediate value, from a verifier with a protected data path,
from an external authentication or authorization service, or through a callback function specified in
AclEdit.NewEntry.Callback.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

166

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_GetLoginACLCSSM_CSP_Login, CSSM_CSP_Logout

167

CSSM_CSP_ChangeLoginOwner

NAME
CSSM_CSP_ChangeLoginOwner — Define a new login owner (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_ChangeLoginOwner
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_OWNER_PROTOTYPE *NewOwner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

AccessCred (input)

A pointer to the set of one or more credentials used to prove the caller is the current login
owner. Required credentials can include zero or more certificates, zero or more caller names,
and one or more samples. If certificates and/or caller names are provided as input, these
must be provided as immediate values in this structure. The samples can be provided as
immediate values or can be obtained through a callback function included in the
AccessCred structure.

NewOwner (Input)
A CSSM_ACL_OWNER_PROTOTYPE defining the new login owner.

DESCRIPTION
This function takes a CSSM_ACL_OWNER_PROTOTYPE describing the new login owner.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

168

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: ¢SsM _CSP_GetLoginOwner

169

CSSM_CSP_CreateAsymmetricContext
NAME

CSSM_CSP_CreateAsymmetricContext — Create an asymmetric encryption cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateAsymmetricContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

const CSSM_ACCESS_CREDENTIALS *AccessCred,

const CSSM_KEY *Key,

CSSM_PADDING Padding,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

AlgorithmID (input)
The algorithm identification number for the algorithm used for asymmetric encryption.
AccessCred (input)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. Credentials can be required for encryption and decryption operations.

Key (input)

The key used for asymmetric encryption. The caller passes a pointer to a CSSM_KEY
structure containing the key. When the context is used for a sign operation,
AccessCredentials is required to access the private key used for signing. When the
context is used for a verify operation, the public key is used to verify the signature. When
the context is used for a wrapkey operation, the public key can be used as the wrapping key.
When the context is used for an unwrap operation, AccessCredentials is required to
access the private key used to perform the unwrapping.

Padding (input/optional)
The method for padding. Typically specified for ciphers that pad.
NewContextHandle (output)

Cryptographic context handle.

170

DESCRIPTION

This function creates an asymmetric encryption cryptographic context, given a handle of a CSP, an algorithm
identification number, a key, and padding. The cryptographic context handle is returned. The cryptographic
context handle can be used to call asymmetric encryption functions and cryptographic wrap or unwrap
functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DeleteContext, CSSM_EncryptData, CSSM_EncryptDatalnit,
CSSM_EncryptDataUpdate, CSSM_EncryptDataFinal, CSSM_GetContext, CSSM_GetContextAttribute,
CSSM_QuerySize, CSSM_SetContext, CSSM_UpdateContextAttributes

171

CSSM_CSP_CreateDeriveKeyContext
NAME

CSSM_CSP_CreateDeriveKeyContext — Create a cryptographic context to derive a symmetric key
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateDeriveKeyContext
(CSSM_CSP_HANDLE CSPHandle,
CSSM_ALGORITHMS AlgorithmID,

CSSM_KEY_TYPE DeriveKeyType,

uint32 DeriveKeyLengthInBits,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_KEY *BaseKey,

uint32 IterationCount,

const CSSM_DATA *Salt,

const CSSM_CRYPTO_DATA *Seed,
CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

AlgorithmID (input)

The algorithm identification number for a derived key algorithm.
DeriveKeyType (input)

The type of symmetric key to derive.
DeriveKeyLengthInBits (input)

The logical length of the key in bits to be derived (LogicalKeySizeInBits)
AccessCred (input/optional)

A pointer to the set of one or more credentials required to access the base key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. If the BaseKey is NULL, then this parameter is optional.

BaseKey (input/optional)

The base key used to derive the new key. The base key can be a public key, a private key, or
a symmetric key

IterationCount (input/optional)

172

The number of iterations to be performed during the derivation process. Used heavily by
password-based derivation methods.

Salt (input/optional)
A Salt used in deriving the key.
Seed (input/optional)

A seed used to generate a random number. The caller can either pass a seed and seed length
in bytes or pass a callback function. If Seed is NULL, the Cryptographic Service Provider
will use its default seed-handling mechanism.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a cryptographic context to derive a symmetric key, given a handle of a CSP, an
algorithm, the type of symmetric key to derive, the length of the derived key, and an optional seed or an
optional AccessCredentials structure from which to derive a new key. The cryptographic context handle is
returned. The cryptographic context handle can be used for calling the cryptographic derive key function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DeriveKey

173

CSSM_CSP_CreateDigestContext

NAME
CSSM_CSP_CreateDigestContext — Create a digest cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateDigestContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for message digests.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a digest cryptographic context, given a handle of a CSP and an algorithm identification
number. The cryptographic context handle is returned. The cryptographic context handle can be used to call
digest cryptographic functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAtiributes

174

CSSM_CSP_CreateKeyGenContext

NAME
CSSM_CSP_CreateKeyGenContext — Create a key generation cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateKeyGenContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

uint32 KeySizeInBits,

const CSSM_CRYPTO_DATA *Seed,

const CSSM_DATA *Salt,

const CSSM_DATE *StartDate,

const CSSM_DATE *EndDate,

const CSSM_DATA *Params,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

AlgorithmID (input)
The algorithm identification number of the algorithm used for key generation.
KeySizeInBits (input)

The logical size of the key (specified in bits). This refers to either the actual key size (for
symmetric key generation) or the modulus size (for asymmetric key pair generation).

Seed (input/optional)

A seed used to generate the key. The caller can either pass a seed and seed length in bytes or
pass a callback function. If NULL is passed, the Cryptographic Service Provider will use its
default seed-handling mechanism.

Salt (input/optional)

A salt used to generate the key.
StartDate (input/optional)

A start date for the validity period of the key or key pair being generated.
EndDate (input/optional)

An end date for the validity period of the key or key pair being generated.

Params (input/optional)

175

A data buffer containing parameters required to generate a key pair for a specific algorithm.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a key generation cryptographic context, given a handle of a CSP, an algorithm
identification number, a passphrase, a modulus size (for public or private keypair generation), a key size (for
symmetric key generation), a seed, and a salt. The cryptographic context handle is returned. The
cryptographic context handle can be used to call key/ or keypair generation functions.

Additional attributes can be added to the newly created context using the

CSSM_UpdateContextAttributes () function. Incremental attributes of interest for key generation include a
handle-pair identifying a Data Storage Library service module and an open data store for CSPs that manage
multiple persistent key stores. If a CSP does not support multiple key stores, the CSP ignores the presence or
absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateKey, CSSM_GenerateKeyPair, CSSM_GetContext, CSSM_SetContext,
CSSM_DeleteContext, CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

176

CSSM_CSP_CreateMacContext
NAME

CSSM_CSP_CreateMacContext — Create a message authentication code cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateMacContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

const CSSM_KEY *Key,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for the MAC algorithm.
Key (input)

The key used to generate a message authentication code. Caller passes a pointer to a
CSSM_KEY structure containing the key.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a message authentication code cryptographic context, given a handle of a CSP,
algorithm identification number, and a key. The cryptographic context handle is returned. The cryptographic
context handle can be used to call message authentication code functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

177

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateMac, CSSM_GenerateMaclInit, CSSM_GenerateMacUpdate,
CSSM_GenerateMacFinal, CSSM_VerifyMac, CSSM_VerifyMaclInit, CSSM_VerifyMacUpdate,
CSSM_VerifyMacFinal, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

178

CSSM_CSP_CreatePassThroughContext

NAME
CSSM_CSP_CreatePassThroughContext — Create a custom cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreatePassThroughContext
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_KEY *Key,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

Key (input)

The key to be used for the context. The caller passes a pointer to a CSSM_KEY structure
containing the key.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a custom cryptographic context, given a handle of a CSP and a pointer to a custom input
data structure. The cryptographic context handle is returned. The cryptographic context handle can be used
to call the CSSM pass-through function for the CSP.

NOTES

A CSP can create its own set of custom functions. The context information can be passed through its own data
structure. The CSSM_CSP_PassThrough () function should be used with the function ID to call the desired
custom function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

179

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_PassThroughCSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

180

CSSM_CSP_CreateDeriveKeyContext
NAME

CSSM_CSP_CreateDeriveKeyContext — Create a cryptographic context to derive a symmetric key
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateDeriveKeyContext
(CSSM_CSP_HANDLE CSPHandle,
CSSM_ALGORITHMS AlgorithmID,

CSSM_KEY_TYPE DeriveKeyType,

uint32 DeriveKeyLengthInBits,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_KEY *BaseKey,

uint32 IterationCount,

const CSSM_DATA *Salt,

const CSSM_CRYPTO_DATA *Seed,
CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

AlgorithmID (input)

The algorithm identification number for a derived key algorithm.
DeriveKeyType (input)

The type of symmetric key to derive.
DeriveKeyLengthInBits (input)

The logical length of the key in bits to be derived (LogicalKeySizeInBits)
AccessCred (input/optional)

A pointer to the set of one or more credentials required to access the base key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. If the BaseKey is NULL, then this parameter is optional.

BaseKey (input/optional)

The base key used to derive the new key. The base key can be a public key, a private key, or
a symmetric key

IterationCount (input/optional)

181

The number of iterations to be performed during the derivation process. Used heavily by
password-based derivation methods.

Salt (input/optional)
A Salt used in deriving the key.
Seed (input/optional)

A seed used to generate a random number. The caller can either pass a seed and seed length
in bytes or pass a callback function. If Seed is NULL, the Cryptographic Service Provider
will use its default seed-handling mechanism.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a cryptographic context to derive a symmetric key, given a handle of a CSP, an
algorithm, the type of symmetric key to derive, the length of the derived key, and an optional seed or an
optional AccessCredentials structure from which to derive a new key. The cryptographic context handle is
returned. The cryptographic context handle can be used for calling the cryptographic derive key function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DeriveKey

182

CSSM_CSP_CreateDigestContext

NAME
CSSM_CSP_CreateDigestContext — Create a digest cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateDigestContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for message digests.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a digest cryptographic context, given a handle of a CSP and an algorithm identification
number. The cryptographic context handle is returned. The cryptographic context handle can be used to call
digest cryptographic functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAtiributes

183

CSSM_CSP_CreateKeyGenContext

NAME
CSSM_CSP_CreateKeyGenContext — Create a key generation cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateKeyGenContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

uint32 KeySizeInBits,

const CSSM_CRYPTO_DATA *Seed,

const CSSM_DATA *Salt,

const CSSM_DATE *StartDate,

const CSSM_DATE *EndDate,

const CSSM_DATA *Params,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

AlgorithmID (input)
The algorithm identification number of the algorithm used for key generation.
KeySizeInBits (input)

The logical size of the key (specified in bits). This refers to either the actual key size (for
symmetric key generation) or the modulus size (for asymmetric key pair generation).

Seed (input/optional)

A seed used to generate the key. The caller can either pass a seed and seed length in bytes or
pass a callback function. If NULL is passed, the Cryptographic Service Provider will use its
default seed-handling mechanism.

Salt (input/optional)

A salt used to generate the key.
StartDate (input/optional)

A start date for the validity period of the key or key pair being generated.
EndDate (input/optional)

An end date for the validity period of the key or key pair being generated.

Params (input/optional)

184

A data buffer containing parameters required to generate a key pair for a specific algorithm.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a key generation cryptographic context, given a handle of a CSP, an algorithm
identification number, a passphrase, a modulus size (for public or private keypair generation), a key size (for
symmetric key generation), a seed, and a salt. The cryptographic context handle is returned. The
cryptographic context handle can be used to call key/ or keypair generation functions.

Additional attributes can be added to the newly created context using the

CSSM_UpdateContextAttributes () function. Incremental attributes of interest for key generation include a
handle-pair identifying a Data Storage Library service module and an open data store for CSPs that manage
multiple persistent key stores. If a CSP does not support multiple key stores, the CSP ignores the presence or
absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateKey, CSSM_GenerateKeyPair, CSSM_GetContext, CSSM_SetContext,
CSSM_DeleteContext, CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

185

CSSM_CSP_CreateMacContext
NAME

CSSM_CSP_CreateMacContext — Create a message authentication code cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateMacContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

const CSSM_KEY *Key,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for the MAC algorithm.
Key (input)

The key used to generate a message authentication code. Caller passes a pointer to a
CSSM_KEY structure containing the key.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a message authentication code cryptographic context, given a handle of a CSP,
algorithm identification number, and a key. The cryptographic context handle is returned. The cryptographic
context handle can be used to call message authentication code functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

186

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateMac, CSSM_GenerateMaclInit, CSSM_GenerateMacUpdate,
CSSM_GenerateMacFinal, CSSM_VerifyMac, CSSM_VerifyMaclInit, CSSM_VerifyMacUpdate,
CSSM_VerifyMacFinal, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

187

CSSM_CSP_CreatePassThroughContext

NAME
CSSM_CSP_CreatePassThroughContext — Create a custom cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreatePassThroughContext
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_KEY *Key,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

Key (input)

The key to be used for the context. The caller passes a pointer to a CSSM_KEY structure
containing the key.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a custom cryptographic context, given a handle of a CSP and a pointer to a custom input
data structure. The cryptographic context handle is returned. The cryptographic context handle can be used
to call the CSSM pass-through function for the CSP.

NOTES

A CSP can create its own set of custom functions. The context information can be passed through its own data
structure. The CSSM_CSP_PassThrough () function should be used with the function ID to call the desired
custom function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

188

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_PassThroughCSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

189

CSSM_CSP_CreateRandomGenContext
NAME

CSSM_CSP_CreateRandomGenContext — Create a random number generation cryptographic
context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateRandomGenContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

const CSSM_CRYPTO_DATA *Seed,

uint32 Length,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns AN error.

AlgorithmID (input)
The algorithm identification number for random number generation.
Seed (input/optional)

A seed used to generate THE random number. The caller can either pass a seed and seed
length in bytes or pass a callback function. If NULL is passed, the Cryptographic Service
Provider will use its default seed-handling mechanism.

Length (input)
The length of the random number to be generated.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a random number generation cryptographic context, given a handle of a CSP, an
algorithm identification number, a seed, and the length of the random number in bytes. The cryptographic
context handle is returned and can be used for the random number generation function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

190

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateRandom, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

191

CSSM_CSP_CreateSignatureContext

NAME
CSSM_CSP_CreateSignatureContext — Create a signature cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateSignatureContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

const CSSM_ACCESS_CREDENTIALS *AccessCred,

const CSSM_KEY *Key,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)
The algorithm identification number for a signature/verification algorithm.
AccessCred (input/optional)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. Credentials are required for signature operations, not for verify
operations.

Key (input)

The key used to sign and verify. The caller passes a pointer to a CSSM_KEY structure
containing the key and the key length.

NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a signature cryptographic context for sign and verify, given a handle of a CSP, an
algorithm identification number, a key, and an AccessCredentials structure. The AccessCredentials
structure will be used to unlock the private key when this context is used to perform a signing operation. The
cryptographic context handle is returned. The cryptographic context handle can be used to call sign and verify
cryptographic functions.

192

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataUpdate, CSSM_SignDataFinal,
CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_VerifyDataUpdate, CSSM _VerifyDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAtiributes

193

CSSM_CSP_CreateSymmetricContext
NAME

CSSM_CSP_CreateSymmetricContext — Create a symmetric encryption cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_CreateSymmetricContext
(CSSM_CSP_HANDLE CSPHandle,

CSSM_ALGORITHMS AlgorithmID,

CSSM_ENCRYPT_MODE Mode,

const CSSM_ACCESS_CREDENTIALS *AccessCred,

const CSSM_KEY *Key,

const CSSM_DATA *InitVector,

CSSM_PADDING Padding,

void *Reserved,

CSSM_CC_HANDLE *NewContextHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

AlgorithmID (input)

The algorithm identification number for symmetric encryption.
Mode (input)

The mode of the specified algorithm ID.
AccessCred (input/optional)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a

passphrase, or the caller can specify a callback function the CSP can use to obtain one or

more credentials. Credentials may be required for encryption, decryption, and wrapping
operations.

Key (input)

The key used for symmetric encryption. The caller passes a pointer to a CSSM_KEY
structure containing the key.

InitVector (input/optional)
The initial vector for symmetric encryption. This is typically specified for block ciphers.

Padding (input/optional)

194

The method for padding. This is typically specified for ciphers that pad.
Reserved (input)

Reserved for future use.
NewContextHandle (output)

Cryptographic context handle.

DESCRIPTION

This function creates a symmetric encryption cryptographic context, given a handle of a CSP, an algorithm
identification number, a key, an initial vector, padding, and the number of encryption rounds.
Algorithm-specific attributes must be added to the context after the initial creation using the
CSSM_UpdateContextAttributes () function. The cryptographic context handle is returned. The
cryptographic context handle can be used to call symmetric encryption functions and the cryptographic wrap
or unwrap functions.

Additional attributes can be added to the newly created context using the

CSSM_UpdateContextAttributes () function . Incremental attributes of interest when using this context to
unwrap a key include a handle-pair identifying a Data Storage Library service module and an open data store
for CSPs that manage multiple, persistent key stores. If a CSP does not support multiple key stores, the CSP
ignores the presence or absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DeleteContext, CSSM_EncryptData, CSSM_EncryptDatalnit,
CSSM_EncryptDataUpdate, CSSM_EncryptDataFinal, CSSM_GetContext, CSSM_GetContextAttribute,
CSSM_QuerySize, CSSM_SetContext, CSSM_UpdateContextAttributes

195

CSSM_CSP_GetLoginAcl

NAME
CSSM_CSP_GetLoginAcl — Get description of CSP ACL entries (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_GetLoginAcl
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_STRING *SelectionTag,

uint32 *NumberOfAclInfos,
CSSM_ACL_ENTRY_INFO_PTR *AclInfos)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

SelectionTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries controlling login sessions. To retrieve a description of all ACL entries
controlling login sessions, this parameter must be NULL.

NumberOfAclInfos (output)

The number of entries in the Ac1Infos array. If no ACL entry descriptions are returned,
this value is zero.

AclInfos (output)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in this
structure can be used during the current attach session and the current login session to
reference specific ACL entries for editing. The structure is allocated by the service provider
and must be released by the caller when the structure is no longer needed. If no ACL entry
descriptions are returned, this value is NULL.

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the CSP and used to control login
sessions with the CSP. The optional input SelectionTag parameter restricts the returned descriptions to
those ACL entries with a matching EntryTag value. If a SelectionTag value is specified and no matches are
found, zero descriptions are returned. If no SelectionTag is specified, a description of all ACL entries used to
control login sessions are returned by this function.

Each AclInfo structure contains:

e Public contents of an ACL entry

196

e ACL EntryHandle, which is a unique value defined and managed by the service provider

The public ACL entry information returned by this function includes:

e Subject type — A CSSM_LIST structure containing one element identifying the type of subject stored in
the ACL entry.

¢ Delegation flag — A CSSM_BOOL value indicating whether the subject can delegate the permissions
recorded in the authorization array.

e Authorization array — A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for
which permission is granted to the subject.

e Validity period — A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time
and the stop time for which the ACL entry is valid.

¢ ACL entry tag — A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_Login, CSSM_CSP_LoginAclCSSM_CSP_Logout

197

CSSM_CSP_GetLoginOwner
NAME
CSSM_CSP_GetLoginOwner — Get login owner data (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_GetLoginOwner
(CSSM_CSP_HANDLE CSPHandle,
CSSM_ACL_OWNER_PROTOTYPE_PTR Owner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

Owner (output)
A CSSM_ACL_OWNER_PROTOTYPE describing the login owner.

DESCRIPTION
This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current login owner of the CSP.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_ChangeLoginOwner

198

CSSM_CSP_Login
NAME
CSSM_CSP_Login — Log user in to the CSP (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_Login
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_DATA *LoginName,

const void *Reserved)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)
Handle of the CSP to log in to.
AccessCred (input)

A pointer to the set of one or more credentials required to log in to the token or
Cryptographic Service Provider. The credentials structure can contain an immediate value
for the credential, such as a passphrase or PIN, or the caller can specify a callback function
the CSP can use to obtain one or more credentials.

LoginName (input/optional)

A name or ID of the caller. The value is used with the provided AccessCred to authenticate
and authorize the caller for login with the CSP. The CSP can require that a name value be
provided. If a name value is not provided, the CSP can assume a default name under which
to perform the authentication and authorization check, or the login request can fail.

Reserved (input)

This field is reserved for future use. The value NULL should always be given. (May be used
for multiple user support in the future.)

DESCRIPTION

Logs the user in to the CSP, allowing for multiple login types.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

199

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_INVALID_ LOGIN_NAME
CSSMERR_CSP_ALREADY_ LOGGED_IN

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_GetLoginAcl, CSSM_CSP_ChangeLoginAcl, CSSM_CSP_Logout

200

CSSM_CSP_Logout
NAME
CSSM_CSP_Logout — Terminate the login session (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_CSP_Logout
(CSSM_CSP_HANDLE CSPHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)
Handle for the target CSP.

DESCRIPTION

Terminates the login session associated with the specified CSP handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_Login, CSSM_CSP_GetLoginAcl, CSSM_CSP_ChangeLoginAcl

201

CSSM _DeleteContext
NAME

CSSM_DeleteContext — Free the context structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_DeleteContext
(CSSM_CC_HANDLE CCHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CCHandle (input)
The handle that describes a context to be deleted.

DESCRIPTION

This function frees the context structure allocated by any of the CSSM_Createxxxxx context functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_CreateAsymmetricContext, CSSM_CSP_CreateKeyGenContext,
CSSM_CSP_CreateDigestContext, CSSM_CSP_CreateSignatureContext,
CSSM_CSP_CreateSymmetricContext, and others.

202

CSSM _DeleteContextAttributes

NAME
CSSM_DeleteContextAttributes — Delete internal data (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM DeleteContextAttributes
(CSSM_CC_HANDLE CCHandle,
uint32 NumberOfAttributes,
const CSSM_CONTEXT_ATTRIBUTE *ContextAttributes)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS
CCHandle (input)
The handle that describes a context that is to be deleted.
NumberOfAttributes (input)
The number of attributes to be deleted as specified in the array of context attributes.
ContextAttributes (input)

The attributes to be deleted from the context. Only the attribute type is required. Any
attribute values in the CSSM_CONTEXT_ATTRIBUTE structures are ignored.

DESCRIPTION

This function deletes internal data associated with the given attribute type of the context handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

203

Online Help
Functions: CSSM_GetContextAttributes, CSSM_UpdateContextAttributes

204

cssm_DeregisterManagerServices
NAME

cssm_DeregisterManagerServices — Deregister manager services

SYNOPSIS

include <cssm.h>

void CSSMAPI cssm_DeregisterManagerServices
(const CSSM_GUID *Guid) ;

PARAMETERS

GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for this
module.

DESCRIPTION

This function is used by an elective module manager to deregister its function table with CSSM core services
prior to termination. This function is invoked by an elective module manager only when exiting due to an
error condition detected by the EMM. This allows CSSM to clean up any state information associated with the
exiting EMM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

205

CSSM_FreeContext
NAME

CSSM_FreeContext — Free memory associated with the context structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_FreeContext
(CSSM_CONTEXT_PTR Context)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Context (input)

The pointer to the memory that describes the context structure.

DESCRIPTION

This function frees the memory associated with the context structure.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetContext

206

CSSM_GetAPIMemoryFunctions
NAME

CSSM_GetAPIMemoryFunctions — Retrieve the memory function table associated with the security
service module

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetAPIMemoryFunctions
(CSSM_MODULE_HANDLE AddInHandle,
CSSM_API_MEMORY_FUNCS_PTR AppMemoryFuncs)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

AddInHandle (input)

The handle to the security service module that is associated with the requested memory
function table.

AppMemoryFuncs (output)

The pointer to an empty memory functions table. Upon function return, the table is filled
with the memory function pointers associated with the specified attach handle. Caller has to
allocate the buffer.

DESCRIPTION

This function retrieves the memory function table associated with the security service module identified by
the input handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Intel CDSA Application Developer's Guide

207

cssm_GetAppMemoryFunctions
NAME

cssm_GetAppMemoryFunctions — Get service functions (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_GetAppMemoryFunctions
(CSSM_MODULE_HANDLE hAddIn,
CSSM_UPCALLS_PTR UpcallTable)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

hAddIn (input)

The handle identifying the attach-session whose memory management function table is
returned by this function.

UpcallTable (output)

The table containing sets of service functions among them a set of four memory
management functions provided by the application that initiated the attach-session
identified by haddIn.

DESCRIPTION

This function gets a function table containing sets of service functions. Among these service functions are four
application-provided memory management functions. The elective module manager can use these functions to
manage memory on behalf of the application. The returned function table is specific to the attach-session
identified by the module handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

208

cssm_GetAttachFunctions
NAME

cssm_GetAttachFunctions — Get SPI function table (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_GetAttachFunctions
(CSSM_MODULE_HANDLE hAddIn,
CSSM_SERVICE_MASK AddinType,

void **SPFunctions,

CSSM_GUID_PTR Guid)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

hAddIn (input)

The handle identifying the attach-session whose function table is to be returned by this
function.

AddinType (input)

A CSSM_SERVICE_MASK value identifying the type of service module whose function
table is to be returned by this function.

SPFunctions (output)

A pointer to the service module function table, which CSSM acquired from the service
module during module-attach processing. The module manager should use this table to

forward application invocation of the elective APIs to their corresponding SPIs. The memory

pointed to by the function pointers should not be freed by the EMM.

Guid (output)

A CSSM_GUID value identifying the service module whose function table is to be returned

by this function.

DESCRIPTION

This function returns an SPI function table for the service module identified by the module handle. The

module must be of the type specified by the service mask. The SPFunctions parameter contains the returned
function table. The elective module manager must use this function table to forward an application's call to
the elective APIs to their corresponding SPIs represented in the function table. The returned Guid identifies

the service module. It can be used to locate credentials and other information about the service module.

This function sets a lock on the SP functions table. The CSSM service function
cssm_ReleaseAttachFunctions () must be used to release the lock.

209

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

210

CSSM_GetContext

NAME
CSSM_GetContext — Get context information (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetContext
(CSSM_CC_HANDLE CCHandle,
CSSM_CONTEXT_PTR *Context)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CCHandle (input)
The handle to the context information.
Context (output)

The pointer to the CSSM_CONTEXT_PTR structure that describes the context associated
with the CCHandle handle. The pointer will be set to NULL if the function fails. Use
CSSM_FreeContext () to free the memory allocated by the CSSM.

DESCRIPTION

This function retrieves the context information when provided with a context handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_FreeContext, CSSM_SetContext

211

CSSM_GetContextAttribute

NAME
CSSM_GetContextAttribute — Get context attribute (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetContextAttribute
(const CSSM_CONTEXT *Context,

uint32 AttributeType,
CSSM_CONTEXT_ATTRIBUTE_PTR *ContextAttribute)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Context (input)

A pointer to the context.
AttributeType (input)

The attribute type of the desired attribute value.
ContextAttribute (output)

The pointer to the CSSM_CONTEXT_ATTRIBUTE that describes the context attributes
associated with the CCHandle handle and the attribute type. The pointer will be set to
NULL if the function fails. Call CSSM_DeleteContextAttributes () to free memory
allocated by the CSSM.

DESCRIPTION

This function returns the value of a context attribute. Context references the cryptographic context to be
searched for the attribute specified by AttributeType. If the specified attribute is not present, then a NULL
pointer is returned.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_ATTRIBUTE_NOT_IN_CONTEXT

212

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_DeleteContextAttributes, CSSM_GetContext

213

CSSM_GetKeyAcl

NAME
CSSM_GetKeyAcl — Get ACL entries by key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetKeyAcl
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_KEY *Key,

const CSSM_STRING *SelectionTag,
uint32 *NumberOfAclInfos,
CSSM_ACL_ENTRY_INFO_PTR *AclInfos)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

Key (input)
A pointer to the target key whose associated ACL entries are scanned and returned.
SelectionTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries for the target Key. To retrieve a description of all ACL entries for the target
Key, this parameter must be NULL.

NumberOfAclInfos (output)

The number of entries in the Ac1Infos array. If no ACL entry descriptions are returned,
this value is zero.

AclInfos (output)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in this
structure can be used during the current attach session to reference specific ACL entries for
editing. The structure is allocated by the service provider and must be released by the caller

when the structure is no longer needed. If no ACL entry descriptions are returned, this
value is NULL.

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the CSP and associated with the
target key. The optional input SelectionTag restricts the returned descriptions to those ACL entries with a
matching EntryTag value. If a SelectionTag value is specified and no matches are found, zero descriptions
are returned. If no SelectionTag is specified, a description of all ACL entries associated with the key is
returned by this function.

214

Each AclInfo structure contains:

e Public contents of an ACL entry

e ACL EntryHandle, which is a unique value defined and managed by the service provider
The public ACL entry information returned by this function includes:

Subject type and value

A CSSM_LIST structure containing one element identifying the type of subject stored in the
ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the permissions recorded
in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for which
permission is granted to the subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time and
the stop time for which the ACL entry is valid.

ACL entry tag
A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_ChangeKeyAcl

215

CSSM_GetKeyOwner

NAME
CSSM_GetKeyOwner — Get data describing key owner (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetKeyOwner
(CSSM_CSP_HANDLE CSPHandle,

const CSSM_KEY *Key,
CSSM_ACL_OWNER_PROTOTYPE_PTR Owner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CSPHandle (input)

The module handle that identifies the Cryptographic service provider to perform this
operation.

Key (input)
A pointer to the target key whose associated Owner is returned.
Owner (output)
A CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Key.

DESCRIPTION
This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

216

Online Help
Functions: CSSM_ChangeKeyOwner

217

CSSM_GetModuleGUIDFromHandle

NAME
CSSM_GetModuleGUIDFromHandle — Get GUID of the attached module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetModuleGUIDFromHandle
(CSSM_MODULE_HANDLE ModuleHandle,
CSSM_GUID_PTR ModuleGUID)

PARAMETERS

ModuleHandle (input)
The handle of the module for which the GUID should be returned.
ModuleGUID (output)

The GUID of the module associated with ModuleHandle.n.

DESCRIPTION
This function returns the GUID of the attached module identified by the specified handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetSubserviceUIDFromHandle

218

cssm_GetModuleIlnfo
NAME

cssm_GetModuleInfo — Get the module handle state information

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_GetModuleInfo
(CSSM_MODULE_HANDLE Module,
CSSM_GUID_PTR Guid,

CSSM_VERSION_PTR Version,

uint32 *SubServiceld,
CSSM_SERVICE_TYPE *SubServiceType,
CSSM_ATTACH_FLAGS *AttachFlags,
CSSM_KEY_HIERARCHY *KeyHierarchy,
CSSM_API_MEMORY_FUNCS_PTR AttachedMemFuncs,
CSSM_FUNC_NAME_ADDR_PTR FunctionTable,
uint32 NumFunctionTable) ;

PARAMETERS

Module (input)
The handle to a service provider module.
GUID (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for this
module.

Version (output)

The version number set on ModuleAttach.
SubServicelId (output)

The slot number of the reader to which the module is attached.
SubServiceType (output)

A CSSM_SERVICE_TYPE value identifying the class of security service.
AttachFlags (output)

This parameter provides the caller with session specific information associated with the
module handle.

KeyHierarchy (output)

The key hierarchy supplied when the module was attached.
AttachedMemFuncs (output)

The memory functions supplied when the module was attached.
FunctionTable (input/output optional)

A table of function-name and API function-pointer pairs. The caller provides the name of
the functions as input. The corresponding API function pointers are returned on output.

219

The function table allows dynamic linking of CDSA interfaces, including interfaces to
Elective Module Managers, which are transparently loaded by CSSM during the
CSSM_ModuleaAttach () function. The caller of this function should allocate the memory for
the number of slots required.

NumFunctionTable (input)

The number of entries in the FunctionTable parameter. If no FunctionTable is provided, this
value must be zero.

DESCRIPTION

This function returns the state information associated with the module handle. The information returned by
this function is that set by the call to the CSSM_ModuleAttach() function. The entry point to this function is
provided to a service module in a table of upcall functions passed to the service provider during module attach
processing.

If the PVC checking for service providers is on, the service provider has to introduce itself before calling this
function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

220

CSSM_GetPrivilege
NAME
CSSM_GetPrivilege — Get CSSM privilege value (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetPrivilege
(CSSM_PRIVILEGE *Privilege;

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Privilege (output)
The CSSM_PRIVILEGE value currently set.

DESCRIPTION

The CcssSM_GetPrivilege() function returns the CSSM_PRIVILEGE value currently established in the
framework.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

221

CSSM_GetSubserviceUIDFromHandle
NAME

CSSM_GetSubserviceUIDFromHandle — Complete a subservice unique identifier structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_GetSubserviceUIDFromHandle
(CSSM_MODULE_HANDLE ModuleHandle,
CSSM_SUBSERVICE_UID_PTR SubserviceUID)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleHandle (input)

Handle of the module subservice for which the subservice unique identifier should be
returned.

SubserviceUID (output)

Subservice UID value associated with ModuleHandle. The caller has to allocate the buffer.

DESCRIPTION

This function completes a structure containing the persistent unique identifier of the attached module
subservice, as identified by the input handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetModuleGUIDFromHandle

222

CSSM._Init

NAME
CSSM_Init — Initialize CSSM (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_Init (
const CSSM_VERSION *Version,
CSSM_PRIVILEGE_SCOPE Scope,
const CSSM_GUID * CallerGuid,
CSSM_KEY_HIERARCHY KeyHierarchy,
CSSM_PVC_MODE *PvcPolicy,

const void *Reserved)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Version (input)

The major and minor version number of the CSSM release the application is compatible

with.

Scope (input)

The scope of the global privilege value. The scope may either process scope wide
(CSSM_PRIVILEGE_SCOPE_PROCESS) or thread wide
(CSSM_PRIVILEGE_SCOPE_THREAD). This parameter is ignored after the first call to

CSSM_TInit().

CallerGuid (input)

The GUID associated with the caller. This GUID is used to locate the caller's credentials
when evaluating the request for privileges.

KeyHierarchy (input)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

PvcPolicy (input/output)

Configures the way in which pointer validation checks will be performed. If not the first call
to CSSM_Init (), the previously configured policy is returned in the PvcPolicy bitmask and
the cssM_Init () call continues processing. If successfully completed, the error code
CSSMERR_CSSM_PVC_ALREADY_CONFIGURED is returned.

Value Description
0 PVC validation is not performed
1 PVC validation is performed on application modules

223

Value Description

2 PVC validation is performed on service provider
modules
3 Both types of PVC validations are performed

Reserved (input)

A reserved input.

DESCRIPTION

This function initializes CSSM and verifies that the version of CSSM expected by the application is
compatible with the version of CSSM on the system. This function should be called at least once by the
application. It is an error to call any function of the CSSM API other than CSSM_Init () before a call to
CSSM_TInit () has returned successfully (that is, with CSSM_OK).

Implementations of CSSM might have platform specific characteristics associated with the implementation of
CcssM_SetPrivilege () API The privilege value might have thread specific scope or process specific scope.
The application can specify the anticipated scope at CSSM_1Init (). If the anticipated scope is not appropriate
for the implementation, an error is returned. The scope can be configured only once. Subsequent attempts to
configure scope are ignored.

CSSM integrity model includes the ability to make and check assertions about trusted dynamically loaded
libraries. Checking assertions happens while the program executes. It is known as Pointer Validation
Checking (PVC). Pointer validation checking can be applied every time execution flow crosses the CSSM API
or SPI interfaces.

Performing pointer validation checks has two purposes:

e It allows exportation of CSSM.
e It aids in detering unanticipated run-time modification of the program.

The CSSM can be configured to bypass pointer validation under some circumstances. Pointer validation
cannot be bypassed when privileged operations are being performed.

The prerequisites for performing PVC on another module, be it service provider, CSSM, or other library, are:

¢ The module must have been signed and have an accompanying signed manifest.
¢ The module must be loaded into process address space.
¢ An entry-point into the module must be available.

Typically, the entry points are discovered when a module's functions are called by another module. The CSSM
performs pointer validation checks based on the configured checking policy. Checking policies are established
by the manufacturers of CSSM and other libraries. The checking policy to be applied during execution is
configured using the cssM_TInit () call. The policy can be configured once during the life of the process and
occurs the first time CSSM_Init () is called.

PVC POLICY CONFIGURATION OPTIONS

Pointer validation checking can be applied at the CSSM API interface, the CSSM SPI interface, or both. The
CSSM vendor can configure a default policy through instructions contained in the CSSM signed manifest.
Manifest attributes pertaining to pointer validation checking are defined as follows:

224

Module

Tag

Value

Description

CSSM

CSSM

CSSM

CSSM

App

App

App

App

CDSA_PVC_API

CDSA_PVC_API

CDSA_PVC_SPI

CDSA_PVC_SPI

CDSA_PVC_API

CDSA_PVC_API

CDSA_PVC_SPI

CDSA_PVC_SPI

unspecified

OFF

unspecified

OFF

EXEMPT

unspecified

EXEMPT

unspecified

CSSM will perform PVC
checks at the API
boundary.

CSSM will not perform
PVC checks at the API
boundary.

CSSM will perform PVC
checks at the SPI
boundary.

CSSM will not perform
PVC checks at the SPI
boundary.

The calling module is
allowed to override the
CSSM policy for the API
boundary.

The calling module
cannot weaken the
CSSM API policy.

The calling module is
allowed to override the
CSSM policy for the SPI
boundary.

The calling module
cannot weaken the
CSSM SPI policy.

The PvcPolicy parameter to CSSM_TInit () configures the run-time policy for the process. The PvcPolicy
parameter is a bitmask allowing both API and SPI policies to be specified simultaneously. Unspecified policies
default to the most conservative operational mode. CSSM performs pointer validation checks unless explicitly
disabled. Application modules cannot override CSSM policy unless exemptions are explicitly granted. The
following table shows the what policies can be configured for various manifest attribute values:

CSSM Manifest

Calling Module Manifest

Acceptable PvcPolicy Values

CDSA_PVC_API=<n/a>
CDSA_PVC_API=OFF
CDSA_PVC_API=<n/a>
CDSA_PVC_API=OFF

CDSA_PVC_API=EXEMPT

CDSA_PVC_API=EXEMPT

CDSA_PVC_API=<n/a>

CDSA_PVC_API=<n/a>

API checks: off (0) or on (1)
API checks: off (0) or on (1)
API checks: on (1)

API checks: off (0) or on (1)

The following table shows the PvcPolicy configuations available for the SPI:

225

SSM Manifest

Calling Module Manifest

Acceptable PvcPolicy Values

CDSA_PVC_SPI=<n/a>
CDSA_PVC_SPI=OFF
CDSA_PVC_SPI=<n/a>
CDSA_PVC_SPI=OFF

CDSA_PVC_SPI=EXEMPT
CDSA_PVC_SPI=EXEMPT
CDSA_PVC_SPI=<n/a>
CDSA_PVC_SPI=<n/a>

SPI checks: off (0) or on (2)
SPI checks: off (0) or on (2)
SPI checks: on (2)

SPI checks: off (0) or on (2)

If an application module does not have a manifest and CSSM requires the application module be subject to
pointer validation checks, then pointer validation checks fail and CSSM will not operate with the anonymous
module. All service provider modules are expected to have signed manifests.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_SCOPE_NOT_SUPPORTED
CSSMERR_CSSM_PVC_ALREADY_CONFIGURED

CSSMERR_CSSM_INVALID_PVC

SEE ALSO

Books

Intel CDSA Application Developer's Guide

226

CSSM_Introduce

NAME
CSSM_Introduce — Identify an executable module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_Introduce
(const CSSM_GUID *ModulelID,
CSSM_KEY_HIERARCHY KeyHierarchy)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleID (input)

The CSSM_GUID of the calling library or other library that might call CDSA interfaces.
The GUID is used to locate the signed manifest credentials of the named module to
calculate module integrity information.

KeyHierarchy (input)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

DESCRIPTION

The cSSM_Introduce() function identifies a dynamically loadable executable module (for example, DLL) to
the CSSM framework. CSSM uses the ModuleID information to locate the signed manifest and library on the
host platform. The Module Directory Service (MDS) should be used to obtain the information. CSSM performs
an integrity cross-check on the module identified by ModuleID and caches the result in an internal structure.
The integrity cross-check uses the KeyHierarchy information to determine which classes of embedded public
keys must serve as anchors when doing certificate path validation. If the export key hierarchy is specified, the
set of export privileges contained in the manifest are retrieved from the manifest and saved with the integrity
state information in the cache. Privileges granted to a module are accepted only if the manifest sections
containing the privilege set have been signed by a principal in the export key hierarchy class and that hash of
the module binary is part of the hash of the privilege attributes.

The CcSSM_Introduce() can be called at any time after CSSM_Init (), by any module, on behalf of any module.

Once a module is introduced into CSSM the load location of the module must not change. If the load location
changes then the module must be reintroduced. Once introduced, the module load location, integrity, and
privilege information is held until CSSM_Terminate () is called or the process terminates. Initialization of
internal data structures maintaining the table of introductions is performed when CSSM_TInit () is called.

If cssM_Introduce () is called on behalf of another module, then the caller needs to make sure that the other
module is loaded into the process address space. If the library is already loaded into process address space,
but a reference to the library cannot be obtained, a different error is returned
(CSSMERR_CSSM_LIB_REF_NOT_FOUND).

227

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_KEY_ HIERARCHY
CSSMERR_CSSM_LIB_REF_NOT_FOUND

SEE ALSO
Intel CDSA Application Developer's Guide

228

cssm_IsFuncCallValid

NAME
cssm_IsFuncCallValid — Check secure linkage (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_IsFuncCallvalid
(CSSM_MODULE_HANDLE hAddin,

CSSM_PROC_ADDR SrcAddress, /* application */,
CSSM_PROC_ADDR DestAddress,

CSSM_PRIVILEGE InPriv,

CSSM_PRIVILEGE *OutPriv,

CSSM_BITMASK Hints,

CSSM_BOOL * IsOK)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

hAddIn (input)

The handle identifying the attach-session whose caller and callee scope is being tested by
this function.

SrcAddress (input/optional)

An address to be tested for containment within the application that requested and created
the attach-session identified by the module handle.

DestAddress (input/optional)

An address within a service module. The destination address must be valid for the service
provider associated with the attach-session identified by the module handle.

InPriv (input)

The privilege value to be checked. Privilege checks apply to both Srcaddress and
DestAddress.

OutPriv (output)

If non-NULL, the global privilege will be checked and returned in OutPriv.
Hints (input)

A flag providing search hints.
IsOK (output)

CSSM_TRUE if success, CSSM_FALSE if fail.

229

DESCRIPTION

This function checks secure linkage between an application and a service module. Based on address scope of
the application and the service module associated with the attach handle, CSSM determines whether the
SrcAddress is within an associated application and DestAddress is within the associated service module.
The scope of the application and the service module is determined by their respective signed manifest
credentials, which attest to the integrity of each entity.

This function uses the input privilege value InPriv to compare against the privilege range associated with
the ranges for SrcAddress and DestaAddres. The privilege check is performed when the InPriv privilege
value is non-NULL. If the EMM wants the global privilege value to be checked, InPriv is zero and OutPrivis
non-NULL. CSSM will return the privilege value in OutPriv. If integrity only checks are to be performed,
InPriv is zero and OutPriv is NULL.

Another parameter called Hints is used to help CSSM efficiently perform the integrity and privilege
verification operations. Hints helps CSSM know where to look to find the desired state information. In the
regular case, CSSM will look for SrcAddress in the CallerList and DestAddress in the AttachList. For
callback functions, the SrcAddress and DestAddress are likely to be in AttachList.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

230

CSSM_ListAttachedModuleManagers

NAME
CSSM_ListAttachedModuleManagers — Get a list of GUIDs for the attached module
manager(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ListAttachedModuleManagers
(uint32 *NumberOfModuleManagers,
CSSM_GUID_PTR ModuleManagerGuids)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

NumberOfModuleManagers (input/output)

The number of GUIDs in the array. If the array is not large enough, then the actual number
needed is returned and the error CSSMERR_CSSM_BUFFER_TOO_SMALL is returned.
The caller should then allocate an appropriately sized list and call the function again. If the
supplied list is larger than needed, the number of module managers found is returned and
no error is set.

ModuleManagerGuids (input/output)

A pointer to an array of CSSM_GUID structures, one per active module manager. The caller
allocates this array.

DESCRIPTION

This function returns a list of GUIDs for the currently attached and active module managers in the CSSM
environment.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_BUFFER_TOO_SMALL
CSSMERR_CSSM_INVALID_GUID

SEE ALSO

Intel CDSA Application Developer's Guide

231

CSSM_ModuleAttach

NAME
CSSM_ModuleAttach — Attach and verify a service provider module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ModuleAttach
(const CSSM_GUID *ModuleGuid,

const CSSM_VERSION *Version,

const CSSM_API_MEMORY_FUNCS *MemoryFuncs,
uint32 SubservicelID,

CSSM_SERVICE_TYPE SubServiceType,
CSSM_ATTACH_FLAGS AttachFlags,
CSSM_KEY_HIERARCHY KeyHierarchy,
CSSM_FUNC_NAME_ADDR *FunctionTable,
uint32 NumFunctionTable,

const void *Reserved,
CSSM_MODULE_HANDLE_PTR NewModuleHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleGuid (input)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

Version (input)

The major and minor version number of CDSA that the application is compatible with.
MemoryFuncs (input)

A structure containing pointers to the memory routines.
SubservicelID (input)

A subserviceID identifying a particular subservice within the module. Subservice IDs can
be obtained from MDS or gleaned from insertion events reported through the callback
function installed through csSsSM_ModulelLoad (). Modules that provide only one service can
use zero as their subservice ID.

SubServiceType (input)

A service mask describing the type of service the caller is requesting of the service provider
module.

AttachFlags (input)
A mask representing the caller's request for session-specific services.

KeyHierarchy (input)

232

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

FunctionTable (input/output/optional)

A table of function-name and API function-pointer pairs. The caller provides the name of
the functions as input. The corresponding API function pointers are returned on output.
The function table allows dynamic linking of CDSA interfaces, including interfaces to
Elective Module Managers (EMMs), which are transparently loaded by CSSM during
CSSM_ModuleAttach().

NumFunctionTable (input)

The number of entries in the FunctionTable parameter. If no FunctionTable is provided,
this value must be zero.

Reserved (input)
This field is reserved for future use. It should always be set to zero
NewModuleHandle (output)

A new module handle that can be used to interact with the requested service provider. The
value will be set to CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function attaches the service provider module and verifies that the version of the module expected by the
application is compatible with the version on the system. The module can implement subservices (described
in your service provider's documentation). The caller can specify a specific subservice provided by the module.

If the subservice is supported as part of the CSSM framework as well as by an EMM, ModuleAttach attaches
the Service Provider to the CSSM framework. If the subservice is supported only by an EMM, ModuleAttach
loads the appropriate EMM. The service provider is given an indication of whether it is being attached to the
CSSM framework or an EMM.

The caller can provide a function table containing function names for the desired services. On output each
function name is matched with an API function pointer. The caller can use the pointers to invoke service
module operations through CSSM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_ADDIN_FUNCTION_TABLE
CSSMERR_CSSM_EMM_AUTHENTICATE_FAILED
CSSMERR_CSSM_ADDIN_AUTHENTICATE_FAILED
CSSMERR_CSSM_INVALID_SERVICE_MASK
CSSMERR_CSSM_MODULE_NOT_LOADED
CSSMERR_CSSM_INVALID_SUBSERVICEID
CSSMERR_CSSM_INVALID_KEY_ HIERARCHY
CSSMERR_CSSM_INVALID_GUID

233

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_ModuleDetach

234

CSSM_ModuleDetach

NAME
CSSM_ModuleDetach — Detach application from service provider module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ModuleDetach
(CSSM_MODULE_HANDLE ModuleHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleHandle (input)

The handle that describes the service provider module.

DESCRIPTION

This function detaches the application from the service provider module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_ModuleAttach

235

CSSM_ModuleLoad

NAME
CSSM_ModuleLoad — Initialize the security service module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ModuleLoad

(const CSSM_GUID *ModuleGuid,
CSSM_KEY_HIERARCHY KeyHierarchy,
CSSM_API_ModuleEventHandler AppNotifyCallback,
void* AppNotifyCallbackCtx)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleGuid (input)
The GUID of the module selected for loading.
KeyHierarchy (input)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

AppNotifyCallback (input/optional)

The event notification function provided by the caller. This defines the callback for event
notifications from the loaded (and later attached) service module.

AppNotifyCallbackCtx (input/optional)

When the selected service module raises an event, this context is passed as an input to the
event handler specified by AppNotifyCallback. CSSM does not interpret or modify the
value of AppNotifyCallbackCtx.

DESCRIPTION

This function initializes the security service module. Initialization includes registering the application's
module-event handler and enabling events with the security service service module. The application can
choose to provide an event handler function to receive notification of insert, remove, and fault events. The
specified event handler is the single callback point for all attached sessions with the specified service module.

The function CSSM_TInit () must be invoked prior to calling CSSM_ModuleLoad (). The function
CSSM_ModuleAttach () can be invoked multiple times per call to CSSM_Modulel.oad ().

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

236

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_GUID
CSSMERR_CSSM_ADDIN_LOAD_FATILED
CSSMERR_CSSM_EMM_LOAD_FAILED
CSSMERR_CSSM_INVALID_KEY_ HIERARCHY

SEE ALSO
Intel CDSA Application Developer's Guide

237

CSSM_ModuleUnload

NAME
CSSM_ModuleUnload — Deregister event notification callbacks (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_ModuleUnload

(const CSSM_GUID *ModuleGuid,
CSSM_API_ModuleEventHandler AppNotifyCallback,
void* AppNotifyCallbackCtx)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleGuid (input)
The GUID of the module selected for unloading.
AppNotifyCallback (input/optional)

The event notification function to be deregistered. The function must have been provided by
the caller in CSSM_ModuleLoad ().

AppNotifyCallbackCtx (input/optional)

The event notification context that was provided in the corresponding call to
CSSM_ModuleLoad ().

DESCRIPTION

The function deregisters event notification callbacks for the caller identified by ModuleGuid. The

CSSM _ModuleUnload () function is the analog call to CSSM_ModulelLoad (). If all callbacks registered with
CSSM are removed, then CSSM unloads the service module that was loaded by calls to CSSM_ModuleLoad ().
Calls to CSSM_ModuleUnload () that are not matched with a previous call to CSSM_ModulelLoad () result in an
error.

The CSSM uses the three input parameters ModuleGuid, AppNotifyCallback, and AppNotifyCallbackCtx
to uniquely identify registered callbacks.

This function should be invoked after all necessary calls to CSSM_ModuleDetach () have been performed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

238

CSSMERR_CSSM_ADDIN_UNLOAD_FAILED
CSSMERR_CSSM_EMM_UNLOAD_FATILED
CSSMERR_CSSM_EVENT_NOTIFICATION_CALLBACK_NOT_FOUND

SEE ALSO
Intel CDSA Application Developer's Guide

239

cssm_ReleaseAttachFunctions
NAME

cssm_ReleaseAttachFunctions — Release lock on the SP function table (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm_ReleaseAttachFunctions
(CSSM_MODULE_HANDLE hAddIn)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

hAddIn (input)

The handle identifying the attach-session whose function table is to be released by this
function.

DESCRIPTION

This function releases the lock on the SP function table for the service module identified by the module
handle. The SPI function table was obtained by the elective module manager through the
cssm_GetAttachFunctions () operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

240

CSSM_SetContext

NAME
CSSM_SetContext — Replace all context information (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_SetContext
(CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT *Context)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CCHandle (input)
The handle to the context.
Context (input)

The context data describing the service to replace the current service associated with
context handle CCHandle.

DESCRIPTION

This function replaces all context information associated with an existing context specified by CCHandle. The
contents of the basic context structure and all attributes included in that structure are replaced by the
context structure and attribute values contained in the Context input parameter.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_ATTRIBUTE
CSSMERR_CSSM_INVALID_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

241

Online Help
Functions: CSSM_GetContext

242

CSSM_SetPrivilege

NAME
CSSM_SetPrivilege — Store privilege value in CSSM framework (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_SetPrivilege
(CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS
Privilege (input)

The CSSM_PRIVILEGE value to be applied to subsequent calls to CSSM interfaces.

DESCRIPTION

The cssM_SetPrivilege () function accepts as input a privilege value and stores it in the CSSM framework.
The integrity credentials of the module calling CSSM_SetPrivilege () must be verified by CSSM before the
privilege value is updated. Integrity credentials are established using CSSM_Introduce (). CSSM will
perform a pointer validation check to ensure the caller has been previously introduced. The
CSSM_SetPrivilege () function will fail if no integrity information can be found for the caller.

After pointer validation checks, CSSM verifies the requested privilege is authorized. This is done by
comparing Privilege with the set of privileges contained in the caller manifest. If Privilege is not a
member, the CSSM_SetPrivilege () call fails.

Subsequent calls to the framework that require privileges inherit the privilege value previously established
by CSSM_SetPrivilege (). CSSM will perform pointer validation checks on the API caller before servicing the
API call. If OK, then the Privilege value is supplied to the SPI function.

Internally, CSSM builds and maintains privilege information based on the chosen scope of the
implementation. The scope may be dictated by the capabilities of the platform hosting the CSSM. If threading
is available, the privilege value can be associated with the thread ID of the currently executing thread. In this
scenario, CSSM can manage a table of tuples consisting of threadID and privilege value. If threading is not
available, the privilege value can be global to the process.

Because the selected privilege value is shared, the application programmer should take precautions to reset
the privilege value whenever program flow leaves the caller's module and again when control flow returns. In
general, any time there is a possibility for CSSM_SetPrivilege () to be called while within the context of the
security critical section, CSSM_SetPrivilege () should be called again. Otherwise, the module receiving
execution control could have called CSSM_SetPrivilege (), resulting in the privilege value being reset.

Data structures used to maintain the global privilege value should be initialized in CSSM_TInit (). This
includes lock initialization and preliminary resource allocation. The cSSM_Init () function is assumed to be
idempotent with respect to shared structure initialization. This means CSSM_Init () will ensure a single
thread initializes the shared structure and subsequent calls to CSSM_Init () will not reinitialize it. A
reference count of calls to CSSM_TInit () is needed to ensure matching calls to CSSM_Terminate () are handled.

243

Resource cleanup is performed at CSSM_Terminate () after the reference count falls to zero. The last call to
CSSM_Terminate () results in shared resources being freed and lock structures being released.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

244

CSSM_SPI ModuleAttach

NAME
CSSM_SPI_ModuleAttach — Attach a service provider module(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM_SPI_ModuleAttach
(const CSSM_GUID *ModuleGuid,

const CSSM_VERSION *Version,

uint32 SubservicelID,
CSSM_SERVICE_TYPE SubServiceType,
CSSM_ATTACH_FLAGS AttachFlags,
CSSM_MODULE_HANDLE ModuleHandle,
CSSM_KEY_HIERARCHY KeyHierarchy,
const CSSM_GUID *CssmGuid,

const CSSM_GUID *ModuleManagerGuid,
const CSSM_GUID *CallerGuid,

const CSSM_UPCALLS *Upcalls,
CSSM_MODULE_FUNCS_PTR *FuncTbl)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleGuid (input)
The CSSM_GUID of the invoked service provider module.
Version (input)

The major and minor version number of the required level of system services and features.
The service module must determine whether its services are compatible with the required
version.

SubservicelId (input)

The identifier for the requested subservice within this module. If only one service is
provided by the module, then subserviceId can be zero.

SubServiceType (output)

A CSSM_SERVICE_MASK indicating the type of services provided by the service module
and the ordering of the function table returned in the output parameter FuncTbl.

AttachFlags (input)
A mask representing the caller's request for session-specific services.
ModuleHandle (input)

The CSSM_HANDLE value assigned by CSSM and associated with the attach session being
created by this function.

245

KeyHierarchy (input)

The CSSM_KEY_HIERARCHY option directing CSSM which embedded key or keys to use
when verifying integrity of the named modules.

CssmGuid (input)

The CSSM_GUID of the CSSM invoking this function.
ModuleManagerGuid (input)

The CSSM_GUID of the module that will route calls to the service provider.
CallerGuid (input)

The CSSM_GUID of the caller who invoked CSSM_ModuleaAttach (), which resulted in
CSSM invoking this function.

Upcalls (input)

A set of function pointers the service module must use to obtain selected CSSM services and
to manage application memory. The memory management functions are provided when the
application invokes CSSM_ModuleAttach (). CSSM forwards these function pointers with
CSSM service function pointers to the module.

FuncTbl (output)

A CSSM_MODULE_FUNCS table containing pointers to the service module functions the
caller can use. CSSM uses this table to proxy calls from an application caller to the add-in
service module.

DESCRIPTION

This function is invoked by CSSM once for each invocation of CSSM_ModuleAttach (), specifying the module
identified by ModuleGuid. Four entities are stakeholders in this function and each is identified by a
CSSM_GUID value:

Service Module

The executing service provider performing the CSSM_SPI_ModuleAttach () operation. The
module is identified by ModuleGuid.

CSSM
The CSSM that invoked the service module. CSSM is identified by CssmGuid.
ModuleManagerGuid
The module that will be routing calls to the service provider. This value will be the same as
CssmGuid if CSSM is managing the calls to this service provider.
Caller

The entity that invoked CSSM through the CSSM_ModuleAttach () function. The caller is
identified by CallerGuid.

The service provider module should perform an integrity check of CSSM. CssmGuid can be used to locate
CSSM's signed manifest credentials. The service provider can require an integrity check of the Caller. The
CallerGuid parameter can be used to locate the Caller's signed manifest credentials. The KeyHierarchy flag
identifies the class of embedded public keys CSSM will use to check the integrity of the service provider. If the
manifest for the target module does not encounter an embedded key for all the key classes in KeyHierarchy,
the integrity cross-check fails.

246

The service module must verify compatibility with the system version level specified by Version. If the
version is not compatible, then this function fails. The service module should perform all initializations
required to support the new attached session and should return a function table for the SPI entry points that
can be invoked by CSSM in response to API invocations by CallerGuid. CSSM uses this function table to
dispatch requests for the attach session created by this function. Each attach session has its own function
table.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleDetach, CSSM_SPI_ModuleLoad

247

CSSM_SPI ModuleDetach

NAME
CSSM_SPI_ModuleDetach — Notify service module of a context event (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM_SPI_ModuleDetach
(CSSM_MODULE_HANDLE ModuleHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleHandle (input)

The CSSM_HANDLE value associated with the attach session being terminated by this
function.

DESCRIPTION

This function is invoked by CSSM once for each invocation of CSSM_ModuleDetach () specifying the
attach-session identified by ModuleHandle. The function entry point for CSSM_SPI_ModuleDetach is included
in the module function table CSSM_MODULE_FUNCS returned to CSSM as output of a successful
CSSM_SPI_ModuleAttach.

The service module must perform all cleanup operations associated with the specified attach handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleAttach, CSSM_SPI_ModuleUnload

248

CSSM_SPI ModuleLoad

NAME
CSSM_SPI_ModulelLoad — Initialize process between CSSM and the add-in service module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM_SPI_ModuleLoad

(const CSSM_GUID *CssmGuid,

const CSSM_GUID *ModuleGuid,
CSSM_SPI_ModuleEventHandler CssmNotifyCallback,
void* CssmNotifyCallbackCtx)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CssmGuid (input)
The CSSM_GUID of the caller. Used to locate the caller's signed manifest credentials.
ModuleGuid (input)

The CSSM_GUID of the invoked service provider module. Used to locate the module's
signed manifest credentials.

CssmNotifyCallback (input)

A function pointer for the CSSM event handler that manages events of type
CSSM_MODULE_EVENT.

CssmNotifyCallbackCtx (input)

The context to be returned to CSSM as input on each callback to the event handler defined
by CssmNotifyCallback.

DESCRIPTION

This function completes the module initialization process between CSSM and the add-in service module.
Before invoking this function, CSSM verifies the add-in service module's manifest credentials. If the
credentials verify this module is loaded (physically if required), the CSSM_SPI_ModulelLoad () function is
invoked.

The CssmGuid parameter identifies the caller and should be used by the module to locate the caller's signed
manifest credentials and to complete integrity verification and secure linkage checks on the caller. The
ModuleGuid identifies the invoked module and should be used by the module to locate its credentials and to
complete an integrity self-check.

The CssmNotifyCallback and CssmNotifyCallbackCtx parameters define a callback and callback context
respectively. The module must retain this information for later use. The module should use the callback to
notify CSSM of module events of type CSSM_MODULE_EVENT in any ongoing, attached sessions.

249

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleAttach, CSSM_SPI_ModuleUnload

250

CSSM_SPI ModuleUnload

NAME
CSSM_SPI_ModuleUnload — Disable events and deregister CSSM event notification (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM_SPI_ModuleUnload
(const CSSM_GUID *CssmGuid,

const CSSM_GUID *ModuleGuid,
CSSM_SPI_ModuleEventHandler CssmNotifyCallback,
void* CssmNotifyCallbackCtx)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS
CssmGuid (input)
The CSSM_GUID of the caller.
ModuleGuid (input)
The CSSM_GUID of the invoked service provider module.
CssmNotifyCallback (input)

A function pointer for the CSSM event handler that manages events of type
CSSM_MODULE_EVENT.

CssmNotifyCallbackCtx (input)

The context to be returned to CSSM as input on each callback to the event handler defined
by CssmNotifyCallback.

DESCRIPTION

This function disables events and deregisters the CSSM event-notification function. The add-in service
module can perform cleanup operations, reversing the initialization performed in CSSM_SPI_ModuleLoad().

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

251

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleDetach, CSSM_SPI_ModuleLoad

252

CSSM_Terminate
NAME
CSSM_Terminate — Terminate the use of CSSM (CDSA)

SYNOPSIS

include <cssm.h>

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

None

DESCRIPTION

This function terminates the caller's use of CSSM. CSSM can clean up all internal states associated with the
calling application. This function must be called once by each application.

CSSM_Terminate () must be called one time for each time CSSM_Init () was previously called.

CSSM services remain available to the program until the final call to CSSM_Terminate () completes. After
that final call, all information introduced by the caller (including privileges, handles, contexts, introduced
libraries, and so forth) is lost, and it is an error to subsequently call any CSSM API function other than
CSSM_Init ().

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions CSSM_Init

253

CSSM_TP RetrieveCredResult

NAME
CSSM_TP_RetrieveCredResult — Return the results of the credentials request (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_TP_RetrieveCredResult
(CSSM_TP_HANDLE TPHandle,

const CSSM_DATA *ReferenceIdentifier,

const CSSM_TP_CALLERAUTH_CONTEXT *CallerAuthCredentials,
sint32 *EstimatedTime,

CSSM_BOOL *ConfirmationRequired,

CSSM_TP_RESULT_SET_PTR *RetrieveOutput)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

TPHandle (input)
The handle that describes the certification authority module used to perform this function.
ReferenceIdentifier (input)

A reference identifier that uniquely identifies the CSSM_TP_SubmitCredRequest () call that
initiated the certificate service request whose results are returned by this function. The
identifier persists across application executions and becomes undefined when all local
processing of the request has completed.

Local processing is completed in one of two ways:

e For certificate services that do not require explicit confirmation by the requester, the
reference identifier is invalidated when the corresponding
CSSM_TP_RetrieveCredResult () function completes (by returning valid results or by
failure, which blocks returned results).

e For certificate services that require explicit confirmation by the requester, the reference
identifier is invalidated by successfully invoking the function
CSSM_TP_ConfirmCredResult ().

CallerAuthCredentials (input/optional)

This structure contains a set of caller authentication credentials. The authentication
information can be a passphrase, a PIN, a completed registration form, a certificate, or a
template of user-specific data. The required set of credentials is defined by the service
provider module and recorded in a record in the MDS Primary relation. Multiple credentials
can be required. If the local service provider module does not require credentials from a
caller, then the Credentials field of this verification context structure can be NULL. The
structure optionally contains additional credentials that can be used to support the

254

authentication process. Authentication credentials required by the authority should be
included in the RequestInput. The local TP module can forward information from
CallerAuthCredentials to the authority, as appropriate, but is not required to do so.

EstimatedTime (output)

The number of seconds estimated before the results of a requested service will be returned
to the requester. When the local TP module or the authority process cannot estimate the
time required to perform the requested service, the output value for estimated time is
CSSM_ESTIMATED_TIME_UNKNOWN.

ConfirmationRequired (output)

A Boolean value indicating whether the caller must invoke CSSM_TP_ConfirmCredResult ()
to acknowledge retrieving the results of the service request. CSSM_TRUE indicates the
caller must call cSSM_TP_ConfirmCredResult (). CSSM_FALSE indicates that the caller
must not call CSSM_TP_ConfirmCredResult (). The value of this output parameter is not
applicable until CSSM_TP_RetrieveCredResult () completes by returning results of the
request or terminates in unrecoverable failure.

RetrieveOutput (output)

A pointer to the results returned by the authority in response to the service requests
submitted by CSSM_TP_SubmitCredRequest (). The output results are ordered
corresponding to the requests. The structure of the response set is determined by the type of
request. The caller and the service provider must retain knowledge of the request type
associated with the ReferenceIdentifier.

DESCRIPTION

This function returns the results of a CSSM_TP_SubmitCredRequest () call.

The single identifier ReferenceIdentifier denotes the CSSM_TP_SubmitCredRequest () invocation that
initiated the request.

It is possible that the results are not ready to be retrieved when this call is made. In that case, an
EstimatedTime to complete processing is returned. The caller must attempt to retrieve the results again after
the estimated time to completion has elapsed.

This function can fail in total for any one of the following reasons:

e The reference identifier is invalid.

e The TP process cannot be located.

e The TP process encountered a fatal error when attempting to process the requests.

When this function completes, the set of return results is ordered corresponding to the order of the originating

request.

Some certificate services require the requester to confirm retrieval of the results. The
ConfirmationRequired parameter indicates whether the caller must confirm completion of
CSSM_TP_RetrieveCredResult () by calling CSSM_TP_ConfirmCredResult ().

255

RETURN VALUE

A CSSM_RETURN value combined with estimated time to indicate one of three results:

Complete Function Function Return RetrieveOutput EstimatedTime
Result Value
Request results returnedto = CSSM_OK Non-NULL pointer NA
caller
Request results not ready, CSSM_OK NULL pointer CSSM_ESTIMATED_TIM

but expected in the future

Fatal Error, results will (ICSSM_OK) NA
never be returned

E_UNKNOWN or
<estimated seconds>

NA

The (!CSSM_OK) return value represents a specific error code.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_TP_INVALID_IDENTIFIER_ POINTER
CSSMERR_TP_INVALID_ IDENTIFIER
CSSMERR_TP_INVALID_ CALLERAUTH_CONTEXT_POINTER
CSSMERR_TP_INVALID_ POLICY_TIDENTIFIERS
CSSMERR_TP_INVALID_ TIMESTRING
CSSMERR_TP_INVALID_STOP_ON_POLICY
CSSMERR_TP_INVALID_ CALLBACK
CSSMERR_TP_INVALID_ANCHOR_CERT
CSSMERR_TP_CERTGROUP_INCOMPLETE
CSSMERR_TP_INVALID_ DL_HANDLE
CSSMERR_TP_INVALID_ DB_HANDLE
CSSMERR_TP_INVALID_ DB_LIST POINTER
CSSMERR_TP_INVALID DB_LIST
CSSMERR_TP_AUTHENTICATION_FAILED
CSSMERR_TP_INSUFFICIENT_ CREDENTIALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPIRED
CSSMERR_TP_CERT_NOT_VALID_YET
CSSMERR_TP_INVALID_ CERT_AUTHORITY
CSSMERR_TP_INVALID_ SIGNATURE
CSSMERR_TP_INVALID_ NAME
CSSMERR_TP_REQUEST_LOST
CSSMERR_TP_REQUEST_REJECTED

256

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_SubmitCredRequest
Functions for the TP SPI:
TP_SubmitCredRequest

257

CSSM_Unintroduce

NAME
CSSM_Unintroduce — Remove module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSM_Unintroduce
(const CSSM_GUID *ModulelID)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

ModuleID (input)

The CSSM_GUID of the calling library or other library that can call CDSA interfaces. The
GUID is used to locate the module integrity and privilege information. If the ModuleID is
NULL, then the caller will be unintroduced.

DESCRIPTION

The CSSM_Unintroduce () function removes the module referenced by ModuleID from the list of module
information maintained by the CSSM framework.

A caller can unintroduce modules other than itself if the caller has been previously introduced.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_GUID

SEE ALSO

Intel CDSA Application Developer's Guide

258

CSSM_UpdateContextAttributes

NAME
CSSM_UpdateContextAttributes — Update context attribute values (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM UpdateContextAttributes
(CSSM_CC_HANDLE CCHandle,
uint32 NumberOfAttributes,
const CSSM_CONTEXT_ATTRIBUTE *ContextAttributes)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

CCHandle (input)

The handle to the existing context.
NumberOfAttributes (input)

The number of CSSM_CONTEXT_ATTRIBUTE structures to allocate.
ContextAttributes (input)

Pointer to data that describes the attributes to be associated with this context.

DESCRIPTION

This function updates one or more context attribute values stored as part of an existing context specified by
CCHandle. The basic context structure is not modified by this function. Only the context attributes are
updated.

The NumberOfAttributes parameter specifies the number of attributes to update. The new attribute values
are specified in ContextAttributes. If an attribute provided in ContextAttributes is already present in
the existing context, the existing value is replaced by the new value. If an attribute provided in
ContextAttributes is not present in the existing context, then the new attribute is added. Attribute values
are never deleted from the existing context.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_CONTEXT_HANDLE
CSSMERR_CSSM_INVALID_ATTRIBUTE

259

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_DeleteContextAttributes, CSSM_GetContextAttribute

260

Decode CDSA_ Error
NAME

Decode_CDSA_Error — Accepts a CDSA numeric error code and returns two strings: the ASCII name
of the error and a description of the error

SYNOPSIS

#include <cssmerr.h>

APT:

void Decode_CDSA_Error (Error_Code, Error_Label_String, Error_String)
CSSM_RETURN Error_Code;

char *Error_Label_String;
char *Error_String;

DESCRIPTION

This function accepts a CDSA numeric error code and returns two strings: the ASCII name of the error and a
description of the error.

RETURN VALUE

None.

261

DecryptData

NAME
DecryptData: CSSM_DecryptData, CSP_DecryptData — Decrypt buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DecryptData
(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA *CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,

uint32 *bytesDecrypted,
CSSM_DATA_PTR RemData)

SPI:

CSSM_RETURN CSSMCSPI CSP_DecryptData
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT *Context,
const CSSM_DATA *CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,

uint32 *bytesDecrypted,
CSSM_DATA_PTR RemData,
CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

CipherBufs (input)

A pointer to a vector of CSSM_DATA structures that contain the data to be decrypted.
CipherBufCount (input)

The number of CipherBufs
ClearBufs (output)

A pointer to a vector of CSSM_DATA structures that contain the decrypted data resulting
from the decryption operation.

ClearBufCount (input)

262

The number of ClearBufs.
bytesDecrypted (output)

A pointer to uint32 for the size of the decrypted data in bytes.
RemData (output)

A pointer to the CSSM_DATA structure for the remaining plain text if there is not enough
buffer space available in the output data structures.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Context (input)
A pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privilege (input)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function decrypts all data contained in the set of input buffers using information in the context. The
CSSM_QuerySize () (CSSM API), or CSP_QuerySize () (CSP SPI), function can be used to estimate the output
buffer size required. The minimum number of buffers required to contain the resulting plain text is produced
as output. If the plain text result does not fit within the set of output buffers, the remaining plain text is
returned in the single output buffer RemData.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, pre-allocated output
buffer, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value greater than zero and a non-NULL data pointer field value. To specify automatic output buffer
allocation by the CSP, the caller must provide an array of one or more CSSM_DATA structures, each
containing a Length field value equal to zero and a NULL data pointer field value. The application is always
responsible for deallocating the memory when it is no longer needed. In-place decryption can be done by
supplying the same input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

263

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SIZE_MISMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_EncryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DecryptP, CSSM_DecryptDatalnitP

Functions for the CSP SPI:

CSP_QuerySize, CSP_EncryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate,
CSP_DecryptDataFinal

264

DecryptDataFinal
NAME

DecryptDataFinal: CSSM_DecryptDataFinal, CSP_DecryptDataFinal — Finalize staged decryption
process (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DecryptDataFinal
(CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR RemData)

SPI:

CSSM_RETURN CSSMCSPI CSP_DecryptDataFinal
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR RemData)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

RemData (output)
A pointer to the CSSM_DATA structure for the last decrypted block, if necessary.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged decryption process by returning any remaining plain text not returned in
the previous staged decryption call. The plain text is returned in a single buffer.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, pre-allocated output

buffer, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value greater than zero and a non-NULL data pointer field value. To specify automatic output buffer

265

allocation by the CSP, the caller must provide an array of one or more CSSM_DATA structures, each
containing a Length field value equal to zero and a NULL data pointer field value. The application is always
responsible for deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SIZE_MISMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate
Functions for the CSP SPI:

CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate

266

DecryptDatalnit

NAME

DecryptDatalnit: CSSM_DecryptDatalnit, CSP_DecryptDatalnit — Initialize the staged decrypt
function(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DecryptDatalInit
(CSSM_CC_HANDLE CCHandle)

SPI:

CSSM_RETURN CSSMCSPI CSSM_CSP_DecryptDataInit
(CSSM_CSP_HANDLE CSPHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CONTEXT *Context,

CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privilege (input)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function initializes the staged decrypt function.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

267

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DecryptData, CSSM_DecryptDataUpdate, CSSM_DecryptDataFinal, CSSM_DecryptDataP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:
CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

268

DecryptDatalnitP

NAME
DecryptDatalnitP — Intialize the staged decrypt function with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_DecryptDataInitP
(CSSM_CC_HANDLE CCHandle,
CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Privilege (input)
The privilege to be applied during the cryptographic operation.

See CSSM_DecryptDataInit () for other parameters.

DESCRIPTION

This function is similar to CSSM_DecryptDataInit (). It also accepts a USEE tag as a privilege request

parameter. CSSM checks that either its own privilege set or the application's privilege set (if the application

is signed) includes the tag. If the tag is found and the service provider privilege set indicates that it is

supported, the tag is forwarded to the service provider.

For staged operations using privilege initialization functions CSSM_DecryptDataInitP (), the completion

functions CSSM_DecryptDataUpdate () and CSSM_DecryptDataFinalize () are used.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

269

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

270

DecryptDataP

NAME
DecryptDataP — Decrypt data with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM_DecryptDataP
(CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CipherBufs,

uint32 CipherBufCount,

CSSM_DATA_PTR ClearBufs,

uint32 ClearBufCount,

uint32 *bytesDecrypted,

CSSM_DATA_PTR RemData,

CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

Privilege (input)
The privilege to be applied during the cryptographic operation.

See CSSM_DecryptData () for other parameters.

DESCRIPTION

This function is similar to CSSM_DecryptData (). It also accepts a USEE tag as a privilege request parameter.
CSSM checks that either its privilege set or the application's privilege set (if the application is signed)
includes the tag. If the tag is found and the service provider privilege set indicates that it is supported, the tag
is forwarded to the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SIZE_MISMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

271

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

272

DecryptDataUpdate
NAME

DecryptDataUpdate: CSSM_DecryptDataUpdate, CSP_DecryptDataUpdate — Continue the staged
decryption process (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DecryptDataUpdate
(CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CipherBufs,

uint32 CipherBufCount,

CSSM_DATA_PTR ClearBufs,

uint32 ClearBufCount,

uint32 *bytesDecrypted)

SPI:

CSSM_RETURN CSSMCSPI CSP_DecryptDataUpdate
(CSSM_CSP_HANDLE CSPHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *CipherBufs,

uint32 CipherBufCount,

CSSM_DATA_PTR ClearBufs,

uint32 ClearBufCount,

uint32 *bytesDecrypted)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

CipherBufs (input)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
CipherBufCount (input)

The number of CipherBufs
ClearBufs (output)

A pointer to a vector of CSSM_DATA structures that contain the decrypted data resulting
from the decryption operation.

ClearBufCount (input)
The number of ClearBufs

bytesDecrypted (output)

273

A pointer to uint32 for the size of the decrypted data in bytes.

SPI PARAMETER

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged decryption process over all data in the set of input buffers. There can be
algorithm-specific and token-specific rules restricting the lengths of data in CSSM_DecryptUpdate () calls, but
multiple input buffers are supported. The minimum number of buffers required to contain the resulting plain
text is produced as output. Excess output buffer space is not remembered across staged decryption calls. Each
staged call begins filling one or more new output buffers. The CSSM_QuerySize () (CSSM API), or
CSP_QuerySize () (CSP SPI), function can be used to estimate the output buffer size required for each update
call.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed. In-place decryption can be done by supplying the same
input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

274

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataFinal
Functions for the CSP SPI:

CSP_QuerySize, CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataFinal

275

DeriveKey

NAME
DeriveKey: CSSM_DeriveKey, CSP_DeriveKey — Derive new symmetric key (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DeriveKey

(CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR Param,

uint32 KeyUsage,

uint32 KeyAttr,

const CSSM_DATA *KeyLabel,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAclEntry,
CSSM_KEY_PTR DerivedKey)

SPI:

CSSM_RETURN CSSMCSPI CSP_DeriveKey

(CSSM_CSP_HANDLE CSPHandle,

CSSM_CC_HANDLE CCHandle,

const CSSM_CONTEXT *Context,

CSSM_DATA_PTR Param,

uint32 KeyUsage,

uint32 KeyAttr,

const CSSM_DATA *KeyLabel,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAclEntry,
CSSM_KEY_PTR DerivedKey)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)
The handle that describes the context of this cryptographic operation.

Param (input/output)

This parameter varies depending on the derivation algorithm. Password based derivation
algorithms use this parameter to return a cipher block chaining initialization vector.
Concatenation algorithms use this parameter to get the second item to concatenate.

KeyUsage (input)

A bit mask indicating all permitted uses for the new derived key.
KeyAttr (input)

A bit mask defining other attribute values for the new derived key.
KeyLabel (input/optional)

Pointer to a byte string that will be used as the label for the derived key.

276

CredAndAclEntry (input/optional)

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the subject of the ACL entry
interactively. If the CSP provides public access for creating a key, then the credentials can
be NULL. If the CSP defines a default initial ACL entry for the new key, then the ACL entry
prototype can be empty.

DerivedKey (output)
A pointer to a CSSM_KEY structure that returns the derived key.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function derives a new symmetric key using the context and/or information from the base key in the
context. The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

Subject

A CSSM_LIST structure, containing the type of the subject and a template value that can
be used to verify samples that are presented in credentials when resource access is
requested.

Delegation flag

A value indicating whether the Subject can delegate the permissions recorded in the
AuthorizationTag. (This item only applies to public key subjects).

Authorization tag

The set of permissions that are granted to the Subject.
Validity period

The start time and the stop time for which the ACL entry is valid.
ACL entry tag

A user-defined string value associated with the ACL entry.

277

The service provider can modify the caller-provided initial ACL entry to conform to any
innate resource-access policy that the service provider may be required to enforce. If the
initial ACL entry provided by the caller contains values or permissions that are not
supported by the service provider, then the service provider can modify the initial ACL
appropriately or can fail the request to create the new resource. Service providers list their
supported AuthorizationTag values in their Module Directory Services primary record.

The CSP can require that the cryptographic context include access credentials for
authentication and authorization checks when using a private key or a secret key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_KEY_ LABEL_ALREADY_ EXISTS

COMMENTS

The KeyData field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM_FreeKey () (CSSM API), or CSP_FreeKey () (CSP SPI) call, or with the memory
functions registered for the CSPHandle.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_CreateDeriveKeyContext

278

DigestData

NAME
DigestData: CSSM_DigestData, CSP_DigestData — Compute message digest (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DigestData
(CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *DataBufs,

uint32 DataBufCount,

CSSM_DATA_PTR Digest)

SPI:

CSSM_RETURN CSSMCSPI CSP_DigestData
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_CONTEXT *Context,

const CSSM_DATA *DataBufs,

uint32 DataBufCount,

CSSM_DATA_PTR Digest)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

DataBufs (input)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
DataBufCount (input)

The number of DataBufs.
Digest (output)

A pointer to the CSSM_DATA structure for the message digest.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

279

DESCRIPTION

This function computes a message digest for all data contained in the set of input buffers.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specifed in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal, CSSM_DigestDataClone
Functions for the CSP SPI:

CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

280

DigestDataClone
NAME

DigestDataClone: CSSM_DigestDataClone, CSP_DigestDataClone — Clone a staged message digest
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DigestDataClone
(CSSM_CC_HANDLE CCHandle,

CSSM_CC_HANDLE *ClonednewCCHandle)

SPI:

CSSM_RETURN CSSMCSPI CSP_DigestDataClone
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

CSSM_CC_HANDLE ClonednewCCHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)
The handle that describes the context of a staged message digest operation.
ClonednewCCHandle (output)

The cloned digest context handle. The handle will be set to CSSM_INVALID_HANDLE if
the function fails.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function clones a given staged message digest context with its cryptographic attributes and intermediate
result.

NOTES

When a digest context is cloned, a new context is created with data associated with the parent context.
Changes made to the parent context after calling this function will not be reflected in the cloned context. The
cloned context could be used with the CSSM_DigestDataUpdate() and CSSM_DigestDataFinal () functions.

281

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal

282

DigestDataFinal
NAME

DigestDataFinal: CSSM_DigestDataFinal, CSP_DigestDataFinal — Finalize the staged message
digest (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DigestDataFinal
(CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR Digest)

SPI:

CSSM_RETURN CSSMCSPI CSP_DigestDataFinal
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR Digest)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Digest (output)
A pointer to the CSSM_DATA structure for the message digest.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged message digest function.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by

283

the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard. .

CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataClone
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataClone

284

DigestDatalnit

NAME

DigestDatalnit: CSSM_DigestDatalnit, CSP_DigestDatalnit — Initialize the staged message digest
(CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM _DigestDatalInit
(CSSM_CC_HANDLE CCHandle)

SPI:

CSSM_RETURN CSSMCSPI CSP_DigestDatalInit
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_CONTEXT *Context)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged message digest function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

285

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDataUpdate, CSSM_DigestDataClone, CSSM_DigestDataFinal
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDataUpdate, CSP_DigestDataClone, CSP_DigestDataFinal

286

DigestDataUpdate

NAME
DigestDataUpdate: CSSM_DigestDataUpdate — Continue the staged process of digesting (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DigestDataUpdate
(CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *DataBufs,

uint32 DataBufCount)

SPI:

CSSM_RETURN CSSMCSPI CSP_DigestDataUpdate
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

const CSSM_DATA *DataBufs,

uint32 DataBufCount)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

DataBufs (input)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
DataBufCount (input)

The number of DataBufs.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged process of digesting all data contained in the set of input buffers. The
resulting digest value will be returned as part of the staged digesting process.

287

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataClone, CSSM_DigestDataFinal
Functions for the CSP SPI:

Functions: CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataClone, CSP_DigestDataFinal

288

DL_Authenticate

NAME
DL_Authenticate: CSSM_DL_Authenticate — Provide authentication credentials (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_Authenticate
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_ACCESS_CREDENTIALS *AccessCred)
SPI:

CSSM_RETURN CSSMDLI DIL_Authenticate
(CSsSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_ACCESS_CREDENTIALS *AccessCred)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module used to perform this
function and the data store to which access is being requested. If the form of authentication
being requested is authentication to the DL module in general, then the data store handle
must be NULL.

AccessRequest (input)
An indicator of the requested access mode for the data store or DL. module in general.
AccessCred (input)

A pointer to the set of one or more credentials being presented for authentication by the
caller. The credentials can apply to the DL, module in general or to a particular data store
managed by this service module. The credentials required for creating new data stores is
defined by the DL and recorded in a record in the MDS Primary DL relation. The required
set of credentials to access a particular data store is defined by the DbInfo record containing
meta-data for the specified data store.

The credentials structure can contain multiple types of credentials, as required for
multi-factor authentication. The credential data can be an immediate value, such as a
passphrase, PIN, certificate, or template of user-specific data, or the caller can specify a
callback function the DL can use to obtain one or more credentials.

289

DESCRIPTION

This function allows the caller to provide authentication credentials to the DL module at a time other than
data store creation, deletion, open, import, and export. AccessRequest defines the type of access to be
associated with the caller. If the authentication credential applies to access and use of a DL, module in
general, then the data store handle specified in the DL.DBHandle must be NULL. When the authorization
credential is to apply to a specific data store, the handle for that data store must be specified in the
DLDBHandle pair.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ ACCESS_REQUEST
CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

290

DL_ChangeDbAcl

NAME
DL_ChangeDbAcl: CSSM_DL_ChangeDbAcl - Edit stored ACL (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DL_ChangeDbAcl
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_EDIT *AclEdit)

SPI:

CSSM_RETURN CSSMDLI DL_ChangeDbAcl
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_EDIT *AclEdit)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the data storage library module to be used to perform this
function, and the open data store whose associated ACL entries are to be updated.

AccessCred (input)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL associated with the target data base. Required credentials
can include zero or more certificates, zero or more caller names, and one or more samples. If
certificates and/or caller names are provided as input these must be provided as immediate
values in this structure. The samples can be provided as immediate values or can be
obtained through a callback function included in the AccessCred structure.

AclEdit (input)

A structure containing information that defines the edit operation. Valid operations include
adding, replacing and deleting entries in the set of ACL entries managed by the service
provider. The Ac1Edit can contain information for a new ACL entry and a unique handle
identifying an existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_ADD Adds a new ACL entry to the set of ACL entries
associated with the specified data base. The new ACL
entry is created from the prototype ACL entry contained
in NewEntry. O1dEntryHandle is ignored for this
EditMode.

291

Value of AclEdit.EditMode Use of AclEdit.NewEntry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT MODE_DELETE Deletes the ACL entry identified by 01dEntryHandle
and associated with the specified data base. NewEntry is
ignored for this EditMode.

CSSM_ACL_EDIT MODE_REPLACE Replaces the ACL entry identified by 01dEntryHandle
and associated with the specified data base. The existing
ACL is replaced based on the ACL entry prototype
contained in NewEntry.

When replacing an existing ACL entry, the caller must replace all of the items in an ACL
entry. The replacement prototype includes:

Subject type and value

A CSSM_LIST structure containing a typed Subject. The Subject
identifies the entity authorized by this ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements,
the start time and the stop time for which the ACL entry is valid.

ACL entry tag

A CSSM_STRING containing a user-defined value associated with the
ACL entry.

DESCRIPTION

This function edits the stored ACL associated with the target data base identified by DLDBHandle.DBHandle.
The ACL is modified according to the edit mode and information provided in Ac1Edit.

The caller must be authorized to modify the target ACL. Caller authentication and authorization to edit the
ACL is determined based on the caller-provided AccessCred.

The caller must be authorized to add, delete or replace the ACL entries associated with the target data base.
When adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL
entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry TypedSubject must be provided as an immediate value in
AclEdit->NewEntry. The ACL entry Subject can be provided as an immediate value, from a verifier with a
protected data path, from an external authentication or authorization service, or through a callback function
specified in Ac1Edit->NewEntry->Callback.

292

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbAcl
Functions for the DL SPI:
DL _GetDbAcl

293

DL_ChangeDbOwner

NAME
DL_ChangeDbOwner: CSSM_DL_ChangeDbOwner — Define a new data base owner (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DL_ChangeDbOwner
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_OWNER_PROTOTYPE *NewOwner)
SPI:

CSSM_RETURN CSSMDLI DL_ChangeDbOwner
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const CSSM_ACL_OWNER_PROTOTYPE *NewOwner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the data storage library module to be used to perform this
function, and the open data store whose associated Owner is to be updated.

AccessCred (input)

A pointer to the set of one or more credentials used to prove the caller is the current Owner
of the Data Base. Required credentials can include zero or more certificates, zero or more
caller names, and one or more samples. If certificates and/or caller names are provided as
input these must be provided as immediate values in this structure. The samples can be
provided as immediate values or can be obtained through a callback function included in the
AccessCred structure.

NewOwner (input)

A CSSM_ACL_OWNER_PROTOTYPE defining the new Owner of the Data Base.

DESCRIPTION

This function takes a CSSM_ACI,_OWNER_PROTOTYPE defining the new Owner of the Data Base.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

294

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ NEW_OWNER

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbOwner
Functions for the DL SPI:
DL_GetDbOwner

295

DL_CreateRelation

NAME
DL_CreateRelation: CSSM_DIL,_CreateRelation — Create a new persistent relation (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DI._CreateRelation
(CSSM_DL_DB_HANDLE DLDBHandle,

CSSM_DB_RECORDTYPE RelationID,

const char *RelationName,

uint32 NumberOfAttributes,

const CSSM_DB_SCHEMA_ATTRIBUTE_INFO *pAttributelInfo,
uint32 NumberOfIndexes,

const CSSM_DB_SCHEMA_INDEX_INFO *pIndexInfo)

SPI:

CSSM_RETURN CSSMDLI DL_CreateRelation
(CSsSM_DL_DB_HANDLE DLDBHandle,

CSSM_DB_RECORDTYPE RelationID,

const char *RelationName,

uint32 NumberOfAttributes,

const CSSM_DB_SCHEMA_ATTRIBUTE_INFO *pAttributelInfo,
uint32 NumberOfIndexes,

const CSSM_DB_SCHEMA_INDEX_INFO *pIndexInfo)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store in which to insert the new relation record. The
database should be opened in administrative mode using the
CSSM_DB_ACCESS_PRIVILEGED flag.

RelationID (input)

Indicates the type of relation record being added to the data store.
RelationName (input)

Indicates the name of the relation being added to the data store.
NumberOfAttributes (input)

Indicates the number of attributes specified in pAttributeInfo.

pPAttributeInfo (input)

296

A list of structures containing the meta information (schema) describing the attributes for
the relation being added to the specified data store. The list contains at most one entry per
attribute in the specified record type.

NumberOfIndexes (input)
Indicates the number of indexes specified in pIndexInfo.
pIndexInfo (input)

A list of structures containing the meta information (schema) describing the indexes for the
relation being added to the specified data store. The list contains at most one entry per
index in the specified record type.

DESCRIPTION

This function creates a new persistent relation of the specified type by inserting it into the specified data
store. The pAttributeInfo and pIndexInfo specify the values contained in the new relation record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INVALID_ ATTRIBUTE_INFO
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ INDEX_INFO
CSSMERR_DL_INVALID_ RECORDTYPE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DestroyRelation
Functions for the DL SPI:
DL_DestroyRelation

297

DL_DataAbortQuery

NAME
DL_DataAbortQuery: CSSM_DL_DataAbortQuery — Terminate DL_DataGetFirst query (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_DataAbortQuery
(CSSM_DL_DB_HANDLE DLDBHandle,

CSSM_HANDLE ResultsHandle)

SPI:

CSSM_RETURN CSSMDLI DL_DataAbortQuery
(CSsSM_DL_DB_HANDLE DLDBHandle,

CSSM_HANDLE ResultsHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which records were selected by the initiating

query.
ResultsHandle (input)

The selection handle returned from the initial query function.

DESCRIPTION

This function terminates the query initiated by DI_DataGetFirst () and allows a DL to release all
intermediate state information associated with the query, and release any locks on the resource. The
user/application must call CSSM_DI._DataAbortQuery () at the termination.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ RESULTS_HANDLE

298

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext
Functions for the DL SPI:

DL_DataGetFirst, dL_DataGetNext

299

DL_DataDelete

NAME
DL_DataDelete: CSSM_DL_DataDelete — Remove data record (CDSA)

SYNOPSIS

#include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_DataDelete
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_UNIQUE_RECORD *UniqueRecordIdentifier)
SPI:

CSSM_RETURN CSSMDLI DL_DataDelete

(CSsSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_UNIQUE_RECORD *UniqueRecordIdentifier)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which to delete the specified data record.

UniqueRecordIdentifier (input)

A pointer to a CSSM_DB_UNIQUE_RECORD identifier containing unique identification of
the data record to be deleted from the data store. Once the associated record has been
deleted, this unique record identifier cannot be used in future references, except as an
argument to DL,_FreeUniqueRecord () which must still be called.

DESCRIPTION

This function removes the data record specified by the unique record identifier from the specified data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ RECORD_UID
CSSMERR_DL_RECORD_NOT_FOUND

300

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL _Datalnsert
Functions for the DL SPI:
DL_Datalnsert

301

DL_DataGetFirst

NAME

DL_DataGetFirst: CSSM_DL_DataGetFirst — Get first data record (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DI_DataGetFirst
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_QUERY *Query,

CSSM_HANDLE_PTR ResultsHandle,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

SPI:

CSSM_RETURN CSSMDLI DIL_DataGetFirst
(CSsSM_DL_DB_HANDLE DLDBHandle,

const CSSM_QUERY *Query,

CSSM_HANDLE_PTR ResultsHandle,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for records satisfying the query.

Query (input/optional)

The query structure specifying the selection predicate(s) used to query the data store. The
structure contains meta information about the search fields and the relational and
conjunctive operators forming the selection predicate. The comparison values to be used in
the search are specified in the Attributes field of this Query structure. If a search attribute
is of type CSSM_DB_ATTRIBUTE_FORMAT_STRING and the search value specified for
that string includes a null-terminator, then the length count for that string should include
the terminating character. (If null-terminators are used they should be used consistently,
storing the terminator as part of the string in the data store, otherwise selection predicates
will not locate expected matches.) The Query structure attributes also identify the
particular attributes to be searched by this query. If no query is specified, the DL module
can return the first record in the data store, performing sequential retrieval, or return an
error. If no selection predicates are specified, the DL module can return the first record in

the data store, performing sequential retrieval, or return an error
(CSSM_DL_UNSUPPORTED_NUM_SELECTION_PREDS). When selection predicates are

302

specified, the NumberOfvValues of the Attribute of each selection predicate must be 1. If
any selection predicate does not satisfy this requirement, the error
CSSMERR_DL_INVALID_QUERY is returned.

ResultsHandle (output)

This handle should be used to retrieve subsequent records that satisfied this query.
Attributes (optional-input/output)

If the Attributes structure pointer is NULL, no values are returned.

Otherwise, the DataRecordType, NumberOfAttributes and AttributeData fields are read.
AttributeData must be an array of NumberOfAttributes
CSSM_DB_RECORD_ATTRIBUTE elements. Only the Info field of each element is used
on input. The AttributeFormat field of the Info field is ignored on input.

On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the
requested attribute values (subset) from the retrieved record. The SemanticInformation
field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the AttributeData
array, the NumberOfvalues field is set to reflect the size of the Value array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the
Value array will have it's Data field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Length set to the length of
the value.

All values for an attribute are returned (this could be 0). All fields in the Info field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the AttributeFormat field,
which is set to reflect the schema.

Data (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opaque object stored in the retrieved record.

UniqueId (output)

If successful and (at least) a record satisfying the query has been found, then this parameter
returns a pointer to a CSSM_UNIQUE_RECORD_PTR structure containing a unique
identifier associated with the retrieved record. This unique identifier structure can be used
in future references to this record using this DL.DBHandle pairing. It may not be valid for
other DLHandles targeted to this DL module or to other DBHandles targeted to this data
store. If there are no records satisfying the query, then this pointer is NULL and
CSSM_DI_DataGetFirst () must return CSSM_DL_ENDOFDATA; in this case a normal
termination condition has occurred. The CSSM_DI,_FreeUniqueRecord () must be used to
deallocate this structure.

DESCRIPTION

This function retrieves the first data record in the data store that matches the selection criteria. The selection
criteria (including selection predicate and comparison values) is specified in the Query structure. If the Query
specifies an attribute that is not defined in the database's meta-information, an error condition is returned.
The DL module can use internally-managed indexing structures to enhance the performance of the retrieval
operation. This function selects the first record satisfying the query based on the list of Attributes and the
opaque Data object. The output buffers for the retrieved record are allocated by this function using the
memory management functions provided during the module attach operation. This function also returns a
results handle to be used when retrieving subsequent records satisfying the query.

303

Additional matching records are iteratively retrieved using the CSSM_DI,_DataGetNext () function . The data
storage module supports one of two retrieval models:

e Transactional - all query results are determined at initial query evaluation. Results do not change during
an incremental retrieval process.

¢ File System Scan - query results are selected during the incremental retrieval process. Records matching
the query may be added to or deleted from the underlying data store during the iterative retrieval. The
caller may receive the new matching records and not received the deleted records.

The caller can determine which retrieval model is supported by examining the encapsulated product
description for this data storage module.

If the query selection criteria also specifies time for space limits for executing the query, those limits also
apply ro retrieval of the additional selected data records retrieved using the CSSM_DI._DataGetNext ()
function. Finally, this function returns a unique record identifier associated with the retrieved record. This
structure can be used in future references to the retrieved data record. Once a user has finished using a
certain query, it must call CSSM_DatafbortQuery () for releasing resources that CSSM uses. If all records
satisfying the query have been retrieved, then query is automatically terminated.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL__ENDOFDATA
CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DIL_INVALID_ PARSING_MODULE
CSSMERR_DL_INVALID_ QUERY
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_ RECORD_UID
CSSMERR_DL_UNSUPPORTED_FIELD_FORMAT
CSSMERR_DL_UNSUPPORTED_NUM_SELECTION_PREDS
CSSMERR_DL_UNSUPPORTED_OPERATOR
CSSMERR_DL_UNSUPPORTED_QUERY
CSSMERR_DL_UNSUPPORTED_QUERY_LIMITS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL _DataGetNext, CSSM_DL_DataAbortQuery

304

Functions for the DL SPI:
DL_DataGetNext, DL_DataAbortQuery

305

DL_DataGetFromUniqueRecordId

NAME

DL_DataGetFromUniqueRecordId: CSSM_DL_DataGetFromUniqueRecordld — Get data record
(CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_DataGetFromUnigqueRecordId
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

SPI:

CSSM_RETURN CSSMDLI DIL_DataGetFromUniqueRecordId
(CSSM_DL_DB_HANDLE DLDBHandle,

const CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for the data record.

UniqueRecord (input)

The pointer to a unique record structure returned from a DI,_DataInsert,
DL_DataGetFirst, or DL_DataGetNext operation.

Attributes (optional-input/output)
If the Attributes structure pointer is NULL, no values are returned.

Otherwise, the DataRecordType, NumberOfAttributes and AttributeData fields are read.
AttributeData must be an array of NumberOfAttributes
CSSM_DB_RECORD_ATTRIBUTE elements. Only the Info field of each element is used
on input. The AttributeFormat field of the Info field is ignored on input.

On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the
requested attribute values (subset) from the retrieved record. The SemanticInformation
field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the AttributeData
array, the NumberOfvalues field is set to reflect the size of the Value array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the
Value array will have it's Data field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Length set to the length of
the value.

306

All values for an attribute are returned (this could be 0). All fields in the Info field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the AttributeFormat field,
which is set to reflect the schema.

Data (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opaque object stored in the retrieved record. If the pointer is data structure
pointer is NULL, the opaque object is not returned.

DESCRIPTION

This function retrieves the data record and attributes associated with this unique record identifier. The
Attributes parameter can specify a subset of the attributes to be returned. If Attributes specifies an
attribute that is not defined in the database's meta-information, an error condition is returned. The output
buffers for the retrieved record are allocated by this function using the memory management functions
provided during the module attach operation. The DL module can use an indexing structure identified in the
UniqueRecordId to enhance the performance of the retrieval operation.

The DL should assume that the value of CSSM_QUERY_FLAGS is when performing this operation. In
particular this means that if the data of a key record is being retrieved, the DL will return a CSSM_KEY
structure with a key reference.

If the record referenced by UniqueRecordIdentifier has been modified since the last time it was retrieved,
the error (warning) CSSMERR_DL_RECORD_MODIFIED is returned but the requested attributes and data
of the new record is returned. The caller should be advised that other attributes (or the data) might have
changed that were not fetched from the DL with this call.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_ RECORD_UID

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext

307

Functions for the DL SPI:
CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext

308

DL _DataGetNext
NAME

DL_DataGetNext: CSSM_DL_DataGetNext — Get next data record (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DL_DataGetNext
(CSSM_DL_DB_HANDLE DLDBHandle,

CSSM_HANDLE ResultsHandle,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

SPI:

CSSM_RETURN CSSMDLI DL_DataGetNext
(CSsSM_DL_DB_HANDLE DLDBHandle,

CSSM_HANDLE ResultsHandle,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function, and the open data store from which records were selected by the initiating

query.
ResultsHandle (input)

The handle identifying a set of records retrieved by a query executed by the

CSSM_DIL_DataCGetFirst () function.

Attributes (optional-input/output)

If the Attributes structure pointer is NULL, no values are returned.

Otherwise, the DataRecordType, NumberOfAttributes and AttributeData fields are read.

AttributeData must be an array of NumberOfAttributes

CSSM_DB_RECORD_ATTRIBUTE elements. Only the Info field of each element is used

on input. The AttributeFormat field of the Info field is ignored on input.
On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the

requested attribute values (subset) from the retrieved record. The SemanticInformation

field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the AttributeData
array, the NumberOfvalues field is set to reflect the size of the Value array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the

309

Value array will have it's Data field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Length set to the length of
the value.

All values for an attribute are returned (this could be 0). All fields in the Info field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the AttributeFormat field,
which is set to reflect the schema.

Data (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opaque object stored in the retrieved record. If the pointer is data structure
pointer is NULL, the opaque object is not returned.

UniqueId (output)

If successful and (at least) a record satisfying the query has been found, then this parameter
returns a pointer to a CSSM_UNIQUE_RECORD_PTR structure containing a unique
identifier associated with the retrieved record. This unique identifier structure can be used
in future references to this record using this DL.DBHandle pairing. It may not be valid for
other DLHandles targeted to this DL module or to other DBHandles targeted to this data
store. If there are no more records satisfying the query, then this pointer is NULL and
CSSM_DI_DataGetNext () must return CSSM_DL_ENDOFDATA; in this case a normal
termination condition has occurred. The CSSM_DI,_FreeUniqueRecord () must be used to
deallocate this structure.

DESCRIPTION

This function returns the next data record referenced by the ResultsHandle. The ResultsHandle references
a set of records selected by an invocation of the DataGetFirst function. The Attributes parameter can specify
a subset of the attributes to be returned. If Attributes specifies an attribute that is not defined in the
database's meta-information, an error condition is returned. The record values are returned in the
Attributes and Data parameters. The output buffers for the retrieved record are allocated by this function
using the memory management functions provided during the module attach operation. The function also
returns a unique record identifier for the return record.

The data storage module supports one of two retrieval models: transactional or file system scan. The
transactional model freezes the set of records to be retrieved at query initiation. The file system scan model
selects from a potentially changing set of records during the retrieval process. The EndofDataStore ()
function indicates when all matching records have been retrieved. The caller can determine which retrieval
model is supported by examining the encapsulated product description for this data storage module. Once a
user has finished using a certain query, it must call CSSM_DataabortQuery () for releasing resources that
CSSM uses. If all records satisfying the query have been retrieved, then query is automatically terminated.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

310

CSSMERR_DL_ENDOFDATA
CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_ RECORD_UID
CSSMERR_DL_INVALID_ RESULTS_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DataGetFirst, CSSM_DL_DataAbortQuery
Functions for the DL SPI:

DL_DataGetFirst, DL_DataAbortQuery

311

DL Datalnsert

NAME

DL_Datalnsert: CSSM_DL_Datalnsert — Create new persistent data record (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_DatalInsert
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,

const CSSM_DB_RECORD_ATTRIBUTE_DATA *Attributes,
const CSSM_DATA *Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

SPI:

CSSM_RETURN CSSMDLI DL_DatalInsert
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,

const CSSM_DB_RECORD_ATTRIBUTE_DATA *Attributes,
const CSSM_DATA *Data,

CSSM_DB_UNIQUE_RECORD_PTR *UniqueId)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store in which to insert the new data record.

RecordType (input)

Indicates the type of data record being added to the data store.

Attributes (input/optional)

A list of structures containing the attribute values to be stored in that attribute, and the
meta information (schema) describing those attributes. The list contains at most one entry
per attribute in the specified record type. The specified AttributeFormat for each attribute
must match that of the database schema, otherwise the error
CSSMERR_DL_INCOMPATIBLE_FIELD_FORMAT is returned. If an attribute is of type
CSSM_DB_ATTRIBUTE_FORMAT_STRING and the value specified for that string
includes a null-terminator, then the length count in the CSSM_DATA structure containing
the input string should include the terminating character. (If null-terminators are used,
they should be used consistently when storing, searching, and retrieving the string value,
otherwise selection predicates will not locate expected matches.) For those attributes that
are not assigned values by the caller, the DL, module may assume the values to be the empty
set, or assume default values, or return an error. If the specified record type does not contain
any attributes, this parameter must be NULL.

312

Data (input/optional)

A pointer to the CSSM_DATA structure which contains the opaque data object to be stored
in the new data record. If the specified record type does not contain an opaque data object,
this parameter must be NULL.

UniqueId (output)

A pointer to a CSSM_DB_UNIQUE_RECORD_PTR containing a unique identifier
associated with the new record. This unique identifier structure can be used in future
references to this record during the current open data base session. The pointer will be set
to NULL if the function fails. The CSSM_DI,_ FreeUniqueRecord () function must be used to
deallocate this structure.

DESCRIPTION

This function creates a new persistent data record of the specified type by inserting it into the specified data
store. The values contained in the new data record are specified by the Attributes and the Data. The
attribute value list contains zero or more attribute values. The Attributes parameter also specifies a record
type. This type must be the same as the type specified by the RecordType input parameter. The DL module
may require initial values for the CSSM pre-defined attributes. The DL module can assume default values for
any unspecified attribute values or can return an error condition when DLM-required attribute values are
not specified by the caller. The Data is an opaque object to be stored in the new data record.

If a primary key (concatination of all unique indexes in the relation) exists, the error
CSSMERR_DL_INVALID_UNIQUE_INDEX_ DATA is returned. The client should call
CSSM_DI_DataGetFirst (), followed by CSSM_DI._DataModi fy () to change an existing record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ PARSING_MODULE
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_ RECORD_UID
CSSMERR_DIL_INVALID_UNIQUE_INDEX_ DATA
CSSMERR_DL_INVALID_ VALUE
CSSMERR_DL_MISSING_VALUE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

313

Online Help

Functions for the CSSM API:
CSSM_DL_DataDelete
Functions for the DL SPI:
DL _DataDelete

314

DL_DataModify

NAME
DL_DataModify: CSSM_DL_DataModify — Modify persistent data record (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DL_DataModify

(CSSM_DL_DB_HANDLE DLDBHandle,

CSSM_DB_RECORDTYPE RecordType,

CSSM_DB_UNIQUE_RECORD_PTR UniqueRecordIdentifier,

const CSSM_DB_RECORD_ATTRIBUTE_DATA *AttributesToBeModified,
const CSSM_DATA *DataToBeModified,

CSSM_DB_MODIFY_ MODE ModifyMode)

SPI:

CSSM_RETURN CSSMDLI DL_DataModify

(CSsSM_DL_DB_HANDLE DLDBHandle,

CSSM_DB_RECORDTYPE RecordType,

CSSM_DB_UNIQUE_RECORD_PTR UniqueRecordIdentifier,

const CSSM_DB_RECORD_ATTRIBUTE_DATA *AttributesToBeModified,
const CSSM_DATA *DataToBeModified,

CSSM_DB_MODIFY_ MODE ModifyMode)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for records satisfying the query.

RecordType (input)
Indicates the type of data record being modified.
UniqueRecordIdentifier (input/output)

A pointer to a CSSM_DB_UNIQUE_RECORD containing a unique identifier associated
with the record to modify. If the modification succeeds, the UniqueRecordIdentifier
points to a CSSM_DB_UNIQUE_RECORD containing a unique identifier associated with
the updated record. If the modification fails, the UniqueRecordIdentifier is not modified.

AttributesToBeModified (input/optional)

A list of structures containing the attribute values to be stored in that attribute and the
meta information (schema) describing those attributes. The list contains at most one entry
per attribute in the specified record type. The specified AttributeFormat for each attribute
must match that of the database schema, otherwise the error
CSSMERR_DL_INCOMPATIBLE_FIELD_FORMAT is returned. If an attribute is of type
CSSM_DB_ATTRIBUTE_FORMAT_STRING and the value specified for that string

315

includes a null-terminator, then the length count in the CSSM_DATA structure containing
the input string should include the terminating character. (If null-terminators are used,
they should be used consistently when storing, searching, and retrieving the string value,
otherwise selection predicates will not locate expected matches.) Each attribute specified is
modified according to the value of Modi fyMode (see table in the DESCRIPTION section of this
definition). Those attributes that are not specified as part of this parameter remain
unchanged. If the AttributesToBeModified parameter is NULL, no attribute modification

occurs.

DataToBeModified (input/optional)

A pointer to the CSSM_DATA structure which contains the opaque data object to be stored
in the data record. If this parameter is NULL, no Data modification occurs.

ModifyMode (input)

A CSSM_DB_MODIFY_MODE value indicating the type of modification to be performed on
the record attributes identified by AttributesToBeModified. If no attributes are specified,
then this value must be CSSM_DB_MODIFY_ATTRIBUTE_NONE.

DESCRIPTION

This function modifies the persistent data record identified by the UniqueRecordIdentifier. The
modifications are specified by the Attributes and Data parameters. The ModifyMode indicates how the
attributes are to be updated. The Modi fyMode has no affect on updating the data blob contained in the record.
If the data blob is the only record attribute being updated by this function call, then the modification mode
must be 0. The current modification modes behave as follows:

ModifyMode Value
CSSM_DB_MODIFY_ATTRIBUTE_NONE
CSSM_DB_MODIFY_ATTRIBUTE_ADD

CSSM_DB_MODIFY_ATTRIBUTE_DELETE

Function Behavior
No Attributes are being updated.

The specified values are added to the set of current
values for each attribute. If 0 values are specified
then the error
CSSMERR_DL_INVALID_MODIFY_MODE is
returned. If a DL does not support multiple values
per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned.

The specified values are removed from the set of
current values for each attribute. If 0 values are
specified then all values are deleted or the
attributes value is replaced with the default for this
attribute. If a DL does not support multiple values
per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned.

316

CSSM_DB_MODIFY_ATTRIBUTE_REPLACE

The values for each attribute are replaced with the
specified set of values for each attribute. If no
values are specified then all values are deleted or
the attributes value is replaced with the default for
this attribute. If a DL does not support multiple
values per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned when more than 1 value is
specified.

If the attribute lists specifies an attribute that is not defined in the database's meta-information, an error
condition is returned. For each attribute-value pair, the value replaces the corresponding attribute value in
the record. If a data value is specified, the record's data value is replaced with the specified value. A record's
data value or attribute values can be set to NULL or zero to represent deletion or the lack of a known value.

If the record referenced by UniqueRecordIdentifier has been modified since the last time it was updated,
the error CSSMERR_DL_STALE_UNIQUE_RECORD is returned and no modification takes place.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DIL_INVALID_ MODIFY_MODE
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_ RECORD_UID
CSSMERR_DIL_INVALID_ UNIQUE_INDEX_ DATA
CSSMERR_DL_INVALID_ VALUE
CSSMERR_DIL_MULTIPLE_VALUES_UNSUPPORTED
CSSMERR_DIL_STALE_UNIQUE_RECORD

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_Datalnsert, CSSM_DL_DataDelete
Functions for the DL SPI:

DL_Datalnsert, DL_DataDelete

317

DL_DbClose

NAME
DL_DbClose: CSSM_DI._DbClose — Close open data store (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_DbClose
(CSSM_DL_DB_HANDLE DLDBHandle)

SPI:

CSSM_RETURN CSSMDLI DL_DbClose
(CSSM_DL_DB_HANDLE DLDBHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

A handle structure containing the DL handle for the attached DL. module and the DB
handle for an open data store managed by the DL. This specifies the open data store to be

closed.

DESCRIPTION

This function closes an open data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

318

CSSM_DL_DbOpen
Functions for the DL SPI:
DL_DbOpen

319

DL_DbCreate

NAME
DL_DbCreate: CSSM_DL_DbCreate — Create and open new data store (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DL_DbCreate

(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,

const CSSM_DBINFO *DBInfo,

CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAclEntry,
const void *OpenParameters,

CSSM_DB_HANDLE *DbHandle)

SPI:

CSSM_RETURN CSSMDLI DL_DbCreate

(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,

const CSSM_DBINFO *DBInfo,

CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAclEntry,
const void *OpenParameters,

CSSM_DB_HANDLE *DbHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLHandle (input)

The handle that describes the add-in data storage library module used to perform this
function.

DbName (input)
The logical name for the new data store.
DbLocation (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can assume a default storage service
process location. If the DbName does not distinguish the storage service process, the service
cannot be performed and the operation fails.

DBInfo (input)

A pointer to a structure describing the format/schema of each record type that will be stored
in the new data store.

320

AccessRequest (input)

An indicator of the requested access mode for the data store, such as read-only or
read-write.

CredAndAclEntry (input/optional)

A structure containing one or more credentials authorized for creating a data base and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the DL to acquire the credentials and/or the ACL entry interactively. If
the DL provides public access for creating a data base, then the credentials can be NULL. If
the DL defines a default initial ACL entry for the new data base, then the ACL entry
prototype can be an empty list.

OpenParameters (input/optional)
A pointer to a module-specific set of parameters required to open the data store.
DbHandle (output)

The handle to the newly created and open data store. The value will be set to
CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function creates and opens a new data store. The name of the new data store is specified by the input
parameter DbName. The record schema for the data store is specified in the DBINFO structure. If any
RecordType defined in the DBINFO structure does not have an associated parsing module, then the
ModuleSubserviceUid specified for that record type must be zero.

The newly created data store is opened under the specified access mode. If user authentication credentials are
required, they must be provided. Also, additional open parameters may be required and are supplied in
OpenParameters. If user authentication credentials are required, they must be provided.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

Subject

A CSSM_LIST structure, containing the type of the subject and a template value that can
be used to verify samples that are presented in credentials when resource access is
requested.

Delegation flag

A value indicating whether the Subject can delegate the permissions recorded in the
AuthorizationTag. (This item only applies to public key subjects).

Authorization tag
The set of permissions that are granted to the Subject.
Validity period
The start time and the stop time for which the ACL entry is valid.

321

ACL entry tag

A user-defined string value associated with the ACL entry.

The service provider can modify the caller-provided initial ACL entry to conform to any
innate resource-access policy that the service provider may be required to enforce. If the
initial ACL entry provided by the caller contains values or permissions that are not
supported by the service provider, then the service provider can modify the initial ACL
appropriately or can fail the request to create the new resource. Service providers list their
supported AuthorizationTag values in their Module Directory Services primary record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DATASTORE_ALREADY_ EXISTS
CSSMERR_DL_FIELD_ SPECIFIED MULTIPLE
CSSMERR_DL_INCOMPATIBLE_FIELD_ FORMAT
CSSMERR_DL_INVALID_ ACCESS_REQUEST
CSSMERR_DIL_INVALID_ DB_LOCATION
CSSMERR_DL_INVALID_ DB_NAME
CSSMERR_DL_INVALID_ FIELD_NAME
CSSMERR_DL_INVALID_ OPEN_PARAMETERS
CSSMERR_DL_INVALID_ PARSING_MODULE
CSSMERR_DL_INVALID_ RECORDTYPE
CSSMERR_DL_INVALID_RECORD_INDEX
CSSMERR_DL_UNSUPPORTED_FIELD_FORMAT
CSSMERR_DL_UNSUPPORTED_INDEX_ INFO
CSSMERR_DL_UNSUPPORTED_LOCALITY
CSSMERR_DL_UNSUPPORTED_NUM_ATTRIBUTES
CSSMERR_DL_UNSUPPORTED_NUM_INDEXES
CSSMERR_DL_UNSUPPORTED_NUM_RECORDTYPES
CSSMERR_DL_UNSUPPORTED_RECORDTYPE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DL_DbOpen, CSSM_DL_DbClose, CSSM_DL_DbDelete
Functions for the DL SPI:

DL _DbOpen, DL_DbClose, DL_DbDelete

322

DL_DbDelete

NAME
DL_DbDelete: CSSM_DL_DbDelete — Delete all records (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_DbDelete
(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,

const CSSM_ACCESS_CREDENTIALS *AccessCred)
SPI:

CSSM_RETURN CSSMDLI DL_DbDelete
(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,

const CSSM_ACCESS_CREDENTIALS *AccessCred)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this
function.

DbName (input)
A pointer to the string containing the logical name of the data store.
DbLocation (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can assume a default storage service
process location. If the DbName does not distinguish the storage service process, the service
cannot be performed and the operation fails.

AccessCred (input/optional)

A pointer to the set of one or more credentials being presented for authentication by the
caller. These credentials are required to obtain access to the specified data store. The
credentials structure can contain multiple types of credentials, as required for multi-factor
authentication. The credential data can be an immediate value, such as a passphrase, PIN,
certificate, or template of user-specific data, or the caller can specify a callback function the
DL can use to obtain one or more credentials. The required set of credentials to access a
particular data store is defined by the DbInfo record containing meta-data for the specified
data store. If credentials are not required to access the specified data store, then this field
can be NULL.

323

DESCRIPTION

This function deletes all records from the specified data store and removes all state information associated
with that data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DATASTORE_DOESNOT_EXIST
CSSMERR_DL_DATASTORE_IS_OPEN
CSSMERR_DIL_INVALID_ DB_LOCATION
CSSMERR_DL_INVALID_ DB_NAME

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DL_DbCreate, CSSM_DL_DbOpen, CSSM_DL_DbClose
Functions for the DL SPI:

DL_DbCreate, DL_DbOpen, DL_DbClose

324

DL_DbOpen

NAME
DL_DbOpen: CSSM_DL_DbOpen — Open a data store (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DL_DbOpen
(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,
CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const void *OpenParameters,

CSSM_DB_HANDLE *DbHandle)

SPI:

CSSM_RETURN CSSMDLI DL_DbOpen
(CSSM_DL_HANDLE DLHandle,

const char *DbName,

const CSSM_NET_ADDRESS *DbLocation,
CSSM_DB_ACCESS_TYPE AccessRequest,

const CSSM_ACCESS_CREDENTIALS *AccessCred,
const void *OpenParameters,

CSSM_DB_HANDLE *DbHandle)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this
function.

DbName (input)
A pointer to the string containing the logical name of the data store.
DbLocation (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can determine a storage service process
and its location based on the DbName (for existing data stores) or can assume a default
storage service process location. If the DbName does not distinguish the storage service
process, the service cannot be performed and the operation fails.

AccessRequest (input)

An indicator of the requested access mode for the data store, such as read-only or
read-write.

325

AccessCred (input/optional)

A pointer to the set of one or more credentials being presented for authentication by the
caller. These credentials are required to obtain access to the specified data store. The
credentials structure can contain multiple types of credentials, as required for multi-factor
authentication. The credential data can be an immediate value, such as a passphrase, PIN,
certificate, or template of user-specific data, or the caller can specify a callback function the
DL can use to obtain one or more credentials. The required set of credentials to access a
particular data store is defined by the DbInfo record containing meta-data for the specified
data store. If credentials are not required to access the specified data store, then this field
can be NULL.

OpenParameters (input/optional)
A pointer to a module-specific set of parameters required to open the data store.
DbHandle (output)

The handle to the opened data store. The value will be set to CSSM_INVALID_HANDLE if
the function fails.

DESCRIPTION

This function opens the data store with the specified logical name under the specified access mode. If user
authentication credentials are required, they must be provided. Also, additional open parameters may be
required to open a given data store, and are supplied in the OpenParameters.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DB_LOCKED
CSSMERR_DL_INVALID_ ACCESS_REQUEST
CSSMERR_DIL_INVALID_ DB_LOCATION
CSSMERR_DL_INVALID_ DB_NAME
CSSMERR_DL_DATASTORE_DOESNOT_EXIST
CSSMERR_DIL_INVALID_ PARSING_MODULE
CSSMERR_DL_INVALID_ OPEN_PARAMETERS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DbClose
Functions for the DL SPI:

326

DL _DbClose

327

DL_DestroyRelation

NAME
DL_DestroyRelation: CSSM_DL_DestroyRelation — Destroy an existing relation (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DI_DestroyRelation
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RelationID)

SPI:

CSSM_RETURN CSSMDLI DIL_DestroyRelation
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RelationID)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which to delete the relation record.

RelationID (input)

Indicates the type of relation record being deleted from the data store.

DESCRIPTION

This function destroys an existing relation of the specified type by removing its entry from the specified data
store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ RECORDTYPE

328

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_CreateRelation
Functions for the DL SPI:
DL _CreateRelation

329

DL_FreeNamelist

NAME
DL_FreeNameList: CSSM_DL_FreeNameList — Free the list of the logical data store names (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DI_FreeNameList
(CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST PTR NameList)

SPI:

CSSM_RETURN CSSMDLI DL_FreeNameList
(CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST PTR NameList)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this
function.

NameList (input)
A pointer to the CSSM_NAME_LIST.

DESCRIPTION

This function frees the list of the logical data store names that was returned by CSSM_DI,_GetDbNames.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

330

Online Help

Functions for the CSSM API:

CSSM_DL_GetDbNames
Functions for the DL SPI:
DL_GetDbNames

331

DL_FreeUniqueRecord

NAME
DL_FreeUniqueRecord: CSSM_DL_FreeUniqueRecord — Free data store memory (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_FreeUnigueRecord
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord)

SPI:

CSSM_RETURN CSSMDLI DIL_FreeUnigqueRecord
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which the UniqueRecord identifier was assigned.

UniqueRecord(input)

The pointer to the memory that describes the data store unique record structure.

DESCRIPTION

This function frees the memory associated with the data store unique record structure.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DL_INVALID_ RECORD_UID

SEE ALSO

Books

Intel CDSA Application Developer's Guide

332

Online Help

Functions for the CSSM API:

CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext
Functions for the DL SPI:

DL_Datalnsert, DL_DataGetFirst, DL_DataGetNext

333

DL_GetDbAcl

NAME
DL_GetDbAcl: CSSM_DL_GetDbAcl — Get ACL description (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_GetDbAcl
(CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_STRING *SelectionTag,
uint32 *NumberOfAclInfos,
CSSM_ACL_ENTRY_INFO_PTR *AclInfos)
SPI:

CSSM_RETURN CSSMDLI DL_GetDbAcl
(CSsSM_DL_DB_HANDLE DLDBHandle,
const CSSM_STRING *SelectionTag,
uint32 *NumberOfAclInfos,
CSSM_ACL_ENTRY_INFO_PTR *AclInfos)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that identifies the Data Storage service provider to perform this operation
and the target data store whose associated ACL entries are scanned and returned.

SelectionTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries for the target data base. To retrieve a description of all ACL entries for the
target data base, this parameter must be NULL.

NumberOfAclInfos (output)

The number of entries in the Ac1Infos array. If no ACL entry descriptions are returned,
this value is zero.

AclInfos (output)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in each
structure can be used during the current attach session to reference the ACL entry for
editing. The structure is allocated by the service provider and must be released by the caller

when the structure is no longer needed. If no ACL entry descriptions are returned, this
value is NULL.

334

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the data storage service provider
module and associated with the target database identified by DL.DBHandle.DBHandle. The optional input
SelectionTag restricts the returned descriptions to those ACL entries with a matching EntryTag value. If a
SelectionTag value is specified and no matches are found, zero descriptions are returned. If no
SelectionTag is specified, a description of all ACL entries associated with the target data base are returned
by this function.

Each Aclinfo structure contains:

e Public contents of an ACL entry

e ACL EntryHandle, which is a unique value defined and managed by the service provider
The public ACL entry information returned by this function includes:

The subject type

A CSSM_LIST structure containing one element identifying the type of subject stored in the
ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the permissions recorded
in Authorization.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for which
permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time and
the stop time for which the ACL entry is valid.

ACL entry tag
A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

335

Online Help

Functions for the CSSM API:
CSSM_DL_ChangeDbAcl
Functions for the DL SPI:
DL_ChangeDbAcl

336

DL_GetDbNameFromHandle

NAME
DL_GetDbNameFromHandle: CSSM_DL_GetDbNameFromHandle — Get data source name (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DIL_GetDbNameFromHandle
(CSSM_DL_DB_HANDLE DLDBHandle,

char **DbName)

SPI:

CSSM_RETURN CSSMDLI DL_GetDbNameFromHandle
(CSsSM_DL_DB_HANDLE DLDBHandle,

char **DbName)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that identifies the add-in data storage library module and the open data
store whose name should be retrieved.

DbName (output)

Returns a zero terminated string which contains a data store name. The memory is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function retrieves the data source name corresponding to an opened data store handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

337

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbNames
Functions for the DL SPI:
DL_GetDbNames

338

DL_GetDbNames

NAME
DL_GetDbNames: CSSM_DL_GetDbNames — Get list of logical data store names (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_GetDbNames
(CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST PTR *NameList)

SPI:

CSSM_RETURN CSSMDLI DL_GetDbNames
(CSSM_DL_HANDLE DLHandle,
CSSM_NAME_LIST PTR *NameList)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLHandle (input)

The handle that describes the add-in data storage library module to be used to perform this
function.

NameList (output)
Returns a list of data store names in a CSSM_NAME_LIST_PTR structure.

DESCRIPTION

This function returns the list of logical data store names for all data stores that are known by and accessible
to the specified DL module. This list also includes the number of data store names in the return list.

The CSSM_DI,_FreeNameList () function must be called to deallocate memory containing the list.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

339

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbNameFromHandle, CSSM_DL_FreeNamelList
Functions for the DL SPI:

DL_GetDbNameFromHandle, DL_FreeNameList

340

DL_GetDbOwner

NAME
DL_GetDbOwner: CSSM_DL_GetDbOwner — Get data base owner (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_DIL_GetDbOwner
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_ACL_OWNER_PROTOTYPE_PTR Owner)
SPI:

CSSM_RETURN CSSMDLI DL_GetDbOwner
(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_ACL_OWNER_PROTOTYPE_PTR Owner)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETER

DLDBHandle (input)

The handle pair that describes the data storage library module to be used to perform this

function, and the open data store whose associated Owner is to be retrieved.

Owner (output)

A CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Data Base.

DESCRIPTION

This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Data Base.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

341

Online Help

Functions for the CSSM API:
CSSM_DL_ChangeDbOwner
Functions for the DL SPI:
DL_ChangeDbOwner

342

DL_PassThrough

NAME
DL_PassThrough: CSSM_DIL_PassThrough — Extend data storage module functionality (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_DL_PassThrough
(CSSM_DL_DB_HANDLE DLDBHandle,
uint32 PassThroughId,

const void *InputParams,

void **OutputParam)

SPI:

CSSM_RETURN CSSMDLI DL_PassThrough
(CSsSM_DL_DB_HANDLE DLDBHandle,
uint32 PassThroughId,

const void *InputParams,

void **OutputParam)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

PARAMETERS

DLDBHandle (input)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store upon which the function is to be performed.

PassThroughId (input)
An identifier assigned by a DL module to indicate the exported function to be performed.
InputParams (input)

A pointer to a module implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested DL module.

OutputParams (output)

A pointer to a module, implementation-specific structure containing the output data. The
service provider will allocate the memory for this structure. The application should free the
memory for the structure.

DESCRIPTION

This function allows applications to call data storage library module-specific operations that have been
exported. Such operations may include queries or services that are specific to the domain represented by a DL
module.

343

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_DL_INVALID_ DB_HANDLE
CSSMERR_DIL_INVALID_ PASSTHROUGH_ID

SEE ALSO

Books

Intel CDSA Application Developer's Guide

344

EncryptData

NAME
EncryptData: CSSM_EncryptData, CSP_EncryptData — Encrypts all buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API:

CSSM_RETURN CSSMAPI CSSM_EncryptData
(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA *ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted,
CSSM_DATA_PTR RemData)

SPI:

CSSM_RETURN CSSMCSPI CSP_EncryptData
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_CONTEXT *Context,
const CSSM_DATA *ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted,
CSSM_DATA_PTR RemData,
CSSM_PRIVILEGE Privilege)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

ClearBufs (input)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
ClearBufCount (input)

The number of ClearBufs
CipherBufs (output)

A pointer to a vector of CSSM_DATA structures that contain the results of the operation on
the data.

CipherBufCount (input)

345

The number of CipherBufs.
bytesEncrypted (output)

A pointer to uint32 for the size of the encrypted data in bytes.
RemData (output)

A pointer to the CSSM_DATA structure for the remaining cipher text if there is not enough
buffer space available in the output data structures.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Context (input)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privilege (input)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function encrypts all data contained in the set of input buffers using information in the context. The
CSSM_QuerySize () function can be used to estimate the output buffer size required. The minimum number of
buffers required to contain the resulting cipher text is produced as output. If the cipher text result does not fit
within the set of output buffers, the remaining cipher text is returned in the single output buffer RemData.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL Data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed. In-place encryption can be done by supplying the same
input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

346

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SIZE_MISMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:

CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

347

EncryptDataFinal

NAME

EncryptDataFinal: CSSM_EncryptDataFinal, CSP_EncryptDataFinal — Finalize staged encryption
process (CDSA)

SYNOPSIS

include <cssm.h>

APT:

CSSM_RETURN CSSMAPI CSSM_EncryptDataFinal
(CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR RemData)

SPI:

CSSM_RETURN CSSMCSPI CSP_EncryptDataFinal
(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,

CSSM_DATA_PTR RemData)

LIBRARY

Common Security Services Manager library (cdsa$incssm300_shr.exe)

API PARAMETERS

CCHandle (input)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

RemData (output)

A pointer to the CSSM_DATA structure for the last encrypted block containing padded
data, if necessary.

SPI PARAMETERS

CSPHandle (input)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged encryption process by returning any remaining cipher text not returned in
the previous staged encryption call. The cipher text is returned in a single buffer.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by

348

the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SIZE_MISMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERR