
OpenVMSCallingStandard

November 17, 2003

This standard defines the requirements, mechanisms, and conventions
that support procedure-to-procedure calls for hp OpenVMS VAX,
hp OpenVMS Alpha, and hp OpenVMS Industry Standard 64. The
standard defines the run-time data structures, constants, algorithms,
conventions, methods, and functional interfaces that enable a 32-
bit or 64-bit native user-mode procedure to operate correctly in a
multilanguage and multithreaded environment on VAX, Alpha, and
Intel® Itanium® processors.

Revision/Update Information:

Software Version: HP OpenVMS Industry Standard 64
Evaluation Release Version 8.1 for
Integrity Servers

Operating System: HP OpenVMS I64 Eval V8.1

Hewlett-Packard Company

PROPRIETARY INFORMATION

Furnished for Field Test Purposes Only

The information contained herein is furnished in
confidence and is subject to the terms and conditions

of a License agreement for field testing Hewlett-Packard software.

Hewlett-Packard Company
Palo Alto, California

© Copyright 2003 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

ZK5973

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xiii

1 Introduction

1.1 Applicability . 1–2
1.2 Architectural Level . 1–2
1.3 Goals . 1–2
1.4 Definitions . 1–4

2 OpenVMS VAX Conventions

2.1 Register Usage . 2–1
2.1.1 Scalar Register Usage . 2–1
2.1.2 Vector Register Usage . 2–2
2.2 Stack Usage . 2–2
2.3 Calling Sequence . 2–3
2.4 Argument List . 2–3
2.4.1 Format . 2–4
2.4.2 Argument Lists and High-Level Languages . 2–5
2.4.2.1 Order of Argument Evaluation . 2–5
2.4.2.2 Language Extensions for Argument Transmission 2–5
2.5 Function Value Returns . 2–6
2.5.1 Returning a Function Value on Top of the Stack 2–7
2.5.1.1 Returning a Fixed-Length or Varying String Function Value 2–8
2.6 Vector and Scalar Processor Synchronization . 2–8
2.6.1 Memory Synchronization . 2–9
2.6.2 Exception Synchronization . 2–9

3 OpenVMS Alpha Conventions

3.1 Register Usage . 3–1
3.1.1 Integer Registers . 3–1
3.1.2 Floating-Point Registers . 3–2
3.2 Address Representation . 3–3
3.3 Procedure Representation . 3–3
3.4 Procedure Types . 3–3
3.4.1 Stack Frame Procedures . 3–4
3.4.2 Procedure Descriptor for Procedures with a Stack Frame 3–5
3.4.3 Stack Frame Format . 3–9
3.4.3.1 Fixed-Size Stack Frame . 3–9
3.4.3.2 Variable-Size Stack Frame . 3–10
3.4.3.3 Fixed Temporary Locations for All Stack Frames 3–12
3.4.3.4 Register Save Area for All Stack Frames . 3–12
3.4.4 Register Frame Procedure . 3–14

iii

3.4.5 Procedure Descriptor for Procedures with a Register Frame 3–15
3.4.6 Null Frame Procedures . 3–20
3.4.7 Procedure Descriptor for Null Frame Procedures 3–20
3.5 Procedure Call Stack . 3–22
3.5.1 Current Procedure . 3–23
3.5.2 Procedure Call Tracing . 3–24
3.5.2.1 Referring to a Procedure Invocation from a Data Structure 3–24
3.5.2.2 Invocation Context Block . 3–25
3.5.2.3 Getting a Procedure Invocation Context with a Routine 3–27
3.5.2.4 Walking the Call Stack . 3–27
3.5.3 Invocation Context Access Routines . 3–28
3.5.3.1 LIB$GET_INVO_CONTEXT . 3–28
3.5.3.2 LIB$GET_CURR_INVO_CONTEXT . 3–29
3.5.3.3 LIB$GET_PREV_INVO_CONTEXT . 3–29
3.5.3.4 LIB$GET_INVO_HANDLE . 3–29
3.5.3.5 LIB$GET_PREV_INVO_HANDLE . 3–30
3.5.3.6 LIB$PUT_INVO_REGISTERS . 3–30
3.6 Transfer of Control . 3–31
3.6.1 Call Conventions . 3–31
3.6.2 Linkage Section . 3–34
3.6.3 Calling Computed Addresses . 3–36
3.6.4 Simple and Bound Procedures . 3–36
3.6.4.1 Bound Procedure Descriptors . 3–37
3.6.4.2 Bound Procedure Value . 3–38
3.6.5 Entry and Exit Code Sequences . 3–39
3.6.5.1 Entry Code Sequence . 3–39
3.6.5.2 Exit Code Sequence . 3–41
3.7 Data Passing . 3–42
3.7.1 Argument-Passing Mechanisms . 3–42
3.7.2 Argument List Structure . 3–43
3.7.3 Argument Lists and High-Level Languages . 3–44
3.7.4 Unused Bits in Passed Data . 3–44
3.7.5 Sending Data . 3–46
3.7.5.1 Sending Mechanism . 3–46
3.7.5.2 Order of Argument Evaluation . 3–47
3.7.6 Receiving Data . 3–47
3.7.7 Returning Data . 3–47
3.7.7.1 Function Value Return by Immediate Value 3–48
3.7.7.2 Function Value Return by Reference . 3–48
3.7.7.3 Function Value Return by Descriptor . 3–49
3.8 Data Allocation . 3–50
3.8.1 Alignment . 3–51
3.8.2 Record Layout Conventions . 3–52
3.8.2.1 Aligned Record Layout . 3–53
3.8.2.2 OpenVMS VAX Compatible Record Layout 3–54
3.9 Multithreaded Execution Environments . 3–54
3.9.1 Stack Limit Checking . 3–55
3.9.1.1 Stack Guard Region . 3–55
3.9.1.2 Stack Reserve Region . 3–55
3.9.1.3 Methods for Stack Limit Checking . 3–55
3.9.1.4 Stack Overflow Handling . 3–58

iv

4 OpenVMS I64 Conventions

4.1 Register Usage . 4–1
4.1.1 Partitioning . 4–1
4.1.2 I64 General Register Usage . 4–2
4.1.3 I64 Floating-Point Register Usage . 4–4
4.1.4 I64 Predicate Register Usage . 4–4
4.1.5 I64 Branch Register Usage . 4–5
4.1.6 I64 Application Register Usage . 4–5
4.1.7 User Mask . 4–7
4.1.8 Additional Register Usage Information . 4–8
4.2 Address Representation . 4–8
4.3 Procedure Representation . 4–9
4.4 Procedure Types . 4–9
4.5 Memory Stack . 4–10
4.5.1 Procedure Frames . 4–10
4.5.2 Stack Overflow Detection . 4–12
4.5.2.1 Stack Limit Checking . 4–13
4.5.2.2 Methods for Stack Limit Checking . 4–13
4.6 Register Stack . 4–15
4.6.1 Input and Local Registers . 4–16
4.6.2 Output Registers . 4–16
4.6.3 Rotating Registers . 4–17
4.6.4 Frame Markers . 4–17
4.6.5 Backing Store for Register Stack . 4–17
4.7 Procedure Linkage . 4–18
4.7.1 The GP Register . 4–18
4.7.2 Types of Calls . 4–19
4.7.3 Calling Sequence . 4–19
4.7.3.1 Direct Calls . 4–19
4.7.3.2 Indirect Calls . 4–22
4.7.4 Parameter Passing . 4–23
4.7.5 Parameter Passing Mechanisms . 4–24
4.7.5.1 Allocation of Parameter Slots . 4–26
4.7.5.2 Normal Register Parameters . 4–27
4.7.5.3 Argument Information (AI) Register . 4–29
4.7.5.4 Memory Stack Parameters . 4–30
4.7.5.5 Variable Argument Lists . 4–30
4.7.5.6 Pointers to Formal Parameters . 4–30
4.7.5.7 Languages Other than C . 4–31
4.7.5.8 Rounding Floating-point Values . 4–31
4.7.5.9 Order of Argument Evaluation . 4–31
4.7.5.10 Examples . 4–31
4.7.6 Return Values . 4–32
4.7.7 Simple and Bound Procedures . 4–33
4.8 Procedure Call Stack . 4–36
4.8.1 Current Procedure . 4–36
4.8.2 Procedure Call Tracing . 4–37
4.8.2.1 Invocation Context Block . 4–37
4.8.2.2 Invocation Context Handle . 4–40

v

4.8.3 Invocation Context Block Access Routines . 4–40
4.8.3.1 Initializing the Invocation Context Block . 4–40
4.8.3.2 Walking the Call Stack . 4–41
4.8.3.3 LIB$I64_GET_INVO_CONTEXT . 4–41
4.8.3.4 LIB$I64_GET_CURR_INVO_CONTEXT . 4–42
4.8.3.5 LIB$I64_GET_PREV_INVO_CONTEXT . 4–42
4.8.3.6 LIB$I64_GET_INVO_HANDLE . 4–43
4.8.3.7 LIB$I64_GET_CURR_INVO_HANDLE . 4–43
4.8.3.8 LIB$I64_GET_PREV_INVO_HANDLE . 4–44
4.8.3.9 LIB$I64_PREV_INVO_END . 4–44
4.8.3.10 LIB$I64_PUT_INVO_REGISTERS . 4–45
4.8.4 Supplemental Invocation Context Access Routines 4–46
4.8.4.1 LIB$I64_GET_FR . 4–46
4.8.4.2 LIB$I64_SET_FR . 4–47
4.8.4.3 LIB$I64_GET_GR . 4–48
4.8.4.4 LIB$I64_SET_GR . 4–48
4.8.4.5 LIB$I64_SET_PC . 4–49
4.8.4.6 LIB$I64_SET_FPSR . 4–49
4.8.4.7 LIB$I64_GET_UNWIND_LSDA . 4–50
4.8.4.8 LIB$I64_GET_UNWIND_OSSD . 4–50
4.8.4.9 LIB$I64_GET_UNWIND_HANDLER_FV 4–51
4.8.4.10 LIB$I64_IS_EXC_DISPATCH_FRAME . 4–51
4.8.4.11 LIB$I64_IS_AST_DISPATCH_FRAME . 4–52
4.8.5 Invocation Context Callback Routines . 4–52
4.8.5.1 The Get Unwind Information Routine . 4–53
4.8.5.2 The Get Initial Context Routine . 4–53
4.8.5.3 The Read Memory Routine . 4–54
4.8.5.4 The Write Memory Routine . 4–54
4.8.5.5 The Write Register Routine . 4–55
4.8.5.6 The Memory Allocation Routine . 4–55
4.8.5.7 The Memory Deallocation Routine . 4–56
4.9 Data Allocation . 4–57
4.9.1 Alignment . 4–58
4.9.2 Global Data . 4–59
4.9.3 Local Static Data . 4–59
4.9.4 Constants and Literals . 4–59
4.9.5 Record Layout Conventions . 4–59
4.9.5.1 Aligned Record Layout . 4–60
4.9.5.2 OpenVMS VAX Compatible Record Layout 4–61
4.9.6 Sample Code Sequences . 4–61
4.9.6.1 Addressing Own Data in the Short Data Area 4–61
4.9.6.2 Addressing External Data or Data in a Long Data Area 4–61
4.9.6.3 Addressing Literals in the Text Segment . 4–62
4.9.6.4 Materializing Function Pointers . 4–62
4.9.6.5 Jump Tables . 4–62
4.9.6.5.1 Preferred Method . 4–62
4.9.6.5.2 Alternative Method . 4–63

vi

5 Signature Information and Translated Images (Alpha and I64
Systems Only)

5.1 Overview . 5–1
5.1.1 Translated VAX Images on Alpha Systems . 5–1
5.1.1.1 Direct Calls From Translated to Native Code 5–2
5.1.1.2 Direct Calls From Native to Translated Code 5–2
5.1.1.3 Indirect Calls From Native to Translated Code 5–2
5.1.2 Translated Images on I64 Systems . 5–3
5.1.2.1 Calls From Translated to Native I64 Code 5–4
5.1.2.2 Direct Calls From Native I64 Code to Translated Code 5–4
5.1.2.3 Indirect Calls From Native to Translated Code 5–5
5.1.3 Signature Information Fields in Function Descriptors 5–5
5.2 Signature Information Blocks . 5–6
5.2.1 Signature Information on Alpha Systems . 5–6
5.2.2 Signature Information on I64 Systems . 5–6
5.2.3 Signature Information Block Content . 5–7
5.2.4 Call Parameter PSIG Conversions . 5–10
5.2.4.1 Native-Alpha-to-Translated-VAX PSIG Conversions 5–10
5.2.4.2 Translated-VAX-to-Native-Alpha PSIG Conversions 5–11
5.2.4.3 Native-I64-to-Translated-Alpha PSIG Conversions 5–13
5.2.4.4 Translated-Alpha-to-Native-I64 PSIG Conversions 5–13
5.2.5 Default Signature Information . 5–13

6 OpenVMS Argument Data Types

6.1 Atomic Data Types . 6–1
6.2 String Data Types . 6–4
6.3 Miscellaneous Data Types . 6–5
6.4 Reserved Data-Type Codes . 6–6
6.4.1 Facility-Specific Data-Type Codes . 6–7
6.5 Varying Character String Data Type (DSC$K_DTYPE_VT) 6–8

7 OpenVMS Argument Descriptors

7.1 Descriptor Prototype . 7–2
7.2 Fixed-Length Descriptor (CLASS_S) . 7–5
7.3 Dynamic String Descriptor (CLASS_D) . 7–6
7.4 Array Descriptor (CLASS_A) . 7–7
7.5 Procedure Argument Descriptor (CLASS_P) . 7–12
7.6 Decimal String Descriptor (CLASS_SD) . 7–14
7.7 Noncontiguous Array Descriptor (CLASS_NCA) . 7–16
7.8 Varying String Descriptor (CLASS_VS) . 7–21
7.9 Varying String Array Descriptor (CLASS_VSA) . 7–23
7.10 Unaligned Bit String Descriptor (CLASS_UBS) . 7–26
7.11 Unaligned Bit Array Descriptor (CLASS_UBA) . 7–27
7.12 String with Bounds Descriptor (CLASS_SB) . 7–31
7.13 Unaligned Bit String with Bounds Descriptor (CLASS_UBSB) 7–33
7.14 Reserved Descriptor Class Codes . 7–35
7.14.1 Facility-Specific Descriptor Class Codes . 7–35

vii

8 OpenVMS Conditions

8.1 Condition Values . 8–1
8.1.1 Interpretation of Severity Codes . 8–4
8.1.2 Use of Condition Values . 8–5
8.2 Condition Handlers . 8–5
8.3 Condition Handler Options . 8–6
8.4 Operations Involving Condition Handlers . 8–6
8.4.1 Establishing a Condition Handler . 8–7
8.4.2 Reverting to the Caller’s Handling . 8–8
8.4.3 Signaling a Condition . 8–8
8.4.4 Signaling a Condition Using GENTRAP (Alpha and I64 Systems

Only) . 8–9
8.4.5 Signaling a Condition Using BREAK (I64 Only) 8–10
8.4.6 Condition Handler Search . 8–11
8.5 Properties of Condition Handlers . 8–12
8.5.1 Condition Handler Parameters and Invocation 8–12
8.5.1.1 Signal Argument Vector . 8–13
8.5.1.2 Mechanism Argument Vector . 8–15
8.5.1.2.1 VAX Mechanism Vector Format . 8–16
8.5.1.2.2 Alpha Mechanism Vector Format . 8–17
8.5.1.2.3 I64 Mechanism Vector Format . 8–20
8.5.1.3 Mechanism Depth . 8–23
8.5.2 System Default Condition Handlers . 8–24
8.5.3 Coordinating the Handler and Establisher . 8–24
8.5.3.1 Use of Memory . 8–24
8.5.3.2 Exception Synchronization (Alpha Only) . 8–24
8.5.3.3 Continuation from Exceptions (Alpha Only) 8–25
8.6 Returning from a Condition Handler . 8–25
8.7 Request to Unwind from a Signal . 8–26
8.7.1 Signaler’s Registers . 8–28
8.7.2 Unwind Completion . 8–28
8.8 GOTO Unwind Operations (Alpha and I64 Systems Only) 8–29
8.8.1 Handler Invocation During a GOTO Unwind . 8–32
8.8.2 Unwind Completion . 8–32
8.9 Multiple Active Signals . 8–33
8.10 Multiple Active Unwind Operations . 8–34

A Stack Unwinding and Exception Handling on OpenVMS I64

A.1 Unwinding the Stack . A–2
A.1.1 Initial Context . A–2
A.1.2 Step to Previous Frame . A–2
A.2 Exception Handling Framework . A–3
A.3 Coding Conventions for Reliable Unwinding . A–4
A.3.1 Requirements for Unwinding the Stack . A–4
A.3.2 Conventions for Prologue Regions . A–5
A.3.3 Conventions for Body Regions . A–7
A.3.4 Conventions for Epilogues . A–7
A.3.5 Conventions for the Spill Area in the Memory Stack Frame A–7
A.4 Data Structures . A–8

viii

A.4.1 Unwind Table and Unwind Information Block A–9
A.4.1.1 Unwind Descriptor Area . A–12
A.4.1.2 Region Header Records . A–12
A.4.1.3 Descriptor Records for Prologue Regions . A–13
A.4.1.4 Descriptor Records for Body Regions . A–19
A.4.1.5 Descriptor Records for Body or Prologue Regions A–20
A.4.1.6 Rules for Using Unwind Descriptors . A–21
A.4.1.7 Processing Unwind Descriptors . A–22
A.4.2 Condition Handler . A–22
A.4.3 Operating System-Specific Data Area . A–23
A.4.3.1 General Information Segment . A–23
A.4.3.2 Caller Spill Register Information . A–25
A.4.4 Language-Specific Data Area . A–27
A.5 Default Unwind Information . A–27
A.6 System Unwind Routines . A–28

SYS$SET_UNWIND_TABLE . A–29
SYS$CLEAR_UNWIND_TABLE . A–32
SYS$GET_UNWIND_ENTRY_INFO . A–33
LIB$GET_UIB_INFO . A–35

B Unwind Descriptor Record Format

B.1 Region Header Records . B–2
B.1.1 Format R1 . B–2
B.1.2 Format R2 . B–3
B.1.3 Format R3 . B–3
B.2 Descriptor Records for Prologue Regions . B–4
B.2.1 Format P1 . B–4
B.2.2 Format P2 . B–4
B.2.3 Format P3 . B–5
B.2.4 Format P4 . B–5
B.2.5 Format P5 . B–6
B.2.6 Format P6 . B–6
B.2.7 Format P7 . B–7
B.2.8 Format P8 . B–8
B.2.9 Format P9 . B–9
B.2.10 Format P10 . B–9
B.3 Descriptor Records for Body Regions . B–9
B.3.1 Format B1 . B–10
B.3.2 Format B2 . B–10
B.3.3 Format B3 . B–10
B.3.4 Format B4 . B–11
B.4 Descriptor Records for Body or Prologue Regions . B–11
B.4.1 Format X1 . B–12
B.4.2 Format X2 . B–13
B.4.3 Format X3 . B–13
B.4.4 Format X4 . B–14

ix

C Summary of Differences from the Itanium Software Conventions

C.1 Changes . C–1
C.2 Extensions . C–2

Index

Examples

3–1 Entry Code for a Stack Frame Procedure . 3–40
3–2 Entry Code for a Register Frame Procedure . 3–41
3–3 Exit Code Sequence for a Stack Frame . 3–42
3–4 Exit Code Sequence for a Register Frame . 3–42
5–1 Code for Examining the Procedure Value . 5–2

Figures

2–1 Stack Frame Generated by CALLG or CALLS Instruction 2–2
2–2 Argument List Format . 2–4
3–1 Stack Frame Procedure Descriptor (PDSC) . 3–5
3–2 Fixed-Size Stack Frame Format . 3–10
3–3 Variable-Size Stack Frame Format . 3–11
3–4 Register Save Area (RSA) Layout . 3–13
3–5 Register Save Area (RSA) Example . 3–14
3–6 Register Frame Procedure Descriptor (PDSC) 3–16
3–7 Null Frame Procedure Descriptor (PDSC) Format 3–21
3–8 Procedure Invocation Handle Format . 3–24
3–9 Invocation Context Block Format . 3–26
3–10 Argument Information Register (R25) Format 3–32
3–11 Linkage Pair Block Format . 3–35
3–12 Bound Procedure Descriptor (PDSC) . 3–37
4–1 Procedure Frame . 4–11
4–2 Operation of the Register Stack . 4–16
4–3 Direct Procedure Calls . 4–20
4–4 Indirect Procedure Calls . 4–22
4–5 Parameter Passing in Registers and Memory 4–24
4–6 Argument Information Register Representation 4–29
4–7 Simple Function Descriptor . 4–33
4–8 Bound Function Descriptor . 4–34
5–1 Alpha Signature Information Block (PSIG) . 5–6
5–2 I64 Signature Information Block (PSIG) . 5–7
6–1 Varying Character String Data Type (DSC$K_DTYPE_VT)—General

Format . 6–8
6–2 Varying Character String Data Type (DSC$K_DTYPE_VT) Format . . 6–9
7–1 Descriptor Prototype Format . 7–3
7–2 Fixed-Length Descriptor Format . 7–5
7–3 Dynamic String Descriptor Format . 7–6
7–4 Array Descriptor Format . 7–8

x

7–5 Procedure Argument Descriptor Format . 7–13
7–6 Decimal String Descriptor Format . 7–14
7–7 Noncontiguous Array Descriptor Format . 7–17
7–8 Varying String Descriptor Format . 7–22
7–9 Varying String Descriptor with Character String Data Type 7–23
7–10 Varying String Array Descriptor Format . 7–24
7–11 Unaligned Bit String Descriptor Format . 7–26
7–12 Unaligned Bit Array Descriptor Format . 7–28
7–13 String with Bounds Descriptor Format . 7–32
7–14 Unaligned Bit String with Bounds Descriptor Format 7–33
8–1 Format of a Condition Value . 8–2
8–2 Interaction Between Handlers and Default Handlers 8–12
8–3 Signal Argument Vector — 32-Bit Format . 8–14
8–4 Signal Argument Vector — 64-Bit Format . 8–15
8–5 VAX Mechanism Vector Format . 8–16
8–6 Alpha Mechanism Vector Format . 8–18
8–7 I64 Mechanism Vector Format . 8–21
A–1 Unwind Table and Unwind Information Block A–10
A–2 OpenVMS Operating System-Specific Data Area Segment A–23
A–3 Format of OSSD$T_SPILL_DATA . A–26

Tables

2–1 VAX Register Usage . 2–1
2–2 Argument-Passing Mechanisms with User Explicit Control 2–6
3–1 Alpha Integer Register Usage . 3–1
3–2 Alpha Floating-Point Register Usage . 3–2
3–3 Contents of Stack Frame Procedure Descriptor (PDSC) 3–6
3–4 Contents of Register Frame Procedure Descriptor (PDSC) 3–17
3–5 Contents of Null Frame Procedure Descriptor (PDSC) 3–21
3–6 Contents of the Invocation Context Block . 3–27
3–7 Contents of the Argument Information Register (R25) 3–32
3–8 Contents of the Linkage Pair Block . 3–35
3–9 Contents of the Bound Procedure Descriptor (PDSC) 3–37
3–10 Argument Item Locations . 3–43
3–11 Data Types and the Unused Bits in Passed Data 3–45
3–12 Natural Alignment Requirements . 3–52
4–1 I64 General Register Usage . 4–2
4–2 I64 Floating-Point Register Usage . 4–4
4–3 I64 Predicate Register Usage . 4–4
4–4 I64 Branch Register Usage . 4–5
4–5 I64 Application Register Usage . 4–6
4–6 Initial Value of the Floating-point Status Register 4–7
4–7 Summary of Function Descriptor Kinds . 4–9
4–8 Rules for Allocating Parameter Slots . 4–26
4–9 Data Types and the Unused Bits in Passed Data 4–28
4–10 Extension Type Codes . 4–29

xi

4–11 Argument Information Register Codes . 4–30
4–12 Rules for Return Values . 4–32
4–13 Simple Function Descriptor . 4–34
4–14 Contents of Bound Function Descriptor . 4–35
4–15 Contents of the Invocation Context Block . 4–37
4–16 Flags in LIBICB$V_FRAME_FLAGS Field of the invocation context

block . 4–39
4–17 Natural Alignment Requirements . 4–58
5–1 Signature Information Field Tag Values . 5–5
5–2 Contents of the Signature Information Block (PSIG) 5–7
5–3 Register Argument Signature Encodings . 5–9
5–4 Function Return Signature Encodings . 5–9
5–5 Native-to-Translated Conversion of the PSIG Field Values 5–10
5–6 Translated-to-Native Conversion of the PSIG Field Values 5–12
6–1 Atomic Data Types . 6–2
6–2 String Data Types . 6–4
6–3 Miscellaneous Data Types . 6–5
6–4 Reserved Data Types . 6–6
7–1 Argument Descriptor Classes for OpenVMS Alpha and OpenVMS

VAX . 7–2
7–2 Contents of the Prototype Descriptor . 7–4
7–3 Contents of the CLASS_S Descriptor . 7–5
7–4 Contents of the CLASS_D Descriptor . 7–7
7–5 Contents of the CLASS_A Descriptor . 7–10
7–6 Contents of the CLASS_P Descriptor . 7–13
7–7 Contents of the CLASS_SD Descriptor . 7–15
7–8 Internal-to-External BINSCALE Conversion Examples 7–16
7–9 Contents of the CLASS_NCA Descriptor . 7–19
7–10 Contents of the CLASS_VS Descriptor . 7–22
7–11 Contents of the CLASS_VSA Descriptor . 7–26
7–12 Contents of the CLASS_UBS Descriptor . 7–27
7–13 Contents of the CLASS_UBA Descriptor . 7–30
7–14 Contents of the CLASS_SB Descriptor . 7–32
7–15 Contents of the CLASS_UBSB Descriptor . 7–34
7–16 Specific OpenVMS VAX Descriptors Reserved to Hewlett-Packard . . . 7–35
8–1 Contents of the Condition Value . 8–2
8–2 Value Symbols for the Condition Value Longword 8–3
8–3 Interpretation of Severity Codes . 8–4
8–4 Exception Codes and Symbols for the GENTRAP Parameter 8–9
8–5 Contents of the Alpha Argument Mechanism Array (MECH) 8–19
8–6 Contents of the I64 Argument Mechanism Array (MECH) 8–22
A–1 F (Flags) Field of the Information Block . A–11
A–2 Region Header Records . A–12
A–3 Prologue Descriptor Records for the Stack Frame A–13
A–4 Prologue Descriptor Records for the Return Pointer A–14
A–5 Prologue Descriptor Records for the Previous Function State A–15
A–6 Prologue Descriptor Records for Predicate Registers A–15

xii

A–7 Prologue Descriptor Records for General, Floating-Point, and Branch
Registers . A–15

A–8 Prologue Descriptor Records for the User NaT Collection Register . . . A–17
A–9 Prologue Descriptor Records for the Loop Counter Register A–17
A–10 Prologue Descriptor Records for the Floating-Point Status Register

. A–17
A–11 Prologue Descriptor Records for the Primary UNaT Collection A–18
A–12 Prologue Descriptor Records for the Backing Store A–18
A–13 Body Region Descriptor Records . A–19
A–14 General Unwind Descriptors . A–20
A–15 Operating System-Specific Data Area . A–24
A–16 OpenVMS OSSD Caller Spill Register Information A–26
A–17 Description of OSSD$T_SPILL_DATA Segment A–26
B–1 Record Formats . B–1
B–2 Example ULEB128 Encodings . B–2

xiii

Preface

The OpenVMS Calling Standard defines the requirements, mechanisms, and
conventions that support procedure-to-procedure calls for hp OpenVMS VAX, hp
OpenVMS Alpha, and hp OpenVMS Industry Standard 64. The standard defines
the run-time data structures, constants, algorithms, conventions, methods,
and functional interfaces that enable a native user-mode procedure to operate
correctly in a multilanguage environment on VAX, Alpha, and Itanium® systems.
Properties of the run-time environment that must apply at various points during
program execution are also defined.

The 32-bit user mode of OpenVMS Alpha provides a high degree of compatibility
with programs written for OpenVMS VAX.

The 64-bit user mode of OpenVMS Alpha is a compatible superset of the
OpenVMS Alpha 32-bit user mode.

The 32-bit and 64-bit user modes of OpenVMS I64 are highly compatible with
OpenVMS Alpha.

The interfaces, methods, and conventions specified in this manual are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher level system software and applications.

This standard is under engineering change order (ECO) control. ECOs are
approved by Hewlett-Packard’s OpenVMS Calling Standard committee.

Intended Audience
This manual primarily defines requirements for compiler and debugger writers,
but the information can apply to procedure calling for all programmers in various
levels of programming.

Document Structure
This manual contains seven chapters and three appendixes. Some chapters
are restricted to a particular hardware environment. The appendixes all apply
specifically to OpenVMS I64.

Chapter 1 provides an overview of the standard, defines goals, and defines terms
used in the text.

Chapter 2 describes the primary conventions in calling a procedure in an
OpenVMS VAX environment. It defines register usage and addressing as well as
vector and scalar processor synchronization.

Chapter 3 describes the fundamental concepts and conventions in calling a
procedure in an OpenVMS Alpha environment. The chapter defines register
usage and addressing, and focuses on aspects of the calling standard that pertain
to procedure-to-procedure flow of control.

November 17, 2003 xiii

Chapter 4 describes the fundamental concepts and conventions in calling a
procedure in an OpenVMS I64 environment. The chapter defines register usage
and addressing, and focuses on aspects of the calling standard that pertain to
procedure-to-procedure flow of control.

Chapter 5 describes signature information and its role in interfacing with
translated OpenVMS VAX and Alpha images on Alpha and I64 systems. This is
a new chapter that includes information that used to be in Chapter 3 as well as
new information for I64 systems.

Chapter 6 defines the argument-passing data types used in calling a procedure
for all OpenVMS environments.

Chapter 7 defines the argument descriptors used in calling a procedure for all
OpenVMS environments.

Chapter 8 describes the OpenVMS condition- and exception-handling
requirements for all OpenVMS environments.

Appendix A describes stack unwinding and exception handling for OpenVMS I64
environments.

Appendix B contains the formats of the OpenVMS I64 unwind descriptor records.

Appendix C contains a brief summary of the differences between the Itanium®
Software Conventions and Runtime Architecture Guide and this calling standard.

Related Documents
The following manuals contain related information:

• VAX Architecture Reference Manual

• Alpha Architecture Reference Manual

• OpenVMS Programming Interfaces: Calling a System Routine

• Guide to the POSIX Threads Library

• VAX/VMS Internals and Data Structures

• OpenVMS AXP Internals and Data Structures

• Intel IA-64 Architecture Software Developer’s Manual

• Itanium® Software Conventions and Runtime Architecture Guide

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xiv November 17, 2003

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

November 17, 2003 xv

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvi November 17, 2003

1
Introduction

This standard defines properties such as the run-time data structures, constants,
algorithms, conventions, methods, and functional interfaces that enable a native
user-mode procedure to operate correctly in a multilanguage and multithreaded
environment on OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64 systems.
These properties include the contents of key registers, format and contents of
certain data structures, and actions that procedures must perform under certain
circumstances.

This standard also defines properties of the run-time environment that must
apply at various points during program execution. These properties vary in scope
and applicability. Some properties apply at all points throughout the execution
of standard-conforming user-mode code and must, therefore, be held constant at
all times. Examples of such properties include those defined for the stack pointer
and various properties of the call stack navigation mechanism. Other properties
apply only at certain points, such as call conventions that apply only at the point
of transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For
example, compilers are not obligated to follow the argument list conventions
when a procedure and all of its callers are in the same module, have been
analyzed by an interprocedural analyzer, or have private interfaces (such as
language-support routines).

Note

In many cases, significant performance gains can be realized by selective
use of nonstandard calls when the safety of such calls is known. Compiler
or tools writers are encouraged to make full use of such optimizations.

The procedure call mechanism depends on agreement between the calling and
called procedures to interpret the argument list. The argument list does not fully
describe itself. This standard requires language extensions to permit a calling
program to generate some of the argument-passing mechanisms expected by
called procedures.

This standard specifies the following attributes of the interfaces between modules:

• Calling sequence—instructions at the call site, entry point, and returns

• Argument list—structure of the list describing the arguments to the called
procedure

• Function value return—form and conventions for the return of the function
value as a value or as a condition value to indicate success or failure

• Register usage—which registers are preserved and who is responsible for
preserving them

November 17, 2003 1–1

Introduction

• Stack usage—rules governing the use of the stack

• Argument data types—data types of arguments that can be passed

• Argument descriptor formats—how descriptors are passed for the more
complex arguments

• Condition handling—how exception conditions are signaled and how they are
handled in a modular fashion

• Stack unwinding—how the current thread of execution is aborted efficiently

1.1 Applicability
This standard defines the rules and conventions that govern the native user-
mode run-time environment on OpenVMS VAX, Alpha, and I64 systems. It is
applicable to all software that executes in OpenVMS native user mode.

Uses of this standard include:

• All externally callable interfaces in Hewlett-Packard supported, standard
system software

• All intermodule calls to major software components

• All external procedure calls generated by OpenVMS language processors
without interprocedural analysis or permanent private conventions (such as
those used for language-support run-time library [RTL] routines)

1.2 Architectural Level
This standard defines an implementation-level run-time software
architecture for OpenVMS operating systems.

The interfaces, methods, and conventions specified in this document are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher-level system software and applications.

Compilers and run-time libraries may provide additional support of these
capabilities via interfaces that are more suited for compiler and application use.
This specification neither prohibits nor requires such additional interfaces.

1.3 Goals
Generally, this calling standard promotes the highest degree of performance,
portability, efficiency, and consistency in the interface between called procedures
of a common OpenVMS environment. Specifically, the calling standard:

• Applies to all intermodule callable interfaces in the native software system.
Specifically, the standard considers the requirements of important compiled
languages including Ada, BASIC, Bliss, C, C++, COBOL, FORTRAN, Pascal,
LISP, PL/I, and calls to the operating system and library procedures. The
needs of other languages that the OpenVMS operating system may support in
the future must be met by the standard or by compatible revisions to it.

• Excludes capabilities for lower-level components (such as assembler routines)
that cannot be invoked from the high-level languages.

1–2 November 17, 2003

Introduction
1.3 Goals

• Allows the calling program and called procedure to be written in different
languages. The standard reduces the need for using language extensions in
mixed-language programs.

• Contributes to the writing of error-free, modular, and maintainable software,
and promotes effective sharing and reuse of software modules.

• Provides the programmer with control over fixing, reporting, and flow of
control when various types of exception conditions occur.

• Provides subsystem and application writers with the ability to override
system messages toward a more suitable application-oriented interface.

• Adds no space or time overhead to procedure calls and returns that do not
establish exception handlers, and minimizes time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

The OpenVMS Alpha portion of this standard:

• Supports a 32-bit user-mode environment that provides a high degree of
compatibility with the OpenVMS VAX environment.

• Supports a 64-bit user-mode environment that is a compatible superset of the
OpenVMS Alpha 32-bit environment.

• Simplifies coexistence with OpenVMS VAX procedures that execute under the
translated image environment.

• Simplifies the compilation of OpenVMS VAX assembler source to native
OpenVMS Alpha object code.

• Supports a multilanguage, multithreaded execution environment, including
efficient, effective support for the implementation of the multithreaded
architecture.

• Provides an efficient mechanism for calling lightweight procedures that do
not need or cannot expend the overhead of setting up a stack call frame.

• Provides for the use of a common calling sequence to invoke lightweight
procedures that maintain only a register call frame and heavyweight
procedures that maintain a stack call frame. This calling sequence allows a
compiler to determine whether to use a stack frame based on the complexity
of the procedure being compiled. A recompilation of a called routine that
causes a change in stack frame usage does not require a recompilation of its
callers.

• Provides condition handling, traceback, and debugging for lightweight
procedures that do not have a stack frame.

• Makes efficient use of the Alpha architecture, including effectively using a
larger number of registers than is contained in a conventional VAX processor.

• Minimizes the cost of procedure calls.

The portion of this standard specific to OpenVMS I64:

• Extends all of the goals listed above for the OpenVMS Alpha environment to
the OpenVMS I64 environment.

• Supports a 64-bit user mode environment that is highly compatible with the
OpenVMS Alpha 64-bit user mode environment.

November 17, 2003 1–3

Introduction
1.3 Goals

• Makes efficient use of the Itanium architecture, including using a larger
number of registers than is contained in a conventional Alpha processor, as
well as additional I64 architecture features.

• Follows conventions established for Intel Itanium processor software generally
except where required to preserve compatibility with OpenVMS VAX and
Alpha environments.

The OpenVMS procedure calling mechanisms of this standard do not provide:

• Checking of argument data types, data structures, and parameter access. The
OpenVMS protection and memory management systems do not depend on
correct interactions between user-level calling and called procedures. Such
extended checking might be desirable in some circumstances, but system
integrity does not depend on it.

• Information for an interpretive OpenVMS Debugger. The definition of the
debugger includes a debug symbol table (DST) that contains the required
descriptive information.

1.4 Definitions
The following terms are used in this standard:

• Address: On OpenVMS VAX systems, a 32-bit value used to denote a
position in memory. On OpenVMS Alpha and I64 systems, a 64-bit value
used to denote a position in memory. However, many Alpha and I64
applications and user-mode facilities operate in such a manner that addresses
are restricted only to values that are representable in 32 bits. This allows
addresses on Alpha and I64 systems often to be stored and manipulated as
32-bit longword values. In such cases, the 32-bit address value is always
implicitly or explicitly sign-extended to form a 64-bit address for use by the
hardware.

• Argument list: A vector of entries (longwords on OpenVMS VAX, quadwords
on OpenVMS Alpha and I64) that represents a procedure parameter list and
possibly a function value.

• Asynchronous software interrupt: An asynchronous interruption of
normal code flow caused by some software event. This interruption shares
many of the properties of hardware exceptions, including forcing some
out-of-line code to execute.

• Bound procedure: A type of procedure that requires knowledge (at run
time) of a dynamically determined larger enclosing scope to function correctly.

• Call frame: The body of information that a procedure must save to allow
it to properly return to its caller. A call frame may exist on the stack or in
registers. A call frame may optionally contain additional information required
by the called procedure.

• Condition handler: A procedure designed to handle conditions (exceptions)
when they occur during the execution of a thread.

• Condition value: A 32-bit value (sign extended to a 64-bit value on
OpenVMS Alpha and I64) used to uniquely identify an exception condition.
A condition value can be returned to a calling program as a function value or
it can be signaled using the OpenVMS signaling mechanism.

1–4 November 17, 2003

Introduction
1.4 Definitions

• Descriptor: A mechanism for passing parameters where the address of
a descriptor is an entry in the argument list. The descriptor contains the
address of the parameter, data type, size, and additional information needed
to describe fully the data passed.

• Exception condition (or condition): An exceptional condition in the
current hardware or software state that should be noted or fixed. Its
existence causes an interruption in program flow and forces execution of
out-of-line code. Such an event might be caused by an exceptional hardware
state, such as arithmetic overflows, memory access control violations, and so
on, or by actions performed by software, such as subscript range checking,
assertion checking, or asynchronous notification of one thread by another.

During the time the normal control flow is interrupted by an exception, that
condition is termed active.

• Function: A procedure that returns a single value in accordance with the
standard conventions for value returning. Additional values may be returned
by means of the argument list.

• Function pointer: See procedure value.

• Hardware exception: A category of exceptions that reflect an exceptional
condition in the current hardware state that should be noted or fixed by the
software. Hardware exceptions can occur synchronously or asynchronously
with respect to the normal program flow.

• IP: (I64 platforms only) A value that identifies a bundle of instructions in
memory; the address of the first (lowest addressed) byte of an aligned 16-byte
sequence that encodes three Itanium architecture instructions. See also PC.

• Immediate value: A mechanism for passing input parameters where the
actual value is provided in the argument list entry by the calling program.

• Language-support procedure: A procedure called implicitly to implement
high-level language constructs. Such procedures are not intended to be
explicitly called from user programs.

• Leaf procedure: A procedure that makes no outbound calls. Conversely, a
non-leaf procedure is one that does make outbound calls.

• Library procedure: A procedure explicitly called using the equivalent of a
call statement or function reference. Such procedures are usually language
independent.

• Natural alignment: An attribute of certain data types that refers to the
placement of the data so that the lowest addressed byte of the data has an
address that is a multiple of the size of the data in bytes. Natural alignment
of an aggregate data type generally refers to an alignment in which all
members of the aggregate are naturally aligned.

This standard defines five natural alignments:

Byte—Any byte address

Word—Any byte address that is a multiple of 2

Longword—Any byte address that is a multiple of 4

Quadword—Any byte address that is a multiple of 8

Octaword—Any byte address that is a multiple of 16

November 17, 2003 1–5

Introduction
1.4 Definitions

• PC: A value that identifies an instruction in memory. On OpenVMS VAX and
Alpha systems, the address of the first (lowest addressed) byte of the sequence
(unaligned on VAX, longword aligned in Alpha) that holds the instruction. On
OpenVMS I64, the IP (see above) of the bundle that contains the instruction
added to the number of the slot (0, 1, or 2) for that instruction within the
bundle.

• Procedure: A closed sequence of instructions that is entered from and
returns control to the calling program.

• Procedure value: An address value that represents a procedure. On
OpenVMS VAX systems, a procedure value is the address of the entry mask
that is interpreted by the CALLx instruction invoking the procedure. On
OpenVMS Alpha systems, a procedure value is the address of the procedure
descriptor for the procedure. On OpenVMS I64 systems, a procedure value is
the address of a function descriptor for the procedure; it is also known as a
function pointer.

• Process: An address space and at least one thread of execution. Selected
security and quota checks are done on a per-process basis.

This standard anticipates the possibility of the execution of multiple threads
within a process. An operating system that provides only a single thread of
execution per process is considered a special case of a multithreaded system
where the maximum number of threads per process is one.

• Reference: A mechanism for passing parameters where the address of the
parameter is provided in the argument list by the calling program.

• Signal: A POSIX defined concept used to cause out-of-line execution of code.
(This term should not be confused with the OpenVMS usage of the word that
more closely equates to exception as used in this document.)

• Standard call: Any transfer of control to a procedure by any means that
presents the called procedure with the environment defined by this document
and does not place additional restrictions, not defined by this document, on
the called procedure.

• Standard-conforming procedure: A procedure that adheres to all the
relevant rules set forth in this document.

• Thread of execution (or thread): An entity scheduled for execution on a
processor. In language terms, a thread is a computational entity used by a
program unit. Such a program unit might be a task, procedure, loop, or some
other unit of computation.

All threads executing within the same process share the same address space
and other process contexts, but they have a unique per-thread hardware
context that includes program counter, processor status, stack pointer, and
other machine registers.

This standard applies only to threads that execute within the context of a
user-mode process and are scheduled on one or more processors according to
software priority. All subsequent uses of the term thread in this standard
refer only to such user-mode process threads.

• Thread-safe code: Code that is compiled in such a way to ensure it will
execute properly when run in a threaded environment. Thread-safe code
usually adds extra instructions to do certain run-time checks and requires
that thread local storage be accessed in a particular fashion.

1–6 November 17, 2003

Introduction
1.4 Definitions

• Undefined: Referring to operations or behavior for which there is
no directing algorithm used across all implementations that support
this standard. Such operations may be well defined for a particular
implementation, but they still remain undefined with reference to this
standard. The actions of undefined operations may not be required by
standard-conforming procedures.

• Unpredictable: Referring to the results of an operation that cannot be
guaranteed across all implementations of this standard. These results may be
well defined for a particular implementation, but they remain unpredictable
with reference to this standard. All results that are not specified in this
standard, but are caused by operations defined in this standard, are
considered unpredictable. A standard-conforming procedure cannot depend on
unpredictable results.

November 17, 2003 1–7

2
OpenVMS VAX Conventions

This chapter describes the primary conventions in calling a procedure in an
OpenVMS VAX environment.

2.1 Register Usage
In the VAX architecture, there are fifteen 32-bit-wide, general-purpose hardware
registers for use with scalar and vector program operations. This section defines
the rules of scalar and vector register usage.

2.1.1 Scalar Register Usage
This standard defines several general-purpose VAX registers and their scalar use,
as listed in Table 2–1.

Table 2–1 VAX Register Usage

Register Use

PC Program counter.

SP Stack pointer.

FP Current stack frame pointer. This register must always point at the current
frame. No modification is permitted within a procedure body.

AP Argument pointer. When a call occurs, AP must point to a valid argument
list. A procedure without parameters points to an argument list consisting
of a single longword containing the value 0.

R1 Environment value. When a procedure that needs an environment value
is called, the calling program must set R1 to the environment value. See
bound procedure value in Section 6.3.

R0, R1 Function value return registers. These registers are not to be preserved
by any called procedure. They are available as temporary registers to any
called procedure.

Registers R2 through R11 are to be preserved across procedure calls. The called
procedure can use these registers, provided it saves and restores them using the
procedure entry mask mechanism. The entry mask mechanism must be used so
that any stack unwinding done by the condition-handling mechanism restores
all registers correctly. In addition, PC, FP, and AP are always preserved in the
stack frame (see Section 2.2) by the CALLS or CALLG instruction and restored
by the RET instruction. However, a called procedure can use AP as a temporary
register.

If JSB routines are used, they must not save or modify any preserved registers
(R2 through R11) not already saved by the entry mask mechanism of the calling
program.

November 17, 2003 2–1

OpenVMS VAX Conventions
2.1 Register Usage

2.1.2 Vector Register Usage
This calling standard does not specify conventions for preserved vector registers,
vector argument registers, or vector function value return registers. All such
conventions are by agreement between the calling and called procedures. In
the absence of such an agreement, all vector registers, including V0 through
V15, VLR, VCR, and VMR are scratch registers. Among cooperating procedures,
a procedure that preserves or otherwise manipulates the vector registers by
agreement with its callers must provide an exception handler to restore them
during an unwind.

2.2 Stack Usage
Figure 2–1 shows the contents of the stack frame created for the called procedure
by the CALLG or CALLS instruction.

Figure 2–1 Stack Frame Generated by CALLG or CALLS Instruction

31 0

Condition handler (none=0)

ZK−5249A−GE

Register save mask Processor status wordSPA S 0

Argument pointer (AP)

Frame pointer (FP)

Program counter (PC)

Saved register (R2)

Saved register (R11)

:(SP) :(FP)

FP always points to the call frame (the condition-handler longword) of the calling
procedure. Other uses of FP within a procedure are prohibited. The bottom of
stack frame (end of call stack) is indicated when the stack frame’s preserved FP is
0. Unless the procedure has a condition handler, the condition-handler longword
contains all zeros. See Chapter 8 for more information on condition handlers.

The contents of the stack located at addresses higher than the mask/PSW
longword belong to the calling program; they should not be read or written by
the called procedure, except as specified in the argument list. The contents of
the stack located at addresses lower than SP belong to interrupt and exception
routines; they are modified continually and unpredictably.

2–2 November 17, 2003

OpenVMS VAX Conventions
2.2 Stack Usage

The called procedure allocates local storage by subtracting the required number
of bytes from the SP provided on entry. This local storage is freed automatically
by the return instruction (RET).

Bit <28> of the mask/PSW longword is reserved to Hewlett-Packard for future
extensions to the stack frame.

2.3 Calling Sequence
At the option of the calling procedure, the called procedure is invoked using the
CALLG or CALLS instruction, as follows:

CALLG arglst, proc
CALLS argcnt, proc

CALLS pushes the argument count argcnt onto the stack as a longword and sets
the argument pointer, AP, to the top of the stack. The complete sequence using
CALLS follows:

push argn
.
.
.
push arg1
CALLS #n, proc

If the called procedure returns control to the calling procedure, control must
return to the instruction immediately following the CALLG or CALLS instruction.
Skip returns and GOTO returns are allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the
RET instruction.

2.4 Argument List
The argument list is the primary means of passing information to and receiving
results from a procedure.

November 17, 2003 2–3

OpenVMS VAX Conventions
2.4 Argument List

2.4.1 Format
Figure 2–2 shows the argument list format.

Figure 2–2 Argument List Format

ZK−4648A−GE

Must be 0

arg2

Argument

arg1

count (n)

argn

:arglst
31 0

The first longword is always present and contains the argument count as an
unsigned integer in the low byte. The 24 high-order bits are reserved to Hewlett-
Packard and must be zero. To access the argument count, the called procedure
must ignore the reserved bits and access the count as an unsigned byte (for
example, MOVZBL, TSTB, or CMPB).

The remaining longwords can be one of the following:

• An uninterpreted 32-bit value (by immediate value mechanism). If the called
procedure expects fewer than 32 bits, it accesses the low-order bits and
ignores the high-order bits.

• An address (by reference mechanism). It is typically a pointer to a scalar data
item, array, structure, record, or a procedure.

• An address of a descriptor (by descriptor mechanism). See Chapter 7 for
descriptor formats.

The standard permits programs to call by immediate value, by reference, by
descriptor, or by combinations of these mechanisms. Interpretation of each
argument list entry depends on agreement between the calling and called
procedures. High-level languages use the reference or descriptor mechanisms for
passing input parameters. OpenVMS system services and VAX BLISS, VAX C,
Compaq C, Compaq C++, or VAX MACRO programs use all three mechanisms.

A procedure with no arguments is called with a list consisting of a 0 argument
count longword, as follows:

CALLS #0, proc

A missing or null argument—for example, CALL SUB(A,,B)—is represented
by an argument list entry consisting of a longword 0. Some procedures allow
trailing null arguments to be omitted and others require all arguments. See each
procedure’s specification for details.

The argument list must be treated as read-only data by the called procedure and
might be allocated in read-only memory at the option of the calling program.

2–4 November 17, 2003

OpenVMS VAX Conventions
2.4 Argument List

2.4.2 Argument Lists and High-Level Languages
Functional notations for procedure calls in high-level languages are mapped into
VAX argument lists according to the following rules:

• Arguments are mapped from left to right to increasing argument list offsets.
The leftmost (first) argument has an address of arglst+4, the next has an
address of arglst+8, and so on. The only exception to this is when arglst+4
specifies where a function value is to be returned, in which case the first
argument has an address of arglst+8, the second argument has an address of
arglst+12, and so on. See Section 2.5 for more information.

• Each argument position corresponds to a single VAX argument list entry.
For the C and C++ languages, a floating-point argument or a record struct
that is larger than 32 bits may be passed by value using more than one VAX
argument list entry. In this case, the argument count in the argument list
reflects the actual number of argument list entries rather than the number of
C or C++ language arguments.

2.4.2.1 Order of Argument Evaluation
Because most high-level languages do not specify the order of evaluation of
arguments (with respect to side effects), those language processors can evaluate
arguments in any convenient order.

In constructing an argument list on the stack, a language processor can evaluate
arguments from right to left and push their values on the stack. If call-by-
reference semantics are used, argument expressions can be evaluated from left
to right, with pointers to the expression values or descriptors being pushed from
right to left.

Note

The choice of argument evaluation order and code generation strategy is
constrained only by the definition of the particular language. Do not write
programs that depend on the order of evaluation of arguments.

2.4.2.2 Language Extensions for Argument Transmission
This calling standard permits arguments to be passed by immediate value,
by reference, or by descriptor. By default, all language processors except VAX
BLISS, VAX C, and VAX MACRO pass arguments by reference or by descriptor.

Language extensions are needed to reconcile the different argument-passing
mechanisms. In addition to the default passing mechanism used, each language
processor is required to give you explicit control, in the calling program, of the
argument-passing mechanism for the data types supported by the language.

Table 2–2 lists various argument data-type groups. In the table, the value Yes
means the language processor is responsible for providing the user with explicit
control of that argument-passing mechanism group.

November 17, 2003 2–5

OpenVMS VAX Conventions
2.4 Argument List

Table 2–2 Argument-Passing Mechanisms with User Explicit Control

Data Type Group Section Value Reference Descriptor

Atomic <= 32 bits 6.1 Yes Yes Yes

Atomic > 32 bits 6.1 No Yes Yes

String 6.2 No Yes Yes

Miscellaneous 6.3 No1 No No

Array 7 No Yes Yes

1For languages that support the bound procedure value data type, a language extension is required
to pass it by immediate value in order to be able to interface with OpenVMS system services and other
software. See Section 6.3.

For example, Compaq Fortran provides the following intrinsic compile-time
functions:

%VAL(arg) By immediate value mechanism. Corresponding argument list entry
is the value of the argument arg as defined in the language.

%REF(arg) By reference mechanism. Corresponding argument list entry contains
the address of the value of the argument arg as defined in the
language.

%DESCR(arg) By descriptor mechanism. Corresponding argument list entry
contains the address of a descriptor of the argument arg as defined
in Chapter 7 and in the language.

Use these intrinsic functions in the syntax of a procedure call to control
generation of the argument list. For example:

CALL SUB1(%VAL(123), %REF(X), %DESCR(A))

For more information, see the Compaq Fortran language documentation.

In other languages, you can achieve the same effect by making appropriate
attributes of the declaration of SUB1 in the calling program. Thus, you might
write the following after making the external declaration for SUB1:

CALL SUB1 (123, X, A)

2.5 Function Value Returns
A function value is returned in register R0 if its data type can be represented in
32 bits, or in registers R0 and R1 if its data type can be represented in 64 bits,
provided the data type is not a string data type (see Section 6.2).

If the data type requires fewer than 32 bits, then R1 and the high-order bits of R0
are undefined. If the data type requires 32 or more bits but fewer than 64 bits,
then the high-order bits of R1 are undefined. Two separate 32-bit entities cannot
be returned in R0 and R1 because high-level languages cannot process them.

In all other cases (the function value needs more than 64 bits, the data type is
a string, the size of the value can vary from call to call, and so on), the actual
argument list and the formal argument list are shifted one entry. The new
first entry is reserved for the function value. In this case, one of the following
mechanisms is used to return the function value:

• If the maximum length of the function value is known (for example, octaword
integer, H_floating, or fixed-length string), the calling program can allocate

2–6 November 17, 2003

OpenVMS VAX Conventions
2.5 Function Value Returns

the required storage and pass the address of the storage or a descriptor for
the storage as the first argument.

• If the maximum length of a string function value is not known to the calling
program, the calling program can allocate a dynamic string descriptor. The
called procedure then allocates storage for the function value and updates the
contents of the dynamic string descriptor using OpenVMS Run-Time Library
procedures. For information about dynamic strings, see Section 7.3.

• If the maximum length of a fixed-length string (see Section 7.2) or a varying
string (see Section 7.8) function value is not known to the calling program,
the calling program can indicate that it expects the string to be returned on
top of the stack. For more information about the function value return, see
Section 2.5.1.

Some procedures, such as operating system calls and many library procedures,
return a success or failure value as a longword function value in R0. Bit <0> of
the value is set (Boolean true) for a success and clear (Boolean false) for a failure.
The particular success or failure status is encoded in the remaining 31 bits, as
described in Section 8.1.

2.5.1 Returning a Function Value on Top of the Stack
If the maximum length of the function value is not known, the calling program
can optionally allocate certain descriptors with the POINTER field set to 0,
indicating that no space has been allocated for the value. If the called procedure
finds POINTER 0, it fills in the POINTER, LENGTH, and other extent fields to
describe the actual size and placement of the function value. This function value
is copied to the top of the stack as control returns to the calling program.

This is an exception to the usual practice because the calling program regains
control at the instruction following the CALLG or CALLS sequence with the
contents of SP restored to a value different from the one it had at the beginning
of its CALLG or CALLS calling sequence.

This technique applies only to the first argument in the argument list. Also, the
called procedure cannot assume that the calling program expects the function
value to be returned on the stack. Instead, the called procedure must check the
CLASS field. If the descriptor is one that can be used to return a value on the
stack, the called procedure checks the POINTER field. If POINTER is not 0,
the called procedure returns the value using the semantics of the descriptor. If
POINTER is 0, the called procedure fills in the POINTER and LENGTH fields
and returns the value to the top of the stack.

Also, when POINTER is 0, the contents of R0 and R1 are unspecified by the
called procedure. Once the called procedure fills in the POINTER field and other
extent fields, the calling program may pass the descriptor as an argument to
other procedures.

November 17, 2003 2–7

OpenVMS VAX Conventions
2.5 Function Value Returns

2.5.1.1 Returning a Fixed-Length or Varying String Function Value
If a called procedure can return its function value on the stack as a fixed-length
(see Section 7.2) or varying string (see Section 7.8), the called procedure must
also take the following actions (determined by the CLASS and POINTER fields of
the first descriptor in the argument list):

CLASS POINTER Called Procedure’s Action

S=1 Not 0 Copy the function value to the fixed-length area specified by the
descriptor and space fill (hex 20 if ASCII) or truncate on the
right. The entire area is always written according to Section 7.2.

S=1 0 Return the function value on top of the stack after filling in
POINTER with the first address of the string and LENGTH with
the length of the string to complete the descriptor according to
Section 7.2.

VS=11 Not 0 Copy the function value to the varying area specified by
the descriptor and fill in CURLEN and BODY according to
Section 7.8.

VS=11 0 Return the function value on top of the stack after filling in
POINTER with the address of CURLEN and MAXSTRLEN
with the length of the string in bytes (same value as contents of
CURLEN) according to Section 7.8.

Other – Error. A condition is signaled.

In both the fixed-length and varying string cases, the string is unaligned.
Specifically, the function value is allocated on top of the stack with no unused
bytes between the stack pointer value contained at the beginning of the CALLS
or CALLG sequence and the last byte of the string.

2.6 Vector and Scalar Processor Synchronization
There are two kinds of synchronization between a scalar and vector processor
pair: memory synchronization and exception synchronization.

Memory synchronization with the caller of a procedure that uses the vector
processor is required because scalar machine writes (to main memory) might
still be pending at the time of entry to the called procedure. The various forms
of write-cache strategies allowed by the VAX architecture combined with the
possibly independent scalar and vector memory access paths imply that a scalar
store followed by a CALLx followed by a vector load is not safe without an
intervening MSYNC.

Within a procedure that uses the vector processor, proper memory and exception
synchronization might require use of an MSYNC instruction, a SYNC instruction,
or both, prior to calling or upon being called by another procedure. Further, for
calls to other procedures, the requirements can vary from call to call, depending
on details of actual vector usage.

An MSYNC instruction (without a SYNC) at procedure entry, at procedure
exit, and prior to a call provides proper synchronization in most cases. A
SYNC instruction without an MSYNC prior to a CALLx (or RET) is sometimes
appropriate. The remaining two cases, where both or neither MSYNC and SYNC
are needed, are rare.

Refer to the VAX vector architecture section in the VAX MACRO and Instruction
Set Reference Manual for the specific rules on what exceptions are ensured to be
reported by MSYNC and other MFVP instructions.

2–8 November 17, 2003

OpenVMS VAX Conventions
2.6 Vector and Scalar Processor Synchronization

2.6.1 Memory Synchronization
Every procedure is responsible for synchronization of memory operations with
the calling procedure and with procedures it calls. If a procedure executes vector
loads or stores, one of the following must occur:

• An MSYNC instruction (a form of the MFVP instruction) must be executed
before the first vector load and store to synchronize with memory operations
issued by the caller. While an MSYNC instruction might typically occur in
the entry code sequence of a procedure, exact placement might also depend on
a variety of optimization considerations.

• An MSYNC instruction must be executed after the last vector load or store
to synchronize with memory operations issued after return. While an
MSYNC instruction might typically occur in the return code sequence of a
procedure, exact placement might also depend on a variety of optimization
considerations.

• An MSYNC instruction must be executed between each vector load and store
and each standard call to other procedures to synchronize with memory
operations issued by those procedures.

Any procedure that executes vector loads or stores is responsible for synchronizing
with potentially conflicting memory operations in any other procedure. However,
execution of an MSYNC instruction to ensure scalar and vector memory
synchronization can be omitted when it can be determined for the current
procedure that all possibly incomplete vector load and stores operate only on
memory not accessed by other procedures.

2.6.2 Exception Synchronization
Every procedure must ensure that no exception can be raised after the current
frame is changed (as a result of a CALLx or RET). If a procedure executes any
vector instruction that might raise an exception, then a SYNC instruction (a form
of the MFVP instruction) must be executed prior to any subsequent CALLx or
RET.

However, if the only exceptions that can occur are certain to be reported by an
MSYNC instruction that is otherwise needed for memory synchronization, then
the SYNC is redundant and can be omitted as an optimization.

Moreover, if the only exceptions that can occur are certain to be reported by one
or more MFVP instructions that read the vector control registers, then the SYNC
is redundant and can be omitted as an optimization.

November 17, 2003 2–9

3
OpenVMS Alpha Conventions

This chapter describes the fundamental concepts and conventions for calling
a procedure in an Alpha environment. The following sections identify register
usage and addressing, and focus on aspects of the calling standard that pertain to
procedure-to-procedure flow control.

3.1 Register Usage
The 64-bit-wide, general-purpose Alpha hardware registers divide into two
groups:

• Integer

• Floating point

The first 32 general-purpose registers support integer processing and the second
32 support floating-point operations.

3.1.1 Integer Registers
This standard defines the usage of the Alpha general-purpose integer registers as
listed in Table 3–1.

Table 3–1 Alpha Integer Register Usage

Register Usage

R0 Function value register. In a standard call that returns a nonfloating-point
function result in a register, the result must be returned in this register.
In a standard call, this register may be modified by the called procedure
without being saved and restored. This register is not to be preserved by
any called procedure.

R1 Conventional scratch register. In a standard call, this register may be
modified by the called procedure without being saved and restored. This
register is not to be preserved by any called procedure.

R2–15 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

R16–21 Argument registers. In a standard call, up to six nonfloating-point items of
the argument list are passed in these registers. In a standard call, these
registers may be modified by the called procedure without being saved and
restored.

R22–24 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

(continued on next page)

November 17, 2003 3–1

OpenVMS Alpha Conventions
3.1 Register Usage

Table 3–1 (Cont.) Alpha Integer Register Usage

Register Usage

R25 Argument information (AI) register. In a standard call, this register
describes the argument list. (See Section 3.6.1 for a detailed description.)
In a standard call, this register may be modified by the called procedure
without being saved and restored.

R26 Return address (RA) register. In a standard call, the return address must
be passed in this register. In a standard call, this register may be modified
by the called procedure without being saved and restored.

R27 Procedure value (PV) register. In a standard call, the procedure value of
the procedure being called is passed in this register. In a standard call, this
register may be modified by the called procedure without being saved and
restored.

R28 Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control either to or from a
procedure. This applies to both standard and nonstandard calls. This
register may be used by the operating system for external call fixup,
autoloading, and exit sequences.

R29 Frame pointer (FP). The contents of this register define, among other things,
which procedure is considered current. Details of usage and alignment are
defined in Section 3.5.

R30 Stack pointer (SP). This register contains a pointer to the top of the current
operating stack. Aspects of its usage and alignment are defined by the
hardware architecture. Various software aspects of its usage and alignment
are defined in Section 3.6.1.

R31 ReadAsZero/Sink (RZ). Hardware defines binary 0 as a source operand and
sink (no effect) as a result operand.

3.1.2 Floating-Point Registers
This standard defines the usage of the Alpha general-purpose floating-point
registers as listed in Table 3–2.

Table 3–2 Alpha Floating-Point Register Usage

Register Usage

F0 Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. In a standard call, this register may be modified by the called
procedure without being saved and restored.

F1 Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return
the imaginary part of the result. In a standard call, this register may be
modified by the called procedure without being saved and restored.

F2–9 Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

F10–15 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

F16–21 Argument registers. In a standard call, up to six floating-point arguments
may be passed by value in these registers. In a standard call, these registers
may be modified by the called procedure without being saved and restored.

(continued on next page)

3–2 November 17, 2003

OpenVMS Alpha Conventions
3.1 Register Usage

Table 3–2 (Cont.) Alpha Floating-Point Register Usage

Register Usage

F22–30 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

F31 ReadAsZero/Sink. Hardware defines binary 0 as a source operand and sink
(no effect) as a result operand.

3.2 Address Representation
An address is a 64-bit value used to denote a position in memory. However,
for compatibility with OpenVMS VAX, many Alpha applications and user-mode
facilities operate in such a manner that addresses are restricted only to values
that are representable in 32 bits. This allows Alpha addresses often to be stored
and manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign extended to form a 64-bit address for
use by the Alpha hardware.

3.3 Procedure Representation
One distinguishing characteristic of any calling standard is how procedures
are represented. The term used to denote the value that uniquely identifies a
procedure is a procedure value. If the value identifies a bound procedure, it is
called a bound procedure value.

In the Alpha portion of this calling standard, all procedure values are defined to
be the address of the data structure (a procedure descriptor) that describes that
procedure. So, any procedure can be invoked by calling the address stored at
offset 8 from the address represented by the procedure value.

Note that a simple (unbound) procedure value is defined as the address of
that procedure’s descriptor (see Section 3.4). This provides slightly different
conventions than would be used if the address of the procedure’s code were used
as it is in many calling standards.

A bound procedure value is defined as the address of a bound procedure descriptor
that provides the necessary information for the bound procedure to be called (see
Section 3.6.4).

3.4 Procedure Types
This standard defines the following basic types of procedures:

• Stack frame procedure—Maintains its caller’s context on the stack

• Register frame procedure—Maintains its caller’s context in registers

• Null frame procedure—Does not establish a context and, therefore,
executes in the context of its caller

A compiler can choose which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need to
know what type of procedure it is calling.

Every procedure must have an associated structure that describes which type
of procedure it is and other procedure characteristics. This structure, called a
procedure descriptor, is a quadword-aligned data structure that provides basic
information about a procedure. This data structure is used to interpret the call

November 17, 2003 3–3

OpenVMS Alpha Conventions
3.4 Procedure Types

stack at any point in a thread’s execution. It is typically built at compile time
and usually is not accessed at run time except to support exception processing or
other rarely executed code.

Read access to procedure descriptors is done through a procedure interface
described in Section 3.5.2. This allows for future compatible extensions to these
structures.

The purpose of defining a procedure descriptor for a procedure and making that
procedure descriptor accessible to the run-time system is twofold:

• To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

• To ensure that the context of the caller saved by the called procedure
can be restored if an unwind occurs. (For a description of unwinding, see
Section 8.7.)

3.4.1 Stack Frame Procedures
The stack frame of a procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be
done if the optional variable part is not present. Compilers must also recognize
unusual situations, such as the following, that can effectively cause a variable
part of the stack to exist:

• A called routine may use the stack as a means to return certain types of
function values (see Section 3.7.7 for more information).

• A called routine that allocates stack space may take an exception in its
routine prologue before it becomes current. This situation must be considered
because the stack expansion happens in the context of the caller (see Sections
3.5 and 3.6.5 for more information).

For this reason, a fixed-stack usage version of this procedure type cannot
make standard calls.

The variable-stack usage version of this type of procedure is referred to as full
function and can make standard calls to other procedures.

3–4 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

3.4.2 Procedure Descriptor for Procedures with a Stack Frame
A stack frame procedure descriptor (PDSC) built by a compiler provides
information about a procedure with a stack frame. The minimum size of the
descriptor is 32 bytes defined by constant PDSC$K_MIN_STACK_SIZE. An
optional PDSC extension in 8-byte increments supports exception-handling
requirements.

The fields defined in the stack frame descriptor are illustrated in Figure 3–1 and
described in Table 3–3.

Figure 3–1 Stack Frame Procedure Descriptor (PDSC)

ZK−4649A−GE

PDSC quadword aligned

RSA_OFFSET

SIGNATURE_OFFSET FRET
<11:8>

Reserved

ENTRY

SIZE

ENTRY_LENGTH Reserved

IREG_MASK

FREG_MASK

PDSC$K_MIN_STACK_SIZE = 32
End of required part of procedure descriptor

STACK_HANDLER

STACK_HANDLER_DATA

FRET = PDSC$V_FUNC_RETURN

:28

:24

:20

:16

:8

:4

:0

:40

:32

FLAGS

PDSC$K_MAX_STACK_SIZE = 48

EM

EM = PDSC$V_EXCEPTION_MODE

<14:12>

November 17, 2003 3–5

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–3 Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with a stack frame, this
field must specify a value 9 (defined by constant
PDSC$K_KIND_FP_STACK).

PDSC$V_
HANDLER_VALID

If set to 1, this descriptor has an extension for
the stack handler (PDSC$Q_STACK_HANDLER)
information.

PDSC$V_
HANDLER_
REINVOKABLE

If set to 1, the handler can be reinvoked, allowing an
occurrence of another exception while the handler is
already active. If this bit is set to 0, the exception
handler cannot be reinvoked. Note that this bit must
be 0 when PDSC$V_HANDLER_VALID is 0.

PDSC$V_
HANDLER_DATA_
VALID

If set to 1, the HANDLER_VALID bit must be 1,
the PDSC extension STACK_HANDLER_DATA field
contains valid data for the exception handler, and
the address of PDSC$Q_STACK_HANDLER_DATA
will be passed to the exception handler as defined in
Section 8.2.

PDSC$V_BASE_
REG_IS_FP

If this bit is set to 0, the SP is the base register to
which PDSC$L_SIZE is added during an unwind. A
fixed amount of storage is allocated in the procedure
entry sequence, and SP is modified by this procedure
only in the entry and exit code sequence. In this case,
FP typically contains the address of the procedure
descriptor for the procedure. A procedure for which
this bit is 0 cannot make standard calls.

If this bit is set to 1, FP is the base address and the
procedure has a minimum amount of stack storage
specified by PDSC$L_SIZE. A variable amount of
stack storage can be allocated by modifying SP in the
entry and exit code of this procedure.

PDSC$V_REI_
RETURN

If set to 1, the procedure expects the stack at entry
to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
RSA$Q_SAVED_RETURN field in the register save
area are unpredictable and the return address is
found on the stack (see Figure 3–4).

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be set to 0. If set to
1, this bit indicates the logical base frame of a stack
that precedes all frames corresponding to user code.
The interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

(continued on next page)

3–6 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_TARGET_
INVO

If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation
of an unwind. Note that a procedure is the target
invocation of an unwind if it is the procedure in
which execution resumes following completion of the
unwind. For more information, see Chapter 8.

If set to 0, the exception handler for this procedure is
not invoked. Note that when PDSC$V_HANDLER_
VALID is 0, this bit must be 0.

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$W_RSA_OFFSET Signed offset in bytes between the stack frame base (SP or FP as indicated by
PDSC$V_BASE_REG_IS_FP) and the register save area. This field must be a
multiple of 8, so that PDSC$W_RSA_OFFSET added to the contents of SP or
FP (PDSC$V_BASE_REG_IS_FP) yields a quadword-aligned address.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 5–4 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

PDSC$V_EXCEPTION_
MODE

A 3-bit field <14:12> that encodes the caller’s desired exception-reporting
behavior when calling certain mathematically oriented library routines. The
possible values for this field are defined as follows:

Value Name Meaning

0 PDSC$K_EXC_
MODE_SIGNAL

Raise exceptions for all error conditions
except for underflows producing a 0 result.
This is the default mode.

1 PDSC$K_EXC_
MODE_SIGNAL_
ALL

Raise exceptions for all error conditions
(including underflow).

2 PDSC$K_EXC_
MODE_SIGNAL_
SILENT

Raise no exceptions. Create only finite
values (no infinities, denormals, or NaNs).
In this mode, either the function result or
the C language errno variable must be
examined for any error indication.

3 PDSC$K_EXC_
MODE_FULL_IEEE

Raise no exceptions except as controlled
by separate IEEE exception enable bits.
Create infinities, denormals, or NaN
values according to the IEEE floating-point
standard.

4 PDSC$K_EXC_
MODE_CALLER

Perform the exception-mode behavior
specified by this procedure’s caller.

(continued on next page)

November 17, 2003 3–7

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0
in this field indicates that no signature information is present. Note that
in a bound procedure descriptor (as described in Section 3.6.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q_ENTRY Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSC$L_SIZE Unsigned size, in bytes, of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the minimum
stack alignment required by the Alpha hardware architecture and stack
alignment during a call (defined in Section 3.6.1). PDSC$L_SIZE cannot be 0
for a stack-frame type procedure, because the stack frame must include space
for the register save area.

The value of SP at entry to this procedure can be calculated by adding
PDSC$L_SIZE to the value SP or FP, as indicated by PDSC$V_BASE_REG_
IS_FP.

PDSC$W_ENTRY_
LENGTH

Unsigned offset, in bytes, from the entry point to the first instruction in the
procedure code segment following the procedure prologue (that is, following
the instruction that updates FP to establish this procedure as the current
procedure).

PDSC$L_IREG_MASK Bit vector (0–31) specifying the integer registers that are saved in the register
save area on entry to the procedure. The least significant bit corresponds to
register R0. Never set bits 31, 30, 28, 1, and 0 of this mask, because R31
is the integer read-as-zero register, R30 is the stack pointer, R28 is always
assumed to be destroyed during a procedure call or return, and R1 and R0 are
never preserved registers. In this calling standard, bit 29 (corresponding to
the FP) must always be set.

PDSC$L_FREG_MASK Bit vector (0–31) specifying the floating-point registers saved in the register
save area on entry to the procedure. The least significant bit corresponds
to register F0. Never set bit 31 of this mask, because it corresponds to the
floating-point read-as-zero register.

PDSC$Q_STACK_
HANDLER

Absolute address to the procedure descriptor for a run-time static exception-
handling procedure. This part of the procedure descriptor is optional. It
must be supplied if either PDSC$V_HANDLER_VALID is 1 or PDSC$V_
HANDLER_DATA_VALID is 1 (which requires that PDSC$V_HANDLER_
VALID be 1).

If PDSC$V_HANDLER_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER is unpredictable.

PDSC$Q_STACK_
HANDLER_DATA

Data (quadword) for the exception handler. This is an optional quadword and
needs to be supplied only if PDSC$V_HANDLER_DATA_VALID is 1.

If PDSC$V_HANDLER_DATA_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER_DATA is unpredictable.

3–8 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

3.4.3 Stack Frame Format
The stack of a stack frame procedure consists of a fixed part (the size of which is
known at compile time) and an optional variable part. There are two basic types
of stack frames:

• Fixed size

• Variable size

Even though the exact contents of a stack frame are determined by the compiler,
all stack frames have common characteristics.

Various combinations of PDSC$V_BASE_REG_IS_FP and PDSC$L_SIZE can be
used as follows:

• When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is 0, then the
procedure utilizes no stack storage and SP contains the value of SP at entry
to the procedure. (Such a procedure must be a register frame procedure.)

• When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is a nonzero
value, then the procedure has a fixed amount of stack storage specified by
PDSC$L_SIZE, all of which is allocated in the procedure entry sequence, and
SP is modified by this procedure only in the entry and exit code sequences.
(Such a procedure may not make standard calls.)

• When PDSC$V_BASE_REG_IS_FP is 1 and PDSC$L_SIZE is a nonzero
value, then the procedure has a fixed amount of stack storage specified by
PDSC$L_SIZE, and may have a variable amount of stack storage allocated by
modifying SP in the body of the procedure. (Such a procedure must be a stack
frame procedure.)

• The combination when PDSC$V_BASE_REG_IS_FP is 1 and PDSC$L_SIZE
is 0 is illegal because it violates the rules for R29 (FP) usage that requires
R29 to be saved (on the stack) and restored.

3.4.3.1 Fixed-Size Stack Frame
Figure 3–2 illustrates the format of the stack frame for a procedure with a
fixed amount of stack that uses the SP register as the stack base pointer (when
PDSC$V_BASE_REG_IS_FP is 0). In this case, R29 (FP) typically contains the
address of the procedure descriptor for the current procedure (see Section 3.5.1).

Some parts of the stack frame are optional and occur only as required by the
particular procedure. As shown in the figure, the field names within brackets are
optional fields. Use of the arguments passed in memory field appending the
end of the descriptor is described in Sections 3.4.3.3 and 3.7.2.

For information describing the fixed temporary locations and register save area,
see Sections 3.4.3.3 and 3.4.3.4.

November 17, 2003 3–9

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–2 Fixed-Size Stack Frame Format

ZK−4650A−GE

octaword aligned

[Fixed temporary locations]

Register save area

[Fixed temporary locations]

[Argument home area]

[Arguments passed in memory]

:0 (from SP)

:SIZE (from SP)

:RSA_OFFSET
(from SP)

3.4.3.2 Variable-Size Stack Frame
Figure 3–3 illustrates the format of the stack frame for procedures with a varying
amount of stack when PDSC$V_BASE_REG_IS_FP is 1. In this case, R29 (FP)
contains the address that points to the base of the stack frame on the stack. This
frame-base quadword location contains the address of the current procedure’s
descriptor.

3–10 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–3 Variable-Size Stack Frame Format

ZK−4651A−GE

octaword aligned

[Stack temporary area]

Procedure descriptor address

[Fixed temporary locations]

[Arguments passed in memory]

:0 (from SP)

:SIZE (from FP)

:RSA_OFFSET
(from FP)

[Argument home area]

[Fixed temporary locations]

Register save area

:0 (from FP)

:8 (from FP)

Some parts of the stack frame are optional and occur only as required by the
particular procedure. In Figure 3–3, field names within brackets are optional
fields. Use of the arguments passed in memory field appending the end of the
descriptor is described in Sections 3.4.3.3 and 3.7.2.

For more information describing the fixed temporary locations and register
save area, see Sections 3.4.3.3 and 3.4.3.4.

A compiler can use the stack temporary area pointed to by the SP base register
for fixed local variables, such as constant-sized data items and program state,
as well as for dynamically sized local variables. The stack temporary area may
also be used for dynamically sized items with a limited lifetime, for example, a
dynamically sized function result or string concatenation that cannot be stored
directly in a target variable. When a procedure uses this area, the compiler

November 17, 2003 3–11

OpenVMS Alpha Conventions
3.4 Procedure Types

must keep track of its base and reset SP to the base to reclaim storage used by
temporaries.

3.4.3.3 Fixed Temporary Locations for All Stack Frames
The fixed temporary locations are optional sections of any stack frame that
contain language-specific locations required by the procedure context of some
high-level languages. This may include, for example, register spill area, language-
specific exception-handling context (such as language-dynamic exception-handling
information), fixed temporaries, and so on.

The argument home area (if allocated by the compiler) can be found with the
PDSC$L_SIZE offset in the last fixed temporary locations at the end of the stack
frame. It is adjacent to the arguments passed in memory area to expedite
the use of arguments passed (without copying). The argument home area is a
region of memory used by the called procedure for the purpose of assembling in
contiguous memory the arguments passed in registers, adjacent to the arguments
passed in memory, so all arguments can be addressed as a contiguous array. This
area can also be used to store arguments passed in registers if an address for
such an argument must be generated. Generally, 6 � 8 bytes of stack storage is
allocated for this purpose by the called procedure.

If a procedure needs to reference its arguments as a longword array or construct
a structure that looks like an in-memory longword argument list, then it might
allocate enough longwords in this area to hold all of the argument list and,
optionally, an argument count. In that case, argument items passed in memory
must be copied to this longword array.

The high-address end of the stack frame is defined by the value stored in
PDSC$L_SIZE plus the contents of SP or FP, as indicated by PDSC$V_BASE_
REG_IS_FP. The high-address end is used to determine the value of SP for the
predecessor procedure in the calling chain.

3.4.3.4 Register Save Area for All Stack Frames
The register save area is a set of consecutive quadwords in which registers
saved and restored by the current procedure are stored (see Figure 3–4). The
register save area begins at the location pointed to by the offset PDSC$W_RSA_
OFFSET from the frame base register (SP or FP as indicated by PDSC$V_BASE_
REG_IS_FP), which must yield a quadword-aligned address. The set of registers
saved in this area contain the return address followed by the registers specified in
the procedure descriptor by PDSC$L_IREG_MASK and PDSC$L_FREG_MASK.

All registers saved in the register save area (other than the saved return address)
must have the corresponding bit set in the appropriate procedure descriptor
register save mask even if the register is not a member of the set of registers
required to be saved across a standard call. Failure to do so will prevent the
correct calculation of offsets within the save area.

Figure 3–4 illustrates the fields in the register save area (field names within
brackets are optional fields). Quadword RSA$Q_SAVED_RETURN is the first
field in the save area and it contains the contents of the return address register.
The optional fields vary in size (8-byte increments) to preserve, as required,
the contents of the integer and floating-point hardware registers used in the
procedure.

3–12 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–4 Register Save Area (RSA) Layout

ZK−4652A−GE

quadword alignedRSA

:8

SAVED_RETURN

[Preserved integer registers]

[Preserved floating−point registers]

(R26 in a standard call)

:0 (from PDSC$L_
 RSA_OFFSET)

The algorithm for packing saved registers in the quadword-aligned register save
area is:

1. The return address is saved at the lowest address of the register save area
(offset 0).

2. All saved integer registers (as indicated by the corresponding bit in PDSC$L_
IREG_MASK being set to 1) are stored, in register-number order, in
consecutive quadwords, beginning at offset 8 of the register save area.

3. All saved floating-point registers (as indicated by the corresponding bit in
PDSC$L_FREG_MASK being set to 1) are stored, in register-number order, in
consecutive quadwords, following the saved integer registers.

Note

Floating-point registers saved in the register save area are stored as
a 64-bit exact image of the register (for example, no reordering of bits
is done on the way to or from memory). Compilers must use an STT
instruction to store the register regardless of floating-point type.

The preserved register set must always include R29 (FP), because it will always
be used.

If the return address register is not to be preserved (as is the case for a
standard call), then it must be stored at offset 0 in the register save area and
the corresponding bit in the register save mask must not be set.

However, if a nonstandard call is made that requires the return address register
to be saved and restored, then it must be stored in both the location at offset 0 in
the register save area and at the appropriate location within the variable part of
the save area. In addition, the appropriate bit of PDSC$L_IREG_MASK must be
set to 1.

The example register save area shown in Figure 3–5 illustrates the register
packing when registers R10, R11, R15, FP, F2, and F3 are being saved for a
procedure called with a standard call.

November 17, 2003 3–13

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–5 Register Save Area (RSA) Example

ZK−4653A−GE

quadword alignedRSA
:0

:8

:16

:24

:32

:40

:48

R26

R10

R11

R15

R29 (FP)

F2

F3

3.4.4 Register Frame Procedure
A register frame procedure does not maintain a call frame on the stack and
must, therefore, save its caller’s context in registers. This type of procedure is
sometimes referred to as a lightweight procedure, referring to the expedient
way of saving the call context.

Such a procedure cannot save and restore nonscratch registers. Because a
procedure without a stack frame must use scratch registers to maintain the
caller’s context, such a procedure cannot make a standard call to any other
procedure.

A procedure with a register frame can have an exception handler and can handle
exceptions in the normal way. Such a procedure can also allocate local stack
storage in the normal way, although it might not necessarily do so.

3–14 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Note

Lightweight procedures have more freedom than might be apparent. By
using appropriate agreements with callers of the lightweight procedure,
with procedures that the lightweight procedure calls, and by the use of
unwind handlers, a lightweight procedure can modify nonscratch registers
and can call other procedures.

Such agreements may be by convention (as in the case of language-
support routines in the RTL) or by interprocedural analysis. However,
calls employing such agreements are not standard calls and might not be
fully supported by a debugger; for example, the debugger might not be
able to find the contents of the preserved registers.

Because such agreements must be permanent (for upwards compatibility
of object code), lightweight procedures should, in general, follow the
normal restrictions.

3.4.5 Procedure Descriptor for Procedures with a Register Frame
A register frame procedure descriptor built by a compiler provides
information about a procedure with a register frame. The minimum size of
the descriptor is 24 bytes (defined by PDSC$K_MIN_REGISTER_SIZE). An
optional PDSC extension in 8-byte increments supports exception-handling
requirements.

The fields defined in the register frame procedure descriptor are illustrated in
Figure 3–6 and described in Table 3–4.

November 17, 2003 3–15

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–6 Register Frame Procedure Descriptor (PDSC)

quadword alignedPDSC
:0

:4

:8

SAVE_RA SAVE_FP

SIGNATURE_OFFSET Reserved

ENTRY

FLAGS

FRET
<11:8>

ZK−4654A−GE

:16

:20

:24

:32

SIZE

ENTRY_LENGTH Reserved

PDSC$K_MIN_REGISTER_SIZE = 24
End of required part of procedure descriptor

REG_HANDLER

REG_HANDLER_DATA

FRET = PDSC$V_ FUNC_RETURN
PDSC$K_MAX_REGISTER_SIZE = 40

EM

EM = PDSC$V_EXCEPTION_MODE

<14:12>

3–16 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–4 Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with a register frame, this
field must specify a value 10 (defined by constant
PDSC$K_KIND_FP_REGISTER).

PDSC$V_
HANDLER_VALID

If set to 1, this descriptor has an extension for
the stack handler (PDSC$Q_REG_HANDLER)
information.

PDSC$V_
HANDLER_
REINVOKABLE

If set to 1, the handler can be reinvoked, allowing
an occurrence of another exception while the handler
is already active. If this bit is set to 0, the exception
handler cannot be reinvoked. This bit must be 0 when
PDSC$V_HANDLER_VALID is 0.

PDSC$V_
HANDLER_DATA_
VALID

If set to 1, the HANDLER_VALID bit must be 1 and
the PDSC extension STACK_HANDLER_DATA field
contains valid data for the exception handler, and
the address of PDSC$Q_STACK_HANDLER_DATA
will be passed to the exception handler as defined in
Section 8.2.

PDSC$V_BASE_
REG_IS_FP

If this bit is set to 0, the SP is the base register to
which PDSC$L_SIZE is added during an unwind. A
fixed amount of storage is allocated in the procedure
entry sequence, and SP is modified by this procedure
only in the entry and exit code sequence. In this case,
FP typically contains the address of the procedure
descriptor for the procedure. Note that a procedure
that sets this bit to 0 cannot make standard calls.

If this bit is set to 1, FP is the base address and
the procedure has a fixed amount of stack storage
specified by PDSC$L_SIZE. A variable amount of
stack storage can be allocated by modifying SP in the
entry and exit code of this procedure.

PDSC$V_REI_
RETURN

If set to 1, the procedure expects the stack at entry
to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
PDSC$B_SAVE_RA field are unpredictable and the
return address is found on the stack.

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be 0. If set to 1, this
bit indicates the logical base frame of a stack that
precedes all frames corresponding to user code. The
interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

(continued on next page)

November 17, 2003 3–17

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_TARGET_
INVO

If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation
of an unwind. Note that a procedure is the target
invocation of an unwind if it is the procedure in
which execution resumes following completion of the
unwind. For more information, see Chapter 8.

If set to 0, the exception handler for this procedure is
not invoked. Note that when PDSC$V_HANDLER_
VALID is 0, this bit must be 0.

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$B_SAVE_FP Specifies the number of the register that contains the saved value of the frame
pointer (FP) register.

In a standard procedure, this field must specify a scratch register so as not to
violate the rules for procedure entry code as specified in Section 3.6.5.

PDSC$B_SAVE_RA Specifies the number of the register that contains the return address. If this
procedure uses standard call conventions and does not modify R26, then this
field can specify R26.

In a standard procedure, this field must specify a scratch register so as not to
violate the rules for procedure entry code as specified in Section 3.6.5.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 5–4 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

(continued on next page)

3–18 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_EXCEPTION_
MODE

A 3-bit field <14:12> that encodes the caller’s desired exception-reporting
behavior when calling certain mathematically oriented library routines. The
possible values for this field are defined as follows:

Value Name Meaning

0 PDSC$K_EXC_
MODE_SIGNAL

Raise exceptions for all error conditions
except for underflows producing a 0 result.
This is the default mode.

1 PDSC$K_EXC_
MODE_SIGNAL_
ALL

Raise exceptions for all error conditions
(including underflows).

2 PDSC$K_EXC_
MODE_SIGNAL_
SILENT

Raise no exceptions. Create only finite
values (no infinities, denormals, or NaNs).
In this mode, either the function result or
the C language errno variable must be
examined for any error indication.

3 PDSC$K_EXC_
MODE_FULL_IEEE

Raise no exceptions except as controlled
by separate IEEE exception enable bits.
Create infinities, denormals, or NaN
values according to the IEEE floating-point
standard.

4 PDSC$K_EXC_
MODE_CALLER

Perform the exception-mode behavior
specified by this procedure’s caller.

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0 in
this field indicates no signature information is present. Note that in a bound
procedure descriptor (as described in Section 3.6.4), signature information
might be present in the related procedure descriptor. A 1 in this field
indicates a standard default signature. An offset value of 1 is not otherwise a
valid offset because both procedure descriptors and signature blocks must be
quadword aligned.

PDSC$Q_ENTRY Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSC$L_SIZE Unsigned size in bytes of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the minimum
stack alignment required by the Alpha hardware architecture and stack
alignment during a call (defined in Section 3.6.1).

PDSC$W_ENTRY_
LENGTH

Unsigned offset in bytes from the entry point to the first instruction in the
procedure code segment following the procedure prologue (that is, following
the instruction that updates FP to establish this procedure as the current
procedure).

PDSC$Q_REG_
HANDLER

Absolute address to the procedure descriptor for a run-time static exception-
handling procedure. This part of the procedure descriptor is optional. It
must be supplied if either PDSC$V_HANDLER_VALID is 1 or PDSC$V_
HANDLER_DATA_VALID is 1 (which requires that PDSC$V_HANDLER_
VALID be 1).

If PDSC$V_HANDLER_VALID is 0, then the contents or existence of
PDSC$Q_REG_HANDLER is unpredictable.

(continued on next page)

November 17, 2003 3–19

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–4 (Cont.) Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$Q_REG_
HANDLER_DATA

Data (quadword) for the exception handler. This is an optional quadword and
needs to be supplied only if PDSC$V_HANDLER_DATA_VALID is 1.

If PDSC$V_HANDLER_DATA_VALID is 0, then the contents or existence of
PDSC$Q_REG_HANDLER_DATA is unpredictable.

3.4.6 Null Frame Procedures
A procedure may conform to this standard even if it does not establish its own
context if, in all circumstances, invocations of that procedure do not need to be
visible or debuggable. This is termed executing in the context of the caller
and is similar in concept to a conventional VAX JSB procedure. For the purposes
of stack tracing or unwinding, such a procedure is never considered to be current.

For example, if a procedure does not establish an exception handler or does not
save and restore registers, and does not extend the stack, then that procedure
might not need to establish a context. Likewise, if that procedure does extend the
stack, it still might not need to establish a context if the immediate caller either
cannot be the target of an unwind or is prepared to reset the stack if it is the
target of an unwind.

The circumstances under which procedures can run in the context of the caller
are complex and are not fully specified by this standard.

As with the other procedure types previously described, the choice of whether to
establish a context belongs to the called procedure. By defining a null procedure
descriptor format, the same invocation code sequence can be used by the caller for
all procedure types.

3.4.7 Procedure Descriptor for Null Frame Procedures
The null frame procedure descriptor built by a compiler provides information
about a procedure with no frame. The size of the descriptor is 16 bytes (defined
by PDSC$K_NULL_SIZE).

The fields defined in the null frame descriptor are illustrated in Figure 3–7 and
described in Table 3–5.

3–20 November 17, 2003

OpenVMS Alpha Conventions
3.4 Procedure Types

Figure 3–7 Null Frame Procedure Descriptor (PDSC) Format

ZK−4655A−GE

quadword alignedPDSC
:0

:4

:8

Must be zero FLAGS

SIGNATURE_OFFSET MBZ
<15:12>

*FRET
<11:8>

Reserved

ENTRY

*FRET = PDSC$V_FUNC_RETURN
PDSC$K_NULL_SIZE = 16

Table 3–5 Contents of Null Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a null frame procedure, this field must
specify a value 8 (defined by constant PDSC$K_
KIND_NULL).

Bits 4–7 Must be 0.

PDSC$V_REI_
RETURN

Bit 8. If set to 1, the procedure expects the stack at
entry to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
PDSC$B_SAVE_RA field are unpredictable and the
return address is found on the stack.

Bit 9 Must be 0 (reserved).

PDSC$V_BASE_
FRAME

For compiled code, this bit must be 0. If set to
1, indicates the logical base frame of a stack that
precedes all frames corresponding to user code. The
interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

Bit 11 Must be 0 (reserved).

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_
JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE_
FRAME

For compiled code, this bit must be 0. Reserved for
use by system software.

Bit 15 Must be 0 (reserved).

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 5–4 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

(continued on next page)

November 17, 2003 3–21

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3–5 (Cont.) Contents of Null Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0
in this field indicates that no signature information is present. Note that
in a bound procedure descriptor (as described in Section 3.6.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q_ENTRY The absolute address of the first instruction of the entry code sequence for the
procedure.

3.5 Procedure Call Stack
Except for null-frame procedures, a procedure is an active procedure while
its body is executing, including while any procedure it calls is executing. When
a procedure is active, it may handle an exception that is signaled during its
execution.

Associated with each active procedure is an invocation context, which consists
of the set of registers and space in memory that is allocated and that may be
accessed during execution for a particular call of that procedure.

When a procedure begins to execute, it has no invocation context. The initial
instructions that allocate and initiallize its context, which may include saving
information from the invocation context of its caller, are termed the procedure
prologue. Once execution of the prologue is complete, the procedure is said to be
active.

When a procedure is ready to return to its caller, the instructions that deallocate
and discard the procedure’s invocation context (which may include restoring state
of the caller’s invocation context that was saved during the prologue), are termed
a procedure epilogue. A procedure ceases to be active when execution of its
epilogue begins.

A procedure may have more than one prologue if there are multiple entry points.
A procedure may also have more than one epilogue if there are multiple return
points. One of each will be executed during any given invocation of the procedure.

Some procedures, notably null frame procedures (see Section Section 3.4.6),
never have an invocation context of their own and are said to execute in the body
of their caller. A null frame procedure has no prologue or epilogue, and consists
solely of body instructions. Such a procedure never becomes current or active
in the sense that its handler may be invoked.

A call stack (for a thread) consists of the stack of invocation contexts that
exists at any point in time. New invocation contexts are pushed on that stack
as procedures are called and invocations are popped from the call stack as
procedures return.

The invocation context of a procedure that calls another procedure is said to
precede or be previous to the invocation context of the called procedure.

3–22 November 17, 2003

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

3.5.1 Current Procedure
The current procedure is the active procedure whose execution began most
recently; its invocation context is at the top of the call stack. Note that a
procedure executing in its prologue or epilogue is not active, and hence cannot be
the current procedure. Similarly, a null frame procedure cannot be the current
procedure.

In this calling standard, R29 is the frame pointer (FP) register that defines the
current procedure.

Therefore, the current procedure must always maintain in FP one of the following
pointer values:

• Pointer to the procedure descriptor for that procedure.

• Pointer to a naturally aligned quadword containing the address of the
procedure descriptor for that procedure. For purposes of finding a procedure’s
procedure descriptor, no assumptions must be made about the quadword
location. As long as all other requirements of this standard are met, a
compiler is free to use FP as a base register for any arbitrary storage,
including a stack frame, provided that while the procedure is current,
the quadword pointed to by the value in FP contains the address of that
procedure’s descriptor.

At any point in time, the FP value can be interpreted to find the procedure
descriptor for the current procedure by examining the value at 0(FP) as follows:

• If 0(FP)<2:0> = 0, then FP points to a quadword that contains a pointer to
the procedure descriptor for the current procedure.

• If 0(FP)<2:0> �� 0, then FP points to the procedure descriptor for the current
procedure.

By examining the first quadword of the procedure descriptor, the procedure type
can be determined from the PDSC$V_KIND field.

The following code is an example of how the current procedure descriptor and
procedure type can be found:

LDQ R0,0(FP) ;Fetch quadword at FP
AND R0,#7,R28 ;Mask alignment bits
BNEQ R28,20$;Is procedure descriptor pointer
LDQ R0,0(R0) ;Was pointer to procedure descriptor

10$: AND R0,#7,R28 ;Do sanity check
BNEQ R28,20$;All is well

;Error - Invalid FP

20$: AND R0,#15,R0 ;Get kind bits

;Procedure KIND is now in R0

IF PDSC$V_KIND is equal to PDSC$K_KIND_FP_STACK, the current procedure
has a stack frame.

If PDSC$V_KIND is equal to PDSC$K_KIND_FP_REGISTER, the current
procedure is a register frame procedure.

Either type of procedure can use either type of mechanism to point to the
procedure descriptor. Compilers may choose the appropriate mechanism to use
based on the needs of the procedure involved.

November 17, 2003 3–23

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

3.5.2 Procedure Call Tracing
Mechanisms for each of the following functions are needed to support procedure
call tracing:

• To provide the context of a procedure invocation

• To walk (navigate) the procedure call stack

• To refer to a given procedure invocation

This section describes the data structure mechanisms. The routines that support
these functions are described in Section 3.5.3.

3.5.2.1 Referring to a Procedure Invocation from a Data Structure
When referring to a specific procedure invocation at run time, a procedure
invocation handle, shown in Figure 3–8, can be used. Defined by constant
LIBICB$K_INVO_HANDLE_SIZE, the structure is a single-field longword called
HANDLE. HANDLE describes the invocation handle of the procedure.

Figure 3–8 Procedure Invocation Handle Format

ZK−4656A−GE

HANDLE

INVO_HANDLE_SIZE = 4

longword aligned

:0

To encode a procedure invocation handle, follow these steps:

1. If PDSC$V_BASE_REG_IS_FP is set to 1 in the corresponding procedure
descriptor, then set INVO_HANDLE to the contents of the FP register in that
invocation.

If PDSC$V_BASE_REG_IS_FP is set to 0, set INVO_HANDLE to the contents
of the SP register in that invocation. (That is, start with the base register
value for the frame.)

2. Shift the INVO_HANDLE contents left one bit. Because this value is initially
known to be octaword aligned (see Section 3.6.1), the result is a value whose
5 low-order bits are 0.

3. If PDSC$V_KIND = PDSC$K_KIND_FP_STACK, perform a logical OR on
the contents of INVO_HANDLE with the value 1F16, and then set INVO_
HANDLE to the value that results.

If PDSC$V_KIND = PDSC$K_KIND_FP_REGISTER, perform a logical OR on
the contents of INVO_HANDLE with the contents of PDSC$B_SAVE_RA, and
then set INVO_HANDLE to the value that results.

Note that a procedure invocation handle is not defined for a null frame procedure.

Note

So you can distinguish an invocation of a register frame procedure that
calls another register frame procedure (where the called procedure uses no
stack space and therefore has the same base register value as the caller),
the register number that saved the return address is included in the
invocation handle of a register frame procedure. Similarly, the number
3110 in the invocation handle of a stack frame procedure is included to

3–24 November 17, 2003

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

distinguish an invocation of a stack frame procedure that calls a register
frame procedure where the called procedure uses no stack space.

3.5.2.2 Invocation Context Block
The context of a specific procedure invocation is provided through the use of
a data structure called an invocation context block. The minimum size of
the block is 528 bytes and is system defined using the constant LIBICB$K_
INVO_CONTEXT_BLK_SIZE. The size of the last field (LIBICB$Q_SYSTEM_
DEFINED[n]) defined by the host system determines the total size of the block.

The fields defined in the invocation context block are illustrated in Figure 3–9
and described in Table 3–6.

November 17, 2003 3–25

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

Figure 3–9 Invocation Context Block Format

ZK−4657A−GE

INVO_CONTEXT_BLK quadword aligned
:0

:4

:8

:16

:24

:32

BLOCK_VERSION FRAME_FLAGS

CONTEXT_LENGTH

PROGRAM_COUNTER

PROCESSOR_STATUS

PROCEDURE_DESCRIPTOR

:64

:72

:280

IREG [0]

:40
IREG [1]

IREG [30]

FREG [0]

FREG [1]

:512
SYSTEM_DEFINED

LIBICB$K_INVO_CONTEXT_BLK_SIZE is defined by the system.

:504
FREG [30]

3–26 November 17, 2003

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

Table 3–6 Contents of the Invocation Context Block

Field Name Contents

LIBICB$L_CONTEXT_LENGTH Unsigned count of the total length in bytes of the context block; this
represents the sum of the lengths of the standard-defined portion
and the system-defined section.

LIBICB$R_FRAME_FLAGS The procedure frame flag bits <24:0> are defined as follows:

LIBICB$V_
EXCEPTION_
FRAME

Bit 0. If set to 1, the invocation context
corresponds to an exception frame.

LIBICB$V_AST_
FRAME

Bit 1. If set to 1, the invocation context
corresponds to an asynchronous trap.

LIBICB$V_
BOTTOM_OF_
STACK

Bit 2. If set to 1, the invocation context
corresponds to a frame that has no
predecessor.

LIBICB$V_BASE_
FRAME

Bit 3. If set to 1, the BASE_FRAME bit
is set in the FLAGS field of the associated
procedure descriptor.

LIBICB$B_BLOCK_VERSION A byte that defines the version of the context block. Because this
block is currently the first version, the value is set to 1.

LIBICB$PH_PROCEDURE_
DESCRIPTOR

Address of the procedure descriptor for this context.

LIBICB$Q_PROGRAM_COUNTER Quadword that contains the current value of the procedure’s
program counter. For interrupted procedures, this is the same
as the continuation program counter; for active procedures, this is
the return address back into that procedure.

LIBICB$Q_PROCESSOR_STATUS Contains the current value of the processor status.

LIBICB$Q_IREG[n] Quadword that contains the current value of the integer register in
the procedure (where n is the number of the register).

LIBICB$Q_FREG[n] Quadword that contains the current value of the floating-point
register in the procedure (where n is the number of the register).

LIBICB$Q_SYSTEM_DEFINED[n] A variable-sized area with locations defined in quadword
increments by the host environment that contains procedure context
information. These locations are not defined by this standard.

3.5.2.3 Getting a Procedure Invocation Context with a Routine
A thread can obtain its own context or the current context of any procedure
invocation in the current stack call (given an invocation handle) by calling the
run-time library functions defined in Section 3.5.3.

3.5.2.4 Walking the Call Stack
During the course of program execution, it is sometimes necessary to walk the
call stack. Frame-based exception handling is one case where this is done. Call
stack navigation is possible only in the reverse direction (in a latest-to-earliest or
top-to-bottom sequence).

To walk the call stack, perform the following steps:

1. Given a program state (which contains a register set), build an invocation
context block.

For the current routine, an initial invocation context block can be obtained by
calling the LIB$GET_CURR_INVO_CONTEXT routine (see Section 3.5.3.2).

November 17, 2003 3–27

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

2. Repeatedly call the LIB$GET_PREV_INVO_CONTEXT routine (see
Section 3.5.3.3) until the end of the chain has been reached (as signified
by 0 being returned).

The bottom of stack frame (end of the call chain) is indicated (LIBICB$V_
BOTTOM_OF_STACK) when the target frame’s saved FP value is 0.

Compilers are allowed to optimize high-level language procedure calls in such
a way that they do not appear in the invocation chain. For example, inline
procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for
procedure frame information. There is no guarantee that successive stack frames
will always appear at higher addresses.

3.5.3 Invocation Context Access Routines
A thread can manipulate the invocation context of any procedure in the thread’s
virtual address space by calling the following run-time library functions.

3.5.3.1 LIB$GET_INVO_CONTEXT
A thread can obtain the invocation context of any active procedure by using the
following function format:

LIB$GET_INVO_CONTEXT(invo_handle, invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

invo_context invo_context_blk structure write by reference

Arguments:

invo_handle
Handle for the desired invocation.

invo_context
Address of an invocation context block into which the procedure context of the frame
specified by invo_handle will be written.

Function Value Returned:

status
Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure
context in the active call stack, the value of the new contents of the
context block is unpredictable.

3–28 November 17, 2003

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

3.5.3.2 LIB$GET_CURR_INVO_CONTEXT
A thread can obtain the invocation context of a current procedure by using the
following function format:

LIB$GET_CURR_INVO_CONTEXT(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure write by reference

Argument:

invo_context
Address of an invocation context block into which the procedure context of the caller
will be written.

Function Value Returned:

Zero. This is to facilitate use in the implementation of the C language unwind setjmp
or longjmp function (only).

3.5.3.3 LIB$GET_PREV_INVO_CONTEXT
A thread can obtain the invocation context of the procedure context preceding any
other procedure context by using the following function format:

LIB$GET_PREV_INVO_CONTEXT(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

Argument:

invo_context
Address of an invocation context block. The given invocation context block is updated
to represent the context of the previous (calling) frame. The LIBICB$V_BOTTOM_
OF_STACK flag of the invocation context block is set if the target frame represents
the end of the invocation call chain or if stack corruption is detected.

Function Value Returned:

status
Status value. A value of 1 indicates success. When the initial context represents the
bottom of the call stack, a value of 0 is returned. If the current operation completed
without error, but a stack corruption was detected at the next level down, a value of 3
is returned.

3.5.3.4 LIB$GET_INVO_HANDLE
A thread can obtain an invocation handle corresponding to any invocation context
block by using the following function format:

LIB$GET_INVO_HANDLE(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure read by reference

Argument:

November 17, 2003 3–29

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

invo_context
Address of an invocation context block. Here, only the frame pointer and stack pointer
fields of an invocation context block must be defined.

Function Value Returned:

invo_handle
Invocation handle of the invocation context that was passed. If the returned value is
LIB$K_INVO_HANDLE_NULL, the invocation context that was passed was invalid.

3.5.3.5 LIB$GET_PREV_INVO_HANDLE
A thread can obtain an invocation handle of the procedure context preceding that
of a specified procedure context by using the following function format:

LIB$GET_PREV_INVO_HANDLE(invo_handle)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

Argument:

invo_handle
An invocation handle that represents a target invocation context.

Function Value Returned:

invo_handle
An invocation handle for the invocation context that is previous to that which was
specified as the target.

3.5.3.6 LIB$PUT_INVO_REGISTERS
A given procedure invocation context’s fields can be updated with new register
contents by calling a system library function in following format:

LIB$PUT_INVO_REGISTERS(invo_handle, invo_context, invo_mask)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword (unsigned) read by value

invo_context invo_context_blk structure read by reference

invo_mask mask_quadword quadword (unsigned) read by reference

Arguments:

invo_handle
Handle for the invocation to be updated.

invo_context
Address of an invocation context block that contains new register contents.

Each register that is set in the invo_mask parameter, except SP, is updated using
the value found in the corresponding IREG or FREG field. The program counter and
processor status can also be updated in this way. (The SP register cannot be updated
using this routine.) No other fields of the invocation context block are used.

3–30 November 17, 2003

OpenVMS Alpha Conventions
3.5 Procedure Call Stack

invo_mask
Address of a 64-bit bit vector, where each bit corresponds to a register field in the
passed invo_context. Bits 0 through 30 correspond to IREG[0] through IREG[30], bit
31 corresponds to PROGRAM_COUNTER, bits 32 through 62 correspond to FREG[0]
through FREG[30], and bit 63 corresponds to PROCESSOR_STATUS. (If bit 30, which
corresponds to SP, is set, then no changes are made.)

Function Value Returned:

status
Status value. A value of 1 indicates success. When the initial context represents the
bottom of the call stack or when bit 30 of the invo_mask argument is set, a value of
0 is returned (and nothing is changed).

Caution

While this routine can be used to update the frame pointer (FP), great
care must be taken to assure that a valid stack frame and execution
environment result; otherwise, execution may become unpredictable.

3.6 Transfer of Control
This standard states that a standard call (see Section 1.4) may be accomplished
in any way that presents the called routine with the required environment.
However, typically, most standard-conforming external calls are implemented
with a common sequence of instructions and conventions. Because a common set
of call conventions is so pervasive, these conventions are included for reference as
part of this standard.

One important feature of the calling standard is that the same instruction
sequence can be used to call each of the different types of procedure. Specifically,
the caller does not have to know which type of procedure is being called.

3.6.1 Call Conventions
The call conventions describe the rules and methods used to communicate certain
information between the caller and the called procedure during invocation and
return. For a standard call, these conventions include the following:

• Procedure value

The calling procedure must pass to the called procedure its procedure value.
This value can be a statically or dynamically bound procedure value. This
is accomplished by loading R27 with the procedure value before control is
transferred to the called procedure.

• Return address

The calling procedure must pass to the called procedure the address to which
control must be returned during a normal return from the called procedure.
In most cases, the return address is the address of the instruction following
the one that transferred control to the called procedure. For a standard call,
this address is passed in the return address register (R26).

• Argument list

The argument list is an ordered set of zero or more argument items that
together constitute a logically contiguous structure known as an argument
item sequence. This logically contiguous sequence is typically mapped to
registers and memory in a way that produces a physically discontiguous

November 17, 2003 3–31

OpenVMS Alpha Conventions
3.6 Transfer of Control

argument list. In a standard call, the first six items are passed in registers
R16–21 or registers F16–21. (See Section 3.7.2 for details of argument-to-
register correspondence.) The remaining items are collected in a memory
argument list that is a naturally aligned array of quadwords. In a standard
call, this list (if present) must be passed at 0(SP).

• Argument information

The calling procedure must pass to the called procedure information about
the argument list. This information is passed in the argument information
(AI) register (R25). Defined by AI$K_AI_SIZE, the structure is a quadword as
shown in Figure 3–10 with the fields described in Table 3–7.

Figure 3–10 Argument Information Register (R25) Format

ZK−4659A−GE

<31:26>

Must be 0

AI_SIZE = 8

31 0

<25:8>
ARG_REG_INF0

<7:0>
ARG_COUNT

Table 3–7 Contents of the Argument Information Register (R25)

Field Name Contents

AI$B_ARG_COUNT Unsigned byte <7:0> that specifies the number of 64-bit argument items in the
argument list (known as the ‘‘argument count’’).

AI$V_ARG_REG_INFO An 18-bit vector field <25:8> divided into six groups of 3 bits that correspond to
the six arguments passed in registers. These groups describe how each of the
first six arguments are passed in registers with the first group <10:8> describing
the first argument. The encoding for each group for the argument register usage
follows:

Value Name Meaning

0 AI$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument
passed in an integer register (including addresses)
or
Argument is not present

1 AI$K_AR_FF F_floating argument passed in a floating register

2 AI$K_AR_FD D_floating argument passed in a floating register

3 AI$K_AR_FG G_floating argument passed in a floating register

4 AI$K_AR_FS S_floating argument passed in a floating register

5 AI$K_AR_FT T_floating argument passed in a floating register

6, 7 Reserved

Bits 26–63 Reserved and must be 0.

• Function result

3–32 November 17, 2003

OpenVMS Alpha Conventions
3.6 Transfer of Control

If a standard-conforming procedure is a function and the function result is
returned in a register, then the result is returned in R0, F0, or F0 and F1.
Otherwise, the function result is returned via the first argument item or
dynamically as defined in Section 3.7.7.

November 17, 2003 3–33

OpenVMS Alpha Conventions
3.6 Transfer of Control

• Stack usage

Whenever control is transferred to another procedure, the stack pointer
(SP) must be octaword aligned; at other times there is no stack alignment
requrement. (A side effect of this is that the in-memory portion of the
argument list will start on an octaword boundary.) During a procedure
invocation, the SP (R30) can never be set to a value higher than the SP at
entry to that procedure invocation.

The contents of the stack located above the portion of the argument list that is
passed in memory (if any) belongs to the calling procedure and is, therefore,
not to be read or written by the called procedure, except as specified by
indirect arguments or language-controlled up-level references.

Because SP is used by the hardware in raising exceptions and asynchronous
interrupts, the contents of the next 2048 bytes below the current SP value
are continually and unpredictably modified. Software that conforms to this
standard must not depend on the contents of the 2048 stack locations below
0(SP).

Note

One implication of the stack alignment requirement is that low-level
interrupt and exception-fielding software must be prepared to handle and
correct the alignment before calling handler routines, in case the stack
pointer is not octaword aligned at the time of an interrupt or exception.

3.6.2 Linkage Section
Because the Alpha hardware architecture has the property of instructions
that cannot contain full virtual addresses, it is sometimes referred to as a
base register architecture. In a base register architecture, normal memory
references within a limited range from a given address are expressed by using
displacements relative to the contents of a register containing that address (base
register). Base registers for external program segments, either data or code, are
usually loaded indirectly through a program segment of address constants.

The fundamental program section containing address constants that a procedure
uses to access other static storage, external procedures, and variables is termed a
linkage section. Any register used to access the contents of the linkage section
is termed a linkage pointer.

A procedure’s linkage section includes the procedure descriptor for the procedure,
addresses of all external variables and procedures referenced by the procedure,
and other constants a compiler may choose to reference using a linkage pointer.

When a standard procedure is called, the caller must provide the procedure value
for that procedure in R27. Static procedure values are defined to be the address of
the procedure’s descriptor. Because the procedure descriptor is part of the linkage
section, calling this type of procedure value provides a pointer into the linkage
section for that procedure in R27. This linkage pointer can then be used by the
called procedure as a base register to address locations in its linkage section. For
this reason, most compilers generate references to items in the linkage section as
offsets from a pointer to the procedure’s descriptor.

3–34 November 17, 2003

OpenVMS Alpha Conventions
3.6 Transfer of Control

Compilers usually arrange (as part of the environment setup) to have the
environment setup code (for bound procedures) load R27 with the address of
the procedure’s descriptor so it can be used as a linkage pointer as previously
described. For an example, see Section 3.6.4.

Although not required, linkages to external procedures are typically represented
in the calling procedure’s linkage section as a linkage pair. As shown in
Figure 3–11 and described in Table 3–8, a linkage pair (LKP) block with two
fields should be octaword aligned and defined by LKP$K_SIZE as 16 bytes.

Figure 3–11 Linkage Pair Block Format

ZK−4660A−GE

:0

:8

LKP$K_SIZE = 16

LKP octaword aligned

ENTRY

PROC_VALUE

Table 3–8 Contents of the Linkage Pair Block

Field Name Contents

LKP$Q_ENTRY Absolute address of the first instruction of the called
procedure’s entry code sequence.

LKP$Q_PROC_VALUE Contains the procedure value of the procedure to be called.
Normally, this field is the absolute address of a procedure
descriptor for the procedure to be called, but in certain cases, it
could be a bound procedure value (such as for procedures that
are called through certain types of transfer vectors).

In general, an object module contains a procedure descriptor for each entry
point in the module. The descriptors are allocated in a linkage section. For each
external procedure Q that is referenced in a module, the module’s linkage section
also contains a linkage pair denoting Q (which is a pointer to Q’s procedure
descriptor and entry code address).

The following code example calls an external procedure Q as represented by
a linkage pair. In this example, R4 is the register that currently contains the
address of the current procedure’s descriptor.

LDQ R26,Q_DESC-MY_DESC(R4) ;Q’s entry address into R26
LDQ R27,Q_DESC-MY_DESC+8(R4) ;Q’s procedure value into R27
MOVQ #AI_LITERAL,R25 ;Load Argument Information register
JSR R26,(R26) ;Call to Q. Return address in R26

November 17, 2003 3–35

OpenVMS Alpha Conventions
3.6 Transfer of Control

Because Q’s procedure descriptor (statically defined procedure value) is in Q’s
linkage section, Q can use the value in R27 as a base address for accessing data
in its linkage section. Q accesses external procedures and data in other program
sections through pointers in its linkage section. Therefore, R27 serves as the root
pointer through which all data can be referenced.

3.6.3 Calling Computed Addresses
Most calls are made to a fixed address whose value is determined by the time
the program starts execution. However, certain cases are possible that cause the
exact address to be unknown until the code is finally executed. In this case, the
procedure value representing the procedure to be called is computed in a register.

The following code example illustrates a call to a computed procedure value
(simple or bound) that is contained in R4:

LDQ R26,8(R4) ;Entry address to scratch register
MOV R4,R27 ;Procedure value to R27
MOV #AI_LITERAL,R25 ;Load Argument Information register
JSR R26,(R26) ;Call entry address.

For interoperation with translated images, see Chapter 5

3.6.4 Simple and Bound Procedures
There are two distinct classes of procedures:

• Simple procedure

• Bound procedure

A simple procedure is a procedure that does not need direct access to the stack
of its execution environment. A bound procedure is a procedure that does need
direct access to the stack of its execution environment, typically to reference
an up-level variable or to perform a nonlocal GOTO operation. Both a simple
procedure and a bound procedure have an associated procedure descriptor, as
described in previous sections.

When a bound procedure is called, the caller must pass some kind of pointer to
the called code that allows it to reference its up-level environment. Typically,
this pointer is the frame pointer for that environment, but many variations are
possible. When the caller is executing its program within that outer environment,
it can usually make such a call directly to the code for the nested procedure
without recourse to any additional procedure descriptors. However, when
a procedure value for the nested procedure must be passed outside of that
environment to a call site that has no knowledge of the target procedure, a bound
procedure descriptor is created so that the nested procedure can be called just
like a simple procedure.

Bound procedure values, as defined by this standard, are designed for
multilanguage use and utilize the properties of procedure descriptors to
allow callers of procedures to use common code to call both bound and simple
procedures.

3–36 November 17, 2003

OpenVMS Alpha Conventions
3.6 Transfer of Control

3.6.4.1 Bound Procedure Descriptors
Bound procedure descriptors provide a mechanism to interpose special
processing between a call and the called routine without modifying either.
The descriptor may contain (or reference) data used as part of that processing.
Between native and translated images, the OpenVMS Alpha operating system
uses linker and image-activator created bound procedure descriptors to mediate
the handling of parameter and result passing (see Section 5.2). Language
processors on OpenVMS Alpha systems use bound procedure descriptors to
implement bound procedure values (see Section 3.6.4.2). Other uses are possible.

The minimum size of the descriptor is 24 bytes (defined by PDSC$K_MIN_
BOUND_SIZE). An optional PDSC extension in 8-byte increments provides the
specific environment values as defined by the implementation.

The fields defined in the bound procedure descriptor are illustrated in Figure 3–12
and described in Table 3–9.

Figure 3–12 Bound Procedure Descriptor (PDSC)

ZK−4662A−GE

quadword alignedPDSC

:0

:4

:8

Must be zero FLAGS

SIGNATURE_OFFSET MBZ
<15:12>

*FRET
<11:8>

ENTRY

*FRET = PDSC$V_FUNC_RETURN

PROC_VALUE

ENVIRONMENT

PDSC$K_MIN_BOUND_SIZE = 24
End of required part of procedure descriptor

:16

:24

Reserved

Table 3–9 Contents of the Bound Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS Vector of flag bits <15:0> that must be a copy of the flag bits (except for KIND
bits) contained in the quadword pointed to by PDSC$Q_PROC_VALUE.

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with bound values, this field
must specify a value of 0.

(continued on next page)

November 17, 2003 3–37

OpenVMS Alpha Conventions
3.6 Transfer of Control

Table 3–9 (Cont.) Contents of the Bound Procedure Descriptor (PDSC)

Field Name Contents

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

PDSC$V_FUNC_RETURN in a bound procedure descriptor must be the same
as the PDSC$V_FUNC_RETURN of the procedure descriptor for the procedure
for which the environment is established.

Table 5–4 lists and describes the possible encoding values of PDSC$V_FUNC_
RETURN.

Bits 12–15 Reserved and must be 0.

PDSC$W_SIGNATURE_
OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). In a bound
procedure, a 0 in this field indicates the actual signature block must be sought
in the procedure descriptor indicated by the PDSC$Q_PROC_VALUE field. A 1
in this field indicates a standard default signature. (An offset value of 1 is not
a valid offset because both procedure descriptors and signature blocks must be
quadword aligned. See Section 5.2 for details of the procedure signature block.)

Note that a nonzero signature offset in a bound procedure value normally occurs
only in the case of bound procedures used as part of the implementation of
calls from native OpenVMS Alpha code to translated OpenVMS VAX images.
In any case, if a nonzero offset is present, it takes precedence over signature
information that might occur in any related procedure descriptor.

PDSC$Q_ENTRY Address of the transfer code sequence.

PDSC$Q_PROC_VALUE Value of the procedure to be called by the transfer code. The value can be either
the address of a procedure descriptor for the procedure or possibly another
bound procedure value.

PDSC$Q_
ENVIRONMENT

An environment value to pass to the procedure. The choice of environment value
is system implementation specific. For more information, see Section 3.6.4.2.

3.6.4.2 Bound Procedure Value
The procedure value for a bound procedure is a pointer to a bound procedure
descriptor that, like all other procedure descriptors, contains the address to which
the calling procedure must transfer control at offset 8 (see Figure 3–12). This
transfer code is responsible for setting up the dynamic environment needed
by the target nested procedure and then completing the transfer of control to
the code for that procedure. The transfer code receives in R27 a pointer to
its corresponding bound procedure descriptor and thus can fetch any required
environment information from that descriptor. A bound procedure descriptor also
contains a procedure value for the target procedure that is used to complete the
transfer of control.

When the transfer code sequence addressed by PDSC$Q_ENTRY of a bound
procedure descriptor is called (by a call sequence such as the one given in
Section 3.6.3), the procedure value will be in R27, and the transfer code must
finish setting up the environment for the target procedure. The preferred location
for this transfer code is directly preceding the code for the target procedure. This
saves a memory fetch and a branching instruction and optimizes instruction
caches and paging.

The following is an example of such a transfer code sequence. It is an example of
a target procedure Q that expects the environment value to be passed in R1 and
a linkage pointer in R27.

3–38 November 17, 2003

OpenVMS Alpha Conventions
3.6 Transfer of Control

Q_TRANSFER:

LDQ R1,24(R27) ;Environment value to R1
LDQ R27,16(R27) ;Procedure descriptor address to R27

Q_ENTRY:: ;Normal procedure entry code starts here

After the transfer code has been executed and control is transferred to Q’s entry
address, R27 contains the address of Q’s procedure descriptor, R26 (unmodified
by transfer code) contains the return address, and R1 contains the environment
value.

When a bound procedure value such as this is needed, the bound procedure
descriptor is usually allocated on the parent procedure’s stack.

3.6.5 Entry and Exit Code Sequences
To ensure that the stack can be interpreted at any point during thread execution,
all procedures must adhere to certain conventions for entry and exit as defined in
this section.

3.6.5.1 Entry Code Sequence
Because the value of FP defines the current procedure, all properties of the
environment specified by a procedure’s descriptor must be valid before the FP
is modified to make that procedure current. In addition, none of the properties
specified in the calling procedure’s descriptor may be invalidated before the called
procedure becomes current. So, until the FP has been modified to make the
procedure current, all entry code must adhere to the following rules:

• All registers specified by this standard as saved across a standard call must
contain their original (at entry) contents.

• No standard calls may be made.

Note

If an exception is raised or if an exception occurs in the entry code of a
procedure, that procedure’s exception handler (if any) will not be invoked
because the procedure is not current yet. Therefore, if a procedure has
an exception handler, compilers may not move code into the procedure
prologue that might cause an exception that would be handled by that
handler.

When a procedure is called, the code at the entry address must synchronize
(as needed) any pending exceptions caused by instructions issued by the caller,
must save the caller’s context, and must make the called procedure current by
modifying the value of FP as described in the following steps:

1. If PDSC$L_SIZE is not 0, set register SP � SP � PDSC$L_SIZE.

2. If PDSC$V_BASE_REG_IS_FP is 1, store the address of the procedure
descriptor at 0(SP).

If PDSC$V_KIND � PDSC$K_KIND_FP_REGISTER, copy the return address
to the register specified by PDSC$B_SAVE_RA, if it is not already there, and
copy the FP register to the register specified by PDSC$B_SAVE_FP.

If PDSC$V_KIND � PDSC$K_KIND_FP_STACK, copy the return address
to the quadword at the RSA$Q_SAVED_RETURN offset in the register save
area denoted by PDSC$W_RSA_OFFSET, and store the registers specified by
PDSC$L_IREG_MASK and PDSC$L_FREG_MASK in the register save area

November 17, 2003 3–39

OpenVMS Alpha Conventions
3.6 Transfer of Control

denoted by PDSC$W_RSA_OFFSET. (This step includes saving the value in
FP.)

Execute TRAPB if required (see Section 8.5.3.2 for details).

3. If PDSC$V_BASE_REG_IS_FP is 0, load register FP with the address of the
procedure descriptor or the address of a quadword that contains the address
of the procedure descriptor.

If PDSC$V_BASE_REG_IS_FP is 1, copy register SP to register FP.

The ENTRY_LENGTH value in the procedure descriptor provides information
that is redundant with the setting of a new frame pointer register value. That
is, the value could be derived by starting at the entry address and scanning the
instruction stream to find the one that updates FP. The ENTRY_LENGTH value
included in the procedure descriptor supports the debugger or PCA facility so that
such a scan is not required.

Entry Code Example for a Stack Frame Procedure
Example 3–1 is an entry code example for a stack frame. The example assumes
that:

• This is a stack frame procedure

• Registers R2–4 and F2–3 are saved and restored

• PDSC$W_RSA_OFFSET � 16

• The procedure has a static exception handler that does not reraise arithmetic
traps

• The procedure uses a variable amount of stack

If the code sequence in Example 3–1 is interrupted by an asynchronous software
interrupt, SP will have a different value than it did at entry, but the calling
procedure will still be current.

After an interrupt, it would not be possible to determine the original value of SP
by the register frame conventions. If actions by an exception handler result in
a nonlocal GOTO call to a location in the immediate caller, then it will not be
possible to restore SP to the correct value in that caller. Therefore, any procedure
that contains a label that can be the target of a nonlocal GOTO by immediately
called procedures must be prepared to reset or otherwise manage the SP at that
label.

Example 3–1 Entry Code for a Stack Frame Procedure

LDA SP,-SIZE(SP) ;Allocate space for new stack frame
STQ R27,(SP) ;Set up address of procedure descriptor
STQ R26,16(SP) ;Save return address
STQ R2,24(SP) ;Save first integer register
STQ R3,32(SP) ;Save next integer register
STQ R4,40(SP) ;Save next integer register
STQ FP,48(SP) ;Save caller’s frame pointer
STT F2,56(SP) ;Save first floating-point register
STT F3,64(SP) ;Save last floating-point register
TRAPB ;Force any pending hardware exceptions to

; be raised
MOV SP,FP ;Called procedure is now the current procedure

3–40 November 17, 2003

OpenVMS Alpha Conventions
3.6 Transfer of Control

Entry Code Example for a Register Frame
Example 3–2 assumes that the called procedure has no static exception handler
and utilizes no stack storage, PDSC$B_SAVE_RA specifies R26, PDSC$B_SAVE_
FP specifies R22, and PDSC$V_BASE_REG_IS_FP is 0:

Example 3–2 Entry Code for a Register Frame Procedure

MOV FP,R22 ;Save caller’s FP.
MOV R27,FP ;Set FP to address of called procedure’s

; descriptor. Called procedure is now the
; current procedure.

3.6.5.2 Exit Code Sequence
When a procedure returns, the exit code must restore the caller’s context,
synchronize any pending exceptions, and make the caller current by modifying
the value of FP. The exit code sequence must perform the following steps:

1. If PDSC$V_BASE_REG_IS_FP is 1, then copy FP to SP.

If PDSC$V_KIND � PDSC$K_KIND_FP_STACK, and this procedure saves or
restores any registers other than FP and SP, reload those registers from the
register save area as specified by PDSC$W_RSA_OFFSET.

If PDSC$V_KIND � PDSC$K_KIND_FP_STACK, load a scratch register with
the return address from the register save area as specified by PDSC$W_RSA_
OFFSET. (If PDSC$V_KIND � PDSC$K_KIND_FP_REGISTER, the return
address is already in scratch register PDSC$B_SAVE_RA.)

Execute TRAPB if required (see Section 8.5.3.2 for details).

2. If PDSC$V_KIND � PDSC$K_KIND_FP_REGISTER, copy the register
specified by PDSC$B_SAVE_FP to register FP.

3. If PDSC$V_KIND � PDSC$K_KIND_FP_STACK, reload FP from the saved
FP in the register save area.

4. If a function value is not being returned using the stack (PDSC$V_STACK_
RETURN_VALUE is 0), then restore SP to the value it had at procedure entry
by adding the value that was stored in PDSC$L_SIZE to SP. (In some cases,
the returning procedure will leave SP pointing to a lower stack address than
it had on entry to the procedure, as specified in Section 3.7.7.)

5. Jump to the return address (which is in a scratch register).

The called routine does not adjust the stack to remove any arguments passed in
memory. This responsibility falls to the calling routine that may choose to defer
their removal because of optimizations or other considerations.

Exit Code Example for a Stack Frame
Example 3–3 shows the return code sequence for the stack frame.

Interruption of the code sequence in Example 3–3 by an asynchronous software
interrupt can result in the calling procedure being the current procedure, but
with SP not yet restored to its value in that procedure. The discussion of that
situation in entry code sequences applies here as well.

November 17, 2003 3–41

OpenVMS Alpha Conventions
3.6 Transfer of Control

Example 3–3 Exit Code Sequence for a Stack Frame

MOV FP,SP ;Chop the stack back
LDQ R28,16(FP) ;Get return address
LDQ R2,24(FP) ;Restore first integer register
LDQ R3,32(FP) ;Restore next integer register
LDQ R4,40(FP) ;Restore next integer register
LDT F2,56(FP) ;Restore first floating-point register
LDT F3,64(FP) ;Restore last floating-point register
TRAPB ;Force any pending hardware exceptions to

; be raised
LDQ FP,48(FP) ;Restore caller’s frame pointer
LDA SP,SIZE(SP) ;Restore SP (SIZE is compiled into PDSC$L_SIZE)
RET R31,(R28) ;Return to caller’s code

Example 3–4 Exit Code Sequence for a Register Frame

MOV R22,FP ;Restore caller’s FP value
; Caller is once again the current procedure.

RET R31,(R26) ;Return to caller’s code

Exit Code Example for a Register Frame
Example 3–4 contains the return code sequence for the register frame.

3.7 Data Passing
This section defines the OpenVMS Alpha calling standard conventions of passing
data between procedures in a call stack. An argument item represents one unit
of data being passed between procedures.

3.7.1 Argument-Passing Mechanisms
This OpenVMS Alpha calling standard defines three classes of argument items
according to the mechanism used to pass the argument:

• Immediate value

• Reference

• Descriptor

Argument items are not self-defining; interpretation of each argument item
depends on agreement between the calling and called procedures.

This standard does not dictate which passing mechanism must be used by a
given language compiler. Language semantics and interoperability considerations
might require different mechanisms in different situations.

Immediate value
An immediate value argument item contains the value of the data item. The
argument item, or the value contained in it, is directly associated with the
parameter.

Reference
A reference argument item contains the address of a data item such as a
scalar, string, array, record, or procedure. This data item is associated with the
parameter.

3–42 November 17, 2003

OpenVMS Alpha Conventions
3.7 Data Passing

Descriptor
A descriptor argument item contains the address of a descriptor, which contains
structural information about the argument’s type (such as array bounds) and the
address of a data item. This data item is associated with the parameter.

3.7.2 Argument List Structure
The argument list in an OpenVMS Alpha call is an ordered set of zero or more
argument items, which together comprise a logically contiguous structure known
as the argument item sequence. An argument item is specified using up to 64
bits.

A 64-bit argument item can be used to pass arguments by immediate value,
by reference, and by descriptor. Any combination of these mechanisms in an
argument list is permitted.

Although the argument items form a logically contiguous sequence, they are
in practice mapped to integer and floating-point registers and to memory in a
method that can produce a physically discontiguous argument list. Registers
R16–21 and F16–21 are used to pass the first six items of the argument item
sequence. Additional argument items must be passed in a memory argument list
that must be located at 0(SP) at the time of the call.

Table 3–10 specifies the standard locations in which argument items can be
passed.

Table 3–10 Argument Item Locations

Item Integer Register
Floating-Point
Register Stack

1 R16 F16

2 R17 F17

3 R18 F18

4 R19 F19

5 R20 F20

6 R21 F21

7–n 0(SP) – (n � 7) � 8(SP)

The following list summarizes the general requirements that determine the
location of any specific argument:

• All argument items are passed in the integer registers or on the stack, except
for argument items that are floating-point data passed by immediate value.

• Floating-point data passed by immediate value is passed in the floating-point
registers or on the stack.

• Only one location (across an item row in Table 3–10) can be used by any given
argument item in a list. For example, if argument item 3 is an integer passed
by value, and argument item 4 is a single-precision floating-point number
passed by value, then argument item 3 is assigned to R18 and argument item
4 is assigned to F19.

November 17, 2003 3–43

OpenVMS Alpha Conventions
3.7 Data Passing

• A single- or double-precision complex value is treated as two arguments for
the purpose of argument-item sequence rules. In particular, the real part of a
complex value might be passed as the sixth argument item in register F21, in
which case the imaginary part is then passed as the seventh argument item
in memory.

An extended precision complex value is passed by reference using a single
integer or stack argument item. (An extended precision complex value is not
passed by immediate value because the component extended precision floating
values are not passed by value. See also Section 3.7.5.1, Sending Mechanism.)

The argument list that includes both the in-memory portion and the portion
passed in registers can be read from and written to by the called procedure.
Therefore, the calling procedure must not make any assumptions about the
validity of any part of the argument list after the completion of a call.

3.7.3 Argument Lists and High-Level Languages
High-level language functional notations for procedure call arguments are
mapped into argument item sequences according to the following requirements:

• Arguments are mapped from left to right to increasing offsets in the argument
item sequence. R16 or F16 is allocated to the first argument, and the last
quadword of the memory argument list (if any) is allocated to the last
argument.

• Each source language argument corresponds to one or more contiguous Alpha
calling standard argument items.

• Each argument item consists of 64 bits.

• A null or omitted argument—for example, CALL SUB(A,,B)—is represented
by an argument item containing the value 0.

Arguments passed by immediate value cannot be omitted unless a default
value is supplied by the language. (This is to enable called procedures
to distinguish an omitted immediate argument from an immediate value
argument with the value 0.)

Trailing null or omitted arguments—for example, CALL SUB(A,,)—are passed
by the same rules as for embedded null or omitted arguments.

3.7.4 Unused Bits in Passed Data
Whenever data is passed by value between two procedures in registers (for the
first six input arguments and return values), or in memory (for arguments after
the first six), the bits not used by the data are sign extended or zero extended as
appropriate.

Table 3–11 lists and defines the various data-type requirements for size and their
extensions to set or clear unused bits.

3–44 November 17, 2003

OpenVMS Alpha Conventions
3.7 Data Passing

Table 3–11 Data Types and the Unused Bits in Passed Data

Data Type
Type
Designator

Data Size
(bytes)

Register
Extension
Type

Memory
Extension
Type

Byte logical BU 1 Zero64 Zero64

Word logical WU 2 Zero64 Zero64

Longword logical LU 4 Sign64 Sign64

Quadword logical QU 8 Data64 Data64

Byte integer B 1 Sign64 Sign64

Word integer W 2 Sign64 Sign64

Longword integer L 4 Sign64 Sign64

Quadword integer Q 8 Data64 Data64

F_floating F 4 Hard Data32

D_floating D 8 Hard Data64

G_floating G 8 Hard Data64

F_floating complex FC 2 � 4 2�Hard 2�Data32

D_floating complex DC 2 � 8 2�Hard 2�Data64

G_floating complex GC 2 � 8 2�Hard 2�Data64

S_floating FS 4 Hard Data32

T_floating FT 8 Hard Data64

X_floating FX 16 N/A N/A

S_floating complex FSC 2 � 4 2�Hard 2�Data32

T_floating complex FTC 2 � 8 2�Hard 2�Data64

X_floating complex FXC 2 � 16 N/A N/A

Small structures of 8 bytes or less N/A �8 Nostd Nostd

Small arrays of 8 bytes or less N/A �8 Nostd Nostd

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A 8 Data64 Data64

The following are the defined meanings for the extension type symbols used in
Table 3–11:

November 17, 2003 3–45

OpenVMS Alpha Conventions
3.7 Data Passing

Sign Extension
Type Defined Function

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2�Data32 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2�Data64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data64).

Hard Passed in the layout defined by the hardware SRM.

2�Hard Two floating-point parts of the complex value are stored in a pair of
registers as independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable
across a call or return.

Because of the varied rules for sign extension of data when passed as arguments,
both calling and called routines must agree on the data type of each argument.
No implicit data-type conversions can be assumed between the calling procedure
and the called procedure.

3.7.5 Sending Data
This section defines the OpenVMS Alpha calling standard requirements for
mechanisms to send data and the order of argument evaluation.

3.7.5.1 Sending Mechanism
As previously defined, the argument-passing mechanisms allowed are immediate
value, reference, and descriptor. Requirements for using these mechanisms
follow:

• By immediate value. An argument may be passed by immediate value only
if the argument is one of the following:

One of the noncomplex scalar data types with a size known (at compile
time) to be � 64 bits

Either single or double precision complex

A record with a known size (at compile time)

A set, implemented as a bit vector, with a size known (at compile time) to
be � 64 bits

No form of string or array data type may be passed by immediate value in a
standard call.

Unused high-order bits must be zero or sign extended, as appropriate
depending on the date type, to fill all bits of each argument list item (as
specified in Table 3–11).

A single- or double- precision complex value is passed as two single or double
precision floating-point values, respectively. Note that the argument count
reflects that two argument positions are used rather than just one actual
argument.

A record value, which may be larger than 64 bits, is passed by immediate
value as follows:

3–46 November 17, 2003

OpenVMS Alpha Conventions
3.7 Data Passing

Allocate as many fully occupied argument item positions to the argument
value as are needed to represent the argument.

The value of the unoccupied bits is undefined in a final, partially occupied
argument item position, if any.

If an argument position is passed in one of the registers, it can only be
passed in an integer register (never in a floating-point register).

Other argument values that are larger than 64 bits can be passed by
immediate value using nonstandard conventions, typically using a method
similar to those for passing records. Thus, for example, a 26-byte string can
be passed by value in four integer registers.

• By reference. Nonparametric arguments (arguments for which associated
information such as string size and array bounds are not required) can be
passed by reference in a standard call. This includes extended precision
floating and extended precision complex values.

• By descriptor. Parametric arguments (arguments for which associated
information such as string size and array bounds must be passed to the
caller) are passed by a single descriptor in a standard call.

Note that extended floating values are not passed using the immediate value
mechanism; rather, they are passed using the by reference mechanism. (However,
when by value semantics is required, it may be necessary to make a copy of the
actual parameter and pass a reference to that copy in order to avoid improper
alias effects.)

Also note that when a record is passed by immediate value, the component
types are not material to how the argument is aligned; the record will always be
quadword aligned.

3.7.5.2 Order of Argument Evaluation
Because most high-level languages do not specify the order of evaluation (with
respect to side effects) of arguments, those language processors can evaluate
arguments in any convenient order. The choice of argument evaluation order and
code generation strategy is constrained only by the definition of the particular
language. Programs should not depend on the order of evaluation of arguments.

3.7.6 Receiving Data
When it cannot be determined at compile time whether a given in-register
argument item is passed in a floating-point register or an integer register, the
argument information register can be interpreted at run time to establish where
the argument was passed. (See Section 3.6.1 for details.)

3.7.7 Returning Data
A standard function must return its function value by one of the following
mechanisms:

• Immediate value

• Reference

• Descriptor

These mechanisms are the only standard means available for returning function
values, and they support the important language-independent data types.
Functions that return values by any mechanism other than those specified here
are nonstandard, language-specific functions.

November 17, 2003 3–47

OpenVMS Alpha Conventions
3.7 Data Passing

3.7.7.1 Function Value Return by Immediate Value
This standard defines the following two types of function returns by immediate
value:

• Nonfloating function value return

• Floating function value return

Nonfloating Function Value Return by Immediate Value
A function value is returned by immediate value in register R0 only if the type of
function value is one of the following:

• Nonfloating-point scalar data type with size known to be � 64 bits

• Record with size known to be � 64 bits

• Set, implemented as a bit vector, with size known to be � 64 bits

No form of string or array can be returned by immediate value, and two separate
32-bit entities cannot be combined and returned in R0.

A function value of less than 64 bits returned in R0 must be zero extended or sign
extended as appropriate, depending on the data type (see Table 3–11), to a full
quadword.

Floating Function Value Return by Immediate Value
A function value is returned by immediate value in register F0 only if it is a
noncomplex single- or double-precision floating-point value (F, D, G, S, or T).

A function value is returned by immediate value in registers F0 and F1 only if it
is a complex single or double-precision floating-point value (complex F, D, G, S, or
T).

Note that extended floating point and extended complex values are returned by
reference as described next.

3.7.7.2 Function Value Return by Reference
A function value is returned by reference only if the function value satisfies both
of the following criteria:

• Its size is known to both the calling procedure and the called procedure, but
the value cannot be returned by immediate value. (Because the function
value requires more than 64 bits, the data type is a string or an array type.)

• It can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the right
by one argument item. The new, first argument item is reserved for the function
value. This hidden first argument is included in the count and register usage
information that is passed in the argument information register (see Section 3.6.1
for details).

The calling procedure must provide the required contiguous storage and pass the
address of the storage as the first argument. This address must specify storage
naturally aligned according to the data type of the function value.

The called function must write the function value to the storage described by the
first argument.

3–48 November 17, 2003

OpenVMS Alpha Conventions
3.7 Data Passing

The this Pointer
For C++, when the this pointer is passed as an implicit first parameter and a
pointer to a return value buffer is also required, then the this pointer becomes
the first parameter, the buffer pointer becomes the second parameter, and the
remaining normal parameters are shifted two slots to make this possible.

3.7.7.3 Function Value Return by Descriptor
A function value is returned by descriptor only if the function value satisfies all of
the following criteria:

• It cannot be returned by immediate value. (Because the function value
requires more than 64 bits, the data type is a string or an array type, and so
on.)

• Its size is not known to either the calling procedure or the called procedure.

• It can be returned in a contiguous region of storage.

Noncontiguous function values are language specific and cannot be returned as a
standard-conforming return value.

Records, noncontiguous arrays, and arrays with more than one dimension cannot
be returned by descriptor in a standard call.

Both 32-bit and 64-bit descriptor forms can be used for function values returned
by descriptor. See Chapter 7 for details of the descriptor forms.

The use of descriptors for function value return divides into three major cases
with return values involving:

• Dynamic text—Heap-managed strings of arbitrary and dynamically
changeable length

• Return objects created by the calling routine—Function values that are to be
returned in an object allocated by and having attributes (bounds, lengths, and
so on) specified by the calling routine

• Return objects created by the called routine—Function values that are
returned in an object allocated by and having attributes (bounds, lengths,
and so on) specified by the called routine

For correct results to be obtained from this type of function return, the calling
and called routines must agree by prior arrangement which of these three major
cases applies, and whether 64-bit descriptor forms may be used.

The following paragraphs describe the specialized requirements for each major
case:

Dynamic Text
For dynamic text return by descriptor, the calling routine passes a valid
(completely initialized) dynamic string descriptor (DSC$B_CLASS � DSC$K_
CLASS_D). The called routine must assign a value to the variable represented by
this descriptor using the same rules that apply to a dynamic text descriptor used
as an ordinary parameter.

November 17, 2003 3–49

OpenVMS Alpha Conventions
3.7 Data Passing

Return Object Created by Calling Routine
For a return object created by the calling routine, the calling routine passes a
descriptor in which all fields are completely loaded.

The called routine must supply a return value that satisfies that description. In
particular, the called routine must truncate or pad the returned value to satisfy
the requirements of the descriptor according to the semantics of the language in
which the called routine is written.

The calling and called routines must agree by prior arrangement on the DSC$B_
CLASS and DSC$B_DTYPE of descriptor to be used.

Return Object Created by Called Routine
For a return object created by the called routine, the calling and called routines
must agree by prior arrangement on the DSC$B_CLASS and DSC$B_DTYPE of
descriptor to be used. The calling routine passes a descriptor in which:

• DSC$A_POINTER field is set to 0.

• DSC$B_CLASS field is loaded.

• DSC$B_DTYPE field is loaded.

• DSC$B_DIMCT field is loaded and the DSC$B_AFLAGS field is set to 0 if the
descriptor is an array descriptor.

• All other fields are unpredictable.

If the passed descriptor is an array descriptor, it must contain space for bounds
information to be returned even though the DSC$B_AFLAGS field is set to 0.

The called routine must return the function value using stack return conventions
and load the DSC$A_POINTER field to point to the returned data. Other
descriptor information, such as origin, bounds (if supplied), and DSC$B_AFLAGS
fields must be filled in appropriately to correspond to the returned data.

An important implication of a call that uses this kind of value return is that
the stack pointer normally is not restored to its value prior to the call as part
of the return from the called procedure. The returned value typically (but not
necessarily) is left by the called routine somewhere on the stack. For that reason,
this mechanism is sometimes known as the stack return mechanism.

However, this type of return does not imply that the actual storage used by the
called routine to hold the returned value must be at the address pointed to by
the stack pointer; it need not even be on the stack. It could be in some read-only,
static memory. (This latter case might arise when the returned value is constant
or is obtained from some constant structure.) For this reason, the calling routine
must not assume that the data described by the return descriptor is writable.

3.8 Data Allocation
This section describes the standard static data requirements that define the
Alpha alignment of data structures, record formats, and record layout. These
conventions help to ensure proper data compatibility with all OpenVMS Alpha
and VAX languages.

3–50 November 17, 2003

OpenVMS Alpha Conventions
3.8 Data Allocation

3.8.1 Alignment
In the Alpha environment, memory references to data that is not naturally
aligned can result in alignment faults, which can severely degrade the
performance of all procedures that reference the unaligned data.

To avoid such performance degradation, all data values on Alpha systems should
be naturally aligned. Table 3–12 contains information on data alignment.

November 17, 2003 3–51

OpenVMS Alpha Conventions
3.8 Data Allocation

Table 3–12 Natural Alignment Requirements

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)

32-bit integer Address that is a multiple of 4 (longword alignment)

64-bit integer Address that is a multiple of 8 (quadword alignment)

F_floating
F_floating complex

Address that is a multiple of 4 (longword)

D_floating
D_floating complex

Address that is a multiple of 8 (quadword)

G_floating
G_floating complex

Address that is a multiple of 8 (quadword)

S_floating
S_floating complex

Address that is a multiple of 4 (longword alignment)

T_floating
T_floating complex

Address that is a multiple of 8 (quadword)

X_floating
X_floating complex

Address that is a multiple of 16 (octaword)

For aggregates such as strings, arrays, and records, the data type to be considered
for purposes of alignment is not the aggregate itself, but rather the elements of
which the aggregate is composed. The alignment requirement of an aggregate
is that all elements of the aggregate be naturally aligned. For example, varying
8-bit character strings must start at addresses that are a multiple of at least 2
(word alignment) because of the 16-bit count at the beginning of the string; 32-bit
integer arrays start at a longword boundary, irrespective of the extent of the
array.

The rules for passing a record in an argument that is passed by immediate
value (see Section 3.7.5.1) always provide quadword alignment of the record
value independent of the normal alignment requirement of the record. If deemed
appropriate by an implementation, normal alignment can be established within
the called procedure by making a copy of the record argument at a suitably
aligned location.

3.8.2 Record Layout Conventions
The OpenVMS Alpha calling standard rules for record layout are designed
to provide good run-time performance on all implementations of the Alpha
architecture and to provide the required level of compatibility with conventional
VAX operating environments.

Therefore, this standard defines two record layout conventions:

• Those optimized for optimal access characteristics (referred to as aligned
record layouts)

• Those compatible with conventions that are traditionally used by VAX
languages (referred to as VAX compatible record layouts)

3–52 November 17, 2003

OpenVMS Alpha Conventions
3.8 Data Allocation

Note

Although compiler implementers must make appropriate business
decisions, Hewlett-Packard strongly recommends that all Alpha high-level
language compilers should support both record layouts.

Only these two record layouts may be used across standard interfaces or
between languages. Languages can support other language-specific record
layout conventions, but such layouts are nonstandard.

The aligned record layout conventions should be used unless interchange is
required with conventional VAX applications that use the OpenVMS VAX
compatible record layouts.

3.8.2.1 Aligned Record Layout
The aligned record layout conventions ensure that:

• All components of a record or subrecord are naturally aligned.

• Layout and alignment of record elements and subrecords are independent of
any record or subrecord in which they are embedded.

• Layout and alignment of a subrecord is the same as if it were a top-level
record.

• Declaration in high-level languages of standard records for interlanguage use
is straightforward and obvious, and meets the requirements for source-level
compatibility between Alpha and VAX languages.

The aligned record layout is defined by the following conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• The first bit of a record or subrecord must be directly addressable (byte
aligned).

• Records and subrecords must be aligned according to the largest natural
alignment requirements of the contained elements and subrecords.

• Bit fields (packed subranges of integers) are characterized by an underlying
integer type that is a byte, word, longword, or quadword in size together with
an allocation size in bits. A bit field is allocated at the next available bit
boundary, provided that the resulting allocation does not cross an alignment
boundary of the underlying type. Otherwise, the field is allocated at the
next byte boundary that is aligned as required for the underlying type. (In
the later case, the space skipped over is left permanently not allocated.) In
addition, if necessary, the alignment of the record as a whole is increased to
that of the underlying integer type.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available naturally
aligned address for the data type.

November 17, 2003 3–53

OpenVMS Alpha Conventions
3.8 Data Allocation

• The length of a record must be a multiple of its alignment. (This includes the
case when a record is a component of another record.)

• Strings and arrays must be aligned according to the natural alignment
requirements of the data type of which the string or array is composed.

• The length of an array element is a multiple of its alignment, even if this
leaves unused space at its end. The length of the whole array is the sum of
the lengths of its elements.

3.8.2.2 OpenVMS VAX Compatible Record Layout
The OpenVMS VAX compatible record layout is defined by the following
conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available byte in
the record. Any unused bits following the last-used bit in the last-used byte
of each component must be filled out to the next byte boundary so that any
following data starts on a byte boundary.

• Subrecords must be aligned according to the largest alignment of the
contained elements and subrecords. A subrecord always starts at the
next available byte unless it consists entirely of unaligned bit data and
it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

• Records must be aligned on byte boundaries.

3.9 Multithreaded Execution Environments
This section defines the conventions to support the execution of multiple threads
in a multilanguage Alpha environment. Specifically defined is how compiled code
must perform stack limit checking. While this standard is compatible with a
multithreaded execution environment, the detailed mechanisms, data structures,
and procedures that support this capability are not specified in this manual.

For a multithread environment, the following characteristics are assumed:

• There can be one or more threads executing within a single process.

• The state of a thread is represented in a thread environment block (TEB).

• The TEB of a thread contains information that determines a stack limit
below which the stack pointer must not be decremented by the executing code
(except for code that implements the multithread mechanism itself).

• Exception handling is fully reentrant and multithreaded.

3–54 November 17, 2003

OpenVMS Alpha Conventions
3.9 Multithreaded Execution Environments

3.9.1 Stack Limit Checking
A program that is otherwise correct can fail because of stack overflow. Stack
overflow occurs when extension of the stack (by decrementing the stack pointer,
SP) allocates addresses not currently reserved for the current thread’s stack.

Detection of a stack overflow situation is necessary because a thread, attempting
to write into stack storage, could modify data allocated in that memory for some
other purpose. This would most likely produce unpredictable and undesirable
results or irreproducible application failures.

The requirements for procedures that can execute in a multithread environment
include checking for stack overflow. This section defines the conventions for stack
limit checking in a multithreaded program environment.

In the following sections, the term new stack region refers to the region of the
stack from one less than the old value of SP to the new value of the SP.

3.9.1.1 Stack Guard Region
In a multithread environment, the memory beyond the limit of each thread’s
stack is protected by contiguous guard pages, which form the stack’s guard
region.

3.9.1.2 Stack Reserve Region
In some cases, it is desirable to maintain a stack reserve region, which is a
minimum-sized region that is immediately above a thread’s guard region. A
reserve region may be desirable to ensure that exceptions or asynchronous system
faults (ASTs) have stack space to execute on a thread’s stack, or to ensure that
the exception dispatcher and any exception handler that it might call have stack
space to execute after detection of an invalid attempt to extend the stack.

This standard does not require a reserve region.

3.9.1.3 Methods for Stack Limit Checking
Because accessible memory may be available at addresses lower than those
occupied by the guard region, compilers must generate code that never extends
the stack past the guard pages into accessible memory that is not allocated to the
thread’s stack.

A general strategy is to access each page of memory down to and possibly
including the page corresponding to the intended new value for the SP. If the
stack is to be extended by an amount larger than the size of a memory page, then
a series of accesses is required that works from higher to lower addressed pages.
If any access results in a memory access violation, then the code has made an
invalid attempt to extend the stack of the current thread.

Note

An access can be performed by using either a load or a store operation;
however, be sure to use an instruction that is guaranteed to make an
access to memory. For example, do not use an LDQ R31,* instruction,
because the Alpha architecture does not allow any memory access, even a
read access, whose result is discarded because of the R31 destination.

This standard defines two methods for stack limit checking: implicit and explicit.

November 17, 2003 3–55

OpenVMS Alpha Conventions
3.9 Multithreaded Execution Environments

Implicit Stack Limit Checking
The following are two mutually exclusive strategies for implicit stack limit
checking:

• If the lowest addressed byte of the new stack region is guaranteed to be
accessed prior to any further stack extension, then the stack can be extended
by an increment that is equal in size to the guard region (without any further
accesses).

• If some byte (not necessarily the lowest) of the new stack region is guaranteed
to be accessed prior to any further stack extension, then the stack can be
extended by an increment that is equal in size to one-half the guard region
(without any further accesses).

The stack frame format (see Section 3.4.3) and entry code rules (see Section 3.6.5)
generally do not ensure access to the lowest address of a new stack region without
introducing an extra access solely for that purpose. Consequently, this standard
uses the second strategy. While the amount of implicit stack extension that can
be achieved is smaller, the check is achieved at no additional cost.

This standard requires that the minimum guard region size is 8192 bytes, the size
of the smallest memory protection granularity allowed by the Alpha architecture.

If the stack is being extended by an amount less than or equal to 4096 and a
reserve region is not required, then explicit stack limit checking is not required.
However, because asynchronous interrupts and calls to other procedures may also
cause stack extension without explicit stack limit checking, stack extension with
implicit limit checking must adhere to a strict set of conventions as follows:

• Explicit stack limit checking must be performed unless the amount by which
the SP is decremented is known to be less than or equal to 4096 and a reserve
region is not required.

• Some byte in the new stack region must be accessed before the SP can be
decremented for a subsequent stack extension.

This access can be performed either before or after the SP is decremented for
this stack extension, but it must be done before the SP can be decremented
again.

• No standard procedure call can be made before some byte in the new stack
region is accessed.

• The system exception dispatcher ensures that the lowest addressed byte in
the new stack region is accessed if any kind of asynchronous interrupt occurs
after the SP is decremented, but before the access in the new stack region
occurs.

These conventions ensure that the stack pointer is not decremented so that
it points to accessible storage beyond the stack limit without this error being
detected (either by the guard region being accessed by the thread or by an explicit
stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the
guard region. When a stack overflow is detected as a result of access to the guard
region, one or more guard pages can be unprotected for use by the exception-
handling facility, and one or more guard pages can remain protected to provide
implicit stack limit checking during exception processing. However, the size of
the guard region and the number of guard pages is system defined and is not
defined by this standard.

3–56 November 17, 2003

OpenVMS Alpha Conventions
3.9 Multithreaded Execution Environments

Explicit Stack Limit Checking
If the stack is being extended by an amount of unknown size or by a known size
greater than the maximum implicit check size (4096), then a code sequence that
follows the rules for implicit stack limit checking can be executed in a loop to
access the new stack region incrementally in segments lesser than or equal to
the minimum page size (8192 bytes). At least one access must occur in each such
segment.

The first access must occur between SP and SP � 4096 because, in the absence of
more specific information, the previous guaranteed access relative to the current
stack pointer may be as much as 4096 bytes greater than the current stack
pointer address.

The last access must be within 4096 bytes of the intended new value of the stack
pointer. These accesses must occur in order, starting with the highest addressed
segment and working toward the lowest addressed segment.

A more optimal strategy is:

1. Perform a read access using the intended new value of the stack pointer.
This is nondestructive, even if the read is beyond the stack guard region,
and may facilitate OS mapping of new stack pages, if appropriate, in a single
operation.

2. Proceed with sequential accesses as just described.

Note

A simple algorithm that is consistent with this requirement (but achieves
up to twice the minimum number of accesses) is to perform a sequence
of accesses in a loop starting with the previous value of SP, decrementing
by the minimum no-check extension size (4096) to, but not including, the
first value that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A
procedure prologue that needs to extend the stack by an amount of unknown
size or known size greater than the minimum implicit check size must test new
stack segments as just described in a loop that does not modify SP, and then
update the stack with one instruction that copies the new stack pointer value into
the SP.

Note

An explicit stack limit check can be performed either by inline code that
is part of a prologue or by a run-time support routine that is tailored to
be called from a procedure prologue.

Stack Reserve Region Checking
The size of the reserve region must be included in the increment size used for
stack limit checks, after which it is not included in the amount by which the
stack is actually extended. (Depending on the size of the reserve region, this
may partially or even completely eliminate the ability to use implicit stack limit
checking.)

November 17, 2003 3–57

OpenVMS Alpha Conventions
3.9 Multithreaded Execution Environments

3.9.1.4 Stack Overflow Handling
If a stack overflow is detected, one of the following results:

• Exception SS$_ACCVIO may be raised.

• The system may transparently extend the thread’s stack, reset the TEB stack
limit value appropriately, and continue execution of the thread.

Note that if a transparent stack extension is performed, a stack overflow that
occurs in a called procedure might cause the stack to be extended. Therefore, the
TEB stack limit value must be considered volatile and potentially modified by
external procedure calls and by handling of exceptions.

3–58 November 17, 2003

4
OpenVMS I64 Conventions

Note

This chapter is completely new and change bars indicate updated
information since 12/02 (|).

This chapter describes the fundamental concepts and conventions for calling a
procedure in an OpenVMS I64 environment.

4.1 Register Usage
This section describes the register conventions for OpenVMS I64. OpenVMS uses
the following register types:

• General

• Floating-point

• Predicate

• Branch

• Application

4.1.1 Partitioning
Registers are partitioned into the following classes that define the way a register
can be used within a procedure:

• Scratch registers – may be modified by a procedure call; the caller must save
these registers before a call if needed (caller save).

• Preserved registers – must not be modified by a procedure call; the callee
must save and restore these registers if used (callee save). A procedure
using one of the preserved general registers must save and restore the
caller’s original contents, including the NaT bits associated with the registers,
without generating a NaT consumption fault.

One way to preserve a register is not to use it at all.

• Automatic registers – saved and restored automatically by the hardware
call/return mechanism.

• Constant or Read-only registers – contain a fixed value that cannot be
changed by the program.

• Special registers – used in the calling standard call/return mechanism.

• Global registers – shared across a set of cooperating routines as global static
storage that happens to be allocated in a register. (Details regarding the
dynamic lifetime of such storage are not addressed here.)

November 17, 2003 4–1

OpenVMS I64 Conventions
4.1 Register Usage

OpenVMS further defines the way that static registers can be used between
routines:

• Special registers – used in the calling standard call/return mechanism. (These
are the same as the set of special registers in the preceding list of registers
used within a procedure.)

• Input registers – may be used to pass information into a procedure (in
addition to the normal stacked input registers).

• Output registers – may be used to pass information back from a called
procedure to its caller (in addition to the normal return value registers).

• Volatile registers – may not be used to pass information between procedures,
either as input or output.

4.1.2 I64 General Register Usage
This standard defines the usage of the OpenVMS general registers as listed in
Table 4–1.

Table 4–1 I64 General Register Usage

Register Class Usage

R0 Constant Always 0.

R1 Special Global data pointer (GP). Designated to hold the address
of the currently addressable global data segment. Its use
is subject to the following conventions:

1. On entry to a procedure, GP is guaranteed valid for
that procedure.

2. At any direct procedure call, GP must be valid (for
the caller). This guarantees that an import stub (see
Section 4.7.3) can access the caller’s linkage table.

3. Any procedure call (indirect or direct) may modify GP
unless the call is known to be local to the image.

4. At procedure return, GP must be valid (for the
returning procedure). This allows the compiler to
optimize calls known to be local (an exception to
convention 3).

The effect of these rules is that GP must be treated as a
scratch register at a point of call (that is, it must be saved
by the caller), and it must be preserved from entry to exit.

R2 Volatile May not be used to pass information between procedures,
either as inputs or outputs. See also Section 4.1.8.

R3 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control. See also Section 4.1.8.

R4-R7 Preserved General-purpose preserved registers. Used for any value
that needs to be preserved across a procedure call.
May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control. See also Section 4.1.8.

(continued on next page)

4–2 November 17, 2003

OpenVMS I64 Conventions
4.1 Register Usage

Table 4–1 (Cont.) I64 General Register Usage

Register Class Usage

R8-R9 Scratch Return Value. Can also be used as input (whether or
not the procedure has a return value), but not in any
additional ways.

R10-R11 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control. See also Section 4.1.8.

R12 Special Memory stack pointer (SP). Holds the lowest address of
the current stack frame. At a call, the stack pointer must
point to a 0 mod 16 aligned area. The stack pointer is also
used to access any memory arguments upon entry to a
function. Except in the case of dynamic stack allocation,
code can use the stack pointer to reference stack items
without having to set up a frame pointer for this purpose.

R13 Special Reserved as a thread pointer (TP).

R14-R18 Volatile May not be used to pass information between procedures,
either as inputs or outputs. See also Section 4.1.8.

R19-R24 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control. See also Section 4.1.8.

R25 Special Argument information (see Section 4.7.5.3).

R26-R31 Scratch May be used within and between procedures in any
mutually consistent combination of ways under explicit
user control. See also Section 4.1.8.

IN0-IN7 Automatic Stacked input registers. Code may allocate a register
stack frame of up to 96 registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (IN0, IN1, ...), local registers (LOC0, LOC1,
...), and output registers (OUT0, OUT1, ...). R32–R39
(IN0–IN7) are used as incoming argument registers.
Arguments beyond these registers appear in memory, as
explained in Section 4.7.4.

LOC0-LOC95 Automatic Stacked local registers. Code may allocate a register stack
frame of up to 96 registers with the ALLOC instruction,
and partition this frame into three regions: input registers
(IN0, IN1, ...), local registers (LOC0, LOC1, ...), and output
registers (OUT0, OUT1, ...). LOC0-LOC95 are used for
local storage. See Section 4.7.4 for more information.

OUT0-OUT7 Scratch Stacked output registers. Code may allocate a register
stack frame of up to 8 registers with the ALLOC
instruction, and partition this frame into three regions:
input registers (IN0, IN1, ...), local registers (LOC0, LOC1,
...), and output registers (OUT0, OUT1, ...). OUT0-OUT7
are used to pass the first eight arguments in calls. See
Section 4.7.4 for more information.

November 17, 2003 4–3

OpenVMS I64 Conventions
4.1 Register Usage

4.1.3 I64 Floating-Point Register Usage
This standard defines the usage of the OpenVMS floating-point registers as listed
in Table 4–2.

Table 4–2 I64 Floating-Point Register Usage

Register Class Usage

F0 Constant Always 0.0.

F1 Constant Always 1.0.

F2-F5 Preserved Can be used for any value that needs to be preserved across
a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption
fault.

F6-F7 Scratch May be used within and between procedures in any mutually
consistent combination of ways under explicit user control.

F8-F9 Scratch Argument/Return values. See Sections 4.7.4 and 4.7.6 for the
OpenVMS specifications for use of these registers.

F10-F15 Scratch Argument values. See Section 4.7.4 for the OpenVMS
specifications for use of these registers.

F16–F31 Preserved Can be used for any value that needs to be preserved across
a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s
original contents without generating a NaT consumption
fault.

F32-F127 Scratch Rotating registers or scratch registers.

Note

VAX floating-point data are never loaded or manipulated in the Itanium
floating-point registers. However, VAX floating-point values may be
converted to IEEE floating-point values, which are then manipulated in
the I64 floating-point registers.

4.1.4 I64 Predicate Register Usage
Predicate registers are single-bit-wide registers used for controlling the execution
of predicated instructions. This standard defines the usage of the OpenVMS
predicate registers as listed in Table 4–3.

Table 4–3 I64 Predicate Register Usage

Register Class Usage

P0 Constant Always 1.

P1-P5 Preserved Can be used for any predicate value that needs to be
preserved across a procedure call. A procedure using one
of the preserved predicate registers must save and restore the
caller’s original contents.

P6-P13 Scratch Can be used within a procedure as a scratch register.

(continued on next page)

4–4 November 17, 2003

OpenVMS I64 Conventions
4.1 Register Usage

Table 4–3 (Cont.) I64 Predicate Register Usage

Register Class Usage

P14-P15 Volatile May not be used to pass information between procedures,
either as input or output. See also Section 4.1.8.

P16-P63 Preserved Rotating registers.

4.1.5 I64 Branch Register Usage
Branch registers are used for making indirect branches. This standard defines
the usage of the OpenVMS branch registers as listed in Table 4–4.

Table 4–4 I64 Branch Register Usage

Register Class Usage

B0 Scratch Contains the return address on entry to a procedure;
otherwise a scratch register.

B1-B5 Preserved Can be used for branch target addresses that need to be
preserved across a procedure call.

B6-B7 Volatile May not be used to pass information between procedures,
either as input or output. See also Section 4.1.8.

4.1.6 I64 Application Register Usage
Application registers are special-purpose registers designated for application use.
This standard defines the usage of the OpenVMS application registers as listed in
Table 4–5.

November 17, 2003 4–5

OpenVMS I64 Conventions
4.1 Register Usage

Table 4–5 I64 Application Register Usage

Register Class Usage

AR.FPSR See Usage Floating-point status register. This register is divided into
the following fields:

• Trap Disable Bits (bits 5–0) – Must be preserved by
the callee, except for procedures whose documented
purpose is to change these bits.

• Status Field 0 – Must be preserved by the callee,
except for procedures whose documented purpose is to
change these bits. The flag bits are the IEEE floating
point standard sticky bits and are part of the static
state of the machine.

• Status Field 1 – Dedicated for use by divide and
square root code, and must always be set to standard
values at any procedure call boundary (including
entry to exception handlers). These standard values
are: trap disable set, round-to-nearest mode, 80-bit
(extended) precision, widest range for exponent on,
and flush-to-zero mode off. The flag bits are scratch.

• Status Fields 2 and 3 – At procedure calls and
returns, the control bits in these status fields must
agree with the control bits in status field 0 and the
trap disable bits should always be set. The flag bits
are always available for scratch use.

Refer to Table 4–6 for initial values of the FPSR.

AR.RNAT Automatic RSE NaT collection register. Holds the NaT bits for values
stored by the register stack engine. These bits are saved
automatically in the register stack backing store.

AR.UNAT Preserved User NaT collection register. Holds the NaT bits for values
stored by the ST8.SPILL instruction. As a preserved
register, it must be saved before a procedure can issue any
ST8.SPILL instructions. The saved copy of AR.UNAT in
a procedure’s frame holds the NaT bits from the registers
spilled by its caller; these NaT bits are thus associated
with values local to the caller’s caller.

AR.PFS Special Previous function state. Contains information that records
the state of the caller’s register stack frame and epilogue
counter. It is overwritten on a procedure call; therefore,
it must be saved before issuing any procedure calls, and
restored prior to returning.

AR.BSP Read-only Backing store pointer. Contains the address in the backing
store corresponding to the base of the current frame. This
register may be modified only as a side effect of writing
AR.BSPSTORE while the Register Stack Engine (RSE) is
in enforced lazy mode.

AR.BSPSTORE Special Backing store pointer. Contains the address of the next
RSE store operation. It may be read or written only
while the RSE is in enforced lazy mode. Under normal
operation, this register is managed by the RSE, and
application code should not write to it, except when
performing a stack switching operation.

(continued on next page)

4–6 November 17, 2003

OpenVMS I64 Conventions
4.1 Register Usage

Table 4–5 (Cont.) I64 Application Register Usage

Register Class Usage

AR.RSC See Usage RSE control; the register stack configuration register. This
register is divided into the following fields:

• Mode – Controls the RSE behavior, and has scratch
behavior. On a return, this field may be set to a
standard value.

• Privilege level – Controls the privilege level at which
the RSE operates, and may not be changed by non-
privileged software.

• Endian mode – Controls the byte ordering used by the
RSE, and must never be changed by an application.

AR.LC Preserved Loop counter.

AR.EC Automatic Epilogue counter (preserved in AR.PFS).

AR.CCV Scratch Compare and exchange comparison value.

AR.ITC Read-only Interval time counter.

AR.K0-AR.K7 Read-only Kernel registers.

AR.CSD Scratch Reserved for use as implicit operand registers in future
extensions to the Itanium architecture. To ensure forward
compatibility, OpenVMS considers these registers as part
of the thread and process state.

AR.SSD Scratch Reserved for use as implicit operand registers in future
extensions to the Itanium architecture. To ensure forward
compatibility, OpenVMS considers these registers as part
of the thread and process state.

The status fields of the floating-point status register are initialized as shown in
Table 4–6. The global trap disable bits (ar.fpsr bits 0-5) are initialized to ones.

Table 4–6 Initial Value of the Floating-point Status Register

Status Field Flags td rc pc wre ftz

sf0 000000 0 00 11 0 0

sf1 000000 1 00 11 1 0

sf2 and sf3 000000 1 00 11 0 0

4.1.7 User Mask
The User Mask register contains five bits that may be modified by an application
program, subject to the following conventions:

• BE (Big Endian Memory Access Enable) – This bit must never be set on
OpenVMS.

• UP (User Performance Monitor Enable) – This bit is reserved.

• AC (Alignment Check) – The application may set or clear this bit as desired.
If the AC bit is clear, an unaligned memory reference may cause the system
to deliver an exception to the application, or the system may emulate the
unaligned reference. If the AC bit is set, an unaligned reference will always

November 17, 2003 4–7

OpenVMS I64 Conventions
4.1 Register Usage

cause the system to deliver an exception to the application. At program start,
the value of this bit on OpenVMS is clear.

• MFL/MFH (Lower/Upper floating-point registers written) – The application
should not clear either of these bits unless the values in the corresponding
registers are no longer needed (for example, it may clear the MFH bit when
returning from a procedure, because the upper set of floating-point registers
is all scratch). Doing so otherwise may cause unpredictable behavior.

4.1.8 Additional Register Usage Information
As described in earlier sections, some registers are volatile and cannot be used to
communicate information between routines (see Tables 4–1, 4–3, and 4–4). For
example, B6 is used by OTS$JUMP_TO_BPV (see Section 4.7.7).

Of the volatile registers, the following registers are reserved for use by compiled
code to communicate with specialized compiler support routines that require out
of band information passing:

• Static general registers R17-R18

• Predicate register P15

• Branch register B7

For example, R17 and R18 are used by OTS$CALL_PROC (see Section 5.1.2.3).

The following static general registers may be used within and between procedures
in any mutually consistent combination of ways:

• R3-R7

• R10-R11

• R19-R24

• R26-R31

The normal or default use for these registers is shown in the Class column of
Table 4–1. However, using suitable programming language features, it is valid
for any of these registers to be used as preserved, scratch, input, output, global or
not used. Of course, the unwind information (see Section A.4) for each procedure
must accurately describe the actual usage.

Registers R8 and R9 may also be used as inputs (whether or not the procedure
has a return value), but not in any additional ways.

General registers whose class is described as constant, special, volatile or
automatic in Section 4.1.1 cannot be used in any other way.

Floating-point, predicate, branch, and application registers can be used only
according to the class described in Sections 4.1.2 through 4.1.6.

4.2 Address Representation
An address is a 64-bit value used to denote a position in memory. However, for
compatibility with OpenVMS VAX and Alpha, many OpenVMS applications and
user-mode facilities operate in such a manner that addresses are restricted to
values that are representable in 32 bits. This means that OpenVMS addresses
can often be stored and manipulated as 32-bit longword values. In such cases,
the 32-bit address value is always implicitly or explicitly sign extended to form a
64-bit address for use by the Itanium hardware.

4–8 November 17, 2003

OpenVMS I64 Conventions
4.3 Procedure Representation

4.3 Procedure Representation
A procedure value, sometimes called a function pointer, is a value that
uniquely identifies a procedure and can be used to call it.

For OpenVMS, a procedure value is the address of a function descriptor, which
consists of at least two quadword fields: the address of the entry point and the
GP value required by that procedure.

Every procedure whose address is taken, or might be taken, must have a unique
official function descriptor. The address of this function descriptor is used for
the procedure value that is passed as a parameter or when two procedure values
are compared. For other purposes, additional local function descriptors may
be used for efficiency (notably in images other than the image that contains the
procedure).

An official function descriptor for any procedure which might be callable from
a VAX or Alpha translated image must include signature information. A local
function descriptor used to call a procedure that might be part of a VAX or Alpha
translated image must also include additional fields to facilitate the call. Both of
these cases are described in Section 5.1.2.

A function descriptor for a bound procedure uses a special pseudo-GP value and
includes an uplevel frame pointer. Such function descriptors are described in
Section 4.7.7.

The several kinds of function descriptors are summarized in Table 4–7.

Table 4–7 Summary of Function Descriptor Kinds

Kinds and Roles
Size
(Quadwords)

Local function descriptor without translated image support 2

Local function descriptor with translated image support (jacket function
descriptor)

4

Official function descriptor without translated image support 3

Official function descriptor with translated image support 3

Bound function descriptor 6

Note that the different kinds of function descriptor are not self-identifying (that
is, they do not contain any form of tag or kind field).

4.4 Procedure Types
This calling standard defines the following basic types of procedures:

• Memory stack procedure–allocates a memory stack and may maintain part or
all of its caller’s context on that stack

• Register stack procedure–allocates only a register stack and maintains its
caller’s context in registers

• Null frame procedure–allocates neither a memory stack nor a register stack
and therefore preserves no context of its caller; it is said to execute in the
context of its caller

November 17, 2003 4–9

OpenVMS I64 Conventions
4.4 Procedure Types

A compiler may choose which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need to
know what type of procedure it is calling.

Every memory stack procedure or register stack procedure must have an
associated unwind description (see Appendixes A and B) which describes
what type of procedure it is and other procedure characteristics. A null frame
procedure may also have an associated unwind description (a default description
applies if not). This data structure is used to interpret the call stack at any given
point in a thread’s execution. It is typically built at compile time and usually is
not accessed at run time except to support exception processing or other rarely
executed code.

Read access to unwind descriptions is provided through the procedural interfaces
described in Sections 4.8 and A.5.

An unwind description for a procedure is provided for the following reasons:

• To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

• To ensure that the context of the caller saved by the called procedure
can be restored if an unwind occurs. (For a description of unwinding, see
Section 8.7.)

4.5 Memory Stack
The memory stack is used for local dynamic storage, spilled registers, and
parameter passing. It is organized as a stack of procedure frames, beginning with
the main program’s frame at the base of the stack, and continuing towards the
top of the stack with nested procedure calls. At the top of the stack is the frame
for the currently active procedure. (There may be some system-dependent frames
at the base of the stack, prior to the main program’s frame, but an application
program may not make any assumptions about them.)

The memory stack begins at an address determined by the operating system, and
grows towards lower addresses in memory. The stack pointer register (SP) always
points to the lowest address in the current, top-most, frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from
the stack pointer, and removes its frame from the stack on exit by restoring the
previous value of SP (usually by adding its frame size, but a procedure may save
the original value of SP when its frame size may vary).

Because the register stack is also used for the same purposes as the memory
stack, not all procedures need a memory stack frame. However, every non-leaf
procedure must save at least its return link and the previous frame marker,
either on the register stack or on the memory stack. This ensures that there is
an invocation context for every non-leaf procedure on one or both of the stacks.

4.5.1 Procedure Frames
A memory stack procedure frame consists of five regions, as illustrated in
Figure 4–1.

4–10 November 17, 2003

OpenVMS I64 Conventions
4.5 Memory Stack

Figure 4–1 Procedure Frame

scratch area (16 bytes)

outgoing parameters

frame marker frame size

dynamic allocation

local storage

previous SP

VM-0959A-AI

:0 (from SP)

These regions are:

• Scratch area. This 16-byte region is provided as scratch storage for
procedures that are called by the current procedure. Leaf procedures need
not allocate this region. A procedure may use the 16 bytes pointed to by the
stack pointer (SP) as scratch memory, but the contents of this area are not
preserved by a procedure call.

• Outgoing parameters. Parameters in excess of those passed in registers are
stored in this region of the stack frame. A procedure accesses its incoming
parameters in the outgoing parameter region of its caller’s stack frame.

• Frame marker (optional). This region may contain information required
for unwinding through the stack (for example, a copy of the previous stack
pointer).

• Dynamic allocation. This variable-sized region (initially zero length) can be
created as needed.

• Local storage. A procedure can store local variables, temporaries, and spilled
registers in this region. For conventions affecting the layout of this area for
spilled registers, see Section A.3.

Whenever control is transferred to another procedure, the stack pointer must be
octaword-aligned; at other times there is no stack alignment requirement. (A side
effect of this is that the in-memory portion of the argument list will start on an
octaword boundary.) During a procedure invocation, the SP can never be set to a
value higher than the SP at entry to that procedure invocation.

Note

A stack pointer that is not octaword aligned is valid only in a variable-
sized frame (see below) because the unwind descriptor (MEM_STACK_F,
see Section A.4.1.3) for a fixed-size frame specifies the size in 16-byte
units.

An application may not write to memory addresses lower than the stack pointer,
because this memory area may be written to asynchronously (for example, as a
result of exception processing).

November 17, 2003 4–11

OpenVMS I64 Conventions
4.5 Memory Stack

Most procedures are expected to have a fixed size frame, and the conventions
are biased in favor of this. A procedure with a fixed size frame may reference
all regions of the frame with a compile-time constant offset relative to the stack
pointer. Compilers should determine the total size required for each region, and
pad the local storage area to make the total frame size a multiple of 16 bytes.
The procedure can then create the frame by subtracting an immediate constant
from the stack pointer in the prologue, and remove the frame by adding the same
immediate constant to the stack pointer in the epilogue.

If a procedure has a variable-size frame (for example, a C routine that calls the
alloca built-in), it should make a copy of SP to serve as a frame pointer before
subtracting the initial frame size from the stack pointer. The procedure can then
restore the previous value of the stack pointer in the epilogue without regard for
how much dynamic storage has been allocated within the frame. It can also use
the frame pointer to access the local storage region, because offsets from SP will
vary.

A frame pointer, as described above, is not required if both of the following
conditions are true:

• The procedure uses an equivalent method of addressing the local storage
region correctly before and after dynamic allocation.

• The code satisfies the conditions imposed by the stack unwind mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters,
and frame marker regions (which are always located relative to the current
stack pointer), must be relocated to the new top of stack. If the scratch area and
outgoing parameter area are both clear of any live values, there is no actual work
involved in relocating these areas. For procedures with dynamically-sized frames,
it is recommended that the previous stack pointer value be stored in a local
stacked general register instead of the frame marker, so that the frame marker is
also empty. If the previous stack pointer is stored in the frame marker, the code
must take care to ensure that the stack is always unwindable while the stack is
being expanded (see Appendix A).

Other issues depend on the compiler and the code being compiled. The standard
calling sequence does not define a maximum stack frame size, nor does it restrict
how a language system uses any stack frame region beyond those purposes
described here. For example, the outgoing parameter region can be used as
scratch storage whenever it is not needed for passing parameters.

4.5.2 Stack Overflow Detection
This section defines the conventions to support the execution of multiple threads
in a multilanguage OpenVMS environment. Specifically defined is how compiled
code must perform stack limit checking. While this standard is compatible with a
multithreaded execution environment, the detailed mechanisms, data structures,
and procedures that support this capability are not specified in this manual.

For a multithreaded environment, the following characteristics are assumed:

• There can be one or more threads executing within a single process.

• The state of a thread is represented in a thread environment block (TEB).

• The TEB of a thread contains information that determines a stack limit
below which the stack pointer must not be decremented by the executing code
(except for code that implements the multithreaded mechanism itself).

4–12 November 17, 2003

OpenVMS I64 Conventions
4.5 Memory Stack

• Exception handling is fully reentrant and multithreaded.

4.5.2.1 Stack Limit Checking
A program that is otherwise correct can fail because of stack overflow. Stack
overflow occurs when extension of the stack (by decrementing the stack pointer,
SP) allocates addresses not currently reserved for the current thread’s stack.
This section defines the conventions for stack limit checking in a multithreaded
environment.

In the following sections, the term new stack region refers to the region of the
stack from one less than the old value of SP to the new value of SP.

Stack Guard Region
In a multithreaded environment, the address space beyond each thread’s stack is
protected by contiguous guard pages, which trap on any access. These pages form
the stack guard region.

Stack Reserve Region
In some cases, it is useful to maintain a stack reserve region, which is a
minimum-sized region that is between the current top of stack and the stack
guard region. A stack reserve region can ensure that the following conditions
exist:

• Exceptions or asynchronous system faults (ASTs, analogous to asynchronous
signals) have stack space to execute on a thread’s stack.

• The exception dispatcher and any exception handler that it might call have
stack space to execute after detection of an invalid attempt to extend the
stack.

This calling standard does not require a stack reserve region, but it does allow a
language (for example, Ada) and its run-time system to implement one.

4.5.2.2 Methods for Stack Limit Checking
Because accessible memory may be available at addresses lower than those
occupied by the stack guard region, compilers must generate code that never
extends the stack past the stack guard region into accessible memory that is not
allocated to the thread’s stack.

A general strategy to prevent extending the stack past the stack guard region
is to access each page of memory down to and possibly including the page
corresponding to the intended new value of the SP. If the stack is to be extended
by an amount larger than the size of a memory page, then a series of accesses is
required that works from higher to lower addressed pages. If any access results
in a memory access violation, then the code has made an invalid attempt to
extend the stack of the current thread.

This calling standard defines two methods for stack limit checking, implicit and
explicit, which are explained in the following sections.

Implicit Stack Limit Checking
If a byte (not necessarily the lowest) of the new stack region is guaranteed to be
accessed prior to any further stack extension, then the stack can be extended by
an increment that is up to one-half the stack guard region (without any additional
accesses).

This standard requires that the minimum stack guard region size is 8192 bytes.

November 17, 2003 4–13

OpenVMS I64 Conventions
4.5 Memory Stack

If the stack is being extended by 4096 bytes or less and the application does
not use a stack reserve region, then explicit checking is not required. However,
because asynchronous interrupts and calls to other procedures may also cause
stack extension without explicit checking, stack extension with implicit checking
must adhere to the following rules:

• Explicit stack limit checking must be performed unless the amount by which
the SP is decremented is known to be less than or equal to 4096 and the
application does not use a stack reserve region.

• Some byte in the new stack region must be accessed before the SP can be
further decremented for a subsequent stack extension.

This access can be performed either before or after the SP is decremented for
this stack extension, but it must be done before the SP can be decremented
again.

• No standard procedure call can be made before some byte in the new stack
region is accessed.

• The system exception dispatcher ensures that the lowest addressed byte in
the new stack region is accessed if any kind of asynchronous interrupt occurs
both after the SP is decremented and before the access in the new stack
region occurs.

These conventions ensure that the stack pointer is not decremented so that
it points to accessible storage beyond the stack limit without this error being
detected (either by the guard region being accessed by the thread or by an explicit
stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the
stack guard region. When a stack overflow is detected as a result of access to the
stack guard region, one or more guard pages can be unprotected for use by the
exception-handling facility, as long as one or more guard pages remain protected
to provide implicit stack limit checking during exception processing.

Explicit Stack Limit Checking
If the stack is being extended by an unknown amount or by a known amount that
is greater than the maximum implicit check size 4096, then a code sequence that
follows the rules for implicit stack limit checking can be executed in a loop to
access the new stack region incrementally in segments that are less than or equal
to the minimum stack guard region size 8192. At least one access must occur in
each such segment.

The first access must occur between SP and SP-4096, because in the absence of
more specific information, the previous guaranteed access relative to the current
stack may be as much as 4096 bytes greater than the current stack pointer
address.

The last access must be within 4096 of the intended new value of the stack
pointer. These accesses must occur in order, starting with the highest addressed
segment and working toward the lowest addressed segment.

A more optimal strategy is:

1. Perform a read access using the intended new value of the stack pointer.
This is nondestructive, even if the read is beyond the stack guard region,
and may facilitate OS mapping of new stack pages, if appropriate, in a single
operation.

4–14 November 17, 2003

OpenVMS I64 Conventions
4.5 Memory Stack

2. Proceed with sequential accesses as just described.

Note

A simple algorithm that is consistent with this requirement (but achieves
up to twice the minimum number of accesses) is to perform a sequence
of accesses in a loop starting with the previous value of SP, decrementing
by the minimum no-check extension size (4096) to, but not including, the
first value that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A
procedure prologue that needs to extend the stack by an amount of unknown
size or known size greater than the minimum implicit check size must test new
stack segments as just described in a loop that does not modify SP, and then
update the stack with one instruction that copies the new stack pointer value into
the SP.

Note

An explicit stack limit check can be performed either by inline code that
is part of a prologue or by a run-time support routine that is tailored to
be called from a procedure prologue.

Stack Reserve Region Checking
The size of the stack reserve region must be included in the increment size used
for stack limit checks, after which it is not included in the amount by which the
stack is actually extended. (Depending on the size of the stack reserve region,
this may partially or even completely eliminate the ability to use implicit stack
limit checking.)

4.6 Register Stack
General registers R32 through R127 form a register stack that is automatically
managed across procedure calls and returns. Each procedure frame on the
register stack is divided into two dynamically-sized regions: one for input
parameters and local variables, and one for output parameters.

On a procedure call, the registers are automatically renamed by the hardware
so that the caller’s output registers form the base of the register stack frame of
the callee. On return, the registers are restored to the previous state, so that the
input and local registers are preserved across the call.

The ALLOC instruction is used at the beginning of a procedure to allocate
the input, local, and output regions; the sizes of these regions are supplied as
immediate operands. A procedure is not required to issue an ALLOC instruction
if it does not need to store any values in its register stack frame. It may write to
the first N stacked registers, where N is the value of the argument count passed
in the argument information (AI) register (see Section 4.7.5.3). It may not write
to any other stack register without first issuing an ALLOC instruction.

Figure 4–2 illustrates the operation of the register stack across an example
procedure call. In this example, the caller allocates eight input, twelve local, and
four output registers; the callee allocates four input, six local, and five output
registers with the following instruction:

November 17, 2003 4–15

OpenVMS I64 Conventions
4.6 Register Stack

ALLOC R36=rspfs, 4, 6, 5, 0

The actual registers to which the stacking registers are physically mapped are
not directly addressable by the application software.

4.6.1 Input and Local Registers
The hardware makes no distinction between input and local registers. The
caller’s output registers automatically become the callee’s register stack frame
on a procedure call, with all registers initially allocated as output registers. An
ALLOC instruction may increase or decrease the total size of the register stack
frame, and may adjust the boundary between the input and local region and the
output region.

The software conventions specify that up to eight general registers are used for
parameter passing. Any registers in the input and local region beyond those eight
may be allocated for use as preserved locals. Floating-point parameters may
produce holes in the parameter list that is passed in the general registers; those
unused input registers may also be used for preserved locals.

The caller’s output registers do not need to be preserved for the caller. Once an
input parameter is no longer needed, or has been copied elsewhere, that register
may be reused for any other purpose within the procedure.

Figure 4–2 Operation of the Register Stack

R32 R40 R52

R32

R32 R36 R42

R56

R36

R47

Input Local Output

Output

Input Local Output

Caller’s frame

Callee’s frame before ALLOC

Callee’s frame after ALLOC

VM-0958A-AI

IN0 LOC0 OUT0

OUT0

IN0 LOC0 OUT0

4.6.2 Output Registers
Up to eight output registers are used for passing parameters. If a procedure
call requires fewer than eight general registers for its parameters, the calling
procedure does not need to allocate more than are needed. If the called procedure
expects more parameters, it will allocate extra input registers; these registers will
be uninitialized.

4–16 November 17, 2003

OpenVMS I64 Conventions
4.6 Register Stack

A procedure may also allocate more than eight registers in the output region.
While the extra registers may not be used for passing parameters, they can be
used as extra scratch registers. On a procedure call, they will show up in the
called procedure’s output area as excess registers, and may be modified by that
procedure. The called procedure may also allocate few enough total registers
in its stack frame that the top of the called procedure’s frame is lower than the
caller’s top-of-frame, but those registers will become available again when control
returns to the caller.

4.6.3 Rotating Registers
A subset of the registers in the procedure frame may be designated as rotating
registers. The rotating register region always starts with R32, and may be any
multiple of eight registers in number, up to a maximum of 96 rotating registers.
The renaming is under control of the Register Rename Base (RRB).

If the rotating registers include any or all of the output registers, software must
be careful when using the output registers for passing parameters, because a non-
zero RRB will change the virtual register numbers that are part of the output
region. In general, software should ensure either that the rotating region does
not overlap the output region, or that the RRB is cleared to zero before setting
output parameter registers.

4.6.4 Frame Markers
The current application-visible state of the register stack is stored in an
architecturally inaccessible register called the current frame marker. On a
procedure call, this register is automatically saved by copying it to an application
register, the previous function state (AR.PFS). The current frame marker is
modified to describe a new stack frame whose input and local area is initially
zero size, and whose output area is equal in size to the previous output area.
On return, the previous frame state register is used to restore the current
frame marker to its earlier value, and the base of the register stack is adjusted
accordingly.

It is the responsibility of a procedure to save the previous function state register
before issuing any procedure calls of its own, and to restore it before returning.

4.6.5 Backing Store for Register Stack
When the depth of the procedure call stack exceeds the capacity of the physical
register file, the hardware frees physical registers by saving them into a memory
stack. This backing store is distinct from the memory stack described in
Section 4.5.

As returns unwind the procedure call stack, the hardware also restores
previously-saved physical registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to
application software. While the RSE is running, application software may not
examine the contents of the backing store, and may not make any assumptions
about how much of the register stack is still in physical registers or in the
backing store. In order to examine previous stack frames, application software
must synchronize the RSE with the FLUSHRS instruction. Synchronizing
the RSE forces all stack frames up to, but not including, the current frame
to be saved in backing store, allowing the software to examine the contents
of the backing store without asynchronous operations modifying the memory.
Modifications to the backing store require setting the RSE to enforced lazy mode
after synchronizing it, which prevents the RSE from doing any operations other

November 17, 2003 4–17

OpenVMS I64 Conventions
4.6 Register Stack

than those required by calls and returns. The procedure for synchronizing the
RSE and setting the mode is described in the Itanium® Software Conventions
and Runtime Architecture Guide.

The backing store grows towards higher addresses. The top of the stack, which
corresponds to the top of the previous procedure frame, is available in the
Backing Store Pointer (BSP) application register. The BSP must always point to
a valid backing store address, because the operating system may need to start the
RSE to process an exception.

Backing store overflow is automatically detected by the OpenVMS operating
system, which will either extend the backing store to allow continued operation
or will raise an exception. Unlike for the memory stack (see Section 4.5), there
are no specific rules or requirements that must be satisfied to facilitate detection
of backing store overflow.

A NaT collection register is stored into the backing store following each group
of 63 physical registers. The NaT bit of each register stored is shifted into
the collection register. When the BSP reaches the quadword just before a
64-quadword boundary, the RSE stores the collection register. Software can
determine the position of the NaT collection registers in the backing store by
examining the memory address. This process is described in greater detail in the
Intel IA-64 Architecture Software Developer Manual.

4.7 Procedure Linkage
This calling standard states that a standard call (see Section 1.4) can be
accomplished in any way that presents the called routine with the required
environment. However, typically, most standard-conforming external calls are
implemented with a common sequence of instructions and conventions. Because a
common set of call conventions is so pervasive, these conventions are included for
reference as part of this standard.

4.7.1 The GP Register
Every procedure that references statically-allocated data or calls another
procedure requires a pointer to an associated short data segment in the GP
register, so that it can access its static data and its linkage tables. Typically,
an image has one such data segment, and the GP register must be set correctly
prior to calling any entry point within that image. Optionally, an image may be
partitioned into subcomponents called clusters in which case each cluster may
have its own associated data segment (clusters may also share a common data
segment). For further information on images and clusters, see the OpenVMS
Linker Utility Manual.

Throughout this chapter, rules regarding the use of the GP register are described
in terms of images. However, these same rules apply between clusters within
an image (keeping in mind that clusters within an image may share a common
GP address and short data segment, while images cannot share a common GP
address and short data segment).

The linkage conventions require that each image (or cluster) define exactly one
GP value to refer to a location within its short data segment. This location
should be chosen to maximize the usefulness of short-displacement immediate
instructions for addressing scalars and linkage table entries. The image activator
determines the absolute value of the GP register for each image after loading its
data segment into memory.

4–18 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Because the GP register remains unchanged for calls within an image, calls
known to be local can be optimized accordingly. For calls between images, the GP
register must be initialized with the correct GP value for the new image, and the
calling function must ensure that its own GP value is saved and restored.

Note that there is a small set of compiler run-time support procedures that take a
special pseudo-GP value as a kind of input parameter. See Section 4.7.7 for more
information about support for bound function descriptors. See Section 5.1.2 for
information about support for translated images.

4.7.2 Types of Calls
The following types of procedure calls are defined:

• Direct local calls. Direct calls within the same image can be made directly to
the entry point of the target procedure. In this case, the GP register does not
need to be changed.

• Direct non-local calls. Calls made outside the same image are routed through
an import stub (which can be inlined at compile time if the call is known or
suspected to be to another image). The import stub obtains the address of the
main entry point and the GP register value from the linkage table. Although
coded in source as a direct call, a dynamically-linked call therefore becomes
indirect.

• Indirect calls. A function pointer points to a descriptor that contains both the
address of the function entry point and the GP register value for the target
function. The compiler must generate code for an indirect call that sets the
new GP value before transferring control to the target procedure.

• Special calls. Other special calling conventions are allowed to the extent that
the compiler and the run-time library agree on the conventions, and provided
that the stack can be unwound through such a call. Such calls are outside
the scope of this document. See Section A.3.1 for a discussion of stack unwind
requirements.

4.7.3 Calling Sequence
Direct and indirect procedure calls are described in the following sections.
Because the compiler is not required to know whether any given call is local or to
a dynamically linked image, the two types of direct calls are described together in
Section 4.7.3.1.

4.7.3.1 Direct Calls
Direct procedure calls follow the sequence of steps shown in Figure 4–3. The
following paragraphs describe these steps in detail.

November 17, 2003 4–19

OpenVMS I64 Conventions
4.7 Procedure Linkage

Figure 4–3 Direct Procedure Calls

Prepare call
 setup args
 save regs, GP

Call
 BR.CALL

After the call
 restore regs, GP

VM-0960A-AI

Caller Callee

Import Stub
 load entry addr
 load new GP
 MOV B=
 BR

Entry
 allocate reg frame
 allocate mem frame
 save rtn branch reg
 save regs

Exit
 restore regs
 restore rtn branch reg
 de-allocate mem
 frame
 BR.RET

procedure body

C
al

le
r's

 im
ag

e

C
al

le
e'

s
im

ag
e

• Caller: Prepare call. Values in scratch registers that must be kept live
across the call must be saved. They can be saved by copying them into local
stacked registers, or by saving them on the memory stack. If the NaT bits
associated with any live scratch registers must be saved, the compiler should
use ST8.SPILL or STF.SPILL instructions. The User NaT collection register
itself is preserved by the call, so the NaT bits need no further treatment at
this point.

If the call is not known (at compile time) to be within the same image, the GP
register must be saved.

The parameters must be set up in registers and memory as described in
Section 4.7.4

• Caller: Call. All direct calls are made with a BR.CALL instruction, specifying
B0 for the return link.

For direct local calls, the PC-relative displacement is computed at link
time. Compilers may assume that the standard displacement field in the
BR.CALL instruction is sufficiently wide to reach the target of the call. If
the displacement is too large, the linker must supply a branch stub at some
convenient point in the code; compilers must guarantee the existence of such
a point by ensuring that code sections in the relocatable object files are no
larger than the maximum reach of the BR.CALL instruction. With a 25-bit
displacement, the maximum reach is 16 megabytes in either direction from
the point of call.

4–20 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Because direct calls to other images cannot be statically bound at link time,
the linker must supply an import stub for the target procedure; the import
stub obtains the address of the target procedure from the linkage table. The
BR.CALL instruction can then be statically bound to the import stub using
the PC-relative displacement.

The BR.CALL instruction performs the following actions:

Saves the return link in the return branch register

Saves the current frame marker in the AR.PFS register

Sets the base of the new register stack frame to the beginning of the
output region of the old frame

• Caller: Import stub (direct non-local calls only). The import stub is allocated
in the image of the caller, so that the BR.CALL instruction can be statically
bound to the address of the import stub. It must access the linkage table via
the current GP (which means that GP must be valid at the point of call), and
obtain the address of the target procedure’s entry point and its GP value. The
import stub then establishes the new GP value and branches to the target
entry point.

If the compiler knows or suspects that the target of a call is in a separate
image, it can generate calling code that performs the functions of the import
stub, which saves an extra branch.

When the target of a call is in the same image, an import stub is not used
(which also means that GP must be valid at the point of call).

• Callee: Entry. The prologue code in the target procedure is responsible for
allocating the register stack frame. It is also responsible for allocating a
frame on the memory stack when necessary. It may use the 16 bytes at the
top of its caller’s stack frame as a scratch area.

A non-leaf procedure must save the return branch register and previous
function state, either in the memory stack frame or in a local stacked general
register.

The prologue must also save any preserved registers to be used in this
procedure. The NaT bits for those registers must be preserved as well, by
copying the NaT bits to local stacked general registers, or by using ST8.SPILL
or STF.SPILL instructions. However, the User NaT collection register
(AR.UNAT) must be saved first because it is guaranteed to be preserved
by the call.

• Callee: Exit. The epilogue code is responsible for restoring the return branch
register and previous function state, if necessary, and any preserved registers
that were saved. The NaT bits must be restored using the LD8.FILL or
LDF.FILL instructions. The User NaT collection register must also be
restored if it was saved.

If a memory stack frame was allocated, the epilogue code must deallocate it.

Finally, the procedure exits by branching through the return branch register
with the BR.RET instruction.

• Caller: After the call. Any saved values (including GP) should be restored.

November 17, 2003 4–21

OpenVMS I64 Conventions
4.7 Procedure Linkage

4.7.3.2 Indirect Calls
Indirect procedure calls follow nearly the same sequence as direct calls (see
Section 4.7.3.1), except that the branch target is established indirectly. This
sequence is illustrated in Figure 4–4.

Figure 4–4 Indirect Procedure Calls

Prepare call
 load func ptr
 load entry addr
 setup args
 MOV B=
 save regs, GP
 load new GP

Call
 BR.CALL

After the call
 restore regs, GP

VM-0961A-AI

Caller Function DescriptorFunction
Pointer

Callee

C
al

le
r's

 im
ag

e

C
al

le
e'

s
im

ag
e

entry point

GP value

Entry
 allocate reg frame
 allocate mem frame
 save rtn branch reg
 save regs

Exit
 restore regs
 restore rtn branch reg
 de-allocate mem
 frame
 BR.RET

procedure body

• Caller: Function Pointer. A function pointer is always the address of a
function descriptor for the target procedure (see Section 4.3). An indirect call
loads the GP value into the GP register before branching to the entry point
address.

In order to guarantee the uniqueness of a function pointer, and because
its value is determined at program invocation time, code must materialize
function pointers only by loading a pointer from the data segment.

• Caller: Prepare call. Indirect calls are made by first loading the function
pointer into a general register, loading the entry point address and the new
GP value, and using the Move to Branch Register operation to move the
address of the procedure entry point into the branch register to be used for
the call.

Values in scratch registers that must be kept live across the call must be
saved. They can be saved by copying them into local stacked registers, or
by saving them on the memory stack. If the NaT bits associated with any
live scratch registers must be saved, the compiler should use ST8.SPILL or
STF.SPILL instructions. The User NaT collection register itself is preserved
by the call, so the NaT bits need no further treatment at this point.

4–22 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Unless the call is known (at compile time) to be within the same image, the
GP register must be saved before the new GP value is loaded.

The parameters must be set up in registers and memory as described in
Section 4.7.4

• Caller: Call. All indirect calls are made with the indirect form of the
BR.CALL instruction, specifying B0 for the return link.

The BR.CALL instruction saves the return link in the return branch register,
saves the current frame marker in the AR.PFS register, and sets the base of
the new register stack frame to the beginning of the output region of the old
frame. Because the indirect call sequence obtains the entry point address and
new GP value from the function descriptor, control flows directly to the target
procedure, without the need for any intervening stubs.

• Callee: Entry; Exit. The remainder of the calling sequence is the same as for
direct calls (Section 4.7.3.1).

4.7.4 Parameter Passing
Parameters are passed in a combination of general registers, floating-point
registers, and memory, as described below, and as illustrated in Figure 4–5.

The parameter list is formed by placing each individual parameter into fixed-
size elements of the parameter list, referred to as parameter slots. Each
parameter slot is 64 bits wide; parameters larger than 64 bits are placed in as
many consecutive parameter slots as are needed to contain the entire parameter.
The rules for allocation and alignment of parameter slots are described in
Section 4.7.5.1.

The contents of the first eight parameter slots are always passed in registers,
while the remaining parameters are always passed on the memory stack,
beginning at the caller’s stack pointer plus 16 bytes. The caller uses up to eight
of the registers in the output region of its register stack for integer and VAX
floating-point parameters, and up to eight floating-point registers for IEEE
floating-point parameters. The maximum number of registers used is eight.

November 17, 2003 4–23

OpenVMS I64 Conventions
4.7 Procedure Linkage

Figure 4–5 Parameter Passing in Registers and Memory

VM-0962A-AI

slot 0

OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7

F8 F9 F10 F11 F12 F13 F14 F15

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7 slot 8 slot 9 slot 10 slot 11

SP +8 +16 +24 +32 +40 +48

Parameter Slots

General Registers

Floating Registers

Memory Stack

To accommodate variable argument lists in the C language, there is a fixed
correspondence between parameter slots; the first parameter slot is always in
either the first general output register or the first floating-point register (never
both), the second parameter slot is always in the second general output register or
the second floating-point register (never both), and so on. This allows a procedure
to spill its register parameters easily to memory to form the argument home
area before stepping through the parameter list with a pointer. The Argument
Information register (AI) makes this possible, as explained in Section 4.7.5.3.

A procedure can assume that the NaT bits on its incoming general register
arguments are clear, and that the incoming floating-point register arguments
are not NaTVals. A procedure making a call must ensure only that registers
containing actual parameters are clear of NaT bits or NaTVals; registers not used
for actual parameters are undefined.

4.7.5 Parameter Passing Mechanisms
This OpenVMS calling standard defines three classes of argument items according
to the mechanism used to pass the argument:

• Immediate value

• Reference

• Descriptor

Argument items are not self-defining; interpretation of each argument item
depends on agreement between the calling and called procedures.

This standard does not dictate which passing mechanism must be used by a
given language compiler. Language semantics and interoperability considerations
might require different mechanisms in different situations.

4–24 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Immediate value
An immediate value argument item contains the value of the data item. The
argument item, or the value contained in it, is directly associated with the
parameter.

Reference
A reference argument item contains the address of a data item such as a
scalar, string, array, record, or procedure. This data item is associated with the
parameter.

Descriptor
A descriptor argument item contains the address of a descriptor, which contains
structural information about the argument’s type (such as array bounds) and the
address of a data item. This data item is associated with the parameter.

Requirements for using the argument passing mechanisms follow:

• By immediate value. An argument may be passed by immediate value only
if the argument is one of the following:

One of the noncomplex scalar data types with a size known (at compile
time) to be � 64 bits

Either single or double precision complex

A record with a known size (at compile time)

A set, implemented as a bit vector, with a size known (at compile time) to
be � 64 bits

No form of string or array data type may be passed by immediate value in a
standard call.

Unused high-order bits must be zero or sign extended, as appropriate
depending on the date type, to fill all bits of each argument list item (as
specified in Table 4–9).

A single-precision or double-precision complex value is passed as two single-
or double-precision floating-point values, respectively. Note that the argument
count reflects that two argument positions are used rather than just one
actual argument.

A record value, which may be larger than 64 bits, is passed by immediate
value as follows:

Allocate as many fully occupied argument item positions to the argument
value as are needed to represent the argument.

If the final argument position is only partially occupied by the argument,
the contents of the remaining bits are undefined.

If an argument position is passed in one of the registers, it can only be
passed in an integer register (never in a floating-point register).

Other argument values that are larger than 64 bits can be passed by
immediate value using nonstandard conventions, typically using a method
similar to those for passing records. Thus, for example, a 26-byte string can
be passed by value in four integer registers.

• By reference. Nonparametric arguments (arguments for which associated
information such as string size and array bounds are not required) can be
passed by reference in a standard call. This includes extended precision
floating and extended precision complex values.

November 17, 2003 4–25

OpenVMS I64 Conventions
4.7 Procedure Linkage

• By descriptor. Parametric arguments (arguments for which associated
information such as string size and array bounds must be passed to the
caller) are passed by a single descriptor in a standard call.

Note that extended floating values are not passed using the immediate value
mechanism; rather, they are passed using the by reference mechanism. (However,
when by value semantics is required, it may be necessary to make a copy of the
actual parameter and pass a reference to that copy in order to avoid improper
alias effects.)

Also note that when a record is passed by immediate value, the component
types are not material to how the argument is aligned; the record will always be
quadword aligned.

4.7.5.1 Allocation of Parameter Slots
Parameter slots are allocated for each parameter, based on the parameter passing
mechanism, type, and size, treating each parameter in sequence, from left to
right. The rules for allocating parameter slots and placing the contents within
the slot are given in Table 4–8. The allocation column of the table indicates how
parameter slots are allocated to each type of parameter.

Table 4–8 Rules for Allocating Parameter Slots

Type Size (Bits) Number of Slots

Integer, small set 1-64 1

Address/pointer (including all types passed by reference or
descriptor)

64 1

IEEE single-precision floating-point (S_floating) 32 1

IEEE single-precision floating-point complex (S_floating) 64 2

IEEE double-precision floating-point (T_floating) 64 1

IEEE double-precision floating-point complex (T_floating) 128 2

IEEE quad-precision floating-point (X_floating) 64 (by reference) 1

IEEE quad-precision floating-point complex (X_floating) 64 (by reference) 1

Aggregates (noncomplex) any (size+63)/64

VAX single-precision floating-point (F_floating) 32 1

VAX single-precision floating-point complex (F_floating) 64 2

VAX double-precision floating-point (D_ & G_floating) 64 1

VAX double-precision floating-point complex (D_ & G_floating) 128 2

Note

These rules are applied based on the type of the parameter after any
type-promotion rules specified by the language have been applied. For
example, a short integer passed without a function prototype in C is
promoted to the int type, and is then passed according to the rules for the
int type.

4–26 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

OpenVMS does not support passing the Itanium double-precision extended
floating-point type (_ _float80), although that type may be used from time to time
in code generation sequences.

This placement policy does not ensure that parameters greater than 64 bits
in size will fall on a natural alignment boundary if passed in memory. Such
parameters may need to be copied by the called procedure into an aligned
temporary prior to use, or accessed in a way that does not depend on natural
alignment.

4.7.5.2 Normal Register Parameters
The first eight parameter slots (64 bytes) are passed in registers, according to the
rules in this section.

• These eight argument slots are associated, one-to-one, with the stacked
output general registers, as shown in Figure 4–5.

• Integral scalar parameters, (including addresses and pointers), VAX floating-
point parameters, and aggregate parameters in these slots are passed only in
the corresponding output general registers.

• Aggregate parameters in these slots are passed by value only in the
corresponding output general registers. The aggregate is treated as a
sequence of 64-bit integral values, with each value allocated into the next
available slot in aggregate memory address order. If the size of the aggregate
is not an even multiple of 64 bits, then the unused bits in the last slot are
undefined.

• If an aggregate or VAX floating-point complex parameter straddles the
boundary between slot 7 and slot 8, the part that lies within the first eight
slots is passed in general registers, and the remainder is passed in memory,
as described in Table 4–9.

Complex values (other than IEEE quad-precision floating-point complex), in
those languages that include complex types, are passed as a pair of floating-
point values (either single-precision or double-precision as appropriate). It
is possible for the first of the two floating-point values in a complex value
to occupy the last output register slot; in this case, the second floating-point
value is passed in memory. IEEE quad-precision floating-point complex values
are passed by reference.

• IEEE single-precision and double-precision floating-point scalar parameters
are passed in the corresponding floating-point register slot. IEEE quad-
precision floating point scalar parameters are passed by reference in the
corresponding output general registers.

When IEEE floating-point parameters are passed in floating-point registers, they
are passed in the register format, rounded to the appropriate precision. They
are never passed in the general registers unless part of an aggregate, in which
case they are passed in the aggregate memory format. When VAX floating-point
parameters are passed in general registers, they are passed in memory format.

Parameters allocated beyond the eighth parameter slot are never passed in
registers.

Unsigned integral (except unsigned 32-bit), set, and VAX floating-point values
passed in registers are zero-filled; signed integral values as well as unsigned
32-bit integral values are sign-extended to 64 bits. For all other types passed in
the general registers, unused bits are undefined.

November 17, 2003 4–27

OpenVMS I64 Conventions
4.7 Procedure Linkage

Note

Bit 31 is replicated in bits 32–63, even for unsigned 32-bit integers.

The rules contained in this section are summarized in Tables 4–9 and 4–10.

Table 4–9 Data Types and the Unused Bits in Passed Data

Data Type (OpenVMS Names) Type Designator 1
Data Size
(bytes)

Register
Extension
Type

Memory
Extension
Type

Byte logical DSC$K_DTYPE_BU 1 Zero64 Zero64

Word logical DSC$K_DTYPE_WU 2 Zero64 Zero64

Longword logical DSC$K_DTYPE_LU 4 Sign64 Sign64

Quadword logical DSC$K_DTYPE_QU 8 Data64 Data64

Byte integer DSC$K_DTYPE_B 1 Sign64 Sign64

Word integer DSC$K_DTYPE_W 2 Sign64 Sign64

Longword integer DSC$K_DTYPE_L 4 Sign64 Sign64

Quadword integer DSC$K_DTYPE_Q 8 Data64 Data64

F_floating DSC$K_DTYPE_F 4 VAXF64 Data32

D_floating DSC$K_DTYPE_D 8 VAXDG64 Data64

G_floating DSC$K_DTYPE_G 8 VAXDG64 Data64

F_floating complex DSC$K_DTYPE_FC 2 � 4 2*VAXF64 2�Data32

D_floating complex DSC$K_DTYPE_DC 2 � 8 2*VAXDG64 2�Data64

G_floating complex DSC$K_DTYPE_GC 2 � 8 2*VAXDG64 2�Data64

S_floating DSC$K_DTYPE_FS 4 Hard Data32

T_floating DSC$K_DTYPE_FT 8 Hard Data64

X_floating DSC$K_DTYPE_FX 16 N/A N/A

S_floating complex DSC$K_DTYPE_FSC 2 � 4 2�Hard 2�Data32

T_floating complex DSC$K_DTYPE_FTC 2 � 8 2�Hard 2�Data64

X_floating complex DSC$K_DTYPE_FXC 2 � 16 N/A N/A

Small structures of 8 bytes or less N/A �8 Nostd Nostd

Small arrays of 8 bytes or less N/A �8 Nostd Nostd

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A 8 Data64 Data64

1OpenVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

Table 4–10 contains the defined meanings for the memory extension type symbols
used in Table 4–9.

4–28 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Table 4–10 Extension Type Codes

Sign Extension
Type Defined Function

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2�Data32 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2�Data64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as Data64).

VAXF64 Data is 64 bits. Low-order 32 bits are the same as the F_floating
memory format and the high-order 32 bits are zero. (Used only in a
general register, never in a floating-point register.)

VAXDG64 Data is 64 bits. Uses the corresponding D_floating or G_floating
memory format. (Used only in a general register, never in a floating-
point register.)

2*VAXF64 Two single-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXF64).

2*VAXDG64 Two double-precision parts of the complex value are stored in memory
as independent floating-point values (each handled as VAXDG64).

Hard Passed in the layout defined by the hardware SRM.

2�Hard Two floating-point parts of the complex value are stored in a pair of
registers as independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable
across a call or return.

4.7.5.3 Argument Information (AI) Register
In addition to the normal parameters, an implicit argument information value
is passed in register R25, the Argument Information (AI) register. This value is
shown in Figure 4–6.

Figure 4–6 Argument Information Register Representation

Must Be Zero
<63:32>

Argument Register Information
<31:8>

Argument
Count
<7:0>

VM-1006A-AI

Argument Count is an unsigned byte that specifies the number of 64-bit argument
slots used for the argument list. (Note that single and double-precision complex
values use two slots, which is reflected in this count.)

Argument Register Information is a contiguous group of eight 3-bit fields that
correspond to the eight arguments passed in registers. The first group, bits
<10:8>, describes the first argument, the second group, bits <13:11>, describes

November 17, 2003 4–29

OpenVMS I64 Conventions
4.7 Procedure Linkage

the second argument, and so on. The encoding for each group is described in
Table 4–11.

Table 4–11 Argument Information Register Codes

Value
OpenVMS
Name Meaning

0 AI$K_AR_I64 64-bit or 32-bit sign-extended to 64-bit argument passed in an
integer register (including addresses)
or
Argument is not present

1 AI$K_AR_FF F_floating (also known as VAX single-precision floating-point)
argument passed in a general register

2 AI$K_AR_FD D_floating (also known as VAX double-precision floating-point)
argument passed in a general register

3 AI$K_AR_FG G_floating (also known as VAX double-precision floating-point)
argument passed in a general register

4 AI$K_AR_FS S_floating (also known as IEEE single-precision floating-point)
argument passed in a floating-point register

5 AI$K_AR_FT T_floating (also known as IEEE double-precision floating-point)
argument passed in a floating-point register

6,7 Reserved

4.7.5.4 Memory Stack Parameters
The remainder of the parameter list, beginning with slot 8, is passed in the
outgoing parameter area of the memory stack frame, as described in Section 4.5.1.
Parameters are mapped directly to memory, with slot 8 placed at location SP+16,
slot 9 placed at location SP+24, and so on. Each argument is stored in memory
as a series of one or more 64-bit storage units, with unused bits in the last unit
undefined.

4.7.5.5 Variable Argument Lists
The rules above support variable-argument list functions in both the K&R and
the ANSI dialects of the C language. (Note that argument location is independent
of whether a prototype is in scope.)

The nth argument is in either Rn or Fn regardless of the type of parameter in
the preceding register slot. Therefore, a function with variable arguments may
assume that the variable arguments that lie within the first eight argument slots
can be found in either the stacked input integer registers (IN0-IN7), or in the
floating-point parameter registers (F8-F15). Using the information codes from
the the AI (Argument Information) register (see Table 4–11), the function can
then store these registers to memory using the 16-byte scratch area for IN6/F14
and IN7/F15, and up to 48 bytes at the base of its own stack frame for IN0/F8-
IN5/F13, as necessary. This arrangement places all of the variable parameters in
one contiguous block of memory.

4.7.5.6 Pointers to Formal Parameters
Whenever the address is formed of a formal parameter that is passed in a
register, the compiler must store the parameter to the stack, as it would for a
variable argument list.

4–30 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

4.7.5.7 Languages Other than C
The placement of arguments in general registers versus floating-point registers
does not depend on any notion or concept of a prototype being in scope. It is
therefore applicable to all languages at all times.

4.7.5.8 Rounding Floating-point Values
There must be no difference in behavior between a floating-point parameter
passed directly in a register and a floating-point parameter that has been
stored to memory and reloaded. In either case, the floating-point value must
be the same. This implies that floating-point parameters passed in floating-point
registers must be explicitly rounded to the proper precision by the caller.

4.7.5.9 Order of Argument Evaluation
Because most high-level languages do not specify the order of evaluation (with
respect to side effects) of arguments, those language processors can evaluate
arguments in any convenient order. The choice of argument evaluation order and
code generation strategy is constrained only by the definition of the particular
language. Programs should not depend on the order of evaluation of arguments.

4.7.5.10 Examples
The following examples illustrate the parameter passing conventions. Floating-
point types are IEEE floating-point representations.

Scalar Integers and Floats, With or Without Prototype
extern int func(int, double, double, int);
func(i, a, b, j);

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information

0 i OUT0 AI$K_AR_I64

1 a F9 AI$K_AR_FT

2 b F10 AI$K_AR_FT

3 j OUT3 AI$K_AR_I64

Aggregates Passed by Value
extern int func();
struct { int array[20]; } a;
func(i, a);

No padding is provided in the parameter list for the structure (independent of its
external alignment). The parameters are passed as follows:

Slot Variable Allocation Argument Register Information

0 i OUT0 AI$K_AR_I64

1-7 a.array[0–13] OUT1–OUT7 AI$K_AR_I64 (all 7 slots)

8-24 a.array[14–19] In memory, at SP+16
through SP+39

Not applicable

extern int func();
struct { __float128 x; int array[20]; } a;
func(i, a);

November 17, 2003 4–31

OpenVMS I64 Conventions
4.7 Procedure Linkage

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information

0 i OUT0 AI$K_AR_I64

1-2 a.x OUT1–OUT2 AI$K_AR_I64 (both slots)

3-7 a.array[0–9] OUT3–OUT7 AI$K_AR_I64 (all 5 slots)

8-21 a.array[10–19] In memory, at SP+16
through SP+55

Not applicable

Floating-Point Aggregates, With or Without Prototype
struct s { float a, b, c; } x;
extern func();
func(x);

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information

0 x.a & x.b OUT0 AI$K_AR_I64

1 x.c OUT1 AI$K_AR_I64 (low 32 bits)

4.7.6 Return Values
Values up to 128 bits are returned directly in the registers, according to the rules
in Table 4–12.

Integer, enumeration, record, and set values (bit vectors) smaller than 64 bits
must be zero-filled (unsigned integers, enumerations, records, sets) or sign-
extended (signed integrals) to a full 64 bits. However, for unsigned 32-bit
integers, bit 31 is replicated in bits 32–63.

When floating-point values are returned in floating-point registers, they are
returned in the register format, rounded to the appropriate precision. When they
are returned in the general registers (for example, as part of a record), they are
returned in their memory format.

OpenVMS does not support a general notion of homogeneous floating-point
aggregates. However, the special case of two single-precision or double-precision
floating-point values implementing values of a complex type are handled in an
analogous manner.

Table 4–12 Rules for Return Values

Type
Size
(Bits)

Location of
Return Value Alignment

Integer/Pointer, small Record, Set 1–64 R8 LSB

IEEE Single-Precision Floating-Point (S_floating) 32 F8 N/A

IEEE Double-Precision Floating-Point
(T_floating)

64 F8 N/A

IEEE Single-Precision Complex (S_floating) 64 F8, F9 N/A

IEEE Double-Precision Complex (T_floating) 128 F8, F9 N/A

(continued on next page)

4–32 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Table 4–12 (Cont.) Rules for Return Values

Type
Size
(Bits)

Location of
Return Value Alignment

VAX Single-Precision Floating-Point (F_floating) 32 R8 N/A

VAX Double-Precision Floating-Point
(D_ & G_floating)

64 R8 N/A

VAX Single-Precision Floating-Point Complex
(F_floating)

64 R8, R9 N/A

VAX Double-Precision Floating-Point Complex
(D_ & G_floating)

64 R8, R9 N/A

Note

X_floating and X_floating complex are not included in this table because
they are returned using the hidden parameter method (see below).

The rules in Table 4–12 are expressed in more detail in Table 4–9. F_floating and
F_floating complex values in the general registers are zero-extended (Zero64),
because this most closely approximates the effect of using the Alpha register
format.

Hidden Parameter
Return values other than those covered by Table 4–12 are returned in a buffer
allocated by the caller. A pointer to the buffer is passed to the called procedure as
a hidden first parameter, and all normal parameters are shifted one slot to make
this possible. The return buffer must be aligned at a 16-byte boundary.

4.7.7 Simple and Bound Procedures
There are two distinct classes of procedures:

• Simple procedure

• Bound procedure

A simple procedure is a procedure that does not need direct access to the
stack of its execution environment. In order to call a simple procedure, a
simple function descriptor is created, as shown in Figure 4–7, and described in
Table 4–13.

Figure 4–7 Simple Function Descriptor

:0

:8

FDSC$Q_ENTRY

FDSC$Q_GP

VM-1088A-AI

November 17, 2003 4–33

OpenVMS I64 Conventions
4.7 Procedure Linkage

Table 4–13 Simple Function Descriptor

FDSC$Q_ENTRY Entry code address for the procedure to be called.

FDSC$Q_GP GP value for the procedure to be called.

A bound procedure is a procedure that does need direct access to the stack
of its execution environment, typically to reference an up-level variable or to
perform a nonlocal GOTO operation.

When a bound procedure is called, the caller must pass some kind of pointer to
the called code that allows it to reference its up-level environment. Typically,
this pointer is a frame pointer for that environment, but many variations are
possible. When the caller itself is executing within that outer environment, it can
usually make such a call directly to the code for the nested procedure without
recourse to any additional function descriptors. However, when a procedure value
for the nested procedure must be passed outside of that environment to a call site
that has no knowledge of the target procedure, a bound function descriptor is
created so that the nested procedure can be called just like a simple procedure.

Bound procedure values, as defined by this standard, are designed for
multilanguage use and utilize the properties of function descriptors to allow
callers of procedures to use common code to call both bound and simple
procedures.

A bound function descriptor is similar to a simple function descriptor, with several
additional fields as shown in Figure 4–8 and described in Table 4–14.

Figure 4–8 Bound Function Descriptor

:0

:8

:16

:24

:32

:40

FDSC$Q_OTS_ENTRY

FDSC$Q_OTS_PSEUDO_GP

FDSC$Q_SIGNATURE

FDSC$Q_TARGET_ENTRY

FDSC$Q_TARGET_GP

FDSC$Q_TARGET_ENVIR

FDSC$K_BOUND_SIZE = 48
VM-1080A-AI

4–34 November 17, 2003

OpenVMS I64 Conventions
4.7 Procedure Linkage

Table 4–14 Contents of Bound Function Descriptor

Field Name Contents

FDSC$Q_OTS_ENTRY Address of entry code address for a suitable library helper
routine, for example, OTS$JUMP_TO_BPV

FDSC$Q_OTS_PSEUDO_GP Address of this bound function descriptor

FDSC$Q_SIGNATURE Signature information field (see Section 5.1.3)

FDSC$Q_TARGET_ENTRY Entry code address for the procedure to be called

FDSC$Q_TARGET_GP GP value for the procedure to be called

FDSC$Q_TARGET_ENVIR Environment value for the procedure to be called

A bound procedure descriptor is inherently dynamic because the environment
value must be determined at runtime by code executing within the bound
procedure environment. Therefore, when a bound procedure descriptor such as
this is needed, it is usually allocated on the creating procedure’s stack.

When a procedure value that refers to a bound procedure descriptor is used
to make a call, the routine designated in the OTS_ENTRY field (typically
OTS$JUMP_TO_BPV) receives control with the GP register pointing to the bound
procedure descriptor (instead of a global offset table). This routine performs the
following steps:

1. Load the "real" target entry address into a volatile branch register, for
example, B6.

2. Load the dynamic environment value into the appropriate uplevel-addressing
register for the target function, for example, OTS$JUMP_TO_BPV uses R9.

3. Load the "real" target GP address into the GP register

4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and
environment register values established appropriately.

Support routine OTS$JUMP_TO_BPV is included as a standard library routine.
The operation of OTS$JUMP_TO_BPV is logically equivalent to the following
code:

OTS$JUMP_TO_BPV::
add gp=gp,24 ; Adjust GP to point to entry address
ld8 r9=[gp],16 ; Load target entry address
mov b6=r9
ld8 r9=[gp],-8 ; Load target environment value
ld8 gp=[gp] ; Load target GP
br b6 ; Transfer to target

Because the address of a bound function descriptor is a valid function pointer,
it may be passed to translated code which uses it to call back into native code;
therefore, the value of the signature information field must be the same as that
in the official function descriptor for the real target procedure (see Section 5.1.2).

Note that there can be multiple OTS$JUMP_TO_BPV-like support routines,
corresponding to different target registers where the environment value should
be placed. The code that creates the bound function descriptor is also necessarily
compiled by the same compiler that compiles the target procedure, thus can
correctly select an appropriate support routine.

November 17, 2003 4–35

OpenVMS I64 Conventions
4.8 Procedure Call Stack

4.8 Procedure Call Stack
Except for null-frame procedures, a procedure is an active procedure while its
body is executing, including while any procedure it calls is executing. When a
procedure is active, its designated condition handler may handle an exception
that is signaled during its execution.

Associated with each active procedure is an invocation context, informally
called a frame, which consists of the set of registers and space in memory that is
allocated and that may be accessed during execution for a particular call of that
procedure.

When a procedure begins to execute, it has no invocation context. The initial
instructions that allocate and initialize its context, which may include saving
information from the invocation context of its caller, are termed a procedure
prologue. Once execution of the prologue is complete, the procedure is said to be
active.

When a procedure is ready to return to its caller, the instructions that deallocate
and discard the procedure’s invocation context (which may include restoring state
of the caller’s invocation context that was saved during the prologue), are termed
a procedure epilogue. A procedure ceases to be active when execution of its
epilogue begins.

A procedure may have more than one prologue if there are multiple entry points.
A procedure may also have more than one epilogue if there are multiple return
points. One of each will be executed during any given invocation of the procedure.

Some procedures, notably null frame procedures (see Section 4.4), are said to
execute in the context of their caller. A null frame procedure has no prologue
or epilogue, and consists solely of body instructions. Such a procedure never
becomes current or active.

A procedure call stack (for a thread) consists of the stack of invocation contexts
that exists at any point in time. New invocation contexts are pushed on that
stack as procedures are called and invocations are popped from the call stack as
procedures return.

The invocation context of a procedure that calls another procedure is said to
precede or be previous to the invocation context of the called procedure.

4.8.1 Current Procedure
The current procedure is the active procedure whose execution began most
recently; its invocation context is at the top of the call stack. Note that a
procedure executing in its prologue or epilogue is not active, and hence cannot be
the current procedure. Similarly, a null frame procedure cannot be the current
procedure.

For OpenVMS, the PC (instruction pointer) register in combination with
associated unwind information determines what procedure is current (for
exception handling purposes). See Section A.4 for a description of the unwind
information data structures.

A procedure is current at a given PC (when OpenVMS semantics apply, see
Section A.4.1), if and only if the following conditions are true:

• The procedure is either a stack frame procedure or a register frame procedure
(not a null frame procedure).

4–36 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

• The PC is in a range described by an unwind descriptor body region but not
in an epilogue.

4.8.2 Procedure Call Tracing
Mechanisms for each of the following functions are needed to support procedure
call tracing:

• To provide the context of a procedure invocation

• To walk (navigate) the procedure call stack

• To refer to a given procedure invocation

• To examine or modify the register context of an active procedure

This section describes the data structure mechanisms. The run-time library
functions that support these functions are described in Section 4.8.3

4.8.2.1 Invocation Context Block
The context of a specific procedure invocation is provided through the use of a
data structure called an invocation context block (ICB). Table 4–15 describes
the contents of the OpenVMS I64 invocation context block.

Table 4–15 Contents of the Invocation Context Block

Field Size Description

LIBICB$L_CONTEXT_LENGTH Longword Unsigned total length in bytes of the invocation
context block. See Section 4.8.3.1.

LIBICB$V_FRAME_FLAGS 3 Bytes See Table 4–16.

LIBICB$B_BLOCK_VERSION Byte ICB version; initial value of 2 for OpenVMS I64 (1 is
for OpenVMS Alpha). See Section 4.8.3.1.

LIBICB$IH_IREG 128
Quadwords

Array of general registers (only those allocated;
unallocated registers are uninitialized).
LIBICB$IH_IREG[0] is reserved.
IREG[1], the global data pointer, can be referenced
using the symbol LIBICB$IH_GP.
IREG[12], the memory stack pointer, can be
referenced using the symbol LIBICB$IH_SP.
IREG[13], the thread pointer, can be referenced using
the symbol LIBICB$IH_TP.
IREG[25], the argument information register, can be
referenced using the symbol LIBICB$IH_AI.

LIBICB$IH_GRNAT 2 Quadwords General register NaT collection.1

LIBICB$FO_F2_F31 30 Octawords Floating-point registers F2-F31. Array of floating-
point register values in register format, as saved by a
SPILL instruction.

1Bits in the field LIBICB$IH_GRNAT represent the NaT bits for the general registers. The bit position for a given
register is relative to its original spill location, the base address of which is stored at LIBICB$IH_ORIGINAL_SPILL_
ADDR. The first quadword of LIBICB$IH_GRNAT contains the NaT bits for R0-R63, the second quadword contains the
NaT bits for R64-R127. The formula for the bit corresponding to register Rn within each quadword is

uint64 * spill = (uint64 *)icb->LIBICB$IH_ORIGINAL_SPILL_ADDR;
uint64 bitpos = (((uint64)&spill[n]) >> 3) & 63;
uint64 bitmask = 1LL << bitpos;

(continued on next page)

November 17, 2003 4–37

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Table 4–15 (Cont.) Contents of the Invocation Context Block

Field Size Description

LIBICB$PH_F32_F127 Quadword Pointer to array of floating point values in register
format for registers F32-F127, as saved by SPILL
instruction. A pointer value of 0 indicates that the
contents of registers F32-F127 are not defined.

LIBICB$IH_BRANCH 8 Quadwords Array of branch registers.

LIBICB$IH_RSC Quadword Register Stack Configuration register.

LIBICB$IH_BSP Quadword Backing store pointer.

LIBICB$IH_BSPSTORE Quadword Backing store write pointer.

LIBICB$IH_RNAT Quadword RSE NaT collection register.

LIBICB$IH_CCV Quadword Compare and Exchange Value register.

LIBICB$IH_UNAT Quadword User NaT collection register.

LIBICB$FH_FPSR Quadword Floating-point status register.

LIBICB$IH_PFS Quadword Previous function state.

LIBICB$IH_LC Quadword Loop count register.

LIBICB$IH_EC Quadword Epilogue Count register.

LIBICB$IH_CSD Quadword Copy of the AR.CSD.

LIBICB$IH_SSD Quadword Copy of the AR.SSD.

LIBICB$Q_PRED Quadword Predicate collection register, P0-P63. This field is a
bitvector with bit 0 reserved.

LIBICB$IH_PC Quadword Current instruction pointer; the slot number overlays
<1:0>.

LIBICB$IH_CFM Quadword Current Frame Marker.

LIBICB$IH_UM Quadword User mask bits from PSR.

LIBICB$O_GR_VALID Octaword General Register validity mask. 2

LIBICB$L_FR_VALID Longword Floating-Point Register validity mask for registers
F2-F31.2

LIBICB$Q_BR_VALID Quadword Branch Register validity mask. 2

LIBICB$Q_AR_VALID Quadword Application Register validity mask. 2

LIBICB$Q_OTHER_VALID Quadword PC and CFM validity mask. 2

LIBICB$Q_PR_VALID Quadword Predicate Register validity mask. 2

LIBICB$IH_ORIGINAL_SPILL_
ADDR

Quadword Original address of the general register spill area
(normally &icb->LIBICB$IH_IREG[0]). 1

LIBICB$IH_PSP Quadword Previous stack pointer.

LIBICB$IH_RETURN_PC Quadword Return PC.

1Bits in the field LIBICB$IH_GRNAT represent the NaT bits for the general registers. The bit position for a given
register is relative to its original spill location, the base address of which is stored at LIBICB$IH_ORIGINAL_SPILL_
ADDR. The first quadword of LIBICB$IH_GRNAT contains the NaT bits for R0-R63, the second quadword contains the
NaT bits for R64-R127. The formula for the bit corresponding to register Rn within each quadword is

uint64 * spill = (uint64 *)icb->LIBICB$IH_ORIGINAL_SPILL_ADDR;
uint64 bitpos = (((uint64)&spill[n]) >> 3) & 63;
uint64 bitmask = 1LL << bitpos;

2The valid bit mask indicates which registers have been realized for a given invocation context. Normally, scratch
registers are not realizable except for a context immediately preceding an exception or AST frame. Refer to the LIBICB
include files to find the bit position for the Application Registers, AR.RSC being bit 0.

(continued on next page)

4–38 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Table 4–15 (Cont.) Contents of the Invocation Context Block

Field Size Description

LIBICB$IH_PREV_BSP Quadword Previous BSP

LIBICB$PH_CHFCTX_ADDR Quadword Pointer to condition handler facility context block.

LIBICB$IH_OSSD Quadword Copy of OSSD from Unwind Information Block.

LIBICB$IH_HANDLER_FV Quadword Condition Handler Function Value.

LIBICB$PH_LSDA Quadword Address of the Language Specific Data Area of the
Unwind Information Block

Beginning of User Override Parameters (offset LIBICB$R_UO_BASE)

LIBICB$Q_UO_FLAGS Quadword Operational flags:
LIBICB$V_UO_FLAG_CACHE_UNWIND - Cache
unwind information during a walk of the call stack.
See Section 4.8.3.2.

LIBICB$IH_UO_IDENT Quadword User context variable; passed by value to the callback
routines. See Section 4.8.5.

LIBICB$PH_UO_READ_MEM Quadword Pointer to user read memory routine. See
Section 4.8.5.3.

LIBICB$PH_UO_GETUEINFO Quadword Pointer to user get unwind entry information routine.
See Section 4.8.5.1.

LIBICB$PH_UO_GETCONTEXT Quadword Pointer to user get initial context routine. See
Section 4.8.5.2.

LIBICB$PH_UO_WRITE_MEM Quadword Pointer to user write memory routine. See
Section 4.8.5.4.

LIBICB$PH_UO_WRITE_REG Quadword Pointer to user write register routine. See
Section 4.8.5.5.

LIBICB$PH_UO_MALLOC Quadword Pointer to user memory allocate routine. See
Section 4.8.5.6.

LIBICB$PH_UO_FREE Quadword Pointer to user memory free routine. See
Section 4.8.5.7.

End of user override parameters (length of LIBICB$K_UO_LENGTH)

LIBICB$L_ALERT_CODE Longword Stack walk detailed status. Alert codes are
enumerated in the LIBICB include files (see
Section 4.8.3.4).

LIBICB$IH_SYSTEM_
DEFINED [n]

n Quadwords Variable-sized area; unused and undefined at this
time.

Table 4–16 Flags in LIBICB$V_FRAME_FLAGS Field of the invocation context block

Flag Description

LIBICB$V_BOTTOM_OF_STACK Set to 1 if this is the bottom of the stack and there is absolutely
no previous frame.

LIBICB$V_HANDLER_PRESENT Set to 1 if this frame has a condition handler.

LIBICB$V_IN_PROLOGUE Set to 1 if the PC is in a prologue region.

LIBICB$V_IN_EPILOGUE Set to 1 if the PC is in an epilogue region.

LIBICB$V_HAS_MEM_STK_FRAME Set to 1 if this frame has a memory stack.

LIBICB$V_HAS_REG_STK_FRAME Set to 1 if this frame has a register stack.

November 17, 2003 4–39

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Static scratch registers, unless saved and described in the unwind table
information, are not realizable except for an invocation context preceding an
exception or AST frame.

4.8.2.2 Invocation Context Handle
To refer to a specific procedure invocation at run time, an invocation context
handle can be used. The invocation context handle is a quadword that uniquely
identifies any one of the active frames on a call stack, even when one or more of
the frames correspond to procedures that have no associated stack storage.

The OpenVMS invocation context handle is defined as follows:

• For a frame that has a memory stack, the invocation context handle is the
value of the stack pointer at the time of entrance to the routine (sometimes
also referred to as the previous stack pointer, or PSP, of the frame).

• For a frame that has a register stack (and no memory stack), the invocation
context handle is the value of the AR.BSP register for that frame.

• For a null frame (which has neither a memory stack nor a register stack),
the invocation context handle is the value of the stack pointer at the time
of entrance to the routine (sometimes also referred to as the previous stack
pointer, or PSP, of the frame).

4.8.3 Invocation Context Block Access Routines
A thread can manipulate the invocation context of any procedure in the thread’s
virtual address space by calling the run-time library functions described in this
section.

Note

The OpenVMS I64 stack tracing routines use heap storage during the
analysis of unwind descriptors. The default heap storage mechanism
uses a LIBRTL implementation of the C RTL function malloc, the use of
which may result in virtual memory being expanded using the $EXPREG
system service. See Section 4.8.5 on how to override the defaults. See
also Section 4.8.3.9.

4.8.3.1 Initializing the Invocation Context Block
When allocating a new invocation context block, the user must perform the
following steps prior to calling any of the routines described in Section 4.8.3:

• Allocate the block on an octaword (16-byte) boundary.

• Initialize the LIBICB$L_CONTEXT_LENGTH field to LIBICB$K_INVO_
CONTEXT_BLK_SIZE and the LIBICB$B_BLOCK_VERSION field to
LIBICB$K_INVO_CONTEXT_VERSION.

• Clear the user override portion of the invocation context block, starting at
LIBICB$R_UO_BASE for LIBICB$K_UO_LENGTH bytes.

• Set any required parameters in the user override portion of the invocation
context block.

• Set the LIBICB$V_UO_FLAG_CACHE_UNWIND flag if appropriate. See
also Section 4.8.3.2 and Section 4.8.3.9 regarding subsequent use of LIB$I64_
PREV_INVO_END.

4–40 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Failure to do so will cause these routines to return an error status. Note that this
is a change from Alpha, where this was not necessary.

4.8.3.2 Walking the Call Stack
During the course of program execution, it is sometimes necessary to walk the
call stack. Frame-based exception handling is one case where this is done. Call
stack navigation is possible only in the reverse direction (in a latest-to-earliest or
top-to-bottom sequence).

To walk the call stack, perform the following steps:

1. Given a program state (which contains a register set), build an invocation
context.

For the current routine, an initial invocation context block can be obtained
by calling the LIB$I64_GET_CURR_INVO_CONTEXT routine (see
Section 4.8.3.4).

2. Repeatedly call the LIB$I64_GET_PREV_INVO_CONTEXT routine (see
Section 4.8.3.5) until the desired invocation context, or the end of the call
chain, has been reached.

LIB$I64_GET_PREV_INVO_CONTEXT indicates the end of the invocation
call chain if either of the following conditions is true:

The OSSD$V_BOTTOM_OF_STACK flag is set for the target frame (see
Table A–15).

The return address (IP) of the target frame is zero.

To make the stack walk more efficient, you can set the LIBICB$V_UO_FLAG_
CACHE_UNWIND flag. This causes unwind information to be carried over from
one call to LIB$I64_GET_PREV_INVO_CONTEXT to the next. At the conclusion
of the stack walk, you must call LIB$I64_PREV_INVO_END to free any cached
unwind information. This is the recommended practice, but not the default
behavior.

Compilers are allowed to optimize high-level language procedure calls in such
a way that they do not appear in the invocation chain. For example, inline
procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for
procedure frame information. There is no guarantee that successive stack frames
will always appear at higher addresses.

4.8.3.3 LIB$I64_GET_INVO_CONTEXT
A thread can obtain the invocation context of any active procedure by using this
function:

LIB$I64_GET_INVO_CONTEXT(invo_handle, invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle quadword read by reference

invo_context invo_context_blk structure modify by reference

Arguments:

November 17, 2003 4–41

OpenVMS I64 Conventions
4.8 Procedure Call Stack

invo_handle
Address of the location that contains the handle for the desired invocation.

invo_context
Address of an invocation context block into which the procedure context of the frame
specified by invo_handle will be written.

Function Value Returned:

status
Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure
context in the active call stack, the new contents of the context block is
unpredictable.

4.8.3.4 LIB$I64_GET_CURR_INVO_CONTEXT
A thread can obtain the invocation context of a current procedure by using this
function:

LIB$I64_GET_CURR_INVO_CONTEXT(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure write by reference

Argument:

invo_context
Address of an invocation context block into which the procedure context of the caller
will be written.

Note

The invocation context block must be properly initialized as described in
Section 4.8.3.1 before calling this routine.

Function Value Returned:

Zero. (This facilitates use in the implementation of the C language unwind setjmp or
longjmp function. Check the LIBICB$L_ALERT_CODE field of the invocation context
block for further status indication.)

4.8.3.5 LIB$I64_GET_PREV_INVO_CONTEXT
A thread can obtain the invocation context of the procedure context preceding any
other procedure context by using this function:

LIB$I64_GET_PREV_INVO_CONTEXT(invo_context)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

Argument:

4–42 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

invo_context
Address of a valid invocation context block. The given invocation context block is
updated to represent the context of the previous (calling) frame.

The LIBICB$V_BOTTOM_OF_STACK flag of the invocation context block is set if the
target frame represents the end of the invocation call chain or if stack corruption is
detected.

Function Value Returned:

status
Status value. A value of 1 indicates success. When the initial context represents the
bottom of the call stack, a value of 0 is returned. If the current operation completed
without error, but a stack corruption was detected at the next level down, a value of 3
is returned.

4.8.3.6 LIB$I64_GET_INVO_HANDLE
A thread can obtain an invocation handle corresponding to any invocation context
block by using this function:

LIB$I64_GET_INVO_HANDLE(invo_context, invo_handle)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure read by reference

invo_handle invo_handle quadword write by reference

Arguments:

invo_context
Address of a valid invocation context block.

invo_handle
Address of the location into which the invocation context handle is to be written. If
the call fails, the value of the invocation context handle is LIB$K_INVO_HANDLE_
NULL.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.3.7 LIB$I64_GET_CURR_INVO_HANDLE
A thread can obtain the invocation handle for the current procedure by using this
function.

LIB$I64_GET_CURR_INVO_HANDLE(invo_handle)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle quadword write by reference

Arguments:

invo_handle
Address of a quadword into which the invocation handle of the caller will be written.

November 17, 2003 4–43

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.3.8 LIB$I64_GET_PREV_INVO_HANDLE
A thread can obtain an invocation handle of the procedure context preceding that
of a specified procedure context by using this function:

LIB$I64_GET_PREV_INVO_HANDLE(invo_handle_in, invo_handle_out)

Argument OpenVMS Usage Type Access Mechanism

invo_handle_in invo_handle quadword read by reference

invo_handle_out invo_handle quadword write by reference

Argument:

invo_handle_in
The address of an invocation handle that represents a target invocation context.

invo_handle_out
Address of the location into which the invocation context handle of the previous
context is to be written. If the call fails, the value of the previous invocation context
handle is LIB$K_INVO_HANDLE_NULL.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

Note

Each call to this routine involves a stack walk from the top of the stack to
find the procedure matching the input handle. Consequently, using this
routine repeatedly is an inefficient way to walk the stack, compared to
using LIB$I64_GET_PREV_INVO_CONTEXT.

4.8.3.9 LIB$I64_PREV_INVO_END
This routine should be called at the conclusion of call tracing operations to
free the memory used to process unwind descriptors. The call tracing routines
are LIB$I64_GET_INVO_CONTEXT, LIB$I64_GET_PREV_INVO_CONTEXT,
LIB$I64_GET_CURR_INVO_CONTEXT.

To provide efficient call tracing, some unwind information is tracked in heap
storage from one call to the next. This heap storage should be freed before you
release or reuse the invocation context block.

Calling this routine is necessary if the LIBICB$V_UO_FLAG_CACHE_UNWIND
flag is set in the LIBICB$Q_UO_FLAGS field of the invocation context block. If
this flag is not set, unwind information is released and recreated at each call, and
calling this routine is not required.

LIB$I64_PREV_INVO_END (invo_context)

4–44 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

Arguments:

invo_context
Address of a valid invocation context block previously used for call tracing.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.3.10 LIB$I64_PUT_INVO_REGISTERS
The fields of a given procedure invocation context can be updated with new
register contents by using this function:

LIB$I64_PUT_INVO_REGISTERS(invo_handle, invo_context [,gr_mask] [,fr_mask]
[,br_mask] [,pr_mask] [,misc_mask])

Note that if user override routines are specified in the invocation context block,
then they are used to find and modify the invocation context.

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle quadword read by reference

invo_context invo_context_blk structure read by reference

gr_mask mask_octaword 128-bit vector read by reference

fr_mask mask_octaword 128-bit vector read by reference

br_mask mask_byte 8-bit vector read by reference

pr_mask mask_quadword 64-bit vector read by reference

misc_mask mask_quadword 64-bit vector read by reference

Arguments:

invo_handle
Handle for the invocation to be updated.

invo_context
Address of a valid invocation context block that contains new register contents.

Each register that is set in the xx_mask argument (along with its NaT bit, if any) is
updated using the value found in the corresponding IREG[n], FREG[n], BRANCH[n],
or PRED[n] field. GP, TP, and AI can also be updated in this way. No other fields of
the invocation context block are used.

gr_mask
Address of a 128-bit bit vector, where each bit corresponds to a register field in
the invo_context argument. Bits 0 through 127 correspond to IREG[0] through
IREG[127].
Bit 0 corresponds to R0, which can not be written, and is ignored.
Bit 1 corresponds to the global data pointer (GP).
Bit 13 corresponds to the thread pointer (TP).
Bit 25 corresponds to the argument information register (AI).
If bit 12, which corresponds to SP, is set, then no changes are made.

November 17, 2003 4–45

OpenVMS I64 Conventions
4.8 Procedure Call Stack

fr_mask
Address of a 128-bit bit vector, where each bit corresponds to a register field in the
passed invo_context. To update floating point registers F32-F127, provide a pointer
to an array of 96 octawords in LIBICB$PH_F32_F127. Bits 0 through 127 correspond
to FREG[0] through FREG[127].
Bit 0 corresponds to F0, which can not be written, and is ignored.
Bit 1 corresponds to F1, which can not be written, and is ignored.

br_mask
Address of a 8-bit bit vector, where each bit corresponds to a register field in
the passed invo_context. Bits 0 through 7 correspond to BRANCH[0] through
BRANCH[7].

pr_mask
Address of a 64-bit bit vector, where each bit corresponds to a register field in the
passed invo_context. Bits 0 through 63 correspond to PRED[0] through PRED[63].

misc_mask
Address of a 64-bit bit vector, where each bit corresponds to a register field in the
passed invo_context as follows:

Bit 0=PC.
Bit 1=FPSR.
Bits 2–63 are reserved.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 is returned (and nothing is changed) in the following circumstances:

• When the invocation handle does not represent an active invocation context.

• When bit 12 of the gr_mask argument is set

• When a scratch register has not been saved, or a register’s save location or status
cannot be determined (valid bit clear).

Caution

Great care must be taken to assure that a valid stack frame and execution
environment result; otherwise, execution may become unpredictable.

4.8.4 Supplemental Invocation Context Access Routines
The routines described in this section can be used to perform some of the more
common operations involving invocation contexts.

4.8.4.1 LIB$I64_GET_FR
Given an invocation context block and floating-point register index such that
0 <= index < 128, copy the register value to fr_copy. For example, an index
value of 4 fetches the value, which represents the contents of F4 for the context.

LIB$I64_GET_FR returns failure status if the index represents a scratch register
whose contents have not been realized.

LIB$I64_GET_FR (invo_context, index, fr_copy)

4–46 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure read by reference

index index longword read by value

fr_copy floating-point value octaword write by reference

Arguments:

invo_context
Address of a valid invocation context block.

index
Floating point register index.

fr_copy
Address of an octaword to receive the contents of the specified floating-point register.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.2 LIB$I64_SET_FR
Given an invocation context block, a floating-point register index, and a floating-
point register value in fr_copy, writes the corresponding invocation context block
FREG entry, and calls LIB$I64_PUT_INVO_REGISTERS to write the actual
context. The invocation context block remains unchanged if the routine fails.

LIB$I64_SET_FR fails if LIB$I64_PUT_INVO_REGISTERS fails.

LIB$I64_SET_FR (invo_context, index, fr_copy)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

index index longword read by value

fr_copy floating-point value octaword read by reference

Arguments:

invo_context
Address of a valid invocation context block.

index
Index into the FREG array of the invocation context block.

fr_copy
Address of an octaword that contains the floating-point value to be written to the
invocation context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

November 17, 2003 4–47

OpenVMS I64 Conventions
4.8 Procedure Call Stack

4.8.4.3 LIB$I64_GET_GR
Given an invocation context block and general register index such that
0 <= index < 128, copy the register value to gr_copy, for example, index 4
fetches the invocation context block IREG[4] value, which represents the contents
of R4 for the context.

If the register represented by index has its corresponding NaT bit set, the
read succeeds and the return status is set to 3. If the register represented by
index lies beyond the allocated general registers, the read fails and gr_copy is
unchanged. That is, the highest allowed index is 32 + ICB.CFM.SOF - 1.

LIB$I64_GET_GR fails if the index represents a scratch register whose contents
have not been realized.

LIB$I64_GET_GR (invo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure read by reference

index index longword read by value

gr_copy integer value quadword write by reference

Arguments:

invo_context
Address of a valid invocation context block.

index
Index into the IREG array of the invocation context block.

gr_copy
Address of a quadword to receive the value from the invocation context block.

Function Value Returned:

status
A value of 3 indicates success, and the NaT bit was set.
A value of 1 indicates success, and the NaT bit was clear.
A value of 0 indicates failure.

4.8.4.4 LIB$I64_SET_GR
Given an invocation context block, a general register index such that
1 <= index < 128, and a quadword value gr_copy, writes the corresponding
invocation context block general register, clears the corresponding NaT bit and
uses LIB$I64_PUT_INVO_REGISTERS to write to the actual context. The
invocation context block remains unchanged if the routine fails.

LIB$I64_SET_GR fails if LIB$I64_PUT_INVO_REGISTERS fails.

LIB$I64_SET_GR (invo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

index index longword read by value

gr_copy integer value quadword read by reference

Arguments:

4–48 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

invo_context
Address of a valid invocation context block.

index
Index into the IREG array of the invocation context block.

gr_copy
Address of a quadword that contains the value to be written to the invocation context
block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.5 LIB$I64_SET_PC
Given an invocation context block and a quadword PC value in pc_copy, write
the pc_copy value to the invocation context block PC and then use LIB$I64_
PUT_INVO_REGISTERS to write to the actual context. The invocation context
block remains unchanged if the routine fails.

LIB$I64_SET_PC fails if LIB$I64_PUT_INVO_REGISTERS fails.

LIB$I64_SET_PC (invo_context, pc_copy)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

pc_copy PC value quadword read by reference

Arguments:

invo_context
Address of a valid invocation context block.

pc_copy
Address of a quadword that contains the PC value to be written to the invocation
context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.6 LIB$I64_SET_FPSR
Given an invocation context block and a quadword FPSR value in fpsr_copy,
write the fpsr_copy value to the invocation context block FPSR and then use
LIB$I64_PUT_INVO_REGISTERS to write to the actual context. The invocation
context block remains unchanged if the routine fails.

LIB$I64_SET_FPSR fails if LIB$I64_PUT_INVO_REGISTERS fails.

LIB$I64_SET_FPSR (invo_context, fpsr_copy)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure modify by reference

fpsr_copy FPSR value quadword read by reference

Arguments:

November 17, 2003 4–49

OpenVMS I64 Conventions
4.8 Procedure Call Stack

invo_context
Address of a valid invocation context block.

fpsr_copy
Address of a quadword that contains FPSR value to be written to the invocation
context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.7 LIB$I64_GET_UNWIND_LSDA
Given a pc_value, find the address of the unwind information block language-
specific data area (LSDA), and write it to unwind_lsda_p. If not present, then
write 0 to unwind_lsda_p.

LIB$I64_GET_UNWIND_LSDA (pc_value, unwind_lsda_p)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

unwind_lsda_p address quadword write by reference

Arguments:

pc_value
Address of a location that contains the PC value. pc_value is used to find the unwind
information block and the unwind information block language-specific data area
address.

unwind_lsda_p
Address of a quadword to receive the address of the language-specific data area, if
there is one.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.8 LIB$I64_GET_UNWIND_OSSD
Given a pc_value, find the address of the unwind information block operating
system-specific data area, if present, and write it to unwind_ossd_p. If not
present, then write 0 to unwind_ossd_p.

LIB$I64_GET_UNWIND_OSSD (pc_value, unwind_ossd_p)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

unwind_ossd_p address quadword write by reference

Arguments:

4–50 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

pc_value
Address of a location that contains the PC value. pc_value is used to find the unwind
information block and the unwind information block operating system-specific data
area address.

unwind_ossd_p
Address of a quadword to receive the address of the operating system-specific data
area.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.9 LIB$I64_GET_UNWIND_HANDLER_FV
Given a pc_value, find the function value (address of the procedure descriptor)
for the condition handler, if present, and write it to handler_fv. If not present,
then write 0 to handler_fv.

LIB$I64_GET_UNWIND_HANDLER_FV (pc_value, handler_fv)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

handler_fv address quadword write by reference

Arguments:

pc_value
Address of a location that contains the PC value.

pc_value is used to find the unwind information block and the unwind information
block condition handler pointer.

handler_fv
A quadword to receive the function value of the procedure descriptor for the condition
handler, if there is one.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.4.10 LIB$I64_IS_EXC_DISPATCH_FRAME
Used to determine whether a given PC value represents an exception dispatch
frame.

LIB$I64_IS_EXC_DISPATCH_FRAME (pc_value)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

Arguments:

November 17, 2003 4–51

OpenVMS I64 Conventions
4.8 Procedure Call Stack

pc_value
Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the unwind
information for this routine.

Function Value Returned:

status
Returns 1 if the operating system-specific data area is present and the EXCEPTION_
FRAME flag is set.
Returns 0 if the operating system-specific data area is present and the EXCEPTION_
FRAME flag is clear. Returns 0 if the operating system-specific data area is not
present.

4.8.4.11 LIB$I64_IS_AST_DISPATCH_FRAME
Used to determine whether a given PC value represents an AST dispatch frame.

LIB$I64_IS_AST_DISPATCH_FRAME (pc_value)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

Arguments:

pc_value
Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the unwind
information block for this routine.

Function Value Returned:

status
Returns 1 if the operating system-specific data area is present and the EXCEPTION_
FRAME flag is set.
Returns 0 if the operating system-specific data area is present and the EXCEPTION_
FRAME flag is clear. Returns 0 if the operating system-specific data area is not
present.

4.8.5 Invocation Context Callback Routines
Advanced users can override the way the call stack is traced by providing custom
callback routines. These routines can be used to perform the following functions:

• Perform a call trace on a process other than the current process.

• Override the heap storage mechanism used to allocate memory used during
the analysis of unwind descriptors.

The user override callback mechanism provides a user ident value that
is passed to each callback routine. The user ident value is stored in the
LIBICB$IH_UO_IDENT field of the invocation context block.

The routines described in this section must be provided to override the call stack
walk.

Note

The callback routines cannot be used with the following routines, which
are not passed a context block:

• LIB$I64_GET_CURR_INVO_HANDLE

4–52 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

• LIB$I64_GET_PREV_INVO_HANDLE

4.8.5.1 The Get Unwind Information Routine
Place a function pointer for this routine in the LIBICB$PH_UO_GETUEINFO
field of the invocation context block.

int (* getueinfo) (uint64 pc, void *get_ue_block, void *name, ...);

This routine should mimic SYS$GET_UNWIND_ENTRY_INFO for the target
process. See Section A.6 for detailed argument descriptions and return status,
with the following notes:

The name argument is not used, and can be ignored. If a read memory callback
has been specified, the contents of LIBICB$PH_UO_READ_MEM are passed as
a fourth argument, and the contents of LIBICB$PH_UO_IDENT are passed as a
fifth argument, otherwise the routine is called with three arguments.

4.8.5.2 The Get Initial Context Routine
Place a function pointer for this routine in the LIBICB$PH_UO_GETCONTEXT
field of the invocation context block.

The get initial context routine is used to seed the invocation context block from
the target process. This routine should initialize the invocation context block
structure with the preserved general, floating, branch, and predicate registers,
as well as Application Registers such as AR.RSC, AR.BSP, and AR.PFS from the
target process. This routine should set the valid bits corresponding to the saved
registers in the VALID fields. This routine must store the original spill address
corresponding to R0 in the ORIGINAL_SPILL_ADDR field. This callback routine
is used by LIB$I64_GET_CURR_INVO_CONTEXT and should be followed by at
least one call to LIB$I64_GET_PREV_INVO_CONTEXT to generate a working
context.

int (* getcontext) (void *invo_context, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context_blk structure write by reference

ident user_value quadword read by value

Arguments:

invo_context
The address of the invocation context block.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

November 17, 2003 4–53

OpenVMS I64 Conventions
4.8 Procedure Call Stack

4.8.5.3 The Read Memory Routine
Place a function pointer for this routine in the LIBICB$PH_UO_READ_MEM
field of the invocation context block.

The read memory routine is used to transfer data from the target process.

int (* read_mem) (void *dst, uint64 src, size_t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

dst memory_access byte_array write by reference

src memory_address quadword read by value

length size_t longword read by value

ident user_value quadword read by value

Arguments:

dst
A local memory address and the destination for the read operation.

src
An address in the target process to be read.

length
The length in bytes to be read.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.5.4 The Write Memory Routine
Place a function pointer for this routine in the LIBICB$PH_UO_WRITE_MEM
field of the invocation context block.

The write memory routine is used to transfer data to the target process. It is
used by LIB$I64_PUT_INVO_REGISTERS for a register that has been saved in
memory.

int (* write_mem) (void *src, uint64 dst, size_t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

src memory_access byte_array read by value

dst memory_address quadword write by reference

length size_t longword read by value

ident user_value quadword read by value

Arguments:

src
A local memory address and the source for the write operation.

dst
An address in the target process to be written.

4–54 November 17, 2003

OpenVMS I64 Conventions
4.8 Procedure Call Stack

length
The length in bytes to be written.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.5.5 The Write Register Routine
Place a function pointer for this routine in the LIBICB$PH_UO_WRITE_REG
field of the invocation context block.

The write register routine is used to write a register in the target process. It is
used by LIB$I64_PUT_INVO_REGISTERS for a register that has not been saved
in memory.

This routine is optional, or subset of registers can be implemented, in this case
LIB$I64_PUT_INVO_REGISTERS will return an error if this routine is not
present, or is unable to write the desired register.

int (* write_reg) (int whichReg, uint64 value_1, uint64 value_2, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

whichReg enumeration longword read by value

value_1 register_value quadword read by value

value_2 register_value quadword read by value

ident user_value quadword read by value

Arguments:

whichReg
Indicates the register to be written (see enum in libicb.h).

value_1
Specifies the register contents, or lower quadword for a FR fill operation.

value_2
Specifies the NaT bit for GRs, or upper quadword for a FR fill.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

status
A value of 1 indicates success.
A value of 0 indicates failure.

4.8.5.6 The Memory Allocation Routine
The memory allocation routine is used to allocate heap storage required during
the analysis of unwind descriptors. This routine should mimic the behavior of the
C RTL routine malloc.

void * (* malloc) (size_t size, uint64 ident);

November 17, 2003 4–55

OpenVMS I64 Conventions
4.8 Procedure Call Stack

Argument OpenVMS Usage Type Access Mechanism

length size_t longword read by value

ident user_value quadword read by value

Arguments:

length
The length in bytes of memory to be allocated. The returned memory block should be
aligned on a 16-byte boundary.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

ptr
Address of the memory block allocated, or 0 for failure.

In the case where local memory is being read, that is, you have not overridden
the read memory routines, the malloc requests are reduced to:

• One Unwind Context block of size LIBICB$K_CONTEXT_BLK_SIZE

• One Unwind Descriptor block of size LIBICB$K_DESCRIPTOR_BLK_SIZE

• Several Unwind region blocks of size LIBICB$K_REGION_BLK_SIZE

• Several Unwind region label blocks of size LIBICB$K_REGIONLABEL_BLK_
SIZE

The number of the last two required depends on the complexity of the unwind
descriptors for a given procedure being traced.

4.8.5.7 The Memory Deallocation Routine
The memory deallocation routine is used to free heap storage allocated by the
memory allocation routine (see Section 4.8.5.6). This routine should mimic the
behavior of the C RTL routine free.

void (* free) (void * ptr, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

ptr address quadword read by value

ident user_value quadword read by value

Arguments:

ptr
Address of a memory block previously allocated by a call to the user malloc routine.

ident
Specifies a user ident value from the invocation context block.

Function Value Returned:

None.

4–56 November 17, 2003

OpenVMS I64 Conventions
4.9 Data Allocation

4.9 Data Allocation
In order to make the most effective use of the addressing modes available to Intel
Itanium processors, each image’s data is partitioned into one or two short data
segments and some number of long data segments. The short data segments,
addressed by the GP register in each image, contain the following areas:

• A linkage table, containing pointers to imported data and functions, and to
data in the code segments and long data segments. This area is generally
protected by OpenVMS against being written after image activation is
complete.

• A read-only short data area, containing small initialized own data items.
This area is generally protected by OpenVMS against being written after
image activation is complete. (This area is optional.)

• A read-write short data area, containing small initialized own data items.

• A read-write short bss area, containing small uninitialized own data items.

The long data segments contain either or both of the following areas:

• One or more long data areas, which contain large initialized data items, and
initialized non-own data items of any size.

• One or more long bss areas, which contain large uninitialized data items,
and uninitialized non-own data items of any size.

Own data items are those that are either local to an image, or are such that
all references to these items from the same image will always refer to these
items. Because non-own variables cannot be referenced directly, there is no
benefit to placing them in the short data area or bss area. Small own data items
are placed in the short bss area or short data areas, and are guaranteed to be
within 2 megabytes (in either direction) of the GP address; this allows compilers
to use a short direct addressing sequence (using the add with 22-bit immediate
instruction) to access any data item allocated in these areas.

The compiler should place all own data items that are 8 bytes or less in size
(regardless of structure) in one of the short data areas or the short bss area. All
other data items, including items that are larger than 8 bytes in size, must be
placed in one of the long data areas or long bss areas. The compiler must address
these items indirectly, using a linkage table entry. Linkage table entries are
typically allocated by the linker in response to a relocation request generated by
the compiler; an entry in the linkage table is either a pointer to a data item, or
a function descriptor. A function descriptor placed in the linkage table is a local
copy of an official function descriptor that is generally allocated by the linker or
image activator.

This design allows for a maximum size of 4 megabytes for the short data segment,
because everything must be addressable via the GP register using the 22-bit add
immediate instruction. This allows for up to 256,000 individually-named
variables and functions. If an image requires more than this, linker options may
be used to divide the image into multiple clusters (see Section 4.7.1).

November 17, 2003 4–57

OpenVMS I64 Conventions
4.9 Data Allocation

4.9.1 Alignment
On Itanium hardware, memory references to data that is not naturally aligned
can result in alignment faults, which can severely degrade the performance of
all procedures that reference the unaligned data. To avoid such performance
degradation, all data values should be naturally aligned, as shown in Table 4–17.

In addition, common blocks, dynamically allocated (heap) regions (for example
from malloc), and global data items greater than 8 bytes must be aligned on a
16-byte boundary.

Table 4–17 Natural Alignment Requirements

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)

32-bit integer Address that is a multiple of 4 (longword alignment)

64-bit integer Address that is a multiple of 8 (quadword alignment)

F_floating
F_floating complex

Address that is a multiple of 4 (longword)

D_floating
D_floating complex

Address that is a multiple of 8 (quadword)

G_floating
G_floating complex

Address that is a multiple of 8 (quadword)

S_floating
S_floating complex

Address that is a multiple of 4 (longword alignment)

T_floating
T_floating complex

Address that is a multiple of 8 (quadword)

X_floating
X_floating complex

Address that is a multiple of 16 (octaword)

For aggregates such as strings, arrays, and records, the data type to be considered
for purposes of alignment is not the aggregate itself, but rather the elements of
which the aggregate is composed. The alignment requirement of an aggregate
is that all elements of the aggregate be naturally aligned. For example, varying
8-bit character strings must start at addresses that are a multiple of at least 2
(word alignment) because of the 16-bit count at the beginning of the string; 32-bit
integer arrays start at a longword boundary, irrespective of the extent of the
array.

The rules for passing a record in an argument that is passed by immediate
value (see Section 4.7.4) always provide quadword alignment of the record value
independent of the normal alignment requirement of the record. If deemed
appropriate by an implementation, normal alignment can be established within
the called procedure by making a copy of the record argument at a suitably
aligned location.

4–58 November 17, 2003

OpenVMS I64 Conventions
4.9 Data Allocation

4.9.2 Global Data
Access to global variables that are not known (at compile time) to be defined
in the same image must be indirect. Each image has a linkage table in its
data segment, pointed to by the GP register; code must load a pointer to the
global variable from the linkage table, then access the global variable through
the pointer. Access to global variables known to be defined in the same image
or to static locals that are placed in the short data area may be made with a
GP-relative offset.

4.9.3 Local Static Data
Access to short local static data can be made with a GP-relative offset; access to
long local static data must be indirect.

4.9.4 Constants and Literals
Constants and literals may be placed in the text segment or in the data segment.
If placed in the text segment, the access must be PC-relative or indirect using
a linkage table entry. Literals placed in the data segment may be placed in the
short initialized data area if they are 8 bytes or less in size. Larger literals must
be placed in the long initialized data area or in the text segment. Literals in the
long initialized data area require an indirect access using a linkage table entry.

4.9.5 Record Layout Conventions
The OpenVMS I64 calling standard rules for record layout are designed to provide
good run-time performance on all implementations of the Itanium architecture
and to provide the required level of compatibility with conventional VAX and
Alpha operating environments.

Therefore, this standard defines the following record layout conventions:

• Those optimized for optimal access characteristics (referred to as aligned
record layouts)

• Those compatible with conventions that are traditionally used by VAX
languages (referred to as VAX compatible record layouts)

Note

Although compiler implementers must make appropriate business
decisions, Hewlett-Packard strongly recommends that all OpenVMS I64
high-level language compilers should support both record layouts.

Only these record layouts may be used across standard interfaces or between
languages. Languages can support other language-specific record layout
conventions, but such layouts are nonstandard.

The aligned record layout conventions should be used unless interchange is
required with conventional VAX applications that use the OpenVMS VAX
compatible record layouts.

November 17, 2003 4–59

OpenVMS I64 Conventions
4.9 Data Allocation

4.9.5.1 Aligned Record Layout
The aligned record layout conventions ensure that:

• All components of a record or subrecord are naturally aligned.

• Layout and alignment of record elements and subrecords are independent of
any record or subrecord in which they are embedded.

• Layout and alignment of a subrecord is the same as if it were a top-level
record.

• Declaration in high-level languages of standard records for interlanguage use
is straightforward and obvious, and meets the requirements for source-level
compatibility between OpenVMS I64 languages and OpenVMS Alpha and
VAX languages.

The aligned record layout is defined by the following conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• The first bit of a record or subrecord must be directly addressable (byte
aligned).

• Records and subrecords must be aligned according to the largest natural
alignment requirements of the contained elements and subrecords.

• Bit fields (packed subranges of integers) are characterized by an underlying
integer type that is a byte, word, longword, or quadword in size together with
an allocation size in bits. A bit field is allocated at the next available bit
boundary, provided that the resulting allocation does not cross an alignment
boundary of the underlying type. Otherwise, the field is allocated at the
next byte boundary that is aligned as required for the underlying type. (In
the later case, the space skipped over is left permanently not allocated.) In
addition, if necessary, the alignment of the record as a whole is increased to
that of the underlying integer type.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available naturally
aligned address for the data type.

• The length of a record must be a multiple of its alignment. (This includes the
case when a record is a component of another record.)

• Strings and arrays must be aligned according to the natural alignment
requirements of the data type of which the string or array is composed.

• The length of an array element is a multiple of its alignment, even if this
leaves unused space at its end. The length of the whole array is the sum of
the lengths of its elements.

4–60 November 17, 2003

OpenVMS I64 Conventions
4.9 Data Allocation

4.9.5.2 OpenVMS VAX Compatible Record Layout
The OpenVMS VAX compatible record layout is defined by the following
conventions:

• The components of a record must be laid out in memory corresponding to the
lexical order of their appearance in the high-level language declaration of the
record.

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit
arrays must start at the next available bit in the record. No fill is ever
supplied preceding an unaligned bit string, unaligned bit array, or unaligned
bit array element.

• All other components of a record must start at the next available byte in
the record. Any unused bits following the last-used bit in the last-used byte
of each component must be filled out to the next byte boundary so that any
following data starts on a byte boundary.

• Subrecords must be aligned according to the largest alignment of the
contained elements and subrecords. A subrecord always starts at the
next available byte unless it consists entirely of unaligned bit data and
it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

• Records must be aligned on byte boundaries.

4.9.6 Sample Code Sequences
In the sample code sequences in this section, register names of the form t1, t2,
and so on, are temporary registers, and may be assigned to any available scratch
register. The code sequences show necessary cycle breaks, but no other scheduling
considerations have been made. It is assumed that these code sequences will be
scheduled with surrounding code to make best use of the processor resources.

4.9.6.1 Addressing Own Data in the Short Data Area
Own short data can be addressed with a simple direct reference relative to the
GP register, as shown in the following example:

addl t1=@gprel(var),gp ;; // calc. address of var
ld8 loc0=[t1] // load contents of var

Own long data can be addressed either via the linkage table, as shown in
Section 4.9.6.2, or directly as shown in the following example:

movl t1=@gprel(var) ;; // form gp-relative offset of var
add t2=t1,gp ;; // calc. address of var
ld8 loc0=[t2] // load contents of var

4.9.6.2 Addressing External Data or Data in a Long Data Area
When data is not known to be defined in the current image (that is, it is not
own), or if it is too large for the short data region, it must be accessed indirectly
through the linkage table, as shown in the following example:

addl t1=@ltoff(var),gp ;; // calc. address of LT entry
ld8 t2=[t1] ;; // load address of var
ld8 loc0=[t2] // load contents of var

November 17, 2003 4–61

OpenVMS I64 Conventions
4.9 Data Allocation

4.9.6.3 Addressing Literals in the Text Segment
Literals in the text segment may be addressed either through the linkage table,
as in Section 4.9.6.2, or with PC-relative addressing, as shown in the following
example:

L1: mov r3=ip ;; // get current IP
addl loc0=litbase-L1,r3 ;; // calc. addr. of lit. area
adds t2=(lit-litbase),loc0 ;; // calc. address of lit.
ld8 loc1=[t2] // load value of literal

Note

The first two instructions can be moved towards the beginning of the
procedure, and the base address of the literal area (in LOC0) can be
shared by other literal references in the same procedure.

4.9.6.4 Materializing Function Pointers
Function pointers must always be obtained from the data segment, either as
an initialized quadword or through the linkage table, as shown in the following
examples:

Materializing function pointers through linkage table:
addl t1=@ltoff(@fptr(func)),gp ;; // calc address of LT entry
ld8 loc0=[t1] // load function pointer

Materializing function pointers in data:
fptr:

data8 @ftpr(func) // initialize function ptr

4.9.6.5 Jump Tables
High-level language constructs such as case and switch statements, where there
are several possible local targets of a branch, may use a number of different
code generation strategies, ranging from sequential conditional branches to a
direct-lookup branch table.

Two branch table methods are described: The first places the branch table in
a read-only segment separate from the code segment. The second places the
branch table in the code segment. The advantage of the first is that it allows the
code segment to have execute-only access, while the second may require the code
segment to allow read access as well. The advantage of the second is that it does
not require addressing the branch table via the GP and hence may be slightly
faster. Both methods avoid the need for relocation during image activation.

The branch table method descriptions that follow include examples that use 64-
bit entries. It is also valid to use 32-bit, 16-bit or even 8-bit entries providing it is
known that the smaller entry size is sufficient to allow the required displacement
to be represented (without overflow).

4.9.6.5.1 Preferred Method If a branch table is placed in a data segment
separate from the code, each entry should be a byte displacement from a dispatch
address located in the code segment to the branch target for that entry.

A sample branch table and its using code is shown below:

4–62 November 17, 2003

OpenVMS I64 Conventions
4.9 Data Allocation

//
// Assume case index in loc0
//

addl loc1=@ltoff($DSPTBL1), gp // addr of GOT entry
ld8 loc2=[loc1] // load addr of dsp table
shladd loc3=loc0,3,loc2 // calc addr of dsp entry
ld8 loc4=[loc3] // load dsp table entry

$DA1: mov loc5=ip // get "dispatch address"
add loc6=loc5,loc4 // calc target address
mov b6=loc6
br.cond b6 // perform dispatch

$L1: {target for case 1}
...

$L2: {target for case 2}
...

... etc

// The dispatch table is in the linkage section. It consists
// of only constants (no relocations involved)
//
$DSPTBL1:

.data8 $L1-$DA1

.data8 $L2-$DA1
.
.
.

4.9.6.5.2 Alternative Method If a branch table is placed in the same segment
as the code, each table entry should be a 64-bit byte displacement from the base
of the branch table to the branch target for that entry.

A sample indirect branch is shown below. The branch table is assumed to be
an array of entries, each of which is an offset relative to the beginning of the
branch table to the branch target. The branch table index is assumed to have
been computed or loaded into register LOC0.

addl loc1=@ltoff(brtab),gp // calc. address of
;; // linkage table entry
ld8 loc2=[loc1] ;; // load addr. of br. table
shladd loc3=loc0,3,loc2 ;; // calc. address of branch

// table entry
ld8 loc4=[loc3] ;; // load branch table entry
add loc5=loc4,loc2 ;; // calc. target address
mov b6=loc5 ;; // move address to B6...
br.cond b6 ;; // ...and branch

November 17, 2003 4–63

5
Signature Information and Translated Images

(Alpha and I64 Systems Only)

To support interoperation between images built from native OpenVMS Alpha
code and images translated from OpenVMS VAX code, native Alpha compilers
can optionally generate information that describes the parameters and result
of a procedure. Similarly, for interoperation between images built from native
OpenVMS I64 code and images translated from VAX or Alpha code, I64 compilers
can also optionally generate information that describes the parameters and result
of a procedure. This auxiliary information is called signature information.

Translated VAX code on Alpha and I64 systems uses VAX argument list and
function return conventions as described in Section 2.4 and Section 2.5.

Translated Alpha code on I64 systems uses Alpha argument list and function
return conventions as described in Chapter 3.

The following sections describe the conventions for using signature information to
control the passing of arguments and returning a function value when a native
procedure passes control to a translated procedure and vice versa.

The Translated Image Executive (TIE) is the user-mode support facility (itself a
sharable image) that performs the following functions:

• Mediates calls between native and translated code

• Controls execution of translated code

• Performs interpretation where necessary

5.1 Overview
OpenVMS compilers for Alpha and I64 provide a compilation option that causes
signature information to be included in the resulting object file. To support
interoperation between OpenVMS native and translated code, the native code
must contain signature information.

With one exception related to indirect calls (see Section 5.1.1.3 and
Section 5.1.2.3), code generation is not affected by the presence or absence of
translated code support.

The operation of translated images on OpenVMS Alpha and I64 systems is very
similar, though different in certain details.

5.1.1 Translated VAX Images on Alpha Systems
When a VAX image is translated to an Alpha image, the VAX registers R0–15
are represented using the lower half of the corresponding Alpha registers R0–15
at call interface boundaries. No ‘‘type conversion’’ is performed in making
parameters from either native or translated code available to each other.

November 17, 2003 5–1

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.1 Overview

5.1.1.1 Direct Calls From Translated to Native Code
When the TIE encounters a call in translated code that passes control to native
Alpha code, it obtains signature information for the target procedure using the
PDSC$W_SIGNATURE_OFFSET field of the target procedure descriptor (see
Section 3.4.1).

If the value in the PDSC$W_SIGNATURE_OFFSET is zero, then no signature
information is available, the call cannot be performed, and the TIE signals an
error.

Otherwise, the TIE uses the signature information to create an appropriate
Alpha argument list (in the integer registers and stack as appropriate), then
calls the native procedure. When control returns, the TIE obtains the returned
result (if any), makes it available to translated code, and resumes translated code
execution.

5.1.1.2 Direct Calls From Native to Translated Code
Calls from native Alpha code to a routine in a translated image depend on special
linker and image activator support. If the linker can confirm that the target of
the call is also in native code (because the target is local to the same image), then
the call is resolved normally. Otherwise, the linker passes the compiler generated
signature information for use by the image activator.

If the image activator can determine that the target of the call is also in native
code, then the call is resolved normally. Otherwise, the image activator creates a
bound procedure descriptor (see Section 3.6.4) and resolves the procedure value
to that descriptor. This descriptor is setup to pass control to a special TIE entry
point which obtains the target VAX procedure value and signature information
from that same descriptor.

5.1.1.3 Indirect Calls From Native to Translated Code
If interoperation with translated images is not required, then an indirect call is
made as described in Section 3.6.3. If interoperation with translated images must
be considered, the procedure value (in R4 in the following example) might be the
address of a VAX entry point or the address of an Alpha procedure descriptor.

A VAX entry point can be dynamically distinguished from an Alpha procedure
descriptor by examining bits 12 and 13 of a VAX entry call mask, which are
required to be 0 by the VAX architecture. For an Alpha procedure, bit 12
corresponds to the PDSC$V_NATIVE flag, which is required to be set in all
Alpha procedure descriptors. Bit 13 corresponds to the PDSC$V_NO_JACKET
flag, which is currently required to be set but reserved for enhancements to this
standard in all Alpha procedure descriptors.

If the procedure value is determined to correspond to an Alpha procedure, then
the call can be completed as discussed. If the procedure value is determined to
correspond to a VAX procedure, then the call must be completed using system TIE
facilities that will effect the transition into and out of the code of the translated
image.

Example 5–1 illustrates a code sequence for examining the procedure value.

Example 5–1 Code for Examining the Procedure Value

(continued on next page)

5–2 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.1 Overview

Example 5–1 (Cont.) Code for Examining the Procedure Value

LDL R28,0(R4) ;Load the flags field of the target PDSC
MOV #AI_LITERAL,R25 ;Load Argument Information register
SRL R28,#PDSC$V_NO_JACKET,R26 ;Position jacket flag
BLBC R26,CALL_JACKET ;If clear then jacket needed
LDQ R26,8(R4) ;Entry address to scratch register
MOV R4,R27 ;Procedure value to R27
JSR R26,(R26) ;Call entry address.

back_in_line:
... ;Rest of procedure code goes here

TRANSLATED: ;Generated out of line, R2 contains a
LDQ R26,N_TO_T_LKP(R2) ;Entry address to scratch register
LDQ R27,N_TO_T_LKP+8(R2) ;Load procedure value
MOV R4,R23 ;Address of routine to call to R23
JSR R26,(R26) ;Call jacket routine
BR back_in_line ;Return to normal code path

CALL_JACKET: ;
SRL R28,#PDSC$V_NATIVE,R28;Jacketing for translated or native?
LDA R24,PSIG_OUT(R2) ;Pass address of our argument

; signature information in R24
BLBC R28,TRANSLATED ;If clear, then translated jacketing
(Native Jacketing Reserved for Future Use)
BR back_in_line ;Return to normal code path

In Example 5–1, TIE jacketing functionality is provided by the SYS$NATIVE_
TO_TRANSLATED routine. This system procedure is called with the actual
arguments for the target procedure in their normal locations (as though the
target procedure were an Alpha procedure) and with two additional, nonstandard
arguments:

• R23 contains the procedure value for the target VAX procedure.

• R24 contains the address of a signature information block for the call, as
described in Section 5.2.

The conventions just described are normally accomplished using the special
service routine OTS$CALL_PROC. The actual parameters to the target function
are passed to OTS$CALL_PROC as though the target routine is native code that
is being invoked directly. In addition, OTS$CALL_PROC receives two additional
parameters in registers R23 and R24 as described above for SYS$NATIVE_TO_
TRANSLATED.

5.1.2 Translated Images on I64 Systems
When a VAX or Alpha image is translated to an I64 image, there is no defined
relationship between the registers in the original image and those in the I64
image. Information can only be passed between translated and native code
using the arguments and function result in accordance with the signature
information present in the I64 image. For calls between a translated VAX and
a translated Alpha image on I64 systems, the rules for calls between translated
VAX and native Alpha images apply and make use of signature information in
the translated Alpha image.

OpenVMS I64 implements a static mapping that:

• Allows an address corresponding to a translated image to be identified

• Specifies whether it is an Alpha or VAX translated image

November 17, 2003 5–3

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.1 Overview

However, the means for creating and accessing this mapping is not part of this
calling standard.

It is not possible for dynamically generated non-native code to be reflected in
this mapping. As a result, OpenVMS does not support translated images that
dynamically generate non-native code and call the in-memory result.

5.1.2.1 Calls From Translated to Native I64 Code
When the TIE encounters a call in translated code that passes control to native
I64 code, it obtains signature information for the target routine from the function
descriptor for that routine.

If the value in the signature information field is zero, then no signature
information is available, the call cannot be performed, and the TIE signals an
exception.

Otherwise, the TIE uses the signature information to create an appropriate
I64 argument list (in the stacked registers and memory stack as appropriate),
then calls the target native function. When control returns, the TIE obtains the
returned result (if any), makes it available to the translated code, and resumes
translated code execution.

To assure that any routine that can potentially be called from translated code
has either signature information or a zero indicating the lack of signature
information, it is necessary that every official function descriptor be allocated
with room for the signature information field.

5.1.2.2 Direct Calls From Native I64 Code to Translated Code
Calls from native I64 code to a routine in a translated image depend on special
linker and image activator support. If the linker can confirm that the target
of a call is also in native code (because the target is local to the same image),
then the call is resolved normally. Otherwise, the linker creates an import stub
and an associated local function descriptor in the linkage table in the normal
way; however, in this case the local function descriptor must be a jacket function
descriptor as described below.

The linker also passes through the compiler generated signature information for
use by the image activator. If the image activator can determine that the target
of a call is also in native code, then the jacket function descriptor is initialized
as for a simple function descriptor (the extra space in the jacket descriptor is
unused). Otherwise, the image activator initializes the jacket function descriptor
so that the call using that descriptor will transfer control into the TIE.

A jacket function descriptor is similar to a bound function descriptor (see
Section 4.7.7) except that it initially transfers control to an entry point in the TIE.
The TIE uses the signature information field together with other information in
the descriptor to construct an appropriate parameter list for the translated code
and effects the transfer of control into that code. When the call completes, control
returns to the TIE, which sets up the return value for the native code and returns
to normal execution.

A jacket function descriptor consists of the following fields:

• Entry (code) address of the TIE entry point that handles transfers of control
into translated code

• Pseudo-GP value, which is the address of the jacket function descriptor

• Signature information for the call (see Section 5.1.3)

5–4 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.1 Overview

• Function pointer to the official function descriptor for the entry point in the
translated image (or other unique identification that can be interpreted by the
TIE)

More complete details are beyond the scope of this Standard.

Calls made by translated code to other entry points in translated code are not
visible to the OpenVMS I64 calling standard. From the outside, a call from
native I64 code to translated code looks like a single call to the TIE entry point,
regardless of how many calls are made within the translated image.

5.1.2.3 Indirect Calls From Native to Translated Code
When translated code support is not requested, the code generated for calling a
dynamic function value follows the I64 conventions. In particular, the target code
address and target global pointer value are obtained from the function pointer
and used in the standard way (Section 4.7.3.2.)

When translated code support is requested, the compiled code must instead call a
special service routine, OTS$CALL_PROC. The actual parameters to the target
function are passed to OTS$CALL_PROC as though the target routine is native
code that is being invoked directly. In addition, OTS$CALL_PROC receives two
additional parameters in special registers:

• R17 contains the address of a signature information block for the call (see
Section 5.1.3).

• R18 contains the function pointer for the target of the call.

OTS$CALL_PROC first determines whether the target routine is part of a
translated image or not using the static mapping mentioned earlier.

If the target is in native code, then OTS$CALL_PROC completes the call in a way
that makes its mediation transparent (that is, control need not pass back through
it for the return). The native parameters are used without modification.

If the target is in translated code, then OTS$CALL_PROC passes control to the
TIE which handles the call as described in Section 5.1.2.2.

5.1.3 Signature Information Fields in Function Descriptors
The signature information field of the function descriptor is encoded using the low
three bits of the field as a tag that specifies the interpretation of the rest of the
field. Table 5–1 contains the meaning of the values specified by the tag value.

Table 5–1 Signature Information Field Tag Values

Tag Value
(low 3 bits) Meaning

0 The signature information field as a whole (including the tag bits) is the
address of a signature information block (see Section 5.2). However, if the
address is null, no signature information is available.

1 Default signature information applies, which is based on the information
in the argument information register (see Section 5.2.5). In this case the
rest of the field must be zero.

(continued on next page)

November 17, 2003 5–5

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.1 Overview

Table 5–1 (Cont.) Signature Information Field Tag Values

Tag Value
(low 3 bits) Meaning

2 The field as a whole is a signature information block (see Section 5.2) that
is immediately contained in the function descriptor. This can only be used
for a signature information block whose size is less than or equal to 64 bits
(which can represent up to 12 arguments).

3—7 Reserved.

5.2 Signature Information Blocks
Signature information blocks on Alpha and I64 systems are nearly identical in
content and interpretation. However, they differ in the following ways:

• Signature information blocks are associated with the corresponding Alpha
procedure descriptor or I64 function descriptor differently (see Section 5.1).

• Signature information fields are arranged in different orders.

• An I64 signature information block includes control information that is not
present in an Alpha signature information block (see Section 5.1.3).

5.2.1 Signature Information on Alpha Systems
If a procedure is compiled with signature information, PDSC$W_SIGNATURE_
OFFSET contains a byte offset from the procedure descriptor to the start of a
signature information block. The maximum size of the signature information
block is 72 bytes (defined by constant PSIG$K_MAX_SIZE). The fields defined
in the signature information block are illustrated in Figure 5–1 and described in
Table 5–2.

Figure 5–1 Alpha Signature Information Block (PSIG)

ZK−4713A−GE

PSIG

SUMMARY
<31:28>

REG_ARG_INFO
<27:4>

*FRET
<3:0>

quadword aligned

ARG_COUNT
<7:0>

MEMORY_ARG_INFO
(for argument counts 7 to 255)

:0 (from PDSC$W
_SIGNATURE

_OFFSET)

:8

:4

PSIG$K_MAX_SIZE = 72
* FRET = PSIG$V_FUNC_RETURN

5.2.2 Signature Information on I64 Systems
Signature information is represented in Figure 5–2, and is explained in Table 5–2,
Table 5–3, and Table 5–4.

Signature information is defined only for standard calls, that is, for normal
parameters passed using standard mechanisms and locations as defined in this
calling standard. For all other cases, the signature information will be null so
that an attempted call between native and translated code will fail.

5–6 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Figure 5–2 I64 Signature Information Block (PSIG)

REG_ARG_INFO
<55:24>

MEMORY_ARG_INFO
(for arguments 9 to 255)

ARG_COUNT
<23:16>

*SUMM
<15:12>

*FRET
<11:8>

X
<7:3>

CTRL
<2:0>

VM-1028A-AI

quadword aligned

:8

:0

PSIG$K_MAX_SIZE = 72 bytes
* FRET = PSIG$V_FUNC_RETURN
* SUMM = PSIG$V_SUMMARY

5.2.3 Signature Information Block Content
The content of Alpha and I64 signature information blocks is described in
Table 5–2, Table 5–3, and Table 5–4. Table 5–2 omits reference to particular bit
positions. In these tables and subsequence sections, the following logical names
are used to refer to corresponding Alpha and Itanium registers:

Name Interpretation
Alpha
Register Itanium Register

RetVal First (or only) integer return register R0 R8

RetVal2 Second integer return register R1 R9

RetFlt First (or only) floating-point return
register

F0 F8 for S_ & T_
floating
R8 for F_, D_ & G_
floating

RetFlt2 Second floating-point return register F1 F9 for S_ & T_
floating
R9 for F_, D_ & G_
floating

Table 5–2 Contents of the Signature Information Block (PSIG)

Field Name Contents

PSIG$V_CTRL (I64 systems only) A 3-bit control information field. Not used in a signature
information block. Contents are unspecified. Allows a signature information
block to occur as an immediate value in the signature information field of a
function descriptor (see Section 5.1.3).

PSIG$V_X (I64 systems only) A 5-bit unused field. Must be zero.

(continued on next page)

November 17, 2003 5–7

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Table 5–2 (Cont.) Contents of the Signature Information Block (PSIG)

Field Name Contents

PSIG$V_FUNC_RETURN A 4-bit field that describes which registers are used for the function value
return (if there is one) and what format is used for those registers.

Table 5–4 lists and describes the possible encoded values of PSIG$V_FUNC_
RETURN.

PSIG$V_REG_ARG_INFO A field that is divided into groups of 4 bits that correspond to the arguments
that can be passed in registers. There are six groups for a total of 24 bits on
Alpha systems and eight groups for a total of 32 bits on I64 systems. The
first group (lowest order bits) describes the first register argument, the second
group (next lowest order bits) describes the second register argument, and so
on. Table 5–3 lists the possible codes.

PSIG$V_SUMMARY A 4-bit field that contains coded argument signature information as follows:

Bit Name Meaning

0, 1 PSIG$M_SU_ASUM Summary of arguments 7 through PSIG$B_
ARG_COUNT:
00 � All arguments are 64-bit or not used
01 � All arguments are 32-bit sign extended
or not used
10 � Reserved
11 � Other (not 00 or 01)

2 PSIG$M_SU_VLIST VAX formatted argument list expected

3 Must be 0 (reserved)

PSIG$M_SU_ASUM values of 00 and 01 (binary) allow a quick test for the
occurrence of either an all 32-bit or an all 64-bit argument list. The values
for the PSIG$V_MEMORY_ARG_INFO field must be valid even when these
occurrences apply.

PSIG$B_ARG_COUNT Unsigned byte (bits 0–7) that specifies the number of 64-bit argument items
described in the argument signature information. This count includes the
initial arguments that are passed in registers.

PSIG$V_MEMORY_ARG_
INFO

Array of 2-bit values that describe each of the arguments through PSIG$B_
ARG_COUNT that are passed in memory (rather than registers). PSIG$S_
MEMORY_ARG_INFO data is only defined for the arguments described by
PSIG$B_ARG_COUNT. These memory argument signature bits are defined as
follows:

Value Name Meaning 1

0 MASE$K_MA_Q 64-bit argument

1 Reserved

2 MASE$K_MA_I32 32-bit sign-extended argument

3 Reserved

1For a more detailed description of these conversions, see Section 5.2.4.

5–8 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Table 5–3 Register Argument Signature Encodings

Value Name Meaning 1�2

0 RASE$K_RA_NOARG Argument is not present

1 RASE$K_RA_Q 64-bit argument passed in an integer register

2 RASE$K_RA_I32 32-bit argument sign extended to 64 bits passed in an integer register

3 RASE$K_RA_U32 32-bit unsigned argument zero extended to 64 bits passed in an integer
register

4 RASE$K_RA_FF F_floating argument passed in a floating-point register on Alpha or a
general register on I64 systems

5 RASE$K_RA_FD D_floating argument passed in a floating-point register on Alpha or a
general register on I64 systems

6 RASE$K_RA_FG G_floating argument passed in a floating-point register on Alpha or a
general register on I64 systems

7 RASE$K_RA_FS S_floating argument passed in a floating-point register

8 RASE$K_RA_FT T_floating argument passed in a floating-point register

9–15 Reserved for future use

Table 5–4 Function Return Signature Encodings

Value Name Meaning 1�2

0 PSIG$K_FR_I64 64-bit result in RetVal
or No function result provided
or First parameter mechanism used

1 PSIG$K_FR_D64 64-bit result with low 32 bits sign extended in RetVal and high 32
bits sign extended in RetVal2

2 PSIG$K_FR_I32 32-bit sign extended to 64-bit result in RetVal

3 PSIG$K_FR_U32 32-bit unsigned result (zero extended) in RetVal

4 PSIG$K_FR_FF F_floating result in RetFlt

5 PSIG$K_FR_FD D_floating result in RetFlt

6 PSIG$K_FR_FG G_floating result in RetFlt

7 PSIG$K_FR_FS S_floating result in RetFlt

8 PSIG$K_FR_FT T_floating result in RetFlt

9, 10 Reserved for future use

11 PSIG$K_FR_FFC F_floating complex result in RetFlt and RetFlt2

12 PSIG$K_FR_FDC D_floating complex result in RetFlt and RetFlt2

13 PSIG$K_FR_FGC G_floating complex result in RetFlt and RetFlt2

14 PSIG$K_FR_FSC S_floating complex result in RetFlt and RetFlt2

15 PSIG$K_FR_FTC T_floating complex result in RetFlt and RetFlt2

1For a more detailed description of these conversions, see Section 5.2.4.
2The X_floating and X_floating complex data types do not appear in this table because these types are not passed using
the by value mechanism (see Section 3.7.5.1 and Section 4.7.5.1).

November 17, 2003 5–9

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

5.2.4 Call Parameter PSIG Conversions
Note that for the purposes of translated images, an address on OpenVMS Alpha
or I64 is described using RASE$K_RA_I32 or MASE$K_MA_I32 as appropriate.

5.2.4.1 Native-Alpha-to-Translated-VAX PSIG Conversions
A detailed description of the native-to-translated call conversions for the PSIG$V_
REG_ARG_INFO and the PSIG$V_FUNC_RETURN field values is given in
Table 5–5.

Table 5–5 Native-to-Translated Conversion of the PSIG Field Values

Name Description

PSIG$V_REG_ARG_INFO Field Conversions

RASE$K_RA_Q The low-order 32 bits of the native integer register contents are
used to fill the first of two longword entries in the VAX formatted
argument list, while the high-order 32 bits are used to fill the
second longword entry. This counts as two arguments in the VAX
formatted argument list.

RASE$K_RA_I32
RASE$K_RA_U32

The low-order 32 bits of the integer register contents are used to fill
one longword entry in the VAX formatted argument list passed to
the translated procedure. The high-order 32 bits are ignored. This
counts as one argument in the VAX formatted argument list.

RASE$K_RA_FF The single-precision contents of a floating-point register are used to
fill one longword entry in the VAX formatted argument list passed
to the translated procedure. This counts as one argument in the
VAX formatted argument list. The Alpha store instruction STF (or
an equivalent sequence on Itanium systems) is used to place the
register contents into memory.

RASE$K_RA_FD
RASE$K_RA_FG

The double-precision contents of a floating-point register are used to
fill two longword entries in the VAX formatted argument list passed
to the translated procedure. This counts as two arguments in the
VAX formatted argument list. The Alpha store instruction STG (or
an equivalent sequence on Itanium systems) is used to place the
register contents into memory.

RASE$K_RA_FS
RASE$K_RA_FT

Undefined.

PSIG$V_MEMORY_ARG_INFO Field Conversions

MASE$K_MA_Q
MASE$K_MA_I32

These convert like the RASE$K_RA_Q and RASE$K_RA_I32 field
conversions, except that the native argument list entry is stored in
memory (rather than in a register).

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_I64 The translated code is returning a 64-bit result split between
VAX R0 and R1. The low-order 32 bits of R1 are shifted left and
combined with the low-order 32 bits of R0 to form the 64-bit result
that is returned to the native caller in RetVal.

PSIG$K_FR_D64 The translated code is returning a 64-bit result split between VAX
R0 and R1. Both R0 and R1 are sign extended from 32 to 64 bits
and returned to the native caller in RetVal and RetVal2.

(continued on next page)

5–10 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Table 5–5 (Cont.) Native-to-Translated Conversion of the PSIG Field Values

Name Description

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_I32
PSIG$K_FR_U32

The translated code is returning a 32-bit result in VAX R0. R0 is
sign extended from 32 to 64 bits and returned to the native caller in
RetVal.

PSIG$K_FR_FF The single-precision contents of the result in VAX R0 is loaded into
native register RetFlt.

PSIG$K_FR_FD
PSIG$K_FR_FG

The double-precision contents in VAX registers R0 and R1 are
combined and loaded into native register RetFlt.

PSIG$K_FR_FS
PSIG$K_FR_FT

Undefined.

PSIG$K_FR_FFC The single-precision complex contents in VAX registers R0 and R1
are loaded into native registers RetFlt and RetFlt2.

PSIG$K_FR_FDC
PSIG$K_FR_FGC

The translated code is returning a double-precision complex result
using the hidden first parameter method (by reference). The storage
for the result is allocated prior to the call and the address is passed
as the extra parameter. Upon return, the result is copied from the
temporary storage into the native floating-point return registers
and returned to the native caller.

PSIG$K_FR_FSC
PSIG$K_FR_FTC

Undefined.

In all 64-bit cases, the longword at the lower memory address forms the earlier
argument in the VAX formatted argument list. Also, for single-precision floating-
point types, the unused 32 bits of an native 64-bit argument list entry are
undefined.

5.2.4.2 Translated-VAX-to-Native-Alpha PSIG Conversions
A detailed description of the translated-to-native call conversions for the PSIG$V_
REG_ARG_INFO and the PSIG$V_FUNC_RETURN field values is given in
Table 5–6.

November 17, 2003 5–11

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Table 5–6 Translated-to-Native Conversion of the PSIG Field Values

Name Description

PSIG$V_REG_ARG_INFO Field Conversions

RASE$K_RA_Q The contents of two successive longwords from the VAX formatted
argument list are combined to form a single quadword value that is
placed in an integer register. This counts as one argument in the
native argument list.

RASE$K_RA_I32
RASE$K_RA_U32

The contents of one longword entry from the VAX formatted
argument list is sign extended and placed in the integer register.
This counts as one argument in the native argument list.

RASE$K_RA_FF A single longword entry from the VAX formatted argument list is
used to form a floating-point value in a floating-point register. This
counts as one argument in the native argument list. The Alpha load
instruction LDF (or an equivalent sequence on I64 systems) is used
to place the argument in the floating-point register.

RASE$K_RA_FD
RASE$K_RA_FG

Two longword entries from the VAX formatted argument list are
combined to form a single floating-point value in a floating-point
register. This counts as one argument in the native argument list.
The Alpha load instruction LDG (or an equivalent sequence on I64
systems) is used to place the argument in the floating-point register.

RASE$K_RA_FS
RASE$K_RA_FT

Undefined.

PSIG$V_MEMORY_ARG_INFO Field Conversions

MASE$K_MA_Q
MASE$K_MA_I32

These convert like RASE$K_RA_Q and RASE$K_RA_I32 field
conversions, except that the native argument list entry is stored in
memory (rather than a register).1

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_I64 The native code is returning a 64-bit result in RetVal. The high 32
bits of RetVal are moved to the VAX R1 register and the low 32 bits
of RetVal are moved to the VAX R0 register. The 64-bit result is
then returned to the translated caller in VAX R0 and R1.

PSIG$K_FR_D64 The native code is returning a 64-bit result split between RetVal
and RetVal2. Both are returned to the translated caller in place.

PSIG$K_FR_I32
PSIG$K_FR_U32

The native code is returning a 32-bit result in RetVal. The low 32
bits of RetVal are returned to the translated caller.

PSIG$K_FR_FF The single-precision result in native register RetFlt is returned in
the VAX register R0.1

PSIG$K_FR_FD
PSIG$K_FR_FG

The double-precision result in native register RetFlt is returned in
VAX registers R0 and R1.

PSIG$K_FR_FS
PSIG$K_FR_FT

Undefined.

PSIG$K_FR_FFC The single-precision complex result in native registers RetFlt and
RetFlt2 is returned in the VAX registers R0 and R1.1

1Note that for single-precision floating-point types, the unused 32 bits of a native 64-bit argument list
entry are undefined.

(continued on next page)

5–12 November 17, 2003

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Table 5–6 (Cont.) Translated-to-Native Conversion of the PSIG Field Values

Name Description

PSIG$V_FUNC_RETURN Field Conversions

PSIG$K_FR_FDC
PSIG$K_FR_FGC

The native code is returning a double-precision complex result in the
native floating-point registers. The result is copied into the storage
given by the hidden first parameter passed by the translated caller.

PSIG$K_FR_FSC
PSIG$K_FR_FTC

Undefined.

5.2.4.3 Native-I64-to-Translated-Alpha PSIG Conversions
Conversion of native I64 arguments and results and translated Alpha arguments
and results is trivial; it is concerned solely with moving the already properly
formatted data to the appropriate location for the target environment.

5.2.4.4 Translated-Alpha-to-Native-I64 PSIG Conversions
Conversion of translated Alpha arguments and results and native I64 arguments
and results is trivial; it is concerned solely with moving the already properly
formatted data to the appropriate location for the target environment.

5.2.5 Default Signature Information
Default signature information is defined for common special cases. Such a default
is a short-hand description that can always be represented explicitly but may
sometimes be more compact than the corresponding explicit representation.

Translated VAX Image Calling a Native Alpha Procedure

• The number of parameters is taken from the count byte in the VAX argument
list

• All parameters (if any) are 32-bit sign extended (RASE$K_RA_I32 for register
arguments, MASE$K_MA_I32 for memory arguments).

• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

Native Alpha Procedure Calling a Translated VAX Image

• The number of parameters passed is contained in the AI (R25) register.

• The register parameters (if any) are described in the AI register.

• The memory parameters (if any) are 32-bit sign extended (MASE$K_MA_I32).

• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

Translated VAX or Alpha Image Calling a Native I64 Procedure

• The number of parameters is taken from the count byte in the VAX argument
list or the argument count in the Alpha AI register (R25) as appropriate.

• All parameters (if any) are 32-bit sign extended (RASE$K_RA_I32 for register
arguments, MASE$K_MA_I32 for memory arguments).

• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

November 17, 2003 5–13

Signature Information and Translated Images (Alpha and I64 Systems Only)
5.2 Signature Information Blocks

Native I64 Procedure Calling a Translated VAX or Alpha Image

• The number of parameters is contained in the I64 AI (R25) register.

• The register parameters (if any) are described in the AI register.

• The memory parameters (if any) are 32-bit sign extended (MASE$K_MA_I32).

• The function result (if any) is 32-bit sign extended (PSIG$K_FR_I32).

5–14 November 17, 2003

6
OpenVMS Argument Data Types

This chapter defines the argument-passing data types that are used to call a
procedure for OpenVMS VAX, Alpha, and I64 environments. All features defined
here apply to all OpenVMS systems unless otherwise noted.

Each data type implemented for a high-level language uses one of the following
classes of VAX data types for procedure parameters and elements of file records:

• Atomic

• String

• Miscellaneous

When existing data types fail to satisfy the semantics of a language, new data
types, including certain language-specific ones, are added to this standard. These
data types can generally be passed by immediate value (if 32 bits or less), by
reference, or by descriptor.

Each data type code presented in this chapter indicates a unique data format.
Use these encodings whenever you need to identify data types to achieve greater
commonality across user software.

The encoding given in Sections 6.1 and 6.2 can help you to identify data types,
such as in a descriptor. However, in addition to their use in descriptors, these
data type codes are also useful for identifying VAX, Alpha, and I64 data types in
areas outside the scope of the calling standard. Therefore, each data-type code
indicates a unique data format independent of its use in descriptors.

Some data types are composed of a recordlike structure consisting of two or more
elementary data types. For example, the F_floating complex (FC) data type is
made up of two F_floating data types, and the varying character string (VT) data
type is made up of a word (unsigned, WU) data type followed by a character
string (T) data type.

Unless stated otherwise, all data types in this standard represent signed
quantities. The unsigned quantities do not allocate space for the sign; all bit or
character positions are used for significant data.

6.1 Atomic Data Types
Table 6–1 shows how atomic data types are defined and encoded for VAX, Alpha,
and I64 environments.

November 17, 2003 6–1

OpenVMS Argument Data Types
6.1 Atomic Data Types

Table 6–1 Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_Z 0 Unspecified

The calling program has specified no data type. The
default argument for the called procedure should be
the correct type.

DSC$K_DTYPE_BU 2 Byte (unsigned)

8-bit unsigned quantity.

DSC$K_DTYPE_WU 3 Word (unsigned)

16-bit unsigned quantity.

DSC$K_DTYPE_LU 4 Longword (unsigned)

32-bit unsigned quantity.

DSC$K_DTYPE_QU 5 Quadword (unsigned)

64-bit unsigned quantity.

DSC$K_DTYPE_OU 25 Octaword (unsigned)

128-bit unsigned quantity.

DSC$K_DTYPE_B 6 Byte integer (signed)

8-bit signed two’s complement integer.

DSC$K_DTYPE_W 7 Word integer (signed)

16-bit signed two’s complement integer.

DSC$K_DTYPE_L 8 Longword integer (signed)

32-bit signed two’s complement integer.

DSC$K_DTYPE_Q 9 Quadword integer (signed)

64-bit signed two’s complement integer.

DSC$K_DTYPE_O 26 Octaword integer (signed)

128-bit signed two’s complement integer.

DSC$K_DTYPE_F 10 F_floating

32-bit F_floating quantity representing a single-
precision number.

DSC$K_DTYPE_D1 11 D_floating

64-bit D_floating quantity representing a double-
precision number.

DSC$K_DTYPE_G 27 G_floating

64-bit G_floating quantity representing a double-
precision number.

1While the calling standard supports the manipulation of D_floating and D_floating complex data,
compiled code support will invoke conversion from D_floating to G_floating as needed for Alpha and
Itanium arithmetic operations, and conversion of G_floating intermediate results back to D_floating
when needed for stores to memory or parameter passing. This allows D_floating data to be used in
Alpha and Itanium arithmetic operations without required source changes but with results limited to
G_floating precision.

(continued on next page)

6–2 November 17, 2003

OpenVMS Argument Data Types
6.1 Atomic Data Types

Table 6–1 (Cont.) Atomic Data Types

Symbol Code Name/Description

†DSC$K_DTYPE_H2 28 H_floating

128-bit H_floating quantity representing a quadruple-
precision number.

DSC$K_DTYPE_FC 12 F_floating complex

Ordered pair of F_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_DC 13 D_floating complex

Ordered pair of D_floating quantities representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_GC 29 G_floating complex

Ordered pair of G_floating quantities representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

†DSC$K_DTYPE_HC2 30 H_floating complex

Ordered pair of H_floating quantities representing
a quadruple-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FS 52 S_floating

32-bit IEEE S_floating quantity representing a
single-precision number.

‡DSC$K_DTYPE_FT 53 T_floating

64-bit IEEE T_floating quantity representing a
double-precision number.

‡DSC$K_DTYPE_FSC 54 S_floating complex

Ordered pair of S_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FTC 55 T_floating complex

Ordered pair of T_floating quantities representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡DSC$K_DTYPE_FX 57 X_floating

128-bit IEEE X_floating quantity representing an
extended-precision number.

2H_floating data is not supported for general use on OpenVMS Alpha and I64 systems. However,
conversion routines are supplied to allow users to convert existing H_floating data to other storage
representations.
†OpenVMS VAX specific.
‡OpenVMS Alpha and I64 specific.

(continued on next page)

November 17, 2003 6–3

OpenVMS Argument Data Types
6.1 Atomic Data Types

Table 6–1 (Cont.) Atomic Data Types

Symbol Code Name/Description

‡DSC$K_DTYPE_FXC 58 X_floating complex

Ordered pair of X_floating quantities representing an
extended-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

‡OpenVMS Alpha and I64 specific.

6.2 String Data Types
String data types are ordinarily described by a string descriptor. Table 6–2
shows how the string data types are defined and encoded for all OpenVMS
environments.

Table 6–2 String Data Types

Symbol Code Name/Description

DSC$K_DTYPE_T 14 Character string

A single 8-bit character (atomic data type) or a
sequence of 0 to 216

� 1 8-bit characters (string data
type).

DSC$K_DTYPE_VT 37 Varying character string

A 16-bit unsigned count of the current number of
8-bit characters in the following string, followed
by a string of 0 to 216

� 1 8-bit characters (see
Section 6.5 for details). When this data type is used
with descriptors, it can only be used with the varying
string and varying string array descriptors, because
the length field is interpreted differently from the
other 8-bit string data types. (See Sections 6.5, 7.8,
and 7.9 for further discussion.)

DSC$K_DTYPE_NU 15 Numeric string, unsigned

DSC$K_DTYPE_NL 16 Numeric string, left separate sign

DSC$K_DTYPE_NLO 17 Numeric string, left overpunched sign

DSC$K_DTYPE_NR 18 Numeric string, right separate sign

DSC$K_DTYPE_NRO 19 Numeric string, right overpunched sign

DSC$K_DTYPE_NZ 20 Numeric string, zoned sign

DSC$K_DTYPE_P 21 Packed-decimal string

(continued on next page)

6–4 November 17, 2003

OpenVMS Argument Data Types
6.2 String Data Types

Table 6–2 (Cont.) String Data Types

Symbol Code Name/Description

DSC$K_DTYPE_V 1 Aligned bit string

A string of 0 to 216
� 1 contiguous bits. The first bit

is bit <0> of the first byte, and the last bit is any bit
in the last byte. Remaining bits in the last byte must
be 0 on read and are cleared on write. Unlike the
unaligned bit string (VU) data type, when the aligned
bit string (V) data type is used in array descriptors,
the ARSIZE field is in units of bytes, not bits, because
allocation is a multiple of 8 bits.

DSC$K_DTYPE_VU 34 Unaligned bit string

The data is 0 to 216
� 1 contiguous bits located

arbitrarily with respect to byte boundaries. See also
aligned bit string (V) data type. Because additional
information is required to specify the bit position of
the first bit, this data type can be used only with
the unaligned bit string and unaligned bit array
descriptors (see Sections 7.10 and 7.11).

6.3 Miscellaneous Data Types
Table 6–3 shows how miscellaneous data types are defined and encoded for all
OpenVMS environments.

Table 6–3 Miscellaneous Data Types

Symbol Code Name/Description

†DSC$K_DTYPE_ZI 22 Sequence of instructions

†DSC$K_DTYPE_ZEM 23 Procedure entry mask

DSC$K_DTYPE_DSC 24 Descriptor

This data type allows a descriptor to be a data type;
thus, levels of descriptors are allowed.

†DSC$K_DTYPE_BPV 32 Bound procedure value (for VAX environment only)

A two-longword entity in which the first longword
contains the address of a procedure entry mask and
the second longword is the environment value. The
environment value is determined in a language-
specific manner when the original bound procedure
value is generated. When the bound procedure is
called, the calling program loads the second longword
into R1. When the environment value is not needed,
this data type can be passed using the immediate
value mechanism. In this case, the argument list
entry contains the address of the procedure entry
mask and the second longword is omitted.

†VAX specific.

(continued on next page)

November 17, 2003 6–5

OpenVMS Argument Data Types
6.3 Miscellaneous Data Types

Table 6–3 (Cont.) Miscellaneous Data Types

Symbol Code Name/Description

DSC$K_DTYPE_BLV 33 Bound label value

A two-longword entity in which the first longword
contains the address of an instruction and the second
longword is the language-specific environment value.
The environment value is determined in a language-
specific manner when the original bound label value
is generated.

DSC$K_DTYPE_ADT 35 Absolute date and time

A 64-bit unsigned, scaled, binary integer representing
a date and time in 100-nanosecond units offset
from the OpenVMS operating system base date and
time, which is 00:00 o’clock, November 17, 1858 (the
Smithsonian base date and time for astronomical
calendars). The value 0 indicates that the date and
time have not been specified, so a default value or
distinctive print format can be used.

Note that the ADT data type is the same as the
OpenVMS date format for positive values only.

6.4 Reserved Data-Type Codes
All codes from 0 through 191 not otherwise defined in this standard are reserved
to Hewlett-Packard. Codes 192 through 255 are reserved for Hewlett-Packard
custom systems and for customers for their own use.

Table 6–4 lists the data types and codes that are obsolete or reserved to
Hewlett-Packard.

Table 6–4 Reserved Data Types

Symbol Code Purpose

DSC$K_DTYPE_CIT 31 Reserved to COBOL (intermediate temporary)

DSC$K_DTYPE_CIT2 64 Reserved to COBOL (intermediate temporary
alternative 2)

DSC$K_DTYPE_TF 40 Reserved to DEBUG (Boolean true/false)

DSC$K_DTYPE_SV 41 Reserved to DEBUG (signed bit-field, aligned)

DSC$K_DTYPE_SVU 42 Reserved to DEBUG (signed bit-field, unaligned)

DSC$K_DTYPE_FIXED 43 Reserved to DEBUG (fixed binary—fixed point in Ada
and fixed binary in PL/I)

DSC$K_DTYPE_TASK 44 Reserved to DEBUG (task type in Ada)

DSC$K_DTYPE_AC 45 Reserved to DEBUG (ASCIC text)

DSC$K_DTYPE_AZ 46 Reserved to DEBUG (ASCIZ text)

DSC$K_DTYPE_M68_S 47 Reserved to DEBUG (Motorola 68881 single precision,
32-bit)1

DSC$K_DTYPE_M68_D 48 Reserved to DEBUG (Motorola 68881 double
precision, 64-bit)1

1Differs from Alpha IEEE floating because of byte ordering.

(continued on next page)

6–6 November 17, 2003

OpenVMS Argument Data Types
6.4 Reserved Data-Type Codes

Table 6–4 (Cont.) Reserved Data Types

Symbol Code Purpose

DSC$K_DTYPE_M68_X 49 Reserved to DEBUG (Motorola 68881 extended
precision, 96-bit)2

DSC$K_DTYPE_1750_S 50 Reserved to DEBUG (1750 single precision, 32-bit)

DSC$K_DTYPE_1750_X 51 Reserved to DEBUG (1750 extended precision, 48-bit)

DSC$K_DTYPE_WC 56 Reserved to DEBUG (setlocale dependent C string)

DSC$K_DTYPE_F80 59 Reserved to DEBUG (Itanium extended precision,
80-bit)

DSC$K_DTYPE_F80C 60 Reserved to DEBUG (Itanium extended precision
complex, two 80-bit)

DCS$K_DTYPE_FIR 61 Reserved to DEBUG (Itanium Floating Point Register
format, 84-bit)

DCS$K_DTYPE_FIRC 62 Reserved to DEBUG (Itanium Floating Point Register
format complex, two 84-bit)

No symbol defined 36 Obsolete

DSC$K_DTYPE_T2 38 Obsolete

DSC$K_DTYPE_VT2 39 Obsolete

2Differs from Alpha IEEE floating because of byte ordering and size.

6.4.1 Facility-Specific Data-Type Codes
Data-type codes 160 through 191 are reserved to Hewlett-Packard for facility-
specific purposes. These codes must not be passed between facilities because
different facilities can use the same code for different purposes. These codes
might be used by compiler-generated code to pass parameters to the language-
specific run-time support procedures associated with that language or with the
OpenVMS Debugger.

As shown in Table 6–4, data-type codes 31 and 64 are reserved for the COBOL
facility. Codes 40 through 51 and 56 are reserved for the OpenVMS Debugger
facility.

November 17, 2003 6–7

OpenVMS Argument Data Types
6.5 Varying Character String Data Type (DSC$K_DTYPE_VT)

6.5 Varying Character String Data Type (DSC$K_DTYPE_VT)
The varying character string data type (DSC$K_DTYPE_VT) consists of the
following two fixed-length areas allocated contiguously with no padding in
between (see Figure 6–1):

CURLEN An unsigned word specifying the current length in bytes of the immediately
following string.

BODY A fixed-length area containing the string that can vary from 0 to a maximum
length defined for each instance of string. The range of this maximum
length is 0 to 216

� 1.

Figure 6–1 Varying Character String Data Type (DSC$K_DTYPE_VT)—General
Format

ZK−7975A−GE

CURLEN (=n)

BODY

: 0

: 2

: 2 + (n−1)

When passed by reference or by descriptor, the address of the varying character
string (VT) data type is always the address of the CURLEN field, not the BODY
field.

When a called procedure modifies a varying character string data type passed
by reference or by descriptor, it writes the new length, n, into CURLEN and can
modify all bytes of BODY, even those beyond the new length.

For example, consider a varying string with a maximum length of seven
characters. To represent the string ABC, CURLEN will have a value of 3 and the
last four bytes will be undefined, as shown in Figure 6–2.

6–8 November 17, 2003

OpenVMS Argument Data Types
6.5 Varying Character String Data Type (DSC$K_DTYPE_VT)

Figure 6–2 Varying Character String Data Type (DSC$K_DTYPE_VT) Format

3

A

B

C

\ \ \

\ \ \

\ \ \

\ \ \

15 0

7 0

:adr

ZK−1889−GE

November 17, 2003 6–9

7
OpenVMS Argument Descriptors

This chapter describes the argument descriptors used in calling a procedure for
both VAX and Alpha environments.

A uniform descriptor mechanism is defined for use by all VAX and Alpha
procedures that conform to the OpenVMS calling standard. Descriptors are
self-describing and the mechanism is extensible. When existing descriptors fail to
satisfy the semantics of a language, new descriptors are added to this standard.

Unless stated otherwise, the calling program fills in all fields in descriptors. This
is true whether the descriptor is generated by default or by a language extension.
The fields are filled in even if a called procedure written in the same language
ignores the contents of some of the fields. Therefore, a descriptor conforms to this
calling standard if all fields are filled in by the calling program, even if the called
program does not need the field.

Note

Unless stated otherwise, all fields in descriptors represented as unsigned
quantities are read-only from the point of view of the called procedure,
and can be allocated in read-only memory at the option of the calling
program.

If a language processor implements a language-specific data type that is not
added to this standard (see Chapter 6), the processor is not required to use a
standard descriptor to pass an array of such a data type. However, if a language
processor passes an array of such a data type using a standard descriptor, the
language processor fills in the DSC$B_DTYPE field with the value 0, indicating
that the data-type field is unspecified, rather than using a more general data-type
code.

For example, an array of PL/I POINTER data types has the DTYPE field filled in
with the value 0 (unspecified data type), rather than with the value 4 (longword
[unsigned] data type). The remaining fields are filled in as specified by this
standard; for example, DSC$W_LENGTH is filled in with the size in bytes.
Because the language-specific data type might be added to the standard in the
future, generic application procedures that examine the DTYPE field should be
prepared for 0 and for additional data types.

Table 7–1 identifies the classes of argument descriptors for use in the standard
VAX and Alpha environments. Each class has two synonymous names—one
for 32-bit environments (DSC$) and one for 64-bit environments (DSC64$).
Descriptions and formats of each of these descriptors follow.

November 17, 2003 7–1

OpenVMS Argument Descriptors

Table 7–1 Argument Descriptor Classes for OpenVMS Alpha and OpenVMS VAX

Descriptor Code Class

DSC$K_CLASS_S
DSC64$K_CLASS_S

1 Fixed-length scalar/string

DSC$K_CLASS_D
DSC64$K_CLASS_D

2 Dynamic string

DSC$K_CLASS_A
DSC64$K_CLASS_A

4 Contiguous array

DSC$K_CLASS_P1

DSC64$K_CLASS_P1
5 Procedure argument descriptor

DSC$K_CLASS_SD
DSC64$K_CLASS_SD

9 Decimal (scalar) string

DSC$K_CLASS_NCA
DSC64$K_CLASS_NCA

10 Noncontiguous array

DSC$K_CLASS_VS
DSC64$K_CLASS_VS

11 Varying string

DSC$K_CLASS_VSA
DSC64$K_CLASS_VSA

12 Varying string array

DSC$K_CLASS_UBS
DSC64$K_CLASS_UBS

13 Unaligned bit string

DSC$K_CLASS_UBA
DSC64$K_CLASS_UBA

14 Unaligned bit array

DSC$K_CLASS_SB
DSC64$K_CLASS_SB

15 String with bounds

DSC$K_CLASS_UBSB
DSC64$K_CLASS_UBSB

16 Unaligned bit string with bounds

1The pointer field usage for this descriptor differs from VAX usage (see Section 7.5).

7.1 Descriptor Prototype
Figure 7–1 shows the descriptor prototype format. There are two forms: one for
use with 32-bit addresses and one for use with 64-bit addresses. The two forms
are compatible in that the forms can be distinguished dynamically at run time
and, except for the size and consequential placement of fields, 32-bit and 64-bit
descriptors are identical in content and interpretation.

The 32-bit descriptors are used on both OpenVMS VAX and OpenVMS Alpha
systems. When used on OpenVMS Alpha systems, 32-bit descriptors provide
full compatibility with their use on OpenVMS VAX. The 64-bit descriptors are
used only on OpenVMS Alpha systems—they have no counterparts and are not
recognized on OpenVMS VAX systems.

7–2 November 17, 2003

OpenVMS Argument Descriptors
7.1 Descriptor Prototype

Figure 7–1 Descriptor Prototype Format

ZK−4663A−GE

POINTER

LENGTHDTYPECLASS

32−Bit Form (DSC)

:0

:4

ZK−7656A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

The 32-bit descriptors on OpenVMS Alpha systems have no required alignment
for compatibility with OpenVMS VAX systems; however, longword alignment
generally promotes performance. The 64-bit descriptors on OpenVMS Alpha
systems must be quadword aligned.

Table 7–2 describes the fields of the descriptor. In this table and the similar
tables for descriptors in later sections, note that most fields have two symbols
and one description. The symbol that begins with the prefix DSC$ is used with
32-bit descriptors, while the symbol that begins with the prefix DSC64$ is used
with 64-bit descriptors.

In this chapter, it is generally the practice to use only the main part of a
field name, without either of the prefixes used in actual code. For example,
the length field is referred to using LENGTH rather than mentioning both
DSC$W_LENGTH and DSC64$Q_LENGTH. The DSC$ and DSC64$ prefixes are
used only when referring to a particular form of descriptor.

The CLASS and DTYPE fields occupy the same offsets in both 32-bit and 64-bit
descriptors. Thus, the symbols DSC$B_CLASS and DSC64$B_CLASS have the
same definition, as do DSC$B_DTYPE and DSC64$B_DTYPE. Furthermore,
these fields are permitted to contain the same values with the same meanings in
both 32-bit and 64-bit forms.

November 17, 2003 7–3

OpenVMS Argument Descriptors
7.1 Descriptor Prototype

The DSC$W_LENGTH and DSC$A_POINTER fields in the 32-bit descriptors
correspond in placement to the DSC64$W_MBO (must be 1) and DSC64$L_
MBMO (must be -1) fields in the 64-bit descriptors. The values of these fields are
used to distinguish whether a given descriptor has the 32-bit or 64-bit form as
described later in this section.

When the CLASS field is 0, no more information can be assumed than is shown
in Table 7–2.

Table 7–2 Contents of the Prototype Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Defines the data item length specific to the descriptor class.

DSC64$W_MBO In a 64-bit descriptor, this field must contain the value 1. This
field overlays the DSC$W_LENGTH field of a 32-bit descriptor
and the value 1 is necessary to correctly distinguish between the
two forms (see below).

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

DSC$B_CLASS
DSC64$B_CLASS

A descriptor class code that identifies the format and
interpretation of the other fields of the descriptor as specified
in the following sections. This interpretation is intended to be
independent of the DTYPE field, except for the data types that
are made up of units less than a byte (packed-decimal string
[P], aligned bit string [V], and unaligned bit string [VU]). The
CLASS code can be used at run time by a called procedure to
determine which descriptor is being passed.

DSC$A_POINTER
DSC64$PQ_POINTER

The address of the first byte of the data element described.

DSC64$L_MBMO In a 64-bit descriptor, this field must contain the value -1 (all 1
bits). Note that this field overlays the DSC$A_POINTER field
of a 32-bit descriptor and the value -1 is necessary to correctly
distinguish between the two forms (see below).

As previously mentioned, the MBO field (a word at offset 0) and the MBMO
field (a longword at offset 4) are used to distinguish between a 32-bit and 64-bit
descriptor. A called routine that is designed to handle both kinds of descriptors
must do both of the following:

• Confirm that the MBO field contains 1

• Confirm that the MBMO field contains -1

before concluding that it has a 64-bit form descriptor.

Note

It may seem sufficient to test just the MBMO field. However, that allows
a 32-bit descriptor with a length of 0 and an undefined pointer to be
inadvertently treated as a 64-bit descriptor.

If the MBMO field contains -1, then 0 and 1 are the only values of the
MBO field that have defined interpretations.

7–4 November 17, 2003

OpenVMS Argument Descriptors
7.2 Fixed-Length Descriptor (CLASS_S)

7.2 Fixed-Length Descriptor (CLASS_S)
A single descriptor class is used for scalar data and fixed-length strings. Any
OpenVMS data type, except data type 34 (unaligned bit string), can be used
with this descriptor. Figure 7–2 shows the format of a fixed-length descriptor.
Table 7–3 describes the fields of the descriptor.

Figure 7–2 Fixed-Length Descriptor Format

ZK−4664A−GE

POINTER

LENGTHDTYPECLASS (=1)

32−Bit Form (DSC)

:0

:4

ZK−7657A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=1)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Table 7–3 Contents of the CLASS_S Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for bit string. Length
of the data item is the number of 4-bit digits (not including the
sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

(continued on next page)

November 17, 2003 7–5

OpenVMS Argument Descriptors
7.2 Fixed-Length Descriptor (CLASS_S)

Table 7–3 (Cont.) Contents of the CLASS_S Descriptor

Symbol Description

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 1 for
CLASS_S.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

If the data type is 14 (character string) and the string must be extended in
a string comparison or is being copied to a fixed-length string containing a
greater length, the space character (hexadecimal 20 if ASCII) is used as the fill
character.

7.3 Dynamic String Descriptor (CLASS_D)
A class D descriptor is used for dynamically allocated strings. When a string
is written, either the length field, pointer field, or both can be changed. The
OpenVMS Run-Time Library provides procedures for changing fields. As an input
parameter, this format is interchangeable with class 1 (CLASS_S). Figure 7–3
shows the format of a dynamic string descriptor. Table 7–4 describes the fields of
the descriptor.

Figure 7–3 Dynamic String Descriptor Format

ZK−4665A−GE

POINTER

LENGTHDTYPECLASS (=2)

32−Bit Form (DSC)

:0

:4

(continued on next page)

7–6 November 17, 2003

OpenVMS Argument Descriptors
7.3 Dynamic String Descriptor (CLASS_D)

Figure 7–3 (Cont.) Dynamic String Descriptor Format

ZK−7658A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=2)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Table 7–4 Contents of the CLASS_D Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for the bit string.
Length of the data item is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 2 for
CLASS_D.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

7.4 Array Descriptor (CLASS_A)
The array descriptor shown in Figure 7–4 is used to describe contiguous arrays
of atomic data types or contiguous arrays of fixed-length strings. An array
descriptor consists of three contiguous blocks. The first block contains the
descriptor prototype information and is part of every array descriptor. The second
and third blocks are optional. If the third block is present, so is the second.
Table 7–5 describes the fields of the descriptor.

November 17, 2003 7–7

OpenVMS Argument Descriptors
7.4 Array Descriptor (CLASS_A)

Figure 7–4 Array Descriptor Format

ZK−4666A−GE

POINTER

LENGTHDTYPECLASS (=4)

32−Bit Form (DSC)

:0

:4

DIMCT AFLAGS DIGITS SCALE

A0

M1

M (n−1)

Mn

L1

U1

Ln

Un

ARSIZE :12

:16

:20

:8

Block 3
(Bounds)

Block 2
(Multipliers)

Block 1
(Prototype)

:20+4n

:24+4n

(continued on next page)

7–8 November 17, 2003

OpenVMS Argument Descriptors
7.4 Array Descriptor (CLASS_A)

Figure 7–4 (Cont.) Array Descriptor Format

ZK−7659A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=4)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

A0

M1

M (n−1)

Mn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2
(Multipliers)

Block 3
(Bounds)

(Alpha Specific)

November 17, 2003 7–9

OpenVMS Argument Descriptors
7.4 Array Descriptor (CLASS_A)

Table 7–5 Contents of the CLASS_A Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of an array element is in bits for the bit string.
Length of an array element is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 4 for
CLASS_A.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See Section 7.6.)

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

(continued on next page)

7–10 November 17, 2003

OpenVMS Argument Descriptors
7.4 Array Descriptor (CLASS_A)

Table 7–5 (Cont.) Contents of the CLASS_A Descriptor

Symbol Description

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not
set, SCALE specifies a signed
power-of-ten multiplier. (See
Section 7.6.)

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

If set, the array can be
redimensioned; that is, A0, Mi,
Li, and Ui can be changed. The
redimensioned array cannot
exceed the size allocated to the
array ARSIZE.

DSC$V_FL_COLUMN
DSC64$V_FL_COLUMN

If set, the elements of the
array are stored by columns
(FORTRAN). That is, the leftmost
subscript (first dimension)
is varied most rapidly, and
the rightmost subscript (nth
dimension) is varied least rapidly.
If not set, the elements are stored
by rows (most other languages).
That is, the rightmost subscript
is varied most rapidly and the
leftmost subscript is varied least
rapidly.

DSC$V_FL_COEFF
DSC64$V_FL_COEFF

If set, the multiplicative
coefficients in block 2 are present.
Must be set if FL_BOUNDS is
set.

DSC$V_FL_BOUNDS
DSC64$V_FL_BOUNDS

If set, the bounds information in
block 3 is present and requires
that FL_COEFF be set.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

Total size of array (in bytes, unless the TYPE field contains the
value 21; see the description for LENGTH). A redimensioned
array can use less than the total size allocated.

For data type 1 (aligned bit string), LENGTH is in bits while
ARSIZE is in bytes because the unit of length is bits, while the
unit of allocation is aligned bytes.

DSC$A_A0
DSC64$PQ_A0

Address of element A(0,0, . . . ,0). This need not be within the
actual array. It is the same as POINTER for zero-origin arrays.

DSC$L_Mi
DSC64$Q_Mi

Addressing coefficients (Mi = Ui � Li + 1).

(continued on next page)

November 17, 2003 7–11

OpenVMS Argument Descriptors
7.4 Array Descriptor (CLASS_A)

Table 7–5 (Cont.) Contents of the CLASS_A Descriptor

Symbol Description

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of ith dimension.

The following formulas specify the effective address, E, of an array element.

Caution

Modification of the following formulas is required if DTYPE contains a
1 or 21, because LENGTH is given in bits or 4-bit digits rather than in
bytes.

The effective address, E, for element A(I):

E = A0 + I*LENGTH
= POINTER + [I - L1]*LENGTH

The effective address, E, for element A(I1,I2) with FL_COLUMN clear:

E = A0 + [I1*M2 + I2]*LENGTH
= POINTER + [[I1 - L1]*M2 + I2 - L2]*LENGTH

The effective address, E, for element A(I1,I2) with FL_COLUMN set:

E = A0 + [I2*M1 + I1]*LENGTH
= POINTER + [[I2 - L2]*M1 + I1 - L1]*LENGTH

The effective address, E, for element A(I1, . . . ,In) with FL_COLUMN clear:

E = A0 + [[[[...[I1]*M2 + ...]*Mn-2 + In-2]*Mn-1
+ In-1]*Mn + In]*LENGTH
= POINTER + [[[[...[I1 - L1]*M2
+ ...]*Mn-2 + In-2 - Ln-2]*Mn-1
+ In-1 - Ln-1]*Mn + In - Ln]*LENGTH

The effective address, E, for element A(I1, . . . ,In) with FL_COLUMN set:

E = A0 + [[[[...[In]*Mn-1 + ...]*M3 + I3]*M2 + I2]*M1 + I1]*LENGTH
= POINTER + [[[[...[In - Ln]*Mn-1 + ...]*M3 + I3
- L3]*M2 + I2 - L2]*M1 + I1 - L1]*LENGTH

7.5 Procedure Argument Descriptor (CLASS_P)
A descriptor for a procedure argument identifies a procedure and its result data
type, if any.

On VAX processors, the descriptor for a procedure argument specifies its entry
address and function value data type. On Alpha processors, the procedure
argument descriptor is a pointer to the procedure descriptor, which is described
in Section 3.4. Figure 7–5 shows the format of a procedure argument descriptor.
Table 7–6 describes the fields of the descriptor.

7–12 November 17, 2003

OpenVMS Argument Descriptors
7.5 Procedure Argument Descriptor (CLASS_P)

Figure 7–5 Procedure Argument Descriptor Format

ZK−4675A−GE

POINTER

LENGTHDTYPECLASS (=5)

32−Bit Form (DSC)

:0

:4

ZK−7660A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=5)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Table 7–6 Contents of the CLASS_P Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length associated with the function value, or 0 if no function
value is returned.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

Function value data-type code. Data-type codes are listed in
Sections 6.1 and 6.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 5 for
CLASS_P.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of entry mask to the procedure for VAX environments.

Address of the procedure descriptor of the procedure for Alpha
environments.

DSC64$L_MBMO Must be -1. See Section 7.1.

Procedures return a function value as described in Section 2.5 for VAX or
Section 3.7.7 for Alpha.

November 17, 2003 7–13

OpenVMS Argument Descriptors
7.6 Decimal String Descriptor (CLASS_SD)

7.6 Decimal String Descriptor (CLASS_SD)
Figure 7–6 shows the format of a decimal string descriptor. Decimal size and
scaling information for both scalar data and simple strings is given in this
descriptor form. Table 7–7 describes the fields of the descriptor.

Figure 7–6 Decimal String Descriptor Format

ZK−4668A−GE

POINTER

LENGTHDTYPECLASS (=9)

32−Bit Form (DSC)

:0

:4

:8Reserved SFLAGS DIGITS SCALE

(continued on next page)

7–14 November 17, 2003

OpenVMS Argument Descriptors
7.6 Decimal String Descriptor (CLASS_SD)

Figure 7–6 (Cont.) Decimal String Descriptor Format

ZK−7661A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=9)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

Reserved SFLAGS DIGITS SCALE

MBZ

:24

:28

Table 7–7 Contents of the CLASS_SD Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of the data item is in bits for the bit string.
Length of the data item is the number of 4-bit digits (not
including the sign) for packed-decimal string.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 9 for
CLASS_SD.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See examples in Table 7–8.)

(continued on next page)

November 17, 2003 7–15

OpenVMS Argument Descriptors
7.6 Decimal String Descriptor (CLASS_SD)

Table 7–7 (Cont.) Contents of the CLASS_SD Descriptor

Symbol Description

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

DSC$B_SFLAGS
DSC64$B_SFLAGS

Scalar flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not set,
SCALE specifies a signed power-
of-ten multiplier. (See examples
in Table 7–8.)

Bit <23:20> Reserved and must be 0.

Examples of SCALE and FL_BINSCALE interpretation are presented in
Table 7–8.

Table 7–8 Internal-to-External BINSCALE Conversion Examples

Internal Value SCALE FL_BINSCALE External Value

123 +1 0 1230

123 +1 1 246

200 –2 0 2

200 –2 1 50

7.7 Noncontiguous Array Descriptor (CLASS_NCA)
The noncontiguous array descriptor describes an array in which the storage of the
array elements can be allocated with a fixed, nonzero number of bytes separating
logically adjacent elements. Two elements are said to be logically adjacent if their
subscripts differ by 1 in the most rapidly varying dimension only. The difference
between the addresses of two adjacent elements is termed the stride. You can
align elements by row or column, because the accessing algorithm in the called
procedure handles both alignments.

This array descriptor is to be used where the calling program, at its option, can
pass a slice of an array that contains noncontiguous allocations. This standard
indicates no preference between the noncontiguous array descriptor (NCA) and
the contiguous array descriptor (A), as described in Section 7.4, for language
processors that always allocate contiguous arrays. Figure 7–7 shows the format
of a noncontiguous array descriptor, which consists of three contiguous blocks.
Table 7–9 describes the fields of the descriptor.

7–16 November 17, 2003

OpenVMS Argument Descriptors
7.7 Noncontiguous Array Descriptor (CLASS_NCA)

Figure 7–7 Noncontiguous Array Descriptor Format

ZK−4667A−GE

POINTER

LENGTHDTYPECLASS (=10)

32−Bit Form (DSC)

:0

:4

:8DIMCT AFLAGS DIGITS SCALE

ARSIZE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

Block 1
(Prototype)

:12

:16

:20

:20+4n

:24+4n

Block 3
(Bounds)

Block 2
(Strides)

(continued on next page)

November 17, 2003 7–17

OpenVMS Argument Descriptors
7.7 Noncontiguous Array Descriptor (CLASS_NCA)

Figure 7–7 (Cont.) Noncontiguous Array Descriptor Format

ZK−7662A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=10)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2

Block 3
(Bounds)

(Strides)

(Alpha Specific)

7–18 November 17, 2003

OpenVMS Argument Descriptors
7.7 Noncontiguous Array Descriptor (CLASS_NCA)

Table 7–9 Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bytes, unless the DTYPE field
contains the value 1 (aligned bit string) or 21 (packed-decimal
string). Length of an array element is in bits for the bit string.
Length of an array element is the number of 4-bit digits (not
including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Sections 6.1 and
6.2.

DSC$B_CLASS Defines the descriptor class code that must be equal to 10 for
CLASS_NCA.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form.
(See Section 7.6.)

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

(continued on next page)

November 17, 2003 7–19

OpenVMS Argument Descriptors
7.7 Noncontiguous Array Descriptor (CLASS_NCA)

Table 7–9 (Cont.) Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved to Hewlett-Packard.
Must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by
SCALE is a signed power-of-two
multiplier to convert the internal
form to external form. If not
set, SCALE specifies a signed
power-of-ten multiplier. (See
Section 7.6.)

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

Must be 0.

DSC$V_FL_UNALLOC
DSC64$V_FL_UNALLOC

If set, the storage for the array
described by this descriptor has
not been allocated; the POINTER
field must contain 0. If not set,
storage for the array described
by this descriptor has been
allocated; the POINTER field
may or may not be 0, depending
on the bounds of the array. (If
the POINTER field contains a
nonzero value, then this flag
must not be set.)

DSC$V_FL_NODEALLOC If set, the storage for the array
described by this descriptor
must not be deallocated. (The
POINTER and other fields of
this descriptor may be cleared or
otherwise set to eliminate access
to the described storage, but the
storage itself belongs to some
other descriptor which must be
used to deallocate that storage.)

Bit <23:23> Reserved to Hewlett-Packard.
Must be 0.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

If the elements are contiguous, ARSIZE is the total size of the
array (in bytes, unless the DTYPE field contains the value
21; see the description of LENGTH). If the elements are not
allocated contiguously or if the program unit allocating the
descriptor is uncertain whether the array is actually contiguous,
the value placed in ARSIZE might be meaningless.

For data type 1 (aligned bit string), LENGTH is in bits while
ARSIZE is in bytes because the unit of length is in bits while the
unit of allocation is in bytes.

(continued on next page)

7–20 November 17, 2003

OpenVMS Argument Descriptors
7.7 Noncontiguous Array Descriptor (CLASS_NCA)

Table 7–9 (Cont.) Contents of the CLASS_NCA Descriptor

Symbol Description

DSC$A_A0
DSC64$PQ_A0

Address of element A(0,0, . . . ,0). This need not be within the
actual array. It is the same as POINTER for zero-origin arrays.

A0 = POINTER � (S1*L1 + S2*L2 + . . . + Sn*Ln)

DSC$L_Si
DSC64$Q_Si

Stride of the ith dimension. The difference between the
addresses of successive elements of the ith dimension.

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of the ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of the ith dimension.

The following formulas specify the effective address, E, of an array element.

Caution

Modification of the following formulas is required if DTYPE equals 1 or
21 because LENGTH is given in bits or 4-bit digits rather than bytes.

The effective address, E, of A(I):

E = A0 + S1*I
= POINTER + S1*[I - L1]

The effective address, E, of A(I1,I2):

E = A0 + S1*I1 + S2*I2
= POINTER + S1*[I1 - L1] + S2*[I2 - L2]

The effective address, E, of A(I1, . . . ,In):

E = A0 + S1*I1 + . . . + Sn*In
= POINTER + S1*[I1 - L1] + . . . + Sn*[In - Ln]

7.8 Varying String Descriptor (CLASS_VS)
A class VS descriptor is used for varying string data types (see Section 6.5).

As an input parameter, this format is not interchangeable with class 1 (CLASS_S)
or with class 2 (CLASS_D). When a called procedure modifies a varying string
passed by reference or by descriptor, it writes the new length, n, into CURLEN
and can modify all bytes of BODY. Figure 7–8 shows the format of a varying
string descriptor. Table 7–10 describes the fields of the descriptor.

November 17, 2003 7–21

OpenVMS Argument Descriptors
7.8 Varying String Descriptor (CLASS_VS)

Figure 7–8 Varying String Descriptor Format

ZK−4669A−GE

POINTER

MAXSTRLENDTYPECLASS (=11)

32−Bit Form (DSC)

:0

:4

ZK−7663A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=11)

64−Bit Form (DSC64)

:0

:4

quadword aligned

MAXSTRLEN

POINTER

:8

:16

Table 7–10 Contents of the CLASS_VS Descriptor

Symbol Description

DSC$W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of the varying string in
bytes in the range 0 to 216

� 1.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data type code that has the value 37, which specifies the
varying character string data type (see Sections 6.2 and 6.5).
The use of other data types is reserved to Hewlett-Packard.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 11 for
CLASS_VS.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first field (CURLEN) of the varying string.

DSC64$L_MBMO Must be -1. See Section 7.1.

Figure 7–9 illustrates the use of a 32-bit varying string descriptor to present a
variable that is capable of holding a string value of up to five characters in length
and that is currently holding the string value ABCD. As shown in the figure,
MAXSTRLEN contains five, CURLEN contains four, string is currently ABCD,
and the remaining byte is currently undefined.

7–22 November 17, 2003

OpenVMS Argument Descriptors
7.9 Varying String Array Descriptor (CLASS_VSA)

Figure 7–9 Varying String Descriptor with Character String Data Type

ZK−1897−GE

11 37 5

adr

15 0

4

A

B

C

D

\ \ \

7 0

:descriptor

:adr

7.9 Varying String Array Descriptor (CLASS_VSA)
A variant of the noncontiguous array descriptor is used to specify an array of
varying strings where each varying string has the same maximum length. Each
array element is of the varying string data type (see Section 6.5).

When a called procedure modifies a varying string in an array of varying strings
passed to it by reference or by descriptor, it writes the new length, n, into
CURLEN and can modify all bytes of BODY. The format of this descriptor is the
same as the noncontiguous array descriptor except for the first two longwords.
Figure 7–10 shows the format of a varying string array descriptor. Table 7–11
describes the fields of the descriptor.

November 17, 2003 7–23

OpenVMS Argument Descriptors
7.9 Varying String Array Descriptor (CLASS_VSA)

Figure 7–10 Varying String Array Descriptor Format

ZK−4670A−GE

POINTER

MAXSTRLENDTYPECLASS (=12)

32−Bit Form (DSC)

:0

:4

DIMCT AFLAGS DIGITS SCALE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

ARSIZE :12

:16

:20

:8

Block 3
(Bounds)

Block 2
(Multipliers)

Block 1
(Prototype)

:20+4n

:24+4n

(continued on next page)

7–24 November 17, 2003

OpenVMS Argument Descriptors
7.9 Varying String Array Descriptor (CLASS_VSA)

Figure 7–10 (Cont.) Varying String Array Descriptor Format

ZK−7664A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=12)

64−Bit Form (DSC64)

:0

:4

quadword aligned

MAXSTRLEN

POINTER

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

A0

S1

S (n−1)

Sn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2
(Multipliers)

Block 3
(Bounds)

(Alpha Specific)

November 17, 2003 7–25

OpenVMS Argument Descriptors
7.9 Varying String Array Descriptor (CLASS_VSA)

Table 7–11 Contents of the CLASS_VSA Descriptor

Symbol Description

DSC$W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of an array element in
bytes in the range 0 to 216

� 1.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that has the value 37, which specifies the
varying character string data type (see Sections 6.2 and 6.5).
The use of other data types is reserved to Hewlett-Packard.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 12 for
CLASS_VSA.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

The remaining fields in the descriptor are identical to those in the noncontiguous
array descriptor (NCA). The effective address computation of an array element
produces the address of CURLEN of the desired element.

7.10 Unaligned Bit String Descriptor (CLASS_UBS)
A descriptor is used to pass an unaligned bit string (DSC$K_DTYPE_VU) that
starts and ends on an arbitrary bit boundary. The descriptor provides two
components: a base address and a signed relative bit position. Figure 7–11 shows
the format of an unaligned bit string descriptor. Table 7–12 describes the fields of
the descriptor.

Figure 7–11 Unaligned Bit String Descriptor Format

ZK−4671A−GE

BASE

LENGTHDTYPECLASS (=13)

32−Bit Form (DSC)

:0

:4

:8POS

(continued on next page)

7–26 November 17, 2003

OpenVMS Argument Descriptors
7.10 Unaligned Bit String Descriptor (CLASS_UBS)

Figure 7–11 (Cont.) Unaligned Bit String Descriptor Format

ZK−7668A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=13)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

BASE

:8

:16

POS
:24

Table 7–12 Contents of the CLASS_UBS Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of data item in bits.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that has the value 34, which specifies the
unaligned bit string data type (see Sections 6.1 and 6.2). The
use of other data types is reserved to Hewlett-Packard.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 13 for
CLASS_UBS.

DSC$A_BASE
DSC64$PQ_BASE

Base of the address relative to which the signed relative bit
position, POS, is used to locate the bit string. The base address
need not be the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$L_POS
DSC64$Q_POS

Relative bit position with respect to BASE of the first bit of
unaligned bit string.

7.11 Unaligned Bit Array Descriptor (CLASS_UBA)
A variant of the noncontiguous array descriptor is used to specify an array of
unaligned bit strings. Each array element is an unaligned bit string data type
(DSC$K_DTYPE_VU) that starts and ends on an arbitrary bit boundary. The
length of each element is the same and is 0 to 216 � 1 bits. You can access
elements of the array directly by using the VAX variable bit field instructions.
Therefore, the descriptor provides two components: a byte address, BASE, and

November 17, 2003 7–27

OpenVMS Argument Descriptors
7.11 Unaligned Bit Array Descriptor (CLASS_UBA)

a means to compute the signed bit offset, EB, with respect to BASE of an array
element.

The unaligned bit array descriptor consists of four contiguous blocks that are
always present. The first block contains the descriptor prototype information.
Figure 7–12 shows the format of an unaligned bit array descriptor. Table 7–13
describes the fields of the descriptor.

Figure 7–12 Unaligned Bit Array Descriptor Format

ZK−4672A−GE

BASE

LENGTHDTYPECLASS (=14)

32−Bit Form (DSC)

:0

:4

DIMCT AFLAGS DIGITS SCALE

V0

S1

S (n−1)

Sn

L1

U1

Ln

Un

ARSIZE :12

:16

:20

:8

Block 3
(Bounds)

Block 2

Block 1
(Prototype)

(Strides)

:20+4n

:24+4n

POS :24+8n Block 4
(Position)

(continued on next page)

7–28 November 17, 2003

OpenVMS Argument Descriptors
7.11 Unaligned Bit Array Descriptor (CLASS_UBA)

Figure 7–12 (Cont.) Unaligned Bit Array Descriptor Format

ZK−7665A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=14)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

BASE

:8

:16

DIMCT AFLAGS DIGITS SCALE

MBZ

ARSIZE

V0

S1

S (n−1)

Sn

L1

U1

Ln

Un

:24

:28

:32

:40

:48

:48+8n

:56+8n

Block 1
(Prototype)

Block 2

Block 3
(Bounds)

(Strides)

POS :56+16n
Block 4
(Position)

(Alpha Specific)

November 17, 2003 7–29

OpenVMS Argument Descriptors
7.11 Unaligned Bit Array Descriptor (CLASS_UBA)

Table 7–13 Contents of the CLASS_UBA Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of an array element in bits.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies
the unaligned bit string data type (see Sections 6.1 and 6.2). The
use of other data types is reserved to Hewlett-Packard.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 14 for
CLASS_UBA.

DSC$A_BASE
DSC64$PQ_BASE

Base address relative to the effective bit offset, EB, that is used
to locate elements of the array. The base address need not be
the first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$B_SCALE
DSC64$B_SCALE

Reserved to Hewlett-Packard. Must be 0.

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed
based on LENGTH. This field should be 0 unless the TYPE field
specifies a string data type that could contain numeric values.

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved to Hewlett-Packard.
Must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

Must be 0.

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

Must be 0.

Bits <23:21> Reserved to Hewlett-Packard.
Must be 0.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, n.

DSC$L_ARSIZE
DSC64$Q_ARSIZE

If the elements are contiguous, ARSIZE is the total size of the
array in bits. If the elements are not allocated contiguously or if
the program unit allocating the descriptor is uncertain whether
the array is actually contiguous, the value placed in ARSIZE
might be meaningless.

DSC$L_V0
DSC64$Q_V0

Signed bit offset of element A(0, . . . ,0) with respect to BASE.
V0 = POS � [S1*L1 + . . . + Sn*Ln].

DSC$L_Si
DSC64$Q_Si

Stride of the ith dimension. The difference between the bit (not
byte) addresses of successive elements of the ith dimension.

DSC$L_Li
DSC64$Q_Li

Lower bound (signed) of the ith dimension.

DSC$L_Ui
DSC64$Q_Ui

Upper bound (signed) of the ith dimension.

DSC$L_POS
DSC64$Q_POS

Relative bit position with respect to BASE of the first actual bit
of the array, that is, element A(L1, . . . ,Ln).

7–30 November 17, 2003

OpenVMS Argument Descriptors
7.11 Unaligned Bit Array Descriptor (CLASS_UBA)

The following formulas specify the signed effective bit offset, EB, of an array
element:

The signed effective bit offset, EB, of A(I1):

EB = V0 + S1*I1
= POS + S1*[I1 - L1]

The signed effective bit offset, EB, of A(I1,I2):

EB = V0 + S1*I1 + S2*I2
= POS + S1*[I1 - L1] + S2*[I2 - L2]

The signed effective bit offset, EB, of A(I1, . . . , In):

EB = V0 + S1*I1 + ... + Sn*In
= POS + S1*[I1 - L1] + ... + Sn*[In - Ln]

Note that EB is computed ignoring integer overflow.

On VAX systems, EB is used as the position operand, and the content of BASE is
used as the base address operand in the VAX variable-length bit field instructions.
Therefore, BASE must specify a byte within 228 bytes of all bytes of storage in
the bit array.

For example, consider a single-origin, one-dimensional, five-element array
consisting of 3-bit elements allocated adjacently (therefore, S1 = 3). Assume
BASE is byte 1000 and the first actual element, A(1), starts at bit <4> of byte
1001.

ZK−1901−GE

7 6 5 4 3 2 1 0

2 1 1 1 0

4 4 4 3 3 3 2 2

555

:1000

:1001

:1002

:1003

The following dependent field values occur in the descriptor:

POS = 12
V0 = 12 - 3*1 = 9

7.12 String with Bounds Descriptor (CLASS_SB)
A variant of the fixed-length string descriptor is used to specify strings where
the string is viewed as a one-dimensional array with user-specified bounds.
Figure 7–13 shows the format of a string with bounds descriptor. Table 7–14
describes the fields of the descriptor.

November 17, 2003 7–31

OpenVMS Argument Descriptors
7.12 String with Bounds Descriptor (CLASS_SB)

Figure 7–13 String with Bounds Descriptor Format

ZK−4674A−GE

POINTER

LENGTHDTYPECLASS (=15)

32−Bit Form (DSC)

:0

:4

SB_L1

SB_U1

:8

:12

ZK−7666A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=15)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

POINTER

:8

:16

SB_L1

SB_U1

:24

:32

Table 7–14 Contents of the CLASS_SB Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the string in bytes.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 14, which specifies
the character string data type (see Sections 6.1 and 6.2). The
use of other data types is reserved to Hewlett-Packard.

(continued on next page)

7–32 November 17, 2003

OpenVMS Argument Descriptors
7.12 String with Bounds Descriptor (CLASS_SB)

Table 7–14 (Cont.) Contents of the CLASS_SB Descriptor

Symbol Description

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 15 for
CLASS_SB.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$L_SB_L1
DSC64$Q_SB_L1

Lower bound (signed) of the first (and only) dimension.

DSC$L_SB_U1
DSC64$Q_SB_U1

Upper bound (signed) of the first (and only) dimension.

The following formula specifies the effective address, E, of a string element A(I):

E = POINTER + [I - SB_L1]

If the string must be extended in a string comparison or assignment, the space
character (hexadecimal 20 if ASCII) is used as the fill character.

7.13 Unaligned Bit String with Bounds Descriptor (CLASS_UBSB)
A variant of the unaligned bit string descriptor is used to specify bit strings
where the string is viewed as a one-dimensional bit array with user-specified
bounds. Figure 7–14 shows the format of an unaligned bit string with bounds
descriptor. Table 7–15 describes the fields of the descriptor.

Figure 7–14 Unaligned Bit String with Bounds Descriptor Format

ZK−4642A−GE

BASE

LENGTHDTYPECLASS (=16)

32−Bit Form (DSC)

:0

:4

UBSB_L1

UBSB_U1

:8

:12

POS

:16

(continued on next page)

November 17, 2003 7–33

OpenVMS Argument Descriptors
7.13 Unaligned Bit String with Bounds Descriptor (CLASS_UBSB)

Figure 7–14 (Cont.) Unaligned Bit String with Bounds Descriptor Format

ZK−7667A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=16)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

BASE

:8

:16

POS

UBSB_L1

:24

:32

UBSB_U1
:40

Table 7–15 Contents of the CLASS_UBSB Descriptor

Symbol Description

DSC$W_LENGTH
DSC64$Q_LENGTH

Length of the data item in bits.

DSC64$W_MBO Must be 1. See Section 7.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies
the unaligned bit string data type (see Sections 6.1 and 6.2).
The use of other data types is reserved to Hewlett-Packard.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 16 for
CLASS_UBSB.

DSC$A_BASE
DSC64$PQ_BASE

Base address relative to the signed relative bit position, POS,
used to locate the bit string. The base address need not be the
first actual byte of data storage.

DSC64$L_MBMO Must be -1. See Section 7.1.

DSC$L_POS
DSC64$Q_POS

Signed longword that defines the relative bit position of the
first bit of the unaligned bit string to the BASE address.

(continued on next page)

7–34 November 17, 2003

OpenVMS Argument Descriptors
7.13 Unaligned Bit String with Bounds Descriptor (CLASS_UBSB)

Table 7–15 (Cont.) Contents of the CLASS_UBSB Descriptor

Symbol Description

DSC$L_UBSB_L1
DSC64$Q_UBSB_L1

Lower bound (signed) of the first (and only) dimension.

DSC$L_UBSB_U1
DSC64$Q_UBSB_U1

Upper bound (signed) of the first (and only) dimension.

The following formula specifies the effective bit offset, EB, of a bit element A(I):

EB = POS + [I - UBSB_L1]

7.14 Reserved Descriptor Class Codes
All descriptor class codes from 0 through 191 not otherwise defined in this
standard are reserved to Hewlett-Packard. Classes 192 through 255 are reserved
for Hewlett-Packard custom systems and for customers for their own use.

Table 7–16 lists some specific descriptor classes and codes that are obsolete or
reserved to Hewlett-Packard.

Table 7–16 Specific OpenVMS VAX Descriptors Reserved to Hewlett-Packard

Descriptor Code Class

DSC$K_CLASS_V 3 Obsolete (variable buffer)

DSC$K_CLASS_PI 6 Obsolete (procedure incarnation)

DSC$K_CLASS_J 7 Reserved to DEBUG (label)

DSC$K_CLASS_JI 8 Obsolete (label incarnation)

DSC$K_CLASS_CT 17 Reserved to ACMS (compressed text)

DSC$K_CLASS_BFA 191 Reserved to BASIC (file array)

7.14.1 Facility-Specific Descriptor Class Codes
Descriptor class codes 160 through 191 are reserved for Hewlett-Packard for
facility-specific purposes. These codes must not be passed between facilities,
because different facilities might use the same code for different purposes. These
codes can be used by compiler-generated code to pass parameters to the language-
specific, run-time support procedures associated with that language or to the
OpenVMS Debugger.

November 17, 2003 7–35

8
OpenVMS Conditions

An OpenVMS condition is a hardware-generated synchronous exception or
a software event that is to be processed in a manner similar to a hardware
exception.

Floating-point overflow exception, memory access violation exception, and
reserved operation exception are examples of hardware-generated conditions. An
output conversion error, an end of file, and the filling of an output buffer are
examples of software events that might be treated as conditions.

Depending on the condition and on the program, you can exercise any of four
types of action when a condition occurs:

• Ignore the condition.

For example, if an underflow occurs in a floating-point operation, continuing
from the point of the exception with a zero result might be sufficient.

• Take some special action and continue from the point at which the condition
occurred.

For example, if the end of a buffer is reached while a series of data items are
being written, the special action is to start a new buffer.

• End the operation and branch from the sequential flow of control.

For example, if the end of an input file is reached, the branch exits from a
loop that is processing the input data.

• Treat the condition as an unrecoverable error.

For example, when the floating divide-by-zero exception condition occurs, the
program exits after writing (optionally) an appropriate error message.

When an unusual event or error occurs in a called procedure, the procedure
can return a condition value to the caller indicating what has happened (see
Section 8.1). The caller tests the condition value and takes the appropriate
action.

When an exception is generated by the hardware, a branch out of the program’s
flow of control occurs automatically. In this case, and for certain software-
generated events, it is more convenient to handle the condition as soon as it is
detected rather than to program explicit tests.

8.1 Condition Values
Condition values are used in the OpenVMS operating system to provide the
following functions:

• Indicate the success or failure of a called procedure as a function value.

• Describe an exception condition when an exception is signaled.

• Identify system messages.

November 17, 2003 8–1

OpenVMS Conditions
8.1 Condition Values

• Report program success or failure to the command language level.

A condition value is a longword that includes fields to describe the software
component that generates the value, the reason the value was generated, and
severity status of the condition value. Figure 8–1 shows the format of a condition
value. Table 8–1 describes the fields of a condition value.

Figure 8–1 Format of a Condition Value

ZK−1795−GE

Message numberFacility number

27 31516

2 01

Control Severity

28 27 3 2

*S

*S = Success

Condition identification

31 0

Table 8–1 Contents of the Condition Value

Symbol Description

Severity Indicates success or failure. The severity code bit <0> is set
for success (logical true) and is clear for failure (logical false);
bits <1> and <2> distinguish degrees of success or failure. Bits
<2:0>, when taken as an unsigned integer, are interpreted as
shown in the following table:

Symbol Value Description

STS$K_WARNING 0 Warning

STS$K_SUCCESS 1 Success

STS$K_ERROR 2 Error

STS$K_INFO 3 Information

STS$K_SEVERE 4 Severe error

5 Reserved to Hewlett-
Packard

6 Reserved to Hewlett-
Packard

7 Reserved to Hewlett-
Packard

Section 8.1.1 more fully describes severity codes.

Condition identification Identifies the condition uniquely on a systemwide basis.

(continued on next page)

8–2 November 17, 2003

OpenVMS Conditions
8.1 Condition Values

Table 8–1 (Cont.) Contents of the Condition Value

Symbol Description

Message number Describes the status, which can be a hardware exception that
occurred or a software-defined value. Message numbers with
bit <15> set are specific to a single facility. Message numbers
with bit <15> clear are systemwide status codes.

Facility number Identifies the software component generating the condition
value. Bit <27> is set for customer facilities and is clear for
Hewlett-Packard facilities.

Control Controls the printing of the message associated with the
condition value. Bit <28> inhibits the message associated
with the condition value from being printed by the SYS$EXIT
system service. This bit is set by the system default handler
after it has output an error message using the SYS$PUTMSG
system service. It should also be set in the condition value
returned by a procedure as a function value, if the procedure
has also signaled the condition (so the condition has been
printed or suppressed). Bits <31:29> must be 0; they are
reserved to Hewlett-Packard for future use.

Table 8–2 lists the possible software symbols that are defined
for the various fields of the condition-value longword.

Table 8–2 Value Symbols for the Condition Value Longword

Symbol Value Meaning Field

STS$V_COND_ID 3 Position of 27:3 Condition identification

STS$S_COND_ID 25 Size of 27:3 Condition identification

STS$M_COND_ID Mask Mask for 27:3 Condition identification

STS$V_INHIB_MSG 1@28 Position for 28 Inhibit message on image exit

STS$S_INHIB_MSG 1 Size for 28 Inhibit message on image exit

STS$M_INHIB_MSG Mask Mask for 28 Inhibit message on image exit

STS$V_FAC_NO 16 Position of 27:16 Facility number

STS$S_FAC_NO 12 Size of 27:16 Facility number

STS$M_FAC_NO Mask Mask for 27:16 Facility number

STS$V_CUST_DEF 27 Position for 27 Customer facility

STS$S_CUST_DEF 1 Size for 27 Customer facility

STS$M_CUST_DEF 1@27 Mask for 27 Customer facility

STS$V_MSG_NO 3 Position of 15:3 Message number

STS$S_MSG_NO 13 Size of 15:3 Message number

STS$M_MSG_NO Mask Mask for 15:3 Message number

STS$V_FAC_SP 15 Position of 15 Facility-specific

STS$S_FAC_SP 1 Size for 15 Facility-specific

STS$M_FAC_SP 1@15 Mask for 15 Facility-specific

STS$V_CODE 3 Position of 14:3 Message code

STS$S_CODE 12 Size of 14:3 Message code

(continued on next page)

November 17, 2003 8–3

OpenVMS Conditions
8.1 Condition Values

Table 8–2 (Cont.) Value Symbols for the Condition Value Longword

Symbol Value Meaning Field

STS$M_CODE Mask Mask for 14:3 Message code

STS$V_SEVERITY 0 Position of 2:0 Severity

STS$S_SEVERITY 3 Size of 2:0 Severity

STS$M_SEVERITY 7 Mask for 2:0 Severity

STS$V_SUCCESS 0 Position of 0 Success

STS$S_SUCCESS 1 Size of 0 Success

STS$M_SUCCESS 1 Mask for 0 Success

8.1.1 Interpretation of Severity Codes
A standard procedure must consider all possible severity codes (0–4) of a condition
value. Table 8–3 lists the interpretation of severity codes 0 through 4.

Table 8–3 Interpretation of Severity Codes

Severity
Code Meaning

0 Indicates a warning. This code is used whenever a procedure produces output,
but the output produced might not be what the user expected (for example, a
compiler modification of a source program).

1 Indicates that the procedure generating the condition value completed
successfully, as expected.

2 Indicates that an error has occurred but the procedure did produce output.
Execution can continue, but the results produced by the component generating
the condition value are not all correct.

3 Indicates that the procedure generating the condition value completed
successfully but has some parenthetical information to be included in a
message if the condition is signaled.

4 Indicates that a severe error occurred and the component generating the
condition value was unable to produce output.

When designing a procedure, you should base the choice of severity code for its
condition values on the following default interpretations:

• The calling program typically performs a low-bit test, so it treats warnings,
errors, and severe errors as failures, and treats success and information as
successes.

• If the condition value is signaled (see Section 8.4.3), the default handler treats
severe errors as reason to terminate and treats all the others as the basis for
continuation.

• When the program image exits, the command interpreter by default treats
errors and severe errors as the basis for stopping the job, and treats warnings,
information, and successes as the basis for continuation.

The following table summarizes the action default decisions of the severity
conditions:

8–4 November 17, 2003

OpenVMS Conditions
8.1 Condition Values

Severity Routine Signal
Default at
Program Exit

Success Normal Continue Continue

Information Normal Continue Continue

Warning Failure Continue Continue

Error Failure Continue Stop job

Severe error Failure Exit Stop job

The default for signaled messages is to output a message with the SYS$OUTPUT
system service. In addition, for severities other than success (STS$K_SUCCESS),
a copy of the message is made on SYS$ERROR. At program exit, success and
information completion values do not generate messages; however, warning, error,
and severe error condition values do generate messages to SYS$OUTPUT and
SYS$ERROR unless bit <28> (STS$V_INHIB_MSG) is set.

Unless there is a good basis for another choice, a procedure should use success or
severe error as its severity code for each condition value.

8.1.2 Use of Condition Values
OpenVMS software components return condition values when they complete
execution. When a severity code in the range of 0 through 4 is generated, the
status code describes the nature of the problem. This value can be tested to
change the flow of control of a procedure, can be used to generate a message, or
both.

User procedures can also generate condition values to be examined by other
procedures and by the command interpreter. User-generated condition values
should have bits <27> and <15> set so they do not conflict with values generated
by Hewlett-Packard.

8.2 Condition Handlers
To handle hardware- or software-detected exceptions, the OpenVMS Condition
Handling Facility (CHF) allows you to specify a condition handler procedure to be
called when an exception condition occurs.

An active procedure can establish a condition handler to be associated with it.
When an event occurs that is to be treated using the Condition Handling Facility,
the procedure detecting the event signals the event by calling the facility and
passing a condition value that describes the condition. This condition value has
the format and interpretation described in Section 8.1. All hardware exceptions
are signaled.

When a condition is signaled, the Condition Handling Facility looks for a
condition handler associated with the current procedure’s stack frame. If a
handler is found, it is entered. If a handler is not associated with the current
procedure, the immediately preceding stack frame is examined. Again, if a
handler is found, it is entered. If a handler is not found, the search of previous
stack frames continues until the default condition handler established by the
system is reached or until the stack runs out.

The default condition handler prints messages, indicated by the signal argument
list, by calling the put message (SYS$PUTMSG) system service, followed by an
optional symbolic stack traceback. Success conditions with STS$K_SUCCESS
result in messages to SYS$OUTPUT only. All other conditions, including

November 17, 2003 8–5

OpenVMS Conditions
8.2 Condition Handlers

informational messages (STS$K_INFO), produce messages on SYS$OUTPUT and
SYS$ERROR.

For example, if a procedure needs to keep track of the occurrence of the floating-
point underflow exception, it can establish a condition handler to examine the
condition value passed when the handler is invoked. Then, when the floating-
point underflow exception occurs, the condition handler is entered and logs the
condition. The handler returns to the instruction immediately following the
instruction that was executing when the condition was reported by the hardware.
On a VAX or Intel Itanium processor, this instruction is the one immediately
following the instruction that caused the underflow; on an Alpha processor, this
instruction might occur later.

If floating-point operations occur in many procedures of a program, the condition
handler can be associated with the program’s main procedure. When the
condition is signaled, successive stack frames are searched until the stack frame
for the main procedure is found, at which time the handler is entered. If a user
program has not associated a condition handler with any of the procedures that
are active at the time of the signal, successive stack frames are searched until the
frame for the system program invoking the user program is reached. A default
condition handler that prints an error message is then entered.

8.3 Condition Handler Options
Each procedure activation potentially has a single condition handler associated
with it. This condition handler is entered whenever any condition is signaled
within that procedure. (It can also be entered as a result of signals within active
procedures called by the procedure.) Each signal includes a condition value
(see Section 8.1) that describes the condition that caused the signal. When the
condition handler is entered, examine the condition value to determine the cause
of the signal. After the handler either processes the condition or ignores it, it can
take one of the following actions:

• Return to the instruction immediately following the signal. Note that such a
return is not always possible.

• Resignal the same or a modified condition value. A new search for a condition
handler begins with the immediately preceding stack frame.

• Signal a different condition.

• Unwind the stack.

• On OpenVMS Alpha or I64, perform a nonlocal GOTO operation (see
Section 8.4) that transfers control from one procedure invocation and
continues execution in a prior one.

8.4 Operations Involving Condition Handlers
The OpenVMS Condition Handling Facility (CHF) provides functions to perform
the following operations:

• Establish a condition handler.

A condition handler is associated with a procedure in various ways, depending
on the language in which the procedure is written. Some languages provide
specific syntax for defining a handler and its possible actions; others allow
dynamic specification of a routine to act as a handler.

• On VAX systems, revert to the caller’s handling.

8–6 November 17, 2003

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

If a condition handler has been established on a VAX system, you can remove
it.

• Enable or disable certain arithmetic exceptions.

The software can enable or disable the following hardware exceptions:
floating-point underflow, integer overflow, and decimal overflow. No signal
occurs when the exception is disabled.

On VAX systems, exceptions are enabled or disabled dynamically at every
procedure entry or by directly manipulating the processor status longword.

On Alpha or Itanium systems, exceptions are enabled or disabled statically
during compilation; this is reflected in the code that is compiled.

• Signal a condition.

Signaling a condition initiates the search for an established condition handler.

• Unwind the stack.

Upon exiting from a condition handler, it is possible to remove one or more
frames that occur before the signal from the stack. During the unwinding
operation, the stack is scanned; if a condition handler is associated with a
frame, the handler is entered before the frame is removed. Unwinding the
stack allows a procedure to perform application-specific cleanup operations
before exiting.

• On Alpha or I64 systems, perform a nonlocal GOTO unwind.

A GOTO unwind operation is a transfer of control that leaves one procedure
invocation and continues execution in a prior (currently active) procedure.
This unified GOTO operation gives unterminated procedure invocations the
opportunity to clean up in an orderly way.

8.4.1 Establishing a Condition Handler
On VAX systems, the association of a handler with a procedure invocation is
dynamic and can be changed or reverted to the caller’s handler during execution,
but this is not supported for languages that implicitly provide their own handlers.

Each procedure activation can have an associated condition handler, using
the first longword in its stack frame. Initially, the first longword (longword 0)
contains the value 0, indicating no handler. You establish a handler by moving
the address of the handler’s procedure entry point mask to the establisher’s stack
frame.

On VAX systems, the following code establishes a condition handler:

MOVAB handler_entry_point,0(FP)

On Alpha or I64 systems, the association of a handler with a procedure is
static and must be specified at the time a procedure is compiled (or assembled).
However, some languages that lack their own exception-handling syntax can
support emulation of dynamically specified handlers by means of built-in routines.

Each procedure, other than a null frame procedure, can have a condition handler
potentially associated with it, which is identified by the HANDLER_VALID,
STACK_HANDLER, or REG_HANDLER fields of the associated procedure
descriptor on an Alpha system, or the handler field in the associated unwind
information block on an I64 system. You establish a handler by including the
procedure value of the handler procedure in that field. (See Sections 3.4.1, 3.4.4,
and A.4.1.)

November 17, 2003 8–7

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

In addition, the OpenVMS operating system on all processors provides three
statically allocated exception vectors for each access mode of a process. These
vectors are available to declare condition handlers that take precedence over
any handlers declared at the procedure level. For example, the vectors are used
to allow a debugger to monitor all exceptions and for the system to establish a
last-chance handler. Because these handlers do not obey the procedure nesting
rules, do not use them with modular code. Instead, use frame-based handlers.

8.4.2 Reverting to the Caller’s Handling
On VAX systems, reverting to the caller’s handling deletes the condition handler
associated with the current procedure activation. You do this by clearing the
handler address in the stack frame.

On VAX systems, the code to revert to the caller’s handling is as follows:

CLRL 0(FP)

On Alpha and I64 systems, there is no means to revert to a caller’s handler
(unless a language provides emulation of dynamically specified handlers).

8.4.3 Signaling a Condition
The signal operation is the method for indicating the occurrence of an exception
condition. To initiate a signal and allow execution to continue after handling
the condition, a program calls the LIB$SIGNAL procedure. To initiate a signal
but not allow execution to continue at the point of initiation, a program calls the
LIB$STOP procedure. The format of the LIB$SIGNAL and LIB$STOP calls are
defined as follows:

LIB$SIGNAL(condition-value, argn...)

LIB$STOP(condition-value, argn...)

Argument OpenVMS Usage Type Access Mechanism

condition-value condition longword read by value

argn integer quadword read by value

Arguments:

condition-value
An OpenVMS condition value.

argn
Zero or more integer arguments that become the additional arguments of a signal
argument vector (see Section 8.5.1.1)

Function Value Returned:

None.

In both cases, the condition-value argument indicates the condition that
is signaled. However, LIB$STOP sets the severity of the condition-value
argument to be a severe error. The remaining arguments describe the details of
the exception. These are the same arguments used to issue a system message.

Unlike most calls, LIB$SIGNAL and LIB$STOP preserve all registers. Therefore,
a debugger can insert a call to LIB$SIGNAL to display the entire state of the
process at the time of the exception. Use of LIB$ routines also allows signals
to be coded in an assembler language without changing the register usage.
This feature of preserving all registers is useful for debugging checks and for

8–8 November 17, 2003

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

gathering statistics. Hardware and system service exceptions behave like calls to
LIB$SIGNAL.

8.4.4 Signaling a Condition Using GENTRAP (Alpha and I64 Systems Only)
Alpha and I64 systems each have a special instruction that provides an efficient
means to raise a hardware-like exception. These are intended for use especially
in low levels of the operating system or in the bootpath sequence when only a
limited execution environment is available. Compiled code can also use these
instructions to raise common generic exceptions more simply and compactly than
by executing a complete LIB$SIGNAL procedure call.

In each case, the special instruction takes an exception code (excp_code)
parameter that is passed in a general register; that parameter specifies the
particular exception to be raised.

On Alpha systems, the GENTRAP PALcall instruction is used. The excp_code
parameter is passed in R16. Interpretation of that parameter is described below.

On I64 systems, the BREAK instruction with an immediate operand of 100001
(hex) is used to implement a GENTRAP operation. The excp_code parameter is
passed in R17. Interpretation of that parameter is described below.

If the excp_code value is one of the small integers shown in the first column of
Table 8–4, than that value is mapped to a corresponding OpenVMS condition code
as shown in the third (Symbol) column of the Table. If the value is negative but
not one of the values shown in Table 8–4, then SS$_GENTRAP is raised with the
unmapped value included in the signal vector as the first and only qualifier value.
Otherwise, a positive value is used directly to raise an exception using that value
as the condition value. Note that there is no means to associate any parameters
with an exception raised by GENTRAP.

For more information on the Alpha GENTRAP PALcall, see the Alpha
Architecture Reference Manual. For more information on the BREAK instruction
on the Intel Itanium processors, see the Intel IA-64 Architecture Software
Developer’s Manual. For more information on Itanium Conventions Defined
Codes see Section 8.4.5.

Table 8–4 Exception Codes and Symbols for the GENTRAP Parameter

OpenVMS
GENTRAP
excp_code
Parameter

Itanium
Conventions
Defined Codes
(High Bits 000) Symbol Meaning

–1 2 SS$_INTOVF Integer overflow

–2 1 SS$_INTDIV Integer divide by zero

–3 SS$_FLTOVF Floating overflow

–4 SS$_FLTDIV Floating divide by zero

–5 SS$_FLTUND Floating underflow

–6 SS$_FLTINV Floating invalid operand

–7 SS$_FLTINE Floating inexact result

–8 6 SS$_DECOVF Decimal overflow

(continued on next page)

November 17, 2003 8–9

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

Table 8–4 (Cont.) Exception Codes and Symbols for the GENTRAP Parameter

OpenVMS
GENTRAP
excp_code
Parameter

Itanium
Conventions
Defined Codes
(High Bits 000) Symbol Meaning

–9 7 SS$_DECDIV Decimal divide by zero

–10 8, 9, 10 SS$_DECINV Decimal invalid operand

–11 0 SS$_ROPRAND Reserved operand

–12 SS$_ASSERTERR Assertion error

–13 4 SS$_NULPTRERR Null pointer error

–14 11 SS$_STKOVF Stack overflow

–15 SS$_STRLENERR String length error

–16 SS$_SUBSTRERR Substring error

–17 SS$_RANGEERR Range error

–18 3 SS$_SUBRNG Subscript range error

–19 SS$_SUBRNG1 Subscript 1 range error

–20 SS$_SUBRNG2 Subscript 2 range error

–21 SS$_SUBRNG3 Subscript 3 range error

–22 SS$_SUBRNG4 Subscript 4 range error

–23 SS$_SUBRNG5 Subscript 5 range error

–24 SS$_SUBRNG6 Subscript 6 range error

–25 SS$_SUBRNG7 Subscript 7 range error

5 SS$_UNALIGNED Unaligned parameter

8.4.5 Signaling a Condition Using BREAK (I64 Only)
In accordance with the Itanium software conventions, OpenVMS I64 partitions
the 21-bit immediate operand values that can occur in a BREAK instruction into
the following groups:

• Immediate operands whose three highest-order bits are 000, which is
the range 000000 through 03FFFF (hex). These values are reserved for
architected software interrupt codes. The defined software interrupt codes are
listed in the second column of Table 8–4. Immediate operands in this range,
but not listed in the table, are reserved for future use.

A code shown in the second column of Table 8–4 is mapped to a corresponding
OpenVMS condition code as shown in the third (Symbol) column, which is
then raised. (This handling is similar to the handling of a negative excp_
code parameter for GENTRAP as described in Section 8.4.4.)

• Immediate operands whose three highest-order bits are 001, which is the
range 040000 (hex) through 07FFFF (hex).

Operands in this range are reserved for use by applications. If one of these
occurs, then SS$_BREAK_APPL is raised with the operand value included as
the first (and only) additional argument in the signal argument vector (see
Section 8.5.1.1).

• Immediate operands whose two highest-order bits are 01, which is the range
080000 (hex) through 0FFFFF (hex).

8–10 November 17, 2003

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

Operands in this range are reserved for use by debuggers. OpenVMS
debugger software uses only immediate operands in the range 080000 (hex)
through 0BFFFF (hex). Other debugger software is encouraged, but not
required, to use immediate operands in the range 0C0000 (hex) through
0FFFFF (hex).

• Immediate operands whose highest-order bit is 1, which is the range 100000
(hex) through 1FFFFF (hex).

Operands in this range are reserved for use within OpenVMS. The value
100001, however, is used to implement an Alpha-compatible GENTRAP
operation as described in Section 8.4.4.

For more information on the Itanium software conventions, see the Itanium®
Software Conventions and Runtime Architecture Guide.

8.4.6 Condition Handler Search
The signal procedure examines the two exception vectors first, then examines
a system-defined maximum number of previous stack frames, and, if necessary,
examines the last-chance exception vector. The exception vectors have three
address locations per access mode.

As part of image startup, the system declares a default last-chance handler. This
handler is used as a last resort when the normal handlers are not performing
correctly. The debugger can replace the default system last-chance handler with
its own.

On Alpha and I64 systems, note that the default catchall handler in user mode
can be a list of handlers and is not in conflict with this standard.

On OpenVMS systems, in some frame before the call to the main program,
the system establishes a default catchall condition handler that issues system
messages. In a subsequent frame before the call to the main program, the
system usually establishes a traceback handler. These system-supplied condition
handlers use the condition-value argument to get the message and then use
the remainder of the argument list to format and output the message through the
SYS$PUTMSG system service.

If the severity field of the condition-value argument (bits <2:0>) does not
indicate a severe error (that is, a value of 4), these default condition handlers
return with SS$_CONTINUE. If the severity is a severe error, these default
handlers exit the program image with the condition value as the final image
status.

The stack search ends when the old frame address is 0 or is not accessible, or
when a system-defined maximum number of frames have been examined. If a
condition handler is not found, or if all handlers return with a SS$_RESIGNAL
or SS$_RESIGNAL64, then the vectored last-chance handler is called.

If a handler returns SS$_CONTINUE or SS$_CONTINUE64, and LIB$STOP
was not called, control returns to the signaler. Otherwise, LIB$STOP issues a
message indicating that an attempt was made to continue from a noncontinuable
exception and exits with the condition value as the final image status.

Figure 8–2 lists all combinations of interaction between condition handler actions,
default condition handlers, types of signals, and calls to signal or stop. In this
figure, ‘‘Cannot Continue’’ indicates an error that results in the following message:

IMPROPERLY HANDLED CONDITION, ATTEMPT TO CONTINUE FROM STOP.

November 17, 2003 8–11

OpenVMS Conditions
8.4 Operations Involving Condition Handlers

Figure 8–2 Interaction Between Handlers and Default Handlers

Call to:

<4

=4

RET UNWIND

Default
Handler

Gets Control Continue
Specifies
Handler

UNWIND
Specifies
Handler

(Stack Bad)
Is Found

No Handler

< 2:0 >
Severity
Condition
Signaled

EXIT

EXIT

Handler

Handler

EXIT

Chance

Handler

Chance

Chance

Last−

Last−

UNWIND

Call

Call

Last−

UNWIND

Call

RET

EXIT
Continue"
"Cannot

EXIT
Message
Condition

LIB$STOP

Exception
Hardware

or
LIB$SIGNAL

ZK−4247−GE

RET
Message
Condition

EXIT
Message
Condition

(=4)
Force

8.5 Properties of Condition Handlers
This section describes the properties of condition handlers for all OpenVMS
environments.

8.5.1 Condition Handler Parameters and Invocation
If a condition handler is found on a software-detected exception, the handler is
called as follows:

(*handler)(signal_args, mechanism_args)

Argument OpenVMS Usage Type Access Mechanism

signal_args signal vector structure modify by reference

mechanism_args mechanism structure modify by reference

Arguments:

signal_args
A 32-bit signal argument vector (see Section 8.5.1.1)

mechanism_args
A mechanism argument vector (see Section 8.5.1.2)

Function Value Returned:

One of the following status codes: SS$_CONTINUE, SS$_RESIGNAL, SS$_
CONTINUE64, SS$_RESIGNAL64. This value is used by the Condition Handling
Facility to determine how to proceed next in processing the condition. (See
Section 8.6.)

8–12 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

8.5.1.1 Signal Argument Vector
There are two forms of signal argument vector (or signal vector for short): one
for use with 32-bit addresses and one for use with 64-bit addresses. The two
forms are compatible in that the forms can be distinguished dynamically at run
time and, except for the size and offset of fields, are identical in content and
interpretation.

The 32-bit signal argument vectors are used on all OpenVMS systems. When
used on Alpha or I64 systems, 32-bit signal argument vectors provide full
compatibility with their use on VAX systems. The 64-bit signal argument vectors
are used only on Alpha and I64 systems–they have no counterpart and are not
recognized on VAX systems.

When a condition handler is called by the Condition Handling Facility (CHF) on
Alpha or I64 systems, both forms of signal argument vector are available. The
first argument is always a reference to a 32-bit form of signal argument vector.
A handler that chooses to operate using the 64-bit form must obtain the address
of the corresponding 64-bit signal argument vector from the CHF$PH_MCH_
SIG64_ADDR field of the mechanism argument vector (see Section 8.5.1.2.2 and
Section 8.5.1.2.3).

Both forms of signal vector include a length field, a condition value, zero
or more parameters that further qualify the condition value, and finally a
processor program counter (PC) and program status (PS). For hardware-detected
exceptions, the condition value indicates which exception was taken. The PC
value gives the address of the instruction that caused the exception or the
address of the next instruction, depending on whether the exception was a
fault or a trap. For software-detected conditions, the condition value and any
associated parameters are copies of the parameters to the call of LIB$SIGNAL or
LIB$STOP that initiated exception handling, while the PC is the return address
to the caller of that routine.

Note that bits <2:0> of a condition value indicate severity and not what condition
is being signaled. Therefore, a handler should examine only the condition
identification, that is, condition value bits <27:3>, to determine the cause of
the exception. The setting of severity bits <2:0> may vary from time to time even
for the same condition. In fact, some handlers might only change the severity of
a condition in the signal vector and resignal.

Generally, a handler may validly modify any field of a signal argument vector
except for the CHF$L_SIG_ARGS length field or, in the case of a 64-bit signal
vector, the CHF64$L_SIGNAL64 field. In particular, a modified signal vector is
passed to a subsequent handler if the current handler completes by resignaling.
(If the length is modified, the modification is ignored; CHF restores the original
length.) It is invalid for a handler to modify both forms of signal argument
vector—the effect of doing so is undefined.

The remainder of this section is organized as follows. First, the 32-bit form of
signal argument vector is described. Second, the 64-bit form of signal argument
is described. Finally, the relationship between the two forms is discussed.

Figure 8–3 shows the format of the 32-bit form of signal argument vector. The
CHF$L_SIG_ARGS longword contains the argument vector count, which is
the number of remaining longwords in the vector. The CHF$L_SIG_NAME
longword contains the condition value. Next are 0 or more longwords that contain
additional parameters appropriate to the condition. The remaining two longwords
contain the PC and PS values.

November 17, 2003 8–13

OpenVMS Conditions
8.5 Properties of Condition Handlers

Figure 8–3 Signal Argument Vector — 32-Bit Format

31 0

Vector count (n)

Condition value

Additional arguments (or none)

PC

PS

:CHF$IS_SIG_ARGS

:CHF$L_SIG_NAME

ZK−4643A−GE

n

On VAX systems, the value used for the PS is the contents of the VAX processor
status longword (PSL).

On Alpha systems, the value used for the PS is the low half of the Alpha processor
status register. Furthermore, CHF$IS_SIG_ARGS and CHF$IS_SIG_NAME are
aliases for CHF$L_SIG_ARGS and CHF$L_SIG_NAME, respectively.

On I64 systems, the value used for the PS is the low half of a fabricated Alpha-
like processor status register that contains IPL, CM, CSW, and IP fields.

Figure 8–4 shows the format of the 64-bit form of signal argument vector. The
address of this form of signal argument is available only from the CHF$PH_
MCH_SIG64_ADDR field of the mechanism argument vector (see Section 8.5.1.2.2
and Section 8.5.1.2.3). The CHF64$L_SIG_ARGS field is a longword that contains
the number of remaining quadwords in the vector (following the CHF64$L_
SIGNAL64 field). The CHF64$L_SIGNAL64 longword contains a special code
named SS$_SIGNAL64 whose value is key to distinguishing between a 32-bit
and 64-bit form of signal argument vector. The CHF64$Q_SIG_NAME quadword
contains a sign-extended condition value. Next are zero or more quadwords that
contain additional parameters appropriate to the condition. The remaining two
quadwords contain the Alpha or I64 PC and PS values.

8–14 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

Figure 8–4 Signal Argument Vector — 64-Bit Format

31 0

Vector count (n)

SS$SIGNAL64

Additional arguments (or none)

PC

PS

:CHF64$L_SIG_ARGS

:CHF$64L_SIGNAL64

ZK−7685A−GE

Condition value
:CHF64$Q_SIG_NAME

n

When a handler is called, the 32-bit and 64-bit signal argument vectors are
closely related as follows:

• The value of the length field in the 64-bit form (the number of quadwords
following the CHF64$L_SIGNAL64 field) is equal to the value of the length
field in the 32-bit form (the number of longwords following the CHF$L_SIG_
ARGS field).

• The condition value, any related arguments, and the PC and PS values in the
32-bit form are the same as the values in the 64-bit form truncated to 32 bits.

Note that given a 64-bit signal vector, it is possible to create the corresponding
32-bit signal vector by fetching the low-order longword of each quadword of the
64-bit vector and packing the results together contiguously into a 32-bit vector;
other than using the length, no interpretation of the contents is required.

Given the address of a signal argument vector that might be either the 32-bit or
64-bit form, either of the following equivalent tests may be used to distinguish
which one is present:

• Assuming a 32-bit form, compare the contents of the CHF$L_SIG_NAME field
(equivalently CHF64$L_SIGNAL64) with the value SS$_SIGNAL64. If equal,
then the 64-bit form is present; otherwise, the 32-bit form is present.

• Assuming a 64-bit form, compare the contents of the CHF64$L_SIGNAL64
field with the value SS$_SIGNAL64. If equal, then the 64-bit form is present;
otherwise, the 32-bit form is present.

8.5.1.2 Mechanism Argument Vector
The mechanism argument vector for the argument mechanism_args contains
information about the machine state when an exception occurs or when a
condition is signaled. Therefore, the mechanism argument vector is highly
specific to the underlying machine architecture.

November 17, 2003 8–15

OpenVMS Conditions
8.5 Properties of Condition Handlers

8.5.1.2.1 VAX Mechanism Vector Format On VAX systems, the mechanism
format for the argument vectors is shown in Figure 8–5. The first longword
contains the argument vector count, which is the number of remaining longwords
in the vector. The frame longword contains the contents of the FP in the
establisher’s context. If the restrictions described in Section 8.5.3.1 are met,
the frame can be used as a base from which to access the local storage of the
establisher.

The depth longword is a positive count of the number of procedure-activation
stack frames between the frame in which the exception occurred and the frame
depth that established the handler being called. (For more information about
depth, see Section 8.5.1.3.)

The CHF$L_MCH_SAVR0 and CHF$L_MCH_SAVR1 longwords save the state of
the R0 and R1 registers, respectively, at the time of the call to LIB$SIGNAL or
LIB$STOP. If not modified by a handler during CHF processing, these values will
become the values of those registers after completion of CHF processing (either by
continuation or by unwinding). These two fields may be modified by a handler to
establish different values to be used at CHF completion. Note that the contents
of other registers are not available in the mechanism vector and can only be
accessed by analysis of the stack. (See Section 8.7.1.)

CHF$L_MCH_SAVR0 and CHF$L_MCH_SAVR1 are the only fields of a VAX
mechanism vector that can be validly modified by a handler. The effect of any
other modification is undefined.

Figure 8–5 VAX Mechanism Vector Format

31 0

Vector count (=4) :CHF$L_MCH_ARGS

:CHF$L_MCH_FRAME

:CHF$L_MCH_DEPTH

ZK−7686A−GE

Frame

Depth

R0

R1

:CHF$L_MCH_SAVR0

:CHF$L_MCH_SAVR1

If the VAX vector hardware or emulator option is in use, then for hardware-
detected exceptions, the vector state is implicitly saved before any condition
handler is entered and restored after the condition handler returns. (Save
and restore is not required for exceptions initiated by calls to LIB$SIGNAL
or LIB$STOP, because there can be no useful vector state at the time of such calls
in accordance with the rules for vector register usage in Section 2.1.2.) Thus, a
condition handler can make use of the system vector facilities in the same manner
as mainline code.

The VAX saved vector state is not directly available to a condition handler.
A condition handler that needs to manipulate the vector state to carry out
agreements with its callers can call the SYS$RESTORE_VP_STATE service.
This service restores the saved state to the vector registers (whether hardware
or emulated) and cancels any subsequent restore. The vector state can then be
manipulated directly in the normal manner by means of vector instructions. (This
service is normally of interest only during processing for an unwind condition.)

8–16 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

8.5.1.2.2 Alpha Mechanism Vector Format On Alpha systems, the 64-bit-wide
mechanism array is the argument mechanism in the handler call. The array is
shown in Figure 8–6. Table 8–5 lists and describes the fields.

Note

The following table lists variable name equivalence for hp OpenVMS
Version I64-BL and earlier and hp OpenVMS Version I64-BL and
later. Although hp OpenVMS Version I64-BL and later offer backward
compatibility, we recommend that you use the new names for that version
of the operating system.

hp OpenVMS Version I64-BL and earlier hp OpenVMS Version I64-BL and later

MCH_SAVR0 MCH_RETVAL

MCH_SAVR1 MCH_RETVAL2

MCH_SAVF0 MCH_RETVAL_FLOAT

MCH_SAVF1 MCH_RETVAL2_FLOAT

The CHF$IH_MCH_RETVALx and CHF$FH_MCH_RETVALx_FLOAT quadwords
save the state of the nonpreserved general and floating registers, respectively, at
the time of the call to LIB$SIGNAL or LIB$STOP. If not modified by a handler
during CHF processing, these values will become the values of those registers
after completion of CHF processing (either by continuation or by unwinding).
These fields may be modified by a handler to establish different values to be used
at CHF completion.

The CHF$IH_MCH_RETVALx and CHF$FH_MCH_RETVALx_FLOAT fields
are the only fields of an Alpha mechanism vector that can be validly modified
by a handler. The effect of any other modification is undefined. (See also
Section 8.7.2.) Note that the contents of the normally preserved registers are
not available in the mechanism vector and can only be accessed by analysis of the
stack. (See Section 8.7.1.)

The recommended method for modifying return values in a procedure’s invocation
context (CHFIH_MCH_RETVAL, CHFIH_MCH_RETVAL2, CHF$IH_MCH_
RETVAL_FLOAT, and CHF$IH_RETVAL2_FLOAT) is by using routine SYS$SET_
RETURN_VALUE (see Section 8.7.2). The recommended method for modifying all
other registers in a procedure’s invocation context is by using routine LIB$PUT_
INVO_REGISTERS (Section 3.5.3.6).

November 17, 2003 8–17

OpenVMS Conditions
8.5 Properties of Condition Handlers

Figure 8–6 Alpha Mechanism Vector Format

quadword aligned

MCH_ARGS

MCH_FLAGS

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

:160

:168

:176

:184

:344

:352

VM-7689A-AI

MCH_FRAME

MCH_DEPTH

MCH_RESVD1

MCH_DADDR

MCH_ESF_ADDR

MCH_SIG_ADDR

MCH_RETVAL
(MCH_SAVR0_LOW)

MCH_SAVR0_HIGH

MCH_SAVR16

(MCH_SAVR1_HIGH)

MCH_RETVAL2
(MCH_SAVR1_LOW)

MCH_SIG64_ADDR

Integer registers 17-27

Floating registers 11-29

MCH_SAVR28

MCH_RETVAL_FLOAT
(MCH_SAVF0)

MCH_RETVAL2_FLOAT
(MCH_SAVF1)

MCH_SAVF10

MCH_SAVF30

CHF$S_CHFDEF2=360

8–18 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

Table 8–5 Contents of the Alpha Argument Mechanism Array (MECH)

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from the next quadword,
CHF$PH_MCH_FRAME (not counting the first quadword that contains
this longword). This value is always 44.

CHF$IS_MCH_FLAGS Flag bits <31:0> for related argument-mechanism information defined as
follows:

CHF$V_FPREGS_VALID Bit 0. When set, the process has already
performed a floating-point operation and
the floating-point registers stored in this
structure are valid.

If this bit is clear, the process has not yet
performed any floating-point operations and
the values in the floating-point register slots
in this structure are unpredictable.

CHF$PH_MCH_FRAME Contains the frame pointer in the procedure context of the establisher.

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack frames between
the frame in which the exception occurred and the frame depth that
established the handler being called (see Section 8.5.1.3).

CHF$IS_MCH_RESVD1 Reserved to Hewlett-Packard.

CHF$PH_MCH_DADDR Address of the handler data quadword if the exception handler data field
is present (as indicated by PDSC$V_HANDLER_DATA_VALID); otherwise,
contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see the Alpha Architecture Reference
Manual).

CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This array is a 32-bit wide
(longword) array. This is the same array that is passed to a handler as the
signal argument vector.

CHF$IH_MCH_RETVAL Contains a copy of R0 at the time of the exception.

CHF$IH_MCH_RETVAL2 Contains a copy of R1 at the time of the exception.

CHF$IH_MCH_SAVRnn Contain copies of the saved integer registers at the time of the exception.
The following registers are saved: R16 through R28. Registers R2 through
R15 are implicitly saved in the call stack.

CHF$FH_MCH_RETVAL_
FLOAT

Contains a copy of F0 at the time of the exception, or is unpredictable as
described for the field CHF$IS_MCH_FLAGS.

CHF$FH_MCH_RETVAL2_
FLOAT

Contains a copy of F1 at the time of the exception, or is unpredictable as
described for the field CHF$IS_MCH_FLAGS.

CHF$FH_MCH_SAVFnn Contain copies of the saved floating-point registers at the time of the
exception, or are unpredictable as described at field CHF$IS_MCH_FLAGS.
If the floating-point register fields are valid, the following registers are
saved: F10 through F30. Registers F2 through F9 are implicitly saved in
the call

CHF$PH_MCH_SIG64_
ADDR

Address of the 64-bit form of signal array. This array is a 64-bit wide
(quadword) array.

November 17, 2003 8–19

OpenVMS Conditions
8.5 Properties of Condition Handlers

8.5.1.2.3 I64 Mechanism Vector Format On I64 systems, the 64-bit-wide
mechanism array is the argument mechanism in the handler call. The array is
shown in Figure 8–7.

The CHF$IH_MCH_RETVAL and CHF$FH_MCH_RETVAL2 quadwords save the
state of registers R8 and R9 at the time of the call to LIB$SIGNAL or LIB$STOP.
The CHF$FH_MCH_RETVAL_FLOAT, CHF$FH_MCH_RETVAL2_FLOAT, and
CHF$FH_MCH_SAVFnn octawords save the state of the floating-point registers
at the time of the call to LIB$SIGNAL or LIB$STOP. If not modified by a handler
during CHF processing (as described below), these values will become the values
of those registers after completion of CHF processing (either by continuation or
by unwinding).

The only supported method for modifying return values in a procedure’s
invocation context (CHFIH_MCH_RETVAL, CHFIH_MCH_RETVAL2,
CHF$FH_MCH_RETVAL_FLOAT, CHF$FH_MCH_RETVAL2_FLOAT) is by using
routine SYS$SET_RETURN_VALUE (see Section 8.7.2). The only supported
method for modifying all other registers in a procedure invocation context is by
using routine LIB$I64_PUT_INVO_REGISTERS (Section 4.8.3.10).

8–20 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

Figure 8–7 I64 Mechanism Vector Format

octaword aligned

CHF$IS_MCH_ARGS

CHF$IS_MCH_FLAGS

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

:72

:80

:96

:112

:176

:496

VM-1082A-AI

CHF$PH_MCH_FRAME

CHF$IS_MCH_DEPTH

CHF$IS_MCH_RESVD1

CHF$PH_MCH_DADDR

CHF$PH_MCH_ESF_ADDR

CHF$PH_MCH_SIG_ADDR

CHF$IH_MCH_RETVAL

CHF$IH_MCH_RETVAL2

CHF$PH_MCH_SIG64_ADDR

CHF$PH_MCH_SAVF32_SAVF127

:536CHF$IH_MCH_AR_LC

:544CHF$IH_MCH_AR_EC

:552CHF$PH_MCH_OSSD

:560CHF$PH_MCH_INVO_HANDLE

CHF$FH_MCH_RETVAL_FLOAT

CHF$FH_MCH_RETVAL2_FLOAT

CHF$FH_MCH_SAVF5

CHF$FH_MCH_SAVF2

CHF$FH_MCH_SAVF31

CHF$FH_MCH_SAVF12

CHF$IH_MCH_SAVB5

CHF$IH_MCH_SAVB1

:528

:568CHF$PH_MCH_UWR_START

CHF$S_CHFDEF2=576

November 17, 2003 8–21

OpenVMS Conditions
8.5 Properties of Condition Handlers

Table 8–6 Contents of the I64 Argument Mechanism Array (MECH)

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from the next
quadword, CHF$PH_MCH_FRAME (not counting the first
quadword that contains this longword). This value is 71 if
CHF$V_FPREGS_VALID is clear, and 263 if CHF$V_FPREGS_
VALID is set.

CHF$IS_MCH_FLAGS Flag bits <31:0> for related argument-mechanism information
defined as follows:

CHF$V_FREGS_VALID Bit 0. When set, the process has
already performed a floating-
point operation in registers
F2-F31 and the contents of the
CHF$FH_MCH_SAVFnn fields
of this structure are valid.

When this bit is clear, the
contents of the CHF$FH_MCH_
SAVFnn fields are undefined.

CHF$V_FPREGS2_VALID Bit 1. When set, the process has
already performed a floating-
point operation in registers
F32-F127 and the floating-point
registers stored in the extension
to this structure are valid.

If this bit is clear, the process
has not yet performed any
floating-point operations in
registers F32-F127, and the
pointer to the extension area
(CHF$FH_MCH_SAVF32_SAVF127)
will be zero.

CHF$PH_MCH_FRAME Contains the Previous Stack Pointer, PSP, (the value of the SP at
procedure entry) for the procedure context of the establisher (see
Section 4.5.1.)

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack
frames between the frame in which the exception occurred and
the frame depth that established the handler being called (see
Section 8.5.1.3).

CHF$IS_MCH_RESVD1 Reserved to Hewlett-Packard.

CHF$PH_MCH_DADDR Address of the handler data quadword (start of the Language
Specific Data area, LSDA, see Section A.4.1 and Section A.4.4)
if the exception handler data field is present in the unwind
information block (as indicated by OSSD$V_HANDLER_DATA_
VALID); otherwise, contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame.

CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This array is a 32-bit
wide (longword) array. This is the same array that is passed to a
handler as the signal argument vector.

CHF$IS_MCH_RETVAL Contains a copy of R8 at the time of the exception.

CHF$IS_MCH_RETVAL2 Contains a copy of R9 at the time of the exception.

(continued on next page)

8–22 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

Table 8–6 (Cont.) Contents of the I64 Argument Mechanism Array (MECH)

Field Name Contents

CHF$PH_MCH_SIG64_ADDR Address of the 64-bit form of signal array. This array is a 64-bit
wide (quadword) array.

CHF$FH_MCH_SAVF32_SAVF127 Address of the extension to the mechanism array that contains
copies of F32-F127 at the time of the exception.

CHF$IS_MCH_RETVAL_FLOAT Contains a copy of F8 at the time of the exception.

CHF$IS_MCH_RETVAL2_FLOAT Contains a copy of F9 at the time of the exception.

CHF$FH_MCH_SAVFnn Contain copies of floating-point registers F2-F5 and F12-
F31. Registers F6-F7 and F10-F11 are implicitly saved in the
exception frame.

CHF$FH_MCH_SAVBnn Contains copies of branch registers B1-B5 at the time of the
exception.

CHF$FH_MCH_AR_LC Contains a copy of the Loop Count Register (AR65) at the time of
the exception.

CHF$FH_MCH_AR_EC Contains a copy of the Epilog Count Register (AR66) at the time
of the exception.

CHF$PH_MCH_OSSD Address of the operating system-specific data area.

CHF$PH_MCH_INVO_HANDLE Contains the invocation handle of the procedure context of the
establisher (see Section 4.8.2.2)

.

CHF$PH_MCH_UWR_START Address of the unwind region.

8.5.1.3 Mechanism Depth
For all argument mechanisms, the depth field has the value 0 for an exception
that is handled by the procedure activation invoking the exception. The exception
procedure contains the instruction that either causes the hardware exception
or calls LIB$SIGNAL. The depth field of the argument mechanism has positive
values for procedure activations calling the one having the exception, for example,
1 for the immediate caller.

If a system service gives an exception, the immediate caller of the service is
notified at depth = 1. The depth field has a value of �2 when the condition
handler is established by the primary exception vector, a value of �1 when it is
established by the secondary vector, and a value of �3 when it is established by
the last-chance vector.

Given the same circumstances, the mechanism depth on any given processor type
is not necessarily the same as the depth on a different processor type (that is,
the depth on a VAX processor may differ from that on an Alpha or Intel Itanium
processor, and so on) if any of the following are present:

• Condition dispatcher in the call stack

• Jacket frames, if there are any translated routines in the call stack

• Multiple active signals

• Compiler use of no frame procedures or inline code expansion of calls

November 17, 2003 8–23

OpenVMS Conditions
8.5 Properties of Condition Handlers

8.5.2 System Default Condition Handlers
If one of the default condition handlers established by the system is entered, the
handler calls the SYS$PUTMSG system service to interpret the signal argument
list and to output the indicated information or error message. See the description
of SYS$PUTMSG in the HP OpenVMS System Services Reference Manual for the
format of the signal argument list.

8.5.3 Coordinating the Handler and Establisher
This section describes the requirements for use of memory, exception
synchronization, and continuation of the handler.

8.5.3.1 Use of Memory
Exceptions can be raised and unwind operations (which cause exception handlers
to be called) can occur when the current value of one or more variables is in
registers rather than in memory. Because of this, a handler, and any descendant
procedure called directly or indirectly by a handler, must not access any variables
except those explicitly passed to the procedure as arguments or those that exist
in the normal scope of the procedure.

This rule can be violated for specific memory locations only by agreement between
the handler and all procedures that might access those memory locations. A
handler that makes such agreements does not conform to this standard.

8.5.3.2 Exception Synchronization (Alpha Only)
The Alpha hardware architecture allows instructions to complete in a different
order than that in which they were issued, and for exceptions caused by an
instruction to be raised after subsequently issued instructions have been
completed.

Because of this, the state of the machine when a hardware exception occurs
cannot be assumed with the same precision as it can be assumed on VAX or Intel
Itanium processors unless such precision has been guaranteed by bounding the
exception range with the appropriate insertion of TRAPB instructions.

The rules for bounding the exception range follow:

• If a procedure has an exception handler that does not simply reraise all
arithmetic traps caused by code that is not contained directly within that
procedure, the procedure must issue a TRAPB instruction before it establishes
itself as the current procedure.

• If a procedure has an exception handler that does not simply reraise all
arithmetic traps caused either by code that is not contained directly within
that procedure or by any procedure that might have been called while that
procedure was current, the procedure must issue a TRAPB instruction in the
procedure epilogue while it is still the current procedure.

• If a procedure has an exception handler that is sensitive to the invocation
depth, the procedure must issue a TRAPB instruction immediately before and
after any call. Furthermore, the handler must be able to recognize exception
PC values that represent either epilogue code in called procedures or TRAPB
instructions immediately after a call, and adjust the depth appropriately (see
Section 3.6.5).

These rules ensure that exceptions are detected in the intended context of the
exception handler.

8–24 November 17, 2003

OpenVMS Conditions
8.5 Properties of Condition Handlers

These rules do not ensure that all exceptions are detected while the procedure
within which the exception-causing instruction was issued is current. For
example, if a procedure without an exception handler is called by a procedure
that has an exception handler not sensitive to invocation depth, an exception
detected while that called procedure is current may have been caused by an
instruction issued while the caller was the current procedure. This means the
frame, designated by the exception-handling information, is the frame that was
current when the exception was detected, not necessarily the frame that was
current when the exception-causing instruction was issued.

8.5.3.3 Continuation from Exceptions (Alpha Only)
The Alpha architecture guarantees neither that instructions are completed in
the same order in which they were fetched from memory nor that instruction
execution is strictly sequential. Continuation is possible after some exceptions,
but certain restrictions apply.

By definition, software-raised general exceptions are synchronous with the
instruction stream and can have a well-defined continuation point. Therefore,
a handler can request continuation from a software-raised exception. However,
since compiler-generated code typically relies on error-free execution of previously
executed code, continuing from a software-raised exception might produce
unpredictable results and unreliable behavior unless the handler has explicitly
fixed the cause of the exception so that it is transparent to subsequent code.

Hardware faults on Alpha processors follow the same rules as the strict
interpretation of the VAX or Itanium rules. Loosely paraphrased, these rules
state that if the offending exception is fixed, reexecution of the instruction (as
determined from the supplied PC) will yield correct results. This does not imply
that instructions following the faulting instruction have not been executed.
Therefore, hardware faults can be viewed as similar to software-raised exceptions
and can have well-defined continuation points.

Arithmetic traps cannot be restarted because all the information required for
a restart is not available. The most straightforward and reliable way in which
software can guarantee the ability to continue from this type of exception is
by placing appropriate TRAPB instructions in the code stream. Although this
technique does allow continuation, it must be used with extreme caution because
of the negative effect on application performance.

8.6 Returning from a Condition Handler
Condition handlers are invoked by the OpenVMS Condition Handling Facility
(CHF). Therefore, the return from the condition handler is to the CHF.

To continue from the instruction following the signal, the handler must return
with a function value of either SS$_CONTINUE or SS$_CONTINUE64 (both
of which have bit <0> set). If, however, the condition is signaled with a call to
LIB$STOP, the image exits. To resignal the condition, the condition handler
returns with a function value of either SS$_RESIGNAL or SS$_RESIGNAL64
(both of which have the bit <0> clear).

The difference between SS$_CONTINUE and SS$_CONTINUE64, and similarly
between SS$_RESIGNAL and SS$_RESIGNAL64, is of significance only if the
handler has made an alteration to the signal vector that is intended to be taken
into account by the CHF. When SS$_CONTINUE or SS$_RESIGNAL is returned,
then any modification to the 32-bit signal vector is propagated (in sign-extended
form) to the corresponding position in the 64-bit vector. When SS$_CONTINUE64

November 17, 2003 8–25

OpenVMS Conditions
8.6 Returning from a Condition Handler

or SS$_RESIGNAL64 is returned, any modification in the 64-bit signal vector is
propagated (in truncated form) to the corresponding position in the 32-bit vector.
If no modification has been made, then the two forms of continuation or resignal
are equivalent.

The algorithm for detecting change is as follows:

• For SS$_CONTINUE64 and SS$_RESIGNAL64, the 32-bit signal vector is
simply derived again from the 64-bit signal vector. In particular, no hidden
copy of the 64-bit signal vector is kept. It is not necessary to determine if
there was a change or not—if there was, it is properly reflected in the 32-bit
vector.

• For SS$_CONTINUE and SS$_RESIGNAL, let SIGVEC32[I] and
SIGVEC64[I] be corresponding entries in the two vectors, for I from 1 to
length. (Recall that the length[s] cannot be changed.) For each entry, do the
following:

if SIGVEC32[I] /= SIGVEC64[I]<0,32>
then

SIGVEC64[I] = sign-extend(SIGVEC32[I])

That is, if the 32-bit entry is still the same as the low-order 32 bits of the
64-bit entry, then it did not change and thus the 64-bit entry is not changed.
Otherwise, update the 64-bit entry with the sign-extended contents of the
32-bit entry.

To alter the severity of the signal, the handler modifies the low-order three bits
of the condition value longword in the signal_args vector and resignals. If
the condition handler wants to alter the defined control bits of the signal, the
handler modifies bits <31:28> of the condition value and resignals. To unwind,
the handler calls SYS$UNWIND and then returns. In this case, the handler
function value is ignored.

8.7 Request to Unwind from a Signal
To unwind, the handler or any procedure that it calls can make a call to
SYS$UNWIND. The format is as follows:

SYS$UNWIND(depadr, new_PC)

Argument OpenVMS Usage Type Access Mechanism

depadr integer longword read by reference

new_PC address longword read by reference

Arguments:

depadr
Optional number of presignal frames (depth) to be removed.

new_PC
Optional address of the location to receive control after the unwind operation is
completed.

Function Value Returned:

Success or failure status (see text that follows).

8–26 November 17, 2003

OpenVMS Conditions
8.7 Request to Unwind from a Signal

The depadr argument specifies the address of the longword that contains the
number of presignal frames (depth) to be removed. The deepest procedure
invocation whose frame is not removed is called the target invocation of the
unwind. If that number is less than or equal to 0, nothing is to be unwound. The
default (address = 0) is to return to the caller of the procedure that established
the handler that issued the $UNWIND service. To unwind to the establisher,
specify the depth from the call to the handler, which can be found in the CHF$IS_
MCH_DEPTH field of the Mechanism Array. When the handler is at depth 0,
it can achieve the equivalent of an unwind operation to an arbitrary place in
its establisher by altering the PC in its signal_args vector and returning with
SS$_CONTINUE, or SS$_CONTINUE64 if the 64-bit signal vector is altered,
instead of performing an unwind.

The new_PC argument specifies the location to receive control when the
unwinding operation is complete. The default is to continue at the instruction
following the call to the last procedure activation that is removed from the stack.

The function value success either is a standard success code (SS$_NORMAL) or
it indicates failure with one of the following return status condition values:

• No signal active (SS$_NOSIGNAL)

• Already unwinding (SS$_UNWINDING)

• Insufficient frames for depth (SS$_INSFRAME)

If SYS$UNWIND is invoked by a handler that has already invoked
SYS$UNWIND, then the effect of the second invocation is undefined.

The unwinding operation occurs when the handler returns to the CHF. Unwinding
is done by scanning back through the stack and calling each handler associated
with a frame. The handler is called with the exception SS$_UNWIND to perform
any application-specific cleanup. If the depth specified includes unwinding the
establisher’s frame, the current handler is recalled with this unwind exception.

When the target invocation is reached on Alpha or I64 systems, unwind
completion depends on the PDSC$V_TARGET_INVO flag of the associated
procedure descriptor or unwind information, respectively. If that flag is set to 1,
then the handler for that procedure invocation is called; otherwise, no handler is
called. Control then resumes in the target invocation.

The call to the handler takes the same form as described in Section 8.5.1 with the
following values:

• signal_args: for a handler for a procedure other than the target invocation
of the unwind—an argument count (CHF$L_SIG_ARGS) of 1 and a condition
value (CHF$L_SIG_NAME) of SS$_UNWIND.

For a handler on Alpha or I64 systems for a procedure that is the target
invocation of the unwind—an argument count (CHF$L_SIG_ARGS) of 2 and
two condition values consisting of SS$_UNWIND followed by SS$_TARGET_
UNWIND.

• mechanism_args: same as for the original call except for a depth of 0 (that
is, unwinding self) and any other changes made by prior handlers.

After each handler is called, the stack is logically cut back to the previous frame.

On Alpha or I64 systems, the stack is not actually cut back until after the last
handler is called.

November 17, 2003 8–27

OpenVMS Conditions
8.7 Request to Unwind from a Signal

The exception vectors are not checked because they are not being removed. Any
function value from the handler is ignored.

To specify the value of the top-level function being unwound, the handler should
modify the appropriate saved register locations in the mechanism_args vector.
They are restored from the mechanism_args vector at the end of the unwind.

Depending on the arguments to SYS$UNWIND, the unwinding operation is
terminated as follows:

SYS$UNWIND(0,0) Unwind to the establisher’s caller.

SYS$UNWIND(depth,0) Unwind to the establisher at the point of the call
that resulted in the exception.

SYS$UNWIND(depth,location) Unwind to the specified procedure activation and
transfer to a specified location.

The only recommended values for depth are the default (address of 0), which
unwinds to the caller of the establisher, and the value of depth taken from the
mechanism vector, which unwinds to the establisher. Other values depend on
implementation details that can change at any time.

You can call SYS$UNWIND whether the condition was a software exception
signaled by calling LIB$SIGNAL or LIB$STOP or was a hardware exception.
Calling SYS$UNWIND is the only way to continue execution after a call to
LIB$STOP.

8.7.1 Signaler’s Registers
Because the handler is called and can in turn call routines, the actual register
values in use at the time of the signal or exception can be scattered on the stack.

On VAX systems, to find registers R2 through FP, a scan of stack frames must
be performed starting with the current frame and ending with the call to the
handler. During the scan, the last frame found to save a register contains that
register’s contents at the time of the exception. If no frame saved the register,
the register is still active in the current procedure. The frame of the call to the
handler can be identified by the return address of SYS$CALL_HANDL+4. In this
case, the registers are in the following states:

R0, R1 In mechanism_args

R2–11 Last frame saving it

AP Old AP of SYS$CALL_HANDL+4 frame

FP Old FP of SYS$CALL_HANDL+4 frame

SP Equal to end of signal_args vector+4

PC, PSL At end of signal_args vector

On Alpha or I64 systems, to find the contents of the registers, use the invocation
context routines described in Sections 3.5.3 or 4.8.3, respectively.

8.7.2 Unwind Completion
On VAX systems, the values that exist in R0 and R1 when the unwind completes
are the values passed implicitly to the unwinder in the mechanism array (see
Section 8.5.1.2.1). If desired, these values can be modified by an exception
handler before the unwind is initiated.

8–28 November 17, 2003

OpenVMS Conditions
8.7 Request to Unwind from a Signal

On Alpha systems, the values that exist in R0, R1, F0, and F1 when the unwind
completes are the values passed implicitly to the unwinder in the mechanism
array (see Section 8.5.1.2.2). If desired, these values can be modified by an
exception handler using SYS$SET_RETURN_VALUE before the unwind is
initiated. Note that, unlike VAX systems, an Alpha system does not use R1 for
returning any type of return values.

On I64 systems, the values that exist in R8, R9, F8, and F9 when the unwind
completes are the values passed implicitly to the unwinder in the mechanism
array (see Section 8.5.1.2.3). If desired, these values can be modified by an
exception handler using SYS$SET_RETURN_VALUE before the unwind is
initiated.

The effect of handler modification of any mechanism vector field other than
described above is undefined.

SYS$SET_RETURN_VALUE (Alpha and I64 systems only)

SYS$SET_RETURN_VALUE(mechanism_arg, return_type, return_value)

Argument OpenVMS Usage Type Access Mechanism

mechanism_
arg

mechanism vector
address

quadword (unsigned) read by value

return_type integer longword (unsigned) read by reference

return_value buffer scalar read by reference

Arguments:

mechanism_arg
Address of mechanism vector. If zero, the mechanism vector for the currently active
signal will be used.1

return_type
Address of a longword that contains one of the function return signature codes found
in Table 5–4.1

return_value
Address of a value of the appropriate type. The referenced value will be read as a
longword, quadword, or octaword, depending on the return_type.1

1If the address of the return_type argument is zero, then the return_value argument is fetched by
value and is treated as return-type PSIG$K_FR_U32. This combination of arguments can be used to
set a condition code such as SS$_ACCVIO as a return value.

Function Value Returned:

status
(Success or failure) The given return value is placed in the appropriate fields of the
specified mechanism vector, according to the return type.

8.8 GOTO Unwind Operations (Alpha and I64 Systems Only)
A GOTO unwind is a transfer of control that leaves one procedure invocation
and continues execution in a prior, currently active procedure invocation.
Modular and reliable support of the nonlocal GOTO requires procedure
invocations that are terminated to have an opportunity to clean up in an
orderly way (just like a procedure that is terminated as a result of an unwind
from a condition handler).

November 17, 2003 8–29

OpenVMS Conditions
8.8 GOTO Unwind Operations (Alpha and I64 Systems Only)

Performing a GOTO unwind operation in a thread causes a transfer of control
from the location at which the GOTO unwind operation is initiated to a target
location in a target invocation. This transfer of control also results in the
termination of all procedure invocations, including the invocation in which the
unwind request was initiated, up to the target procedure invocation. Thread
execution then continues at the target location.

Before control is transferred to the unwind target location, the unwind support
code invokes all frame-based handlers that were established by procedure
invocations being terminated. These handlers are invoked with an indication of
an unwind in progress. This gives each procedure invocation being terminated
the chance to perform cleanup processing before its context is lost.

When the target invocation is reached, unwind completion depends on the
PDSC$V_TARGET_INVO flag of the associated procedure descriptor (Alpha) or
OSSD$V_TARGET_INVO flag of the associated unwind information block (I64).
If that flag is set to 1, then the handler for that procedure invocation is called;
otherwise, no handler is called.

After all the relevant frame-based handlers have been called and the appropriate
frames have been removed from existence, the target invocation’s saved context is
restored and execution is resumed at the specified location.

A GOTO unwind procedure can be initiated while an exception is active (from
within a condition handler) or while no exception is active. If the GOTO unwind
transfers control out of an exception handler (resulting in the termination of
current handler invocation), it also terminates handling of the corresponding
condition (like SYS$UNWIND).

Note

OpenVMS Alpha uses different registers than OpenVMS I64 systems.
This section uses the terms RetVal, RetVal2, NewRetVal, and NewRetVal2
to describe the generic unwind operation. The following table translates
these terms for each system:

Symbol Alpha Systems I64 Systems

RetVal R0 R8

RetVal2 R1 R9

NewRetVal New_R0 New_R8

NewRetVal2 New_R1 New_R9

A thread can initiate a GOTO unwind operation by calling SYS$GOTO_
UNWIND_64, defined as:

SYS$GOTO_UNWIND_64(target_invo, target_pc, NewRetVal, NewRetVal2)

On Alpha systems, the following backward compatible form is also provided:

SYS$GOTO_UNWIND(target_invo, target_pc, New_R0, New_R1)

8–30 November 17, 2003

OpenVMS Conditions
8.8 GOTO Unwind Operations (Alpha and I64 Systems Only)

Argument OpenVMS Usage Type Access Mechanism

target_invo invo_handle longword or
quadword
(unsigned)1

read by reference

target_pc address longword or
quadword
(unsigned)1

read by reference

NewRetVal quadword_unsigned quadword (unsigned) read by reference

NewRetVal2 quadword_unsigned quadword (unsigned) read by reference

1Type is longword (unsigned) for SYS$GOTO_UNWIND; quadword (unsigned) for SYS$GOTO_
UNWIND_64

Arguments:

target_invo
Address of a location that contains a handle for the target invocation.

If omitted or the address of the handle is zero, then the effect of the call is undefined.

target_pc
Address of a location that contains the address at which execution should continue in
the target invocation.

If omitted or if the address is 0, then execution resumes at the location specified by
the return address for the call frame of the target procedure invocation.

If the target_invo argument is omitted or is 0, then this argument is ignored. In this
case, a system-defined target PC is assumed.

NewRetVal
Address of a location that contains the value to place in the saved RetVal location of
the mechanism argument vector. The contents of this location are then loaded into
RetVal at the time that execution continues in the target invocation.

If this argument is omitted, then the contents of RetVal at the time of the call to
SYS$GOTO_UNWIND_64 are used.

This argument is called New_R0 in SYS$GOTO_UNWIND for compatibility with
Alpha.

NewRetVal2
Address of a location that contains the value to place in the saved RetVal2 location
of the mechanism argument vector. The contents of this location are then loaded into
RetVal2 at the time that execution continues in the target invocation.

If this argument is omitted, then the contents of RetVal2 at the time of the call to
SYS$GOTO_UNWIND_64 are used.

This argument is called New_R1 in SYS$GOTO_UNWIND for compatibility with
Alpha.

Condition Value Returned:

SS$_ACCVIO
An invalid address was given.

When a GOTO unwind is initiated, control almost never returns to the point at
which the unwind was initiated. Control returns with an error status only if a
GOTO unwind cannot be started. If SYS$GOTO_UNWIND_64 (or SYS$GOTO_
UNWIND) is invoked by a handler that has already invoked SYS$UNWIND,
then the effect of calling SYS$GOTO_UNWIND_64 (or SYS$GOTO_UNWIND) is
undefined.

November 17, 2003 8–31

OpenVMS Conditions
8.8 GOTO Unwind Operations (Alpha and I64 Systems Only)

8.8.1 Handler Invocation During a GOTO Unwind
When an unwind operation takes place, all frame-based exception handlers are
invoked that were established by any procedure invocation being terminated. In
addition, the handler for the target procedure invocation is called if the PDSC$V_
TARGET_INVO flag is set in the corresponding procedure descriptor or unwind
information (see Sections 3.4.2, 3.4.5 and A.4.3.) These handlers are invoked in
the reverse order from which they were established.

Because primary, last-chance handlers, and the system catchall handler are not
associated with a normal procedure invocation, these handlers are never invoked
during an unwind (but they are invoked if an exception is raised during the
unwind operation).

For a GOTO unwind procedure, each handler that is invoked is called with two
arguments as follows:

(* handler) (signal_args, mechanism_args)

Argument OpenVMS Usage Type Access Mechanism

signal_args signal vector structure modify by reference

mechanism_args mechanism vector structure modify by reference

Arguments:

signal_args
Argument count of 2, followed by a condition value of SS$_UNWIND, followed by:

• SS$_GOTO_UNWIND when a target invocation is specified but not for that target
invocation

• SS$_TARGET_GOTO_UNWIND when a target invocation is specified and the
handler for that target invocation is called

mechanism_args
Mechanism argument corresponding to the frame being unwound, as defined in
Section 8.5.1.2.

For information about signal argument and mechanism argument vectors, see
Sections 8.5.1.1 and 8.5.1.2.

8.8.2 Unwind Completion
When an unwind completes, the following conditions are true:

• The target procedure invocation is the most current invocation in the
procedure invocation chain.

• The environment of the target invocation is restored to the state when that
invocation was last current, except for the contents of all scratch registers.

• RET0 and RET1 contain the respective values (if any) that were passed by
the routine that invoked the unwind.

• Execution continues at the target location.

8–32 November 17, 2003

OpenVMS Conditions
8.9 Multiple Active Signals

8.9 Multiple Active Signals
A signal is said to be active until the signaler gets control again or is unwound.
A signal can occur while a condition handler or a procedure it has called is
executing in response to a previous signal. For example, procedures A, B, and C
establish condition handlers Ah, Bh, and Ch. If A calls B and B calls C, which
signals S, and Ch resignals, then Bh gets control.

If Bh calls procedure X, and X calls procedure Y, and Y signals T, the stack is as
follows:

Which was programmed:

A

B

C

Bh

<Signal S>

X

Y

<Signal T>

<Signal T>
Y
X
Bh

<Signal S>
C
B
A

ZK−1884−GE

The handlers are searched for in the following order: Yh, Xh, Bhh, Ah. Bh is
not called again because it is not appropriate to assume that a routine is able to
be its own handler. However, Bh can establish itself or another procedure as its
handler (Bhh).

On VAX systems, Ch is not checked or called because it is a structural descendant
of B.

On Alpha or I64 systems, the search does check handlers Ch and Bh between
calling Bhh and Ah. These handlers will be reinvoked only if enabled by the
HANDLER_REINVOCABLE flag of the establisher’s procedure descriptor (see
Sections 3.4.1 and 3.4.4) or unwind information (see Section A.4.3).

For all systems, the following algorithm is used on the second and subsequent
signals that occur before the handler for the original signal returns to the
Condition Handling Facility. The primary and secondary exception vectors are
checked. However, the search backward in the process stack is then modified.
On a VAX processor, the stack frames traversed in the first search are skipped,
in effect, during the second search, while on an Alpha or I64 system, the stack
frames are skipped unless they explicitly enable handler reinvocation. Therefore,
the stack frame preceding the first condition handler, up to and including the
frame of the procedure that has established the handler, is skipped. In the VAX
environment, frames that are skipped are not counted in the depth. In the Alpha
or I64 environment, all frames are counted in the depth.

November 17, 2003 8–33

OpenVMS Conditions
8.9 Multiple Active Signals

For example, the stack frames traversed in the first and second searches are
skipped in a third search. Note that if a condition handler signals, it is not
automatically invoked recursively. However, if a handler itself establishes a
handler, the second handler is invoked. Therefore, a recursive condition handler
should start by establishing itself. Any procedures invoked by the handler are
treated in the normal way; that is, exception signaling follows the stack up to the
condition handler.

If an unwind operation is requested while multiple signals are active, all the
intermediate handlers are called for the operation. For example, in the preceding
diagram, if Ah specifies unwinding to A, the following handlers are called for the
unwind: Yh, Xh, Bhh, Ch, and Bh.

For proper hierarchical operation, an exception that occurs during execution
of a condition handler established in an exception vector should be handled by
that handler rather than propagating up the activation stack. To prevent such
propagation, the vectored condition handler should establish a handler in its
stack frame to handle all exceptions.

8.10 Multiple Active Unwind Operations
During an unwind operation (resulting from a call of SYS$GOTO_UNWIND_
64, SYS$GOTO_UNWIND, or SYS$UNWIND), another unwind operation
can be initiated (using SYS$GOTO_UNWIND_64, SYS$GOTO_UNWIND, or
SYS$UNWIND). This can occur, for example, if a handler that is invoked for
the original unwind initiates another unwind, or if an exception is raised in
the context of such a handler and a handler invoked for that exception initiates
another unwind operation. However, SYS$UNWIND cannot be called from a
handler that is invoked as part of an unwind (see Section 8.7), but it can be called
from a handler for a nested exception.

An unwind that is initiated while a previous unwind is active is either a nested
unwind or an overlapping unwind.

A nested unwind is an unwind that is initiated while a previous unwind is
active and whose target invocation in the procedure invocation chain is not a
predecessor of the most current active unwind handler. A nested unwind does
not terminate any procedure invocation that would have been terminated by the
previously active unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind
operation proceeds as a normal unwind operation, and when execution resumes
at the target location of the nested unwind, the nested unwind is complete and
the previous unwind is once again the most current unwind operation.

An overlapping unwind is an unwind that is initiated while a previous unwind
is active and whose target invocation in the procedure invocation chain is a
predecessor of the most current active unwind handler. An overlapping unwind
terminates one or more procedure invocations that would have been terminated
by the previously active unwind.

An overlapping unwind is detected when the most current active unwind handler
is terminated. This detection of an overlapping unwind is termed an unwind
collision.

When a GOTO unwind collides with a GOTO unwind, the later unwind
supersedes the earlier unwind, which is abandoned. The later unwind then
continues from the point of the collision.

8–34 November 17, 2003

OpenVMS Conditions
8.10 Multiple Active Unwind Operations

The result of any other collision is undefined.

November 17, 2003 8–35

A
Stack Unwinding and Exception Handling on

OpenVMS I64

Note

This appendix is completely new and therefore contains no change bars
(|).

Stack unwinding is the process of tracing backwards through the stack of
invocation contexts of a thread. Every active procedure has one invocation
context. An invocation context has memory (a frame) on the register stack,
the memory stack, or both. To trace backwards through the stack of invocation
contexts, it must be possible to identify each invocation context and its associated
frames. Exception handling often requires the ability to trace backwards through
a number of invocation contexts and then to transfer control to an exception
handling routine.

For the register stack, the state of the current register stack frame together
with the AR.PFS register provides sufficient information to identify the previous
frame. However, this works for only one level of nesting, because there is no
hardware stack of AR.PFS registers. To make it possible to unwind the register
stack, this calling standard defines a convention for saving and recovering the
AR.PFS register in each frame.

For the memory stack, it is expected that most procedures will allocate a frame
that does not change in size while the procedure is active. For these procedures,
the fixed frame size is recorded in a static unwind table, and the instruction
pointer (PC) is used as a key into this table.

To make it possible to unwind frames that vary in size, this calling standard
defines a convention for saving and recovering the SP value for the previous
frame on the stack.

As the register and memory stacks are unwound, it is also necessary to recover
the values of preserved registers that were saved by each procedure for the
following uses:

• So that debuggers have access to correct values of local variables

• So that exception handlers can operate correctly

• To provide values needed for further unwinding

This calling standard defines a convention for saving and recovering the values
of these preserved registers. This convention uses the PC as a key for locating
a static unwind table entry that contains everything necessary for locating the
following values:

• The previous register stack frame

November 17, 2003 A–1

Stack Unwinding and Exception Handling on OpenVMS I64

• The memory stack frames

• The previous PC

Unwinding the stack is done using system routines (see Section 4.8.3) that can be
called from the thread itself, from a debugger, or for exception handling. Stack
unwinding operates on context records; the primary routine reconstructs the
context for a previous frame given the context for its descendent frame.

This appendix describes the following topics:

• The framework for unwinding the stack and for processing exceptions

• The format of the static unwind tables

• The code generation conventions required to perform the above tasks

A.1 Unwinding the Stack
The process of unwinding the stack begins with an initial context record that
describes the process state in the most recent procedure invocation at the point
of interruption. From this initial state, the stack is unwound one invocation
context at a time, using static information generated by the compilers about each
procedure to reconstruct a context record that describes the previous procedure
(which is suspended at a point just after the procedure call or an asynchronous
interruption).

A.1.1 Initial Context
There is only one way to get an initial context: call LIB$I64_GET_CURR_INVO_
CONTEXT (see Section 4.8.3.4).

A.1.2 Step to Previous Frame
The unwind routines build a context record that corresponds to the next older
frame on the stack. This context record can then be used to unwind to the
previous frame on the stack. The following steps reconstruct the context for the
previous frame using information in the unwind tables for the current frame:

1. Find the return link in the current context, and set PC in the previous context
to that address.

2. Find the previous frame marker in the current context (for example, in the
AR.PFS register), and copy it to the current frame marker (CFM) in the
previous context.

3. Determine the value of GP for the new PC, and set GP in the previous context
to that value.

4. Set SP in the previous context to SP from current context plus the current
size of the memory frame.

5. Set AR.BSP in the previous context to AR.BSP from the current context
minus the size of the input/local region of the frame (taking into account NaT
collections that may have been saved to the backing store). The frame size
can be calculated from the frame marker.

6. Find the saved copies of the preserved registers in the current context, and
copy them to the previous context.

A–2 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.1 Unwinding the Stack

7. Find any VMS-specific Caller Spill Register information (see Section A.4.3.2)
in the unwind information associated with the PC that was determined in
Step 1 and restore any applicable registers saved in the previous frame.

The bottom of the call stack is identified by a BOTTOM_OF_STACK flag in the
context block.

The information needed to execute these steps correctly is recorded in static
unwind information that is associated with each code segment of the program
itself. The structure of this information is described in Section A.4. Each code
segment has an associated table of static unwind information, and the operating
system provides an API for finding the unwind table, given a known PC (see
Section A.6).

When a thread receives an asynchronous interruption, the thread context is saved
so that the thread can continue executing correctly once the interruption has
been handled. This context is saved on the memory stack, and a new procedure
frame is constructed for the interruption handler. The first procedure frame in
the interruption handler is marked in such a way that the unwind routine can
recognize that unwinding past the point of interruption requires a restoration of
the full context.

A.2 Exception Handling Framework
The exception handling model for OpenVMS is partitioned into a language-
independent component and a language-dependent component. The language-
independent component is responsible for fielding an exception, searching for
and dispatching to a condition handler and unwinding the stack. The run-time
library of each source language that supports exception handling must provide a
condition handler that implements the language-dependent component of this
model.

Note

For compatibility with the OpenVMS VAX and Alpha calling standards,
this document uses the term condition handler, rather than the term
personality routine.

The exception handling model is oriented around procedure invocation contexts.
Each invocation context corresponds to an activation of a procedure, which may or
may not have associated exception handling requirements. A language typically
uses a single condition handler for all procedures, but this is not a requirement.

Exceptions are signalled by invoking a routine in the language-independent
component called the exception dispatcher, which initiates the process of
handling the exception. Synchronous exceptions can be signalled directly by the
application through a language-specific construct; asynchronous exceptions can be
signalled in response to hardware-detected traps or faults.

The exception dispatcher walks the stack of invocation contexts non-destructively
beginning with the most recent invocation, searching for the first invocation
context with a condition handler. When a condition handler is found, the
exception dispatcher invokes the condition handler.

A condition handler may perform the following actions:

• Ignore the condition.

November 17, 2003 A–3

Stack Unwinding and Exception Handling on OpenVMS I64
A.2 Exception Handling Framework

• Take some special action and continue from the point at which the condition
occurred.

• End the operation and branch from the sequential flow of control.

• Treat the condition as an unrecoverable error.

• Resignal the exception to the next condition handler.

• Invoke a user-written condition handler.

• Perform language-specific exception handling actions (for example, C++ try
region processing).

If the condition handling facility finds a handler for the exception that requests
an unwind, it invokes the dispatcher to walk the stack a second time. During
the second walk, the dispatcher invokes the condition handler for each frame
again to execute cleanup actions as necessary. When the dispatcher reaches the
frame that contains the condition handler, control is transferred to the condition
handler.

For more details about OpenVMS condition handling, see Chapter 8.

A.3 Coding Conventions for Reliable Unwinding
This section describes the coding conventions that must be observed to guarantee
that the stacks can be unwound from every point in the program. For the
purposes of unwinding, this calling standard divides every procedure into one or
more regions, which are classified as either prologue or body regions.

A prologue region is one where the register stack and memory stack frames
are established and where key registers are saved. To unwind correctly when the
PC is one of these regions, the unwinder must have a detailed description of the
order of operations within the region, so that it knows what state has changed,
and which registers have been saved at any given point in that region.

A body region is one for which the register stack and the memory stack are fully
formed and initialized. Although a body region can change the state of the stack
frame and save and restore preserved registers (for example, to shrink-wrap
the save and restore of a register), the unwind data structures are tuned for body
regions that have few such operations.

A.3.1 Requirements for Unwinding the Stack
Certain constraints must be met in order to unwind the stack successfully at
any time, both by standard procedure calls as described in Chapter 4, and by
special-purpose calling conventions. Appendix B describes the format of the
unwind data structures. To meet the needs of the stack unwind mechanism, the
following rules must be followed at all times:

• The previous function state register (AR.PFS) must be preserved prior to any
call. The compiler must record, in the unwind data structures, where this
register is stored, and over what range of code the saved value is valid.

• For special calls using a return branch register other than B0, the compiler
must record the branch register number used for the return link.

• The return branch register must be preserved prior to any call involving the
same branch register. The compiler must record where the return branch
register is stored and over what range of code the saved value is valid.

A–4 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.3 Coding Conventions for Reliable Unwinding

• If a preserved register is saved, the compiler must record where the preserved
register is stored and over what range of code the saved value is valid.

• If a procedure has a memory stack frame, the compiler must record either:
(1) how large the frame is, or (2) that a previous frame pointer is stored on
the stack or in a general register.

• The return branch register must contain an address that can be used to
determine the unwind state of the calling procedure. For example, a compiler
may choose to optimize calls to procedures that do not return. If it does
so, however, it must ensure that the unwind information for the procedure
properly describes the unwind state at the return point, even though the
return pointer will never be used. This may require the insertion of an
otherwise unnecessary NOP or BREAK instruction.

The following sections provide detailed conventions for satisfying these
requirements.

A.3.2 Conventions for Prologue Regions
A typical prologue region performs some or all of the following steps:

• Allocate a new register stack frame. The order of this step is not important
to the unwind process (although it must precede any other operations in the
prologue that require the use of local stack registers).

• Allocate a new memory stack frame. For fixed-size frames, the stack pointer
(SP) must be modified in a single instruction (either with a single add
immediate, or by performing intermediate calculations in a scratch register
before modifying SP). The location of this instruction and the size of the
fixed-frame must be recorded in the unwind descriptor (see Section A.4.1.1).

For variable-size frames, the stack pointer must be saved in a general register
that is kept valid throughout the remainder of the prologue region and the
following body regions. This copy of the previous stack pointer is called PSP.
The location of the copy instruction and the general register number must be
recorded in the unwind descriptor.

• Save the previous function state (AR.PFS), either in a general register
or on the memory stack. The location of this instruction and the general
register number (or stack offset) must be recorded in the unwind descriptor.
Normally, the previous function state is copied to a general register by the
ALLOC instruction that allocates a new register stack frame. However, if the
previous function state is to be stored in the memory stack, the location of
the instruction that stores the general register to the memory stack must be
recorded, and the original PFS must not be modified until after the store.

• Save the return pointer (RP), either in a general register or on the memory
stack. The location of this instruction and the general register number (or
stack offset) must be recorded in the unwind descriptor. Saving RP to the
memory stack requires the following steps:

1. Copy it to a general register.

2. Store it (the location of this store is the one to record). The original RP
must not be modified before the store.

November 17, 2003 A–5

Stack Unwinding and Exception Handling on OpenVMS I64
A.3 Coding Conventions for Reliable Unwinding

• Save the preserved registers, either on the memory stack or in local
registers in the current register stack frame. In general, the location of
each instruction used to save a preserved register and the general register
number (or stack offset) must be recorded. There are five groups of registers:

General registers

Floating-point registers

Branch registers

Predicate registers

Application registers

The predicate registers must be copied as a whole to a general register with
a single Move from Predicates instruction; if they are to be stored on the
memory stack, the Store instruction is the one to record. Any arbitrary subset
of preserved general registers, floating-point registers, and branch registers
can be saved in a prologue, but they must be saved in ascending order by
register number within each group (saves from different register groups may
be interleaved). Saving a branch register to memory (other than RP) requires
the following steps:

1. Move to general register.

2. Store it (the location of this store is the one to record). The value of the
branch register must not be modified until the store is completed.

The unwinder must also know where preserved registers are saved in the
memory stack frame, because it must reconstruct the values of these registers
as it unwinds the stack. The conventions for the spill area are discussed in
Section A.3.5.

A prologue region can contain code that is irrelevant to the unwind process.
However, for efficiency during the unwind process, observe the following
guidelines:

• Keep the size of the prologue region as small as possible.

• End the prologue immediately after allocating stack frames and saving
registers.

When OpenVMS semantics apply (see Section A.4.1), a condition handler will
not be called for an exception that occurs in a prologue or epilogue because the
procedure is not current (see Section 4.8.1), but a condition handler of the caller
will be considered. Therefore, a prologue region can not occur in the interior of
a procedure, except for a zero-length prologue that describes the initial state for
noncontiguous code segments. General unwind descriptors must be used in the
interior of a procedure instead of prologue descriptors (see Section A.4.1.3) to
describe needed changes in unwind state.

For a routine that has no condition handler, there is no restriction on the use of
prologue descriptors, even interior to the body.

A–6 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.3 Coding Conventions for Reliable Unwinding

A.3.3 Conventions for Body Regions
Body regions can do anything that does not invalidate the state of the stack
frames and preserved registers as recorded for that region. A body region must
obey the following restrictions:

• If its memory stack frame is fixed in size, a body region must not modify the
SP register.

• If its memory stack frame is variable in size, a body region can modify SP at
any point, but the unwind descriptors must indicate where a valid PSP value
can be found at any point while the body region is executing.

• The unwind descriptors must indicate where a valid copy of the previous
frame marker can be found at any point while the body region is executing.
The body region code must not make a procedure call while the previous
frame marker remains only in AR.PFS.

• The unwind descriptors must indicate where a valid copy of the return PC
can be found at any point while the body region is executing. The body region
code must not make a procedure call while the saved return PC remains only
in B0.

• The unwind descriptors must indicate where a valid copy of each preserved
register can be found at any point while the body region is executing.

At every point in a body region, the unwind descriptors identify a single location
where a valid value for SP, PSP, AR.PFS, PC, and each preserved register can
be found. The body region must not modify a register or memory location while
the unwind descriptors indicate that one of these items (SP, PSP, AR.PFS, PC,
preserved register) is stored there.

The locations of these saved values (SP, PSP, AR.PFS, PC, preserved registers)
generally remain constant throughout the body region in locations specified in
the prologue descriptor records. However, when this is not the case, the unwind
descriptors described in Table A–14 can be used to mark changes in the unwind
state within a body region. A body region can restore AR.PFS, RP, and any
preserved registers.

A.3.4 Conventions for Epilogues
The memory stack pointer (SP) is typically restored just before executing a return
branch. In a normal epilogue at the end of a body region, the instruction that
restores the previous SP value can be anywhere within a few instructions of the
end of the region; the unwind descriptor format provides a place to record the
exact location of this instruction. If the procedure has a memory stack frame and
has return instructions in the middle of the body, the procedure must be divided
into separate body regions, each ending at the point of each return instruction.

The unwinder does not need a specific epilogue region that is distinct from the
body region.

A.3.5 Conventions for the Spill Area in the Memory Stack Frame
The spill area for preserved general, floating-point, and branch registers is near
the base of the stack frame, in a continuous range ending (by default) at the base
of the stack frame plus 16 bytes (PSP+16). In other words, the 16-byte scratch
area in the caller’s stack frame is normally included in the spill area. If the
scratch area is needed to save register parameters for a variable-argument list
procedure, the spill area can be moved so that it ends at a lower address, but the
ending address must be a fixed location relative to the base of the frame (PSP).

November 17, 2003 A–7

Stack Unwinding and Exception Handling on OpenVMS I64
A.3 Coding Conventions for Reliable Unwinding

Locations in the spill area are reserved for each preserved general, floating-point,
and branch register that is saved anywhere within the procedure (including
shrink-wrapped regions). Locations are allocated, from low address to high,
for (in order) general registers, then branch registers, and then floating-point
registers. Registers are saved in numerical order, lower-numbered registers at
lower addresses. The spill area must end at a 16-byte boundary, so that all the
floating-point spill locations are 16-byte aligned.

It is not required that all registers preserved in the spill area be consecutive from
each register file. If, for example, R4 and R7 are preserved, but R5 and R6 are
not, space is allocated only for R4 and R7.

Code may need to spill scratch registers in addition to preserved registers. There
are no conventions for spilling scratch registers, because they do not need to
be recovered during a stack unwind. To make the best use of the User NaT
collection register, general register spills should be adjacent to the preserved
general register spill area.

Normally, the unwinder expects to find the NaT bits for the preserved registers
in the User NaT collection register, AR.UNAT. If the total spill area for general
registers (scratch and preserved registers combined) exceeds 64 quadwords, it
is necessary to save the User NaT collection register in order to spill up to an
additional 64 general registers. In this overflow situation, two or more NaT
collections are managed by swapping them in and out of the single collection
register. The NaT collection that contains the NaT bits for the preserved
registers is called the primary UNaT collection, and the unwinder must
know where to find these bits. In procedures where the NaT collection register
is multiplexed, the location of the primary UNaT collection is recorded in the
unwind information.

If the primary UNaT collection is saved, then the location of the primary UNaT
value must be recorded, as well as when that value is restored. The only way
to do the latter is by using one of the general unwind descriptors found in
Section A.4.1.1.

The unwinder must take special note of the time at which the primary UNaT is
restored. In the case of an unwind after the primary UNaT restore, the unwinder
must not attempt to redundantly reperform any fills that preceded that restore
because the applicable UNaT state will have been lost.

Note

In this regard, the UNaT restore operation is analogous to a stack restore
operation. It forms a barrier after which saved state has been lost. As a
result, some or all of the state restoration cannot be reperformed.

A.4 Data Structures
The condition handling mechanism uses the following data structures:

• A master unwind table, which allows the unwinder and dispatcher to
associate a PC value with an image

• An unwind table for each image, which allows the dispatcher and unwinder to
associate a PC value with a procedure and its unwind and exception handling
information

A–8 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Every procedure (except some leaf procedures) has one entry in this table. (If
the compiler has generated more than one noncontiguous region of code for a
procedure, there is one entry in this table for each region.) Each unwind table
entry points to an information block that contains the following data structures:

• A set of unwind descriptors

• (Optional) A pointer to a condition handler

• (Optional) An operating system-specific data area

• (Optional) A language-specific data area for each procedure

Given a PC value, the dispatcher and unwinder both use the unwind table to
locate an unwind entry for a procedure. The unwinder also uses the unwind
descriptor list to unwind the stack from any point in the procedure.

The operating system-specific data area contains information about a routine as a
whole that is not otherwise expressible using the unwind descriptors, independent
of whether the routine has a condition handler.

The language-specific data area contains information specific to the condition
handler that uses it. The address of the language-specific data area is passed
to the condition handler whenever the condition handler is invoked by the
dispatcher.

A.4.1 Unwind Table and Unwind Information Block
The unwind table is a sequence of sorted unwind table entries. Unwind table
entries contain three fields, as illustrated in Figure A–1; each field is a 64-bit
quadword. The first two fields define the starting and ending addresses of the
region, respectively. The third field points to a variable-size information block
that contains the unwind descriptor list and language-specific data area. The
ending address is the address of the first bundle beyond the end of the procedure.
Because these values are all segment-relative offsets rather than absolute
addresses, they do not require run-time relocations. The unwind table entries are
sorted by the region start address. The shaded area in the figure represents the
language-specific data area.

November 17, 2003 A–9

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Figure A–1 Unwind Table and Unwind Information Block

start

end

info ptr.

unwind
descriptor area

condition handler
(optional)

operating system-
specific data area

(optional)

language-specific
data area
(optional)

V F ULEN

Info. BlockUnwind Table

VM-1026A-AI

Note that a leaf procedure may have no unwind table entry (see Section A.5).

The unwind table and the unwind information block must each be aligned at
an 8-byte boundary. Within the information block, the condition handler pointer
must also be aligned at an 8-byte boundary.

The first quadword of the information block consists of the following fields:

• ULEN, a 32-bit longword field that contains the length in quadwords of the
unwind descriptor area (zero is a legitimate value).

• F, a 16-bit flag field (see Table A–1). Four bits are set aside for operating
system-specific use. Two of these bits are defined by the Itanium software
conventions, and the remaining bits are reserved.

In this version, OpenVMS uses only the two low-order bits of the four bits
available for operating system-specific use. These OpenVMS-specific bits can
be accessed using the following:

#define UNW_IVMS_MODE(x) (((x) >> 44) & 0x3L)

These two bits form an enumeration code, which is interpreted as shown in
Table A–1.

Note

For OpenVMS I64, the value of UNW_IVMS_MODE field must be 2 or 3.
Otherwise, exception handling behaviour is undefined.

A–10 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

The EHANDLER flag is set if the condition handler must be called during
search for an exception handler. The UHANDLER flag is set if this routine
must be called during the second unwind. (Note that for OpenVMS I64, the
EHANDLER and UHANDLER flags are both set or both not set.) If neither
bit is set, there is no frame handler for this procedure, and the condition
handler identifier must be omitted along with the entire language-specific
data area.

• V, a 16-bit version number that identifies the version of the unwind descriptor
format. For this specification, the version number is 1.

These fields may be accessed with the following macros:

#define UNW_LENGTH(x) ((x) & 0x00000000ffffffffL)

#define UNW_FLAG_UHANDLER(x) ((x) & 0x0000000200000000L)

#define UNW_FLAG_EHANDLER(x) ((x) & 0x0000000100000000L)

#define UNW_FLAG_OSMASK 0x0000f00000000000L

#define UNW_FLAG_MASK 0x0000ffff00000000L

#define UNW_VER(x) ((x) >> 48)

Table A–1 F (Flags) Field of the Information Block

Field
Bit
Position Description

EHANDLER <0> Set if there is an exception-processing handler established
(for this region). (Note that for OpenVMS I64, the
EHANDLER and UHANDLER flags are both set or both
not set.)

UHANDLER <1> Set if there is an exception cleanup (second/unwind pass)
handler established. (Note that for OpenVMS I64, the
EHANDLER and UHANDLER flags are both set or both
not set.)

UNUSED <11:2> Reserved

UNW_IVMS_MODE <13:12>

Value Description

0 Reserved. 1

1 Reserved. 1

2 OpenVMS handler semantics.2

3 Both OpenVMS handler semantics2 and
OpenVMS-specific data area are present.

OS_SPECIFIC_FLAGS <15:14> Reserved; must be zero.

1Must not be used - exception handling behavior is undefined.
2OpenVMS handler semantics means that handlers are not called in prologue or epilogue regions.

November 17, 2003 A–11

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

A.4.1.1 Unwind Descriptor Area
The unwind descriptor area contains a contiguous sequence of records describing
the unwind regions in the procedure. Each group of records begins with a region
header record that identifies the type and length of the region. The region header
record is followed by any number of descriptor records that supply additional
unwind information about the region.

Unwind descriptor records are divided into three categories:

• Region header records

• Descriptor records for prologue regions

• Descriptor records for body regions

This section describes the record types in each of these categories, lists rules for
using unwind descriptor records, and explains how the records must be processed.

The information is encoded in variable-length records with a record type and one
or more additional fields. The length of each record is implicit from the record
type and its fields. All records are an integral number of bytes in length. In
the descriptor record tables in the next three sections, the third column lists the
format of each record type. These record formats are described in Appendix B.

Because the unwind descriptor area must be a multiple of 8 bytes, the last
unwind descriptor must be followed by zero bytes as necessary to pad the area
to an 8-byte boundary. These zero bytes will be interpreted as prologue region
header records, specifying a zero-length prologue region, and serve as no-ops.

A.4.1.2 Region Header Records
The region header records are listed in Table A–2.

Table A–2 Region Header Records

Record Type Fields Format Description

BODY RLEN R1/R3 Defines a body region.

PROLOGUE RLEN R1/R3 Defines a general prologue region.

PROLOGUE_GR RLEN, MASK,
GRSAVE

R2 Defines a prologue region with a
mask of saved registers, and a set
of general registers used for saving
preserved registers.

The fields in these records are used as follows:

• RLEN—Contains the length of the region, measured in instruction slots
(three slots per bundle, counting X-unit instructions as two slots).

• MASK—Indicates which registers are saved in the prologue. The
PROLOGUE_GR region type is used for entry prologues that save one or
more preserved registers in the local register area of the register stack frame.
This field defines what combination of RP, AR.PFS, PSP, and the predicate
registers are preserved in standard general registers in the local area of the
register stack frame. This mask is four bits; see Appendix B for the allocation
of these bits. Other registers may be preserved in the prologue, but additional
descriptor records are required for registers other than these four.

A–12 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

• GRSAVE—Identifies the first general register used to save the preserved
registers identified in the mask field. Normally, this identifies a register in
the procedure’s local stack frame (that is, it should be greater than or equal
to 32). However, leaf procedures can choose to use any consecutive sequence
of scratch registers.

The entry state for a region matches the exit state of the preceding region,
except for body regions that contain a COPY_STATE descriptor record, which is
described in Table A–13.

The exit state of a region is determined as follows:

• For prologue regions, and body regions with no epilogue code, the exit state is
the logical combination of the entry state with the modifications described by
the descriptor records for the region.

• For body regions with epilogue code, the exit state is the same as the entry
state of the corresponding prologue region whose effect is being undone.
When shrink-wrap regions are nested, it is possible to reverse the effects of
multiple prologues at once.

A.4.1.3 Descriptor Records for Prologue Regions
This section lists the descriptor records that can be used to describe prologue
regions. In the absence of any descriptor records or information in the region
header record, a prologue region is assumed to create no memory stack frame and
save no registers. Descriptors need be supplied only to override these defaults.

Table A–3 describes the descriptor records that are used to record information
about the stack frame and the state of the previous stack pointer (PSP).

Table A–3 Prologue Descriptor Records for the Stack Frame

Record Type Fields Format Description

MEM_STACK_F T, SIZE P7 Specifies a fixed-size memory stack
frame, when SP is modified, and size of
frame.

MEM_STACK_V T P7 Specifies a variable-size memory stack
frame, and when PSP is saved.

PSP_GR GR P3 Specifies the general register where
PSP is saved.

PSP_SPREL SPOFF P7 Specifies (as an SP-relative offset) the
memory location where PSP is saved.

The fields in these records are used as follows:

• T—Describes a time, T, when a particular action occurs within the prologue.
The time is specified as an instruction slot number, counting three slots per
bundle. The first instruction slot in the prologue is numbered zero.

For procedures with a memory stack frame, the instruction that modifies SP
(fixed-size frame) or that saves PSP (variable-size frame) must be identified
with either a MEM_STACK_F or a MEM_STACK_V record.

In all other cases, if the time is not specified, the unwinder can assume that
both of the following are true:

The original contents of the register is valid through the end of the
prologue region.

November 17, 2003 A–13

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

The saved copy of the register is valid by the end of the prologue region.

In a zero-length prologue region, the time parameter is irrelevant, and must
be specified as zero.

• SIZE—Contains the fixed size of the memory stack frame, measured in
16-byte units.

• GR—Identifies a general register, or the first in a consecutive group of general
registers, that is used for preserving the value of another register (as implied
by the record type). Typically, this field identifies a general register in the
procedure’s local stack frame. A leaf procedure, however, can choose to use
scratch registers. (A non-leaf procedure can also use scratch registers through
a body region that makes no calls, but then it must move any values saved in
scratch registers to a more permanent save location prior to making any calls,
and needs a second prologue region to describe this process.)

• SPOFF—Identifies a location in the memory stack where a register or group
of registers are spilled to memory. This location is specified relative to the
current stack pointer. See Appendix B for the encoding of this field.

Table A–4 describes the descriptor records that are used to record the state of the
return pointer (RP).

Table A–4 Prologue Descriptor Records for the Return Pointer

Record Type Fields Format Description

RP_WHEN T P7 Specifies when RP is saved.

RP_GR GR P3 Specifies the general register where RP is
saved.

RP_BR BR P3 Specifies the alternate branch register used
as return pointer.

RP_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where RP is saved.

RP_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where RP is saved.

The fields in these records are used as follows:

• BR—Identifies a branch register that contains the return link, when the
return link is not either in B0 or saved to another location.

• PSPOFF—Identifies a location in the memory stack where a register or group
of registers is spilled to memory. The location is specified relative to the
previous stack pointer (which is equal to the current stack pointer plus the
frame size). See Appendix B for the encoding of this field.

Table A–5 describes the descriptor records that are used to record the state of the
previous function state register (AR.PFS).

A–14 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–5 Prologue Descriptor Records for the Previous Function State

Record Type Fields Format Description

PFS_WHEN T P7 Specifies when AR.PFS is saved.

PFS_GR GR P3 Specifies general register where AR.PFS is
saved.

PFS_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where AR.PFS is saved.

PFS_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where AR.PFS is saved.

Table A–6 describes the descriptor records that are used to record the state of the
preserved predicate registers.

Table A–6 Prologue Descriptor Records for Predicate Registers

Record Type Fields Format Description

PREDS_WHEN T P7 Specifies when the predicate registers are
saved.

PREDS_GR GR P3 Specifies the general register where
predicate registers are saved.

PREDS_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) memory
location where predicate registers are saved.

PREDS_SPREL SPOFF P8 Specifies (as an SP-relative offset) memory
location where predicate registers are saved.

Table A–7 describes the descriptor records that are used to record the state of the
preserved general registers, floating-point registers, and branch registers.

Table A–7 Prologue Descriptor Records for General, Floating-Point, and Branch
Registers

Record Type Fields Format Description

FR_MEM RMASK P6 Specifies (as a bit mask) which preserved
floating-point registers are spilled to
memory by this prologue.

FRGR_MEM GRMASK,
FRMASK

P5 Specifies (as a bit mask) which preserved
general and floating-point registers are
spilled to memory by this prologue.

GR_GR GRMASK,
GR

P9 Specifies (as a bit mask) which preserved
general registers are saved in other general
registers, and the general register where
first preserved general register is saved.

GR_MEM RMASK P6 Specifies (as a bit mask) which preserved
general registers are spilled to memory by
this prologue.

BR_MEM BRMASK P1 Specifies (as a bit mask) which preserved
branch registers are spilled to memory by
this prologue.

(continued on next page)

November 17, 2003 A–15

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–7 (Cont.) Prologue Descriptor Records for General, Floating-Point, and
Branch Registers

Record Type Fields Format Description

BR_GR BRMASK,
GR

P2 Specifies (as a bit mask) which preserved
branch registers are saved in general
registers by this prologue, and the general
register where first branch register is saved.

SPILL_BASE PSPOFF P7 Specifies (as a PSP-relative offset) end
of (first byte following the) spill area in
memory stack frame.

SPILL_MASK IMASK P4 Specifies (as a bit mask) when preserved
registers are spilled.

The fields in these records are used as follows:

• RMASK, FRMASK, GRMASK, BRMASK—Identify which preserved floating-
point registers, general registers, and branch registers are saved by the
prologue region. The fr_mem record uses a short RMASK field, which can be
used when a subset of floating-point registers from the range F2-F5 is saved.
The FRGR_MEM record can be used for any number of saved floating-point
and general registers. The GR_MEM record can be used when only general
registers (R4-R7) are saved.

• IMASK—Identifies when each preserved floating-point, general, and branch
register is saved. It contains a two-bit field for each instruction slot in the
prologue, that indicates whether the instruction in that slot saves one of
these preserved registers. The length of this field is implied by the size of the
prologue region as given in the region header record. It contains two bits for
each instruction slot in the region, and the length of the field is rounded up to
the next whole byte boundary.

If a prologue saves one or more preserved floating-point, general, or branch
registers, and the SPILL_MASK record is omitted, the unwinder can assume that
both of the following are true:

• The original contents of these preserved registers are valid through the end of
the prologue region.

• The saved copies of the registers are valid by the end of the prologue region.

There can be only one SPILL_BASE and one SPILL_MASK record per prologue
region. Each GR_GR and BR_GR record describes a set of registers that is saved
to a consecutive set of general registers (typically in the local register stack
frame). To represent registers saved to nonconsecutive general registers, two or
more of each of these records can be used.

Table A–8 describes the descriptor records used to record the state of the User
NaT Collection register (AR.UNAT).

A–16 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–8 Prologue Descriptor Records for the User NaT Collection Register

Record Type Fields Format Description

UNAT_WHEN T P7 Specifies when AR.UNAT is saved.

UNAT_GR GR P3 Specifies the general register where
AR.UNAT is saved.

UNAT_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where AR.UNAT is saved.

UNAT_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where AR.UNAT is saved.

Table A–9 describes the descriptor records that are used to record the state of the
loop counter register (AR.LC).

Table A–9 Prologue Descriptor Records for the Loop Counter Register

Record Type Fields Format Description

LC_WHEN T P7 Specifies when AR.LC is saved.

LC_GR GR P3 Specifies general register where AR.LC is
saved.

LC_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where AR.LC is saved.

LC_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where AR.LC is saved.

Table A–10 describes the descriptor records that are used to record the state of
the floating-point status register (AR.FPSR).

Table A–10 Prologue Descriptor Records for the Floating-Point Status Register

Record Type Fields Format Description

FPSR_WHEN T P7 Specifies when the floating-point status
register is saved.

FPSR_GR GR P3 Specifies the general register where the
floating-point status register is saved.

FPSR_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where the floating-point
status register is saved.

FPSR_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where the floating-point
status register is saved.

Table A–11 describes the descriptor records that are used to record the state of
the primary UNaT collection.

November 17, 2003 A–17

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–11 Prologue Descriptor Records for the Primary UNaT Collection

Record Type Fields Format Description

PRIUNAT_WHEN_GR T P8 Specifies when the primary UNaT collection is
copied to a general register.

PRIUNAT_WHEN_MEM T P8 Specifies when the primary UNaT collection is
saved in memory.

PRIUNAT_GR GR P3 Specifies the general register where the
primary UNaT collection is copied.

PRIUNAT_PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the memory
location where the primary UNaT collection is
saved.

PRIUNAT_SPREL SPOFF P8 Specifies (as an SP-relative offset) the memory
location where the primary UNaT collection is
saved.

Table A–12 describes the descriptor records that are used to record the state of
the backing store, when it is necessary to record a discontinuity.

Table A–12 Prologue Descriptor Records for the Backing Store

Record Type Fields Format Description

BSP_WHEN T P8 Specifies when AR.BSP is saved. The backing
store pointer can be saved, along with the
AR.BSPSTORE pointer and the AR.RNAT
register, to indicate a discontinuity in the
backing store.

BSP_GR GR P3 Specifies the general register where AR.BSP
is saved.

BSP_PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the memory
location where AR.BSP is saved.

BSP_SPREL SPOFF P8 Specifies (as an SP-relative offset) the memory
location where AR.BSP is saved.

BSPSTORE_WHEN T P8 Specifies when AR.BSPSTORE is saved.

BSPSTORE_GR GR P3 Specifies the general register where
AR.BSPSTORE is saved.

BSPSTORE_PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the memory
location where AR.BSPSTORE is saved.

BSPSTORE_SPREL SPOFF P8 Specifies (as an SP-relative offset) the memory
location where AR.BSPSTORE is saved.

RNAT_WHEN T P8 Specifies when AR.RNAT is saved.

RNAT_GR GR P3 Specifies the general register where AR.RNAT
is saved.

RNAT_PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the memory
location where AR.RNAT is saved.

RNAT_SPREL SPOFF P8 Specifies (as an SP-relative offset) the memory
location where AR.RNAT is saved.

A–18 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

A.4.1.4 Descriptor Records for Body Regions
Table A–13 lists the optional descriptor records that may be used to describe body
regions. In the absence of these descriptors, a body region is assumed to inherit
its entry state from the previous region.

Table A–13 Body Region Descriptor Records

Record Type Fields Format Description

EPILOGUE T,
ECOUNT

B2/B3 Body region contains epilogue code for one
or more prologues.

LABEL_STATE LABEL B1/B4 Labels the entry state for future reference.

COPY_STATE LABEL B1/B4 Use the labeled entry state as entry state
for this region.

• T—Indicates the location (relative to the end of the region) of the instruction
that restores the previous SP value. The number is a count of the remaining
instruction slots to the end of the region (thus, a value of zero indicates the
final slot in the region).

• ECOUNT—Indicates how many additional levels of nested shrink-wrap
regions are being popped at the end of a body region with epilogue code.
A value of zero indicates that one level must be popped. When OpenVMS
handler semantics apply, this value must be zero.

• LABEL—Identifies a previously-specified body region, whose entry state must
be copied for this body region.

Prologue regions nest within other prologue regions, and are balanced by body
regions with an epilogue descriptor. An epilogue descriptor with an ECOUNT
of n serves to balance (n+1) earlier prologue regions. When OpenVMS handler
semantics apply, prologue nesting is not allowed.

When the LABEL_STATE descriptor is used to label an entry state, it must
appear prior to any general unwind descriptors in the same body region.

A COPY_STATE descriptor must appear prior to any general unwind descriptors
in the same body region.

A labelled entry state includes not only the record of where current valid copies
of all preserved values can be found, but also references the states that are
currently on the stack of nested prologues. For example, consider the following
sequence of regions:

• Prologue region A

• Body region B (no epilogue)

• Prologue region C

• Body region C (label_state 1, epilogue count 2)

• Body region D (copy_state 1, epilogue count 2)

The effect of the COPY_STATE in body region D restores the entry state of body
region C, as well as the two prologue regions within which the body region is
nested.

The scope of a label is restricted to a single unwind descriptor area.

November 17, 2003 A–19

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

A.4.1.5 Descriptor Records for Body or Prologue Regions
This section lists the descriptor records that can be used to describe either
prologue or body regions. These descriptors provide complete generality for
compilers to perform register spills and restores anywhere in the procedure,
without creating an arbitrary boundary between prologue and body.

Table A–14 General Unwind Descriptors

Record Type Fields Format Description

SPILL_PSPREL T, REG,
PSPOFF

X1 Specifies (as a PSP-relative offset) when
and where REG is saved.

SPILL_SPREL T, REG,
SPOFF

X1 Specifies (as an SP-relative offset) when
and where REG is saved.

SPILL_REG T, REG,
TREG

X2 Specifies when and where REG is saved
in another register, TREG, or restored.

SPILL_PSPREL_P QP, T,
REG,
PSPOFF

X3 Specifies (as a PSP-relative offset)
when and where REG is saved, under
predicate QP.

SPILL_SPREL_P QP, T,
REG,
SPOFF

X3 Specifies (as an SP-relative offset)
when and where REG is saved, under
predicate QP.

SPILL_REG_P QP, T,
REG,
TREG

X4 Specifies when and where REG is saved
in another register, TREG, or restored,
under predicate QP.

• T—Describes a time, T, when a particular action occurs within the prologue or
body. The time is specified as an instruction slot number, counting three slots
per bundle. The first slot in the containing prologue or body is numbered
zero.

• REG—Identifies the register being spilled or restored at the given point in the
code. This field may indicate any of the preserved general registers, floating-
point registers, branch registers, application registers, predicate registers,
previous SP, primary UNaT collection, or return pointer. See Appendix B for
the encoding of this field.

• TREG—Identifies a target register to which the value being spilled is copied.
This field may indicate any general register, floating-point register, or branch
register; it may also contain the special Restore target, indicating the point at
which a register is restored. See Appendix B for the encoding of this field.

• QP—Identifies a qualifying predicate register, which determines whether
the indicated spill or restore instruction executes. The qualifying predicate
register must be a preserved predicate if there are any procedure calls in the
range between the spill and restore, and it must remain live throughout the
range.

If a body region contains any general descriptors and an epilogue descriptor, the
effects of the general descriptors are undone when the unwind state is restored
by popping one or more prologues. By the end of the body region, the code must
have restored any preserved registers that the new unwind state indicates are
restored. It is not necessary, however, to record the points at which registers are
restored unless the locations used to save the values are modified before the end
of the region.

A–20 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

A.4.1.6 Rules for Using Unwind Descriptors
Preserved registers that are saved in the prologue region must be specified with
one or more of the following descriptor records:

• PROLOGUE_GR (RP, AR.PFS, PSP, and the predicate registers)

• MEM_STACK_V (PSP is saved in a general register)

• RP_WHEN, RP_GR, RP_PSPREL, or RP_SPREL (RP)

• PFS_WHEN, PFS_GR, PFS_PSPREL, or (AR.PFS)

• UNAT_WHEN, UNAT_GR, UNAT_PSPREL, or UNAT_SPREL (AR.UNAT)

• LC_WHEN, LC_GR, LC_PSPREL, or LC_SPREL (AR.LC)

• FPSR_WHEN, FPSR_GR, FPSR_PSPREL, or FPSR_SPREL (AR.FPSR)

• FR_MEM, FRGR_MEM, or GR_MEM (floating-point registers and general
registers)

• BR_MEM or BR_GR (branch registers)

• SPILL_PSPREL, SPILL_SPREL, SPILL_REG, SPILL_PSPREL_P, SPILL_
SPREL_P, SPILL_REG_P (any register)

If a preserved register is not named by one or more of these records, it is assumed
that the prologue does not save or modify that register. The locations where
preserved registers are saved are determined according to the following rules:

1. Certain descriptor records explicitly name a save location for a register
(records whose names end with _GR, PSPREL, or _SPREL). If a register is
described by one of these records, the unwinder uses the named location.

2. Some descriptor records specify that registers are saved to the spill area (FR_
MEM, FRGR_MEM, GR_MEM, BR_MEM). These locations are determined by
the conventions for the spill area.

3. Any remaining registers that are named as saved but do not have an explicit
save location are assigned consecutive general registers, beginning with the
general register identified by the PROLOGUE_GR region header record. If
the prologue region uses a prologue header record, the first general register is
assumed to be R32. The registers are saved as needed in the following order:

a. Return pointer, RP

b. Previous function state, AR.PFS

c. Previous stack pointer, PSP

d. Predicate registers

e. User NaT collection register, AR.UNAT

f. Loop counter, AR.LC

g. Floating-point status register, AR.FPSR

h. Primary UNaT collection

Note

Without explicitly specifying a save location, the only way to indicate that
any of the last four groups of registers (e. through h., above) is saved is to
use one of the corresponding _WHEN descriptor records.

November 17, 2003 A–21

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

A.4.1.7 Processing Unwind Descriptors
The unwind process for a frame begins by locating the unwind table entry for a
given PC. (A leaf procedure may have no unwind table entry; see Section A.4.)

If there is an unwind table entry, the unwinder then locates the unwind
information block and checks the size of the unwind descriptor area. If this
area is zero length, the unwinder must use the default conditions as above.

In preparation for reading the unwind descriptor records, the unwinder must
start with an initial current state record, and an empty stack of state records. A
state record describes the locations of all preserved registers at entry to a region.
The initial value of the current state record must describe the frame in its default
condition.

The unwind descriptor records must be read and processed sequentially,
beginning with the first descriptor record for a procedure, continuing until the
PC is contained within the current region. For each prologue region header, the
current state record must be pushed on the stack, and the descriptor records for
the prologue region must be applied to the current state record. When a body
region with epilogue code is seen, one or more states must be popped from the
stack, and the entry state for the next region is taken as the last state popped.
This restores the current state to the entry state of the matching prologue.

When a body region contains a LABEL_STATE descriptor, the unwind processor
must replicate the current unwind state, including the current stack of prologues.
When a body region contains a COPY_STATE descriptor, the unwind processor
must discard the current state and stack, and restore the replicated state and
stack that corresponds with the label.

When the current PC is within a body region, the unwinder can generate the
context of the previous frame by restoring registers as indicated by the current
state record. If the body region has epilogue code and the PC is beyond the
indicated point where SP is restored, the unwinder must assume that SP has
already been restored, and that all registers spilled to the memory stack frame
(except those between PSP and PSP+16) have also been restored. Registers
spilled to the scratch area in the caller’s frame may not have been restored at
that point, and the unwinder must use the values in memory.

When the current PC is within a prologue region, the unwinder must look for
descriptor records that specify a time parameter that is at or beyond the current
PC. The unwinder must ignore these state modifications when applying descriptor
records to the current state. If a register is saved but does not have a specified
time, the unwinder can assume that the original value is not modified within the
prologue and can ignore it.

The layout and size of the preserved register spill area cannot be determined
without reading all the prologue region descriptor records in the procedure, and
merging the save masks for the general, floating-point, and branch registers.

A.4.2 Condition Handler
The condition handler identifier is accessed by adding the size of the unwind
descriptor area (ULEN, which is the count of quadwords), plus the size of the
header quadword, to the information block pointer. The value in that location
is the GP-relative offset for the global offset table entry that contains the
function pointer (address of a function descriptor) for the condition handler. The
dispatcher calls this routine during the first unwind only if the EHANDLER bit
is set, and during the second unwind only if the UHANDLER bit is set.

A–22 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Because the operating system-specific data area immediately follows the condition
handler identifier, the address of this area must be made available to the
condition handler.

A.4.3 Operating System-Specific Data Area
If an operating system-specific data area is present, it is located immediately
following the condition handler (if any) and before the language-specific data area
(if any). If there is no condition handler, the operating system-specific data area
is located immediately following the unwind descriptors (where the condition
handler would have been). The operating system-specific data area must be
aligned at a quadword boundary.

The following field of the mechanism vector passed to a condition handler (see
Sections 8.5.1 and 8.5.1.2.3) may be helpful in interpreting the contents of
operating system-specific data:

CHF$PH_MCH_OSSD The virtual address of the operating system-specific data
area.

The OpenVMS-specific data area is present if the UNW_IVMS_MODE field in the
unwind information block has the value 3 (see Table A–1).

An OpenVMS-specific data area consists of one or more segments, where each
segment begins with a 15-bit TYPE code field followed by a 1-bit SUCCESSOR
flag as shown in Figure A–2.

Figure A–2 OpenVMS Operating System-Specific Data Area Segment

VM-1085A-AI

type-specific data TYPES

The segment types defined for OpenVMS are described in the following sections.
They are identified by the codes shown in the following table:

Name Value Use

OSSD$K_GENERAL_INFO 1 General information

OSSD$K_CALL_SPILL_INFO 2 Caller spill register information

Unless otherwise stated, each kind of segment data can occur at most once in any
given data area.

A.4.3.1 General Information Segment
The OpenVMS general information segment contains various flags and general
exception handling information, and is described in Table A–15.

A general information segment may be omitted if all of its fields would have their
default values.

November 17, 2003 A–23

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

If a general information segment is present, it must be the first segment in the
operating system-specific data area.

Table A–15 Operating System-Specific Data Area

Field
Bit
Position Description

OSSD$V_TYPE <14:0> A 15-bit type field that identifies the segment as a general
information segment. The value of this field is OSSD$K_
GENERAL_INFO (=1).

OSSD$V_S <15> If set to 1, another segment immediately follows this one.
If set to 0, there are no further segments in this area.

OSSD$V_EXCEPTION_MODE <18:16> A 3-bit field that encodes the caller’s desired exception-
reporting behavior when calling certain mathematically
oriented library routines, as in the following table:

Value Name Meaning

0 OSSD$K_EXC_
MODE_SIGNAL

Raise exceptions for all
error conditions except
for underflows producing
a 0 result. This is the
default mode.

1 OSSD$K_EXC_
MODE_SIGNAL_
ALL

Raise exceptions for
all error conditions
(including underflows).

2 OSSD$K_EXC_
MODE_SIGNAL_
SILENT

Raise no exceptions.
Create only finite values
(no infinities, denormals,
or NaNs). In this mode,
either the function
result or the C language
errno variable must be
examined for any error
indication.

3 OSSD$K_EXC_
MODE_FULL_IEEE

Raise no exceptions
except as controlled by
separate IEEE exception
enable bits. Create
infinities, denormals, or
NaN values according to
the IEEE floating-point
standard.

4 OSSD$K_EXC_
MODE_CALLER

Perform the exception-
mode behavior specified
by this procedure’s caller.

OSSD$V_TARGET_INVO <19> If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation of
an unwind. Note that a procedure is the target invocation
of an unwind if it is the procedure in which execution
resumes following completion of the unwind. The default
value is 0.

(continued on next page)

A–24 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–15 (Cont.) Operating System-Specific Data Area

Field
Bit
Position Description

OSSD$V_BASE_FRAME <20> This bit must be zero except in operating system routines
whose documented purpose is to provide the base frame
marker. If set to 1, this bit indicates the logical base
frame of a stack that precedes all frames corresponding
to user code. The interpretation and use of this frame
and whether there are any predecessor frames is system
software defined (and subject to change). The default value
is 0.

OSSD$V_HANDLER_
REINVOKABLE

<21> If set to 1, the handler can be reinvoked, allowing an
occurrence of another exception while the handler is
already active. If this bit is set to 0, the exception handler
cannot be reinvoked. The default value is 0.

OSSD$V_AST_FRAME <22> If set to 1, then this is an AST dispatch frame. The
interrupted procedure is the predecessor frame on the
stack and much of its context is saved in this procedure’s
memory stack frame. The default value is 0.

OSSD$V_EXCEPTION_FRAME <23> If set to 1, then this is an exception dispatch frame.
The excepting procedure is the predecessor frame on the
stack and much of its context is saved in this procedure’s
memory stack frame. The default value is 0.

OSSD$V_TIE_FRAME <24> If set to 1, this is a frame created by the Translated
Image Executive for use during the execution of translated
images. The default value is 0.

OSSD$V_BOTTOM_OF_STACK <25> A value of 1 indicates that this frame has no predecessor
frames (that is, this frame is the end of the invocation call
chain). The default value is 0.

OSSD$V_HANDLER_DATA_
VALID

<26> A value of 1 indicates that an exception handler data field
is present in the unwind information block. The default
value is 0.

OSSD$V_SS_DISPATCH_
FRAME

<27> If set to 1, then this is the System Service dispatch frame.
Much of the context for a procedure calling a system
service is saved on an inner mode stack. The default value
is 0.

OSSD$V_KP_START_FRAME <28> Internal use only.

RESERVED <63:29> Reserved; must be zero.

A.4.3.2 Caller Spill Register Information
The OpenVMS caller spill register information segment encodes information
to emulate the effects of callee register saving conventions even when caller
save/restore conventions are in use. The key difference between this and the
more general unwind information described in other parts of Section A.4 is that
the information described here must be applied in the frame with which it is
associated in order to complete that frame whereas other information is applied
in order to unwind to the previous frame.

The caller spill register segment is described in Table A–16.

November 17, 2003 A–25

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–16 OpenVMS OSSD Caller Spill Register Information

Field Bit Position Description

OSSD$V_TYPE <14:0> A 15-bit type field that identifies the segment
as a caller spill register information segment.
The value of this field is OSSD$K_CALLER_
SPILL_INFO (=2).

OSSD$V_S <15> If set to 1, another segment immediately
follows this one. If set to 0, there are no
further segments in this area.

OSSD$W_LENGTH <31:16> A two-byte field that specifies the number
of quadwords in this segment (including
OSSD$V_TYPE, OSSD$V_S and OSSD$W_
LENGTH itself).

OSSD$T_SPILL_DATA <...> See below.

The OSSD$T_SPILL_DATA field in a spill register segment consists of a sequence
of triples encoded as shown in Figure A–3.

Figure A–3 Format of OSSD$T_SPILL_DATA

Byte 1

Byte 0

7 6 5 4 3 2 1 0

0 0 0

0 TREG

T
(ULEB128)

VM-1084A-AI

REG

Table A–17 describes the fields in the OSSD$T_SPILL_DATA segment.

Table A–17 Description of OSSD$T_SPILL_DATA Segment

OSSD$V_REG A 5-bit field that identifies the saved static general register. Bits
<7:5> of byte 0 are reserved and must be zero.

A REG value of zero indicates that there is no more spill data;
one or more zero bytes are used to pad the end of the spill data
if needed to fill out the specified length.

OSSD$V_TREG A 7-bit field that identifies one of the general registers. Bit <7>
of byte 1 is reserved and must be zero.

A TREG value other than zero indicates that the contents of
register REG is saved in register TREG. A TREG value of zero
indicates that register REG is restored, that is, is no longer
saved elsewhere.

(continued on next page)

A–26 November 17, 2003

Stack Unwinding and Exception Handling on OpenVMS I64
A.4 Data Structures

Table A–17 (Cont.) Description of OSSD$T_SPILL_DATA Segment

OSSD$T_T A ULEB128 slot offset from the start address given in the
corresponding unwind table (see Section A.4.1) to the instruction
that performs the save or restore.

It is valid for save actions to occur in a prologue and restore
events to occur in an epilogue. (Save actions events will never
occur in an epilogue and restore events will never occur in an
prologue because these would require a call to occur in either the
prologue or epilogue, which is forbidden.)

It is valid for two or more save actions for the same register REG to occur
without an intervening restore of that register. In this case, the later save
register location TREG supercedes the earlier one as the save location for register
REG beginning at the specified offset T.

When unwinding to a frame, the unwind information of the called frame is first
used to construct the frame of the caller; the unwind operation must then be
completed by using any spill register information for that caller.

A.4.4 Language-Specific Data Area
The language-specific data area contains information whose format and
interpretation need be known only by the condition handler that uses it. As
such, this area is not described in this document.

To preserve sharability of the image of which language-specific data is a part,
that data should be read-only and position-independent. For example, an address
within the associated procedure might be represented as an offset relative to the
starting address given in the unwind table for the routine.

The following fields, which are found in the mechanism vector passed to a
condition handler (see Sections 8.5.1 and 8.5.1.2.3), may be helpful in interpreting
the contents of language-specific data:

CHF$PH_MCH_UWR_START The virtual address of an unwind region. May be used
together with an offset in the language specific data to
encode an address within a procedure.

CHF$PH_MCH_DADDR The virtual address of the language-specific data area.

A.5 Default Unwind Information
A null frame procedure may have no corresponding unwind table entry, hence no
unwind information block, if all of the following apply:

• It has no memory stack, no register stack and preserves no context of its
caller (these are properties of all null frame procedures), hence requires no
unwind descriptors. Note in particular that this means that B0 and AR.PFS
are unchanged throughout the execution of the procedure. (See Sections A.4
and A.4.4.)

• It has no condition handler, hence also no language-specific data area. (See
Sections 4.4 and A.4.4.)

• It has no operating-specific data area. (See Section A.4.3.)

Such a procedure is necessarily a leaf procedure, that is, a procedure that makes
no calls, either explicitly or implicitly. (To make a call, a procedure must preserve
at least B0 and AR.PFS.)

November 17, 2003 A–27

Stack Unwinding and Exception Handling on OpenVMS I64
A.5 Default Unwind Information

Conversely, if the dispatcher or unwinder encounters a PC for the top-most
procedure on the call stack that is not represented in the unwind tables, it
assumes that the PC corresponds to a null frame leaf procedure that satisfies the
properties described above.

A.6 System Unwind Routines
The following pages describe the routines used to manipulate the unwind tables
(UT) and interrogate the unwind information block (UIB).

• SYS$SET_UNWIND_TABLE

• SYS$CLEAR_UNWIND_TABLE

• SYS$GET_UNWIND_ENTRY_INFO

• LIB$GET_UIB_INFO

A–28 November 17, 2003

Unwind Routines
SYS$SET_UNWIND_TABLE

SYS$SET_UNWIND_TABLE
Unwind Routine

Register or extend an unwind table (UT) information.

Format

SYS$SET_UNWIND_TABLE code_base_va, code_size, ut_base_va, ut_size,
gp_value, unwind_info_base, name

C Prototype

ind SYS$SET_UNWIND_TABLE (unsigned _ _int64 code_base_va, unsigned
_ _int64 code_size, unsigned _ _int64 ut_base_va,
unsigned _ _int64 ut_size, unsigned _ _int64
gp_value, unsigned _ _int64 unwind_info_base,
void *name);

Arguments

code_base_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

With code_size, defines the potential code range. code_base_va is required for
both creation and extension calls. code_base_va is the process virtual address of
the start of the code region. code_size is the size of the code region in bytes. An
error is returned if this overlaps any existing range.

code_size
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

With code_base_va, defines the potential code range. code_base_va is required
for both creation and extension calls. code_base_va is the process virtual
address of the start of the code region. code_size is the size of the code region in
bytes. An error is returned if this overlaps any existing range.

ut_base_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

With ut_size, describes the unwind table (UT). ut_base_va is the process virtual
address of the UT and must be quadword aligned. ut_size is the size of the UT
in bytes and must be a multiple of the size (24 bytes: 3 quadwords) of an unwind
table entry (UTE). The UTEs must describe nonoverlapping code subregions
within the overall code region.

November 17, 2003 A–29

Unwind Routines
SYS$SET_UNWIND_TABLE

ut_size
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

With ut_base_va, describes the unwind table (UT). ut_base_va is the process
virtual address of the UT and must be quadword aligned. ut_size is the size of
the UT in bytes and must be a multiple of the size (24 bytes: 3 quadwords) of
an unwind table entry (UTE). The UTEs must describe nonoverlapping code sub
regions within the overall code region.

gp_value
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

Ignored on extension calls, required on create calls. The Global Data Pointer (GP)
value for the routines described by these unwind tables.

unwind_info_base
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

Ignored on extension calls; required on create calls. The unwind_info_base
plus a particular UTE UIB offset must add up to the process virtual address of
that UIB. Typically for static code (activated images from disk), this specifies
the process virtual base address of the segment containing the UIBs. However,
dynamically generated code, for example, can pass a zero for the unwind_info_
base and have the full process virtual addresses of the UIBs in their UTEs.

name
OpenVMS usage: pseudo-image-name
type: character-code-text-string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Passed by descriptor (ignored on extension calls). May be used for traceback.
Need not be unique. Should be less than 255 characters (will be truncated,
otherwise).

Description

This interface can be used to register or extend unwind information. It is
expected, for example, that applications that dynamically create code will also
need to dynamically create unwind tables (UTs) and unwind information blocks
(UIBs) for that code. This interface registers such information with the operating
system.

The image activator also uses this interface to register unwind information for
shareable and main images. Note that the code region, though fully specified in
terms of its potential size, need not be full of actual code at its initial registration.
The unwind table, however, must describe all the code that could execute within
that region and that needs unwind information, at any given time. Note also that

A–30 November 17, 2003

Unwind Routines
SYS$SET_UNWIND_TABLE

the unwind table entries (UTEs) within a registered unwind table must remain
sorted (ascending order) at any given time.

To create a new registration, specify a new (not registered) code range. On a
creation, all parameters (except name) must be specified.

To extend an existing registration, specify an existing (registered) code_base_va.
On extension, only the identifying code_base_va and new UT range need be
specified, that is, the other parameters may be zeros. An extension call can only
alter that registration’s ut_base_va and ut_size.

The creator caller’s mode defines the mode from which the registration may be
extended or removed.

Failure status is returned on creation if the input code range overlaps an already
existing range.

Related Services
SYS$CLEAR_UNWIND_TABLE, SYS$GET_UNWIND_ENTRY_INFO, LIB$GET_
UIB_INFO

Condition Values Returned

SS$_NORMAL Routine completed successfully.
SS$_BADPARAM Missing or illegal parameter.
SS$_VA_IN_USE Overlap detected.
SS$_ACCVIO Name descriptor cannot be read.

November 17, 2003 A–31

Unwind Routines
SYS$CLEAR_UNWIND_TABLE

SYS$CLEAR_UNWIND_TABLE
Unwind Routine

Clears unwind table (UT) information.

Format

SYS$CLEAR_UNWIND_TABLE code_base_va

C Prototype

int SYS$CLEAR_UNWIND_TABLE (unsigned _ _int64 code_base_va);

Arguments

code_base_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by value

Input by value. Must be the process virtual address of the start of a registered
code range.

Description

Clears (removes) the indicated registration. Error status returned on bad code_
base_va or insufficient access mode.

Related Services
SYSSET_UNWIND_TABLE, SYSGET_UNWIND_ENTRY_INFO, LIB$GET_
UIB_INFO

Condition Values Returned

SS$_NORMAL Routine completed successfully.
SS$_IVAADDR code_base_va not registered.
SS$_IVACMODE Insufficient access mode.

A–32 November 17, 2003

Unwind Routines
SYS$GET_UNWIND_ENTRY_INFO

SYS$GET_UNWIND_ENTRY_INFO
Unwind Routine

Get fixed-up unwind entry information.

Format

SYS$GET_UNWIND_ENTRY_INFO pc, get_ue_block, name

C Prototype

int SYS$GET_UNWIND_ENTRY_INFO (unsigned _ _int64 pc, void *get_ue_block,
void *name);

Arguments

pc
OpenVMS usage: PC value
type: quadword (unsigned)
access: read only
mechanism: by value

Input quadword, target PC (that is, the PC for a code region the user wants
unwind information for).

get_ue_block
OpenVMS usage: unwind_entry_data_block
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a 4-quadword block to be filled in. That is, input the address of a 4
quadword block and, on successful returned status, that block will be updated
with the following information:

• code_start_va - Output quadword, the process virtual starting code address
of the unwind region containing the input IP.

• code_end_va - Output quadward, the process virtual ending code address of
the unwind region containing the input IP.

• uib_start_va - Output quadword, the process virtual address of the UIB for
the unwind region containing the input IP.

• gp_value - Output quadword, the GP value for this code region.

name
OpenVMS usage: pseudo-image-name
type: character-code-text-string
access: modify
mechanism: by descriptor-fixed-length string descriptor

Optional, that is, may be zero. If the name parameter is specified and if a name
was registered for the unwind region, then the descriptor pointer and length
are updated to point to that stored name. Note that if the name parameter is
specified but no name exists in the unwind tables, then the name descriptor is
updated to zero length.

November 17, 2003 A–33

Unwind Routines
SYS$GET_UNWIND_ENTRY_INFO

Description

Get fixed up unwind entry information relevant to the input instruction pointer
(IP).

Related Services
SYSSET_UNWIND_TABLE, SYSCLEAR_UNWIND_TABLE, LIB$GET_UIB_
INFO

Condition Values Returned

SS$_NORMAL Routine completed successfully.
SS$_IVADDR Invalid PC.
SS$_NODATA No unwind information found.

A–34 November 17, 2003

Unwind Routines
LIB$GET_UIB_INFO

LIB$GET_UIB_INFO
Unwind Routine

Returns information from the unwind information block (UIB).

Format

LIB$GET_UIB_INFO uib_va [,gp_value] [,uw_desc_va] [,uw_desc_len] [,handler_fv]
[,ossd_va] [,lsda_va]

Arguments

uib_va
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the virtual address of an unwind information
block (UIB).

gp_value
OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the GP value that must be added to the UIB
condition handler value. Must be specified if handler_fv is specified.

uw_desc_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the virtual address of the unwind descriptor area.
If none is present, then zero is returned. This is an optional argument.

un_desc_len
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the length (in bytes) of the unwind descriptor
area. If none are present, then zero is returned. This is an optional argument.

handler_fv
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the function value of the condition handler. If
none is present, then zero is returned. This is an optional argument.

November 17, 2003 A–35

Unwind Routines
LIB$GET_UIB_INFO

ossd_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the operating system-specific data
area. If none is present, then zero is returned. This is an optional argument.

lsda_va
OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the language-specific data area
(LSDA). If none is present, then zero is returned. This is an optional argument.

Description

Takes in the address of an uwind information block (UIB) and the GP value for a
routine and returns the addresses of the start of the unwind descriptors (if any),
the handler function descriptor (if any), and the operating system-specific data
area (if any). The size in bytes of the unwind descriptors is also returned.

Related Services
SYSSET_UNWIND_TABLE, SYSCLEAR_UNWIND_TABLE, SYS$GET_
UNWIND_ENTRY_INFO,

Condition Values Returned

SS$_NORMAL Routine completed successfully.
LIB$_INVARG Bad UIB virtual address.

A–36 November 17, 2003

B
Unwind Descriptor Record Format

Note

For compatibility with the VAX and Alpha calling standards, this
appendix describes big-endian values stored in little-endian bytes.

The unwind descriptor records are encoded in variable-length byte strings. The
various record formats are described in this appendix. The first byte of each
record is sufficient to determine its format. The high-order bit of this byte
determines whether it is a header record (if the bit is zero), or a region descriptor
record (if the bit is one). The remaining bits and any subsequent bytes are
divided into separate fields. In most formats, the first field, R, identifies the
record type. The record formats are listed by the bit pattern of the first byte in
Table B–1.

Table B–1 Record Formats

Region Header Records
Prologue

Descriptor Records Body Descriptor Records

Bit Pattern Format Bit Pattern Format Bit Pattern Format

00-- ---- R1 100- ---- P1 10-- ---- B1

0100 0--- R2 1010 ---- P2

0110 00-- R3 1011 0--- P3

1011 1000 P4

1011 1001 P5

110- ---- P6 110- ---- B2

1110 ---- P7 1110 0000 B3

1111 0000 P8 1111 -000 B4

1111 0001 P9

1111 1001 X1 1111 1001 X1

1111 1010 X2 1111 1010 X2

1111 1011 X3 1111 1011 X3

1111 1100 X4 1111 1100 X4

1111 1111 P10

Some fields in the unwind descriptor records are variable in length. The
variable-length encoding uses the ULEB128 (Unsigned Little-Endian Base 128)
encoding, described below:

• Divide the number into groups of 7 bits, beginning at the low-order end.

November 17, 2003 B–1

Unwind Descriptor Record Format

• Discard all groups of leading zeroes, but keep at least the first (low-order)
group if the number is all zeroes.

• Place a 1 bit to the left of of all but the last group; place a 0 bit to the left of
the last group. This forms one or more 8-bit groups.

Table B–2 shows example ULEB128 encodings.

Table B–2 Example ULEB128 Encodings

Value Encoding Interpretation

0 00000000 0

127 01111111 127

128 10000000
00000001

0 + (1 << 7)

1544 10001000
00001100

8 + (12 << 7)

49,802 10001010
10000101
00000011

10 + (5 << 7) + (3 << 14)

Fields in the ULEB128 format always follow the fixed fields, and begin on a byte
boundary.

B.1 Region Header Records
The PROLOGUE and BODY region header records can appear in either format
R1 or R3, depending on the magnitude of the region length field. If the region
length is no greater than 31 instruction slots, the R1 format may be used;
otherwise, format R3 must be used.

B.1.1 Format R1

VM-0987A-AI

Byte 0

7 6 5

0 0 R RLEN

4 3 2 1 0

This format is used for the short forms of the PROLOGUE and BODY region
header records. The R bit identifies the record type, as shown in the following
table:

Record Type R

PROLOGUE 0

BODY 1

B–2 November 17, 2003

Unwind Descriptor Record Format
B.1 Region Header Records

B.1.2 Format R2

VM-0988A-AI

Byte 1

Byte 0 0 1 0

MASK <0> GRSAVE

0 0 MASK <3:1>

7 6 5 4 3 2 1 0

RLEN
(ULEB128)

This format is used only for the PROLOGUE_GR region header record. The
following table shows the meaning of the bits in the MASK field:

Mask bit Meaning when bit is set

Byte 0, bit 2 RP is saved in a standard general register.

Byte 0, bit 1 AR.PFS is saved in a standard general register.

Byte 0, bit 0 PSP is saved in a standard general register.

Byte 1, bit 7 Predicate registers are saved in a standard general register.

The GRSAVE field identifies the general register in which the first of these values
is stored. Additional general registers are used as needed. For example, assume
that RP, AR.PFS, and the predicate registers are stored, but not PSP. The mask
bits would be 1101, and GRSAVE might be set to 39, indicating that the three
values are stored in R39, R40, and R41, respectively.

B.1.3 Format R3

VM-0989A-AI

Byte 0

7 6 5 4 3 2 1 0

RLEN
(ULEB128)

0 1 1 0 0 0 R

This format is used for the long forms of the PROLOGUE and BODY region
header records. The R field identifies the record type, as shown in the following
table:

November 17, 2003 B–3

Unwind Descriptor Record Format
B.1 Region Header Records

Record Type R

PROLOGUE 00

BODY 01

B.2 Descriptor Records for Prologue Regions

B.2.1 Format P1

VM-0977A-AI

Byte 0

7 6 5

1 0 0 BRMASK

4 3 2 1 0

This format is used only for the BR_MEM descriptor record.

The five bits in the BRMASK field are used to indicate which of the five preserved
branch registers (B1-B5) are saved in the prologue. Bit 0 corresponds to B1; bit
4 corresponds to B5. If the bit is clear, the corresponding register is not saved; if
the bit is set, the corresponding register is saved.

B.2.2 Format P2

VM-0978A-AI

Byte 0

Byte 1

7 6 5

1 0 01 BRMASK <4:1>

4 3 2 1 0

BRMASK<0> GR

This format is used only for the BR_GR descriptor record.

The five bits in the BRMASK field are used to indicate which of the five preserved
branch registers (B1-B5) are saved in the prologue. Bit 7 of byte 1 corresponds to
B1; bit 3 of byte 0 corresponds to B5. If the bit is clear, the corresponding register
is not saved; if the bit is set, the corresponding register is saved.

The GR field identifies the general register in which the first of these registers
is stored. Additional general registers are used as needed. For example, assume
that B1, B4, and B5 are stored. The mask bits would be 11001, and GR might be
set to 37, indicating that the three branch registers are stored in R37, R38, and
R39, respectively.

B–4 November 17, 2003

Unwind Descriptor Record Format
B.2 Descriptor Records for Prologue Regions

B.2.3 Format P3

VM-0979A-AI

Byte 0

Byte 1

7 6 5

1 0 1 01 R <3:1>

4 3 2 1 0

R <0> GR/BR

This format is used by the group of descriptor records that specify a general
register or branch register number. The record type is identified by the R field,
which is read as a four bit number whose low-order bit is bit 7 of byte 1. The
following table shows the record types:

Record Type R Record Type R

PSP_GR 0 RP_BR 6

RP_GR 1 RNAT_GR 7

PFS_GR 2 BSP_GR 8

PREDS_GR 3 BSPSTORE_GR 9

UNAT_GR 4 FPSR_GR 10

LC_GR 5 PRIUNAT_GR 11

B.2.4 Format P4

VM-0980A-AI

Byte 0

7 6 5

1 0 1

4 3 2 1 0

1 1 0 0 0

IMASK

This format is used only by the SPILL_MASK descriptor record. The first byte
is followed by the IMASK field, whose length is determined by the length of the
current prologue region as given by the region header record. The IMASK field
contains two bits for each instruction slot in the region, and the size is rounded
up to the next whole number of bytes, if necessary.

The high-order (leftmost) two bits of the first byte of the IMASK field correspond
to the first instruction slot of the region. Bit pairs are read from left to right
(high-order bits to low-order bits) within each byte, and bytes are read from
increasing memory addresses. Each bit field describes the behavior of the
corresponding instruction slot as follows:

November 17, 2003 B–5

Unwind Descriptor Record Format
B.2 Descriptor Records for Prologue Regions

Bit Pair Meaning

00 The instruction slot does not save one of these registers.

01 The instruction slot saves the next floating-point register.

10 The instruction slot saves the next general register.

11 The instruction slot saves the next branch register.

B.2.5 Format P5

VM-0981A-AI

Byte 0

Byte 1

Byte 2

Byte 3

7 6 5 4 3 2 1 0

FRMASK <15:8>

FRMASK <7:0>

1 0 1 1 1 0 0 1

GRMASK FRMASK <19:16>

This format is used only by the FRGR_MEM descriptor record.

The bits in the GRMASK field correspond to the preserved general registers
(R4-R7). The bits are read from right to left: bit 4 of byte 1 corresponds to R4,
and bit 7 corresponds to R7.

The bits in the FRMASK field correspond to the preserved floating-point registers
(F2-F5 and F16-F31). The bits are read from right to left: bit 0 of byte 3
corresponds to F2, and bit 3 of byte 1 corresponds to F31.

A value of 1 in each bit position indicates that the corresponding register is
saved.

B.2.6 Format P6

VM-0982A-AI

Byte 0

7 6 5

1 1 0 RMASK

4

R

3 2 1 0

This format is used by the FR_MEM and GR_MEM descriptor records. The R bit
identifies the record type, as shown in the following table:

Record Type R

FR_MEM 0

GR_MEM 1

The bits in the RMASK field correspond to either the preserved general registers
(R4-R7) or the set of the first four preserved floating-point registers (F2-F5).
The bits are read from right to left: bit 0 corresponds to R4 or F2, and bit 3

B–6 November 17, 2003

Unwind Descriptor Record Format
B.2 Descriptor Records for Prologue Regions

corresponds to R7 or F5. A value of 1 in each bit position indicates that the
corresponding register is saved.

B.2.7 Format P7

T/SPOFF/PSPOFF
(ULEB128)

SIZE
(ULEB128)

VM-0983A-AI

Byte 0

7 6 5

1 1 1 0 R

4 3 2 1 0

(MEM_STACK_F ONLY)

This format is used for a number of descriptor records. The R field identifies the
record type, as shown in the following table:

Record Type R Additional ULEB128 Fields

MEM_STACK_F 0 T, SIZE

MEM_STACK_V 1 T

SPILL_BASE 2 PSPOFF

PSP_SPREL 3 SPOFF

RP_WHEN 4 T

RP_PSPREL 5 PSPOFF

PFS_WHEN 6 T

PFS_PSPREL 7 PSPOFF

PREDS_WHEN 8 T

PREDS_PSPREL 9 PSPOFF

LC_WHEN 10 T

LC_PSPREL 11 PSPOFF

UNAT_WHEN 12 T

UNAT_PSPREL 13 PSPOFF

FPSR_WHEN 14 T

FPSR_PSPREL 15 PSPOFF

Stack pointer offsets (SPOFF) are represented as positive longword offsets
from the top of the stack frame (that is, the location is SP + 4 * SPOFF).
Previous stack pointer offsets (PSPOFF) are encoded as positive numbers

November 17, 2003 B–7

Unwind Descriptor Record Format
B.2 Descriptor Records for Prologue Regions

representing a negative longword offset relative to PSP+16 (that is, the location
is PSP + 16 - 4 * PSPOFF).

B.2.8 Format P8

VM-0984A-AI

Byte 1

Byte 0

7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0

T/SPOFF/PSPOFF
(ULEB128)

R

This format is used for a number of descriptor records. The R field identifies the
record type, as shown in the following table:

Record Type R Additional ULEB128 Fields

RP_SPREL 1 SPOFF

PFS_SPREL 2 SPOFF

PREDS_SPREL 3 SPOFF

LC_SPREL 4 SPOFF

UNAT_SPREL 5 SPOFF

FPSR_SPREL 6 SPOFF

BSP_WHEN 7 T

BSP_PSPREL 8 PSPOFF

BSP_SPREL 9 SPOFF

BSPSTORE_WHEN 10 T

BSPSTORE_PSPREL 11 PSPOFF

BSPSTORE_SPREL 12 SPOFF

RNAT_WHEN 13 T

RNAT_PSPREL 14 PSPOFF

RNAT_SPREL 15 SPOFF

PRIUNAT_WHEN_GR 16 T

PRIUNAT_PSPREL 17 PSPOFF

PRIUNAT_SPREL 18 SPOFF

PRIUNAT_WHEN_
MEM

19 T

Stack pointer offsets (SPOFF) are represented as positive longword offsets
from the top of the stack frame (that is, the location is SP + 4 * SPOFF).
Previous stack pointer offsets (PSPOFF) are encoded as positive numbers

B–8 November 17, 2003

Unwind Descriptor Record Format
B.2 Descriptor Records for Prologue Regions

representing a negative longword offset relative to PSP+16 (that is, the location
is PSP + 16 -4 * PSPOFF).

B.2.9 Format P9

VM-0985A-AI

Byte 0

Byte 1

Byte 2

7 6 5

GRMASK

4 3 2 1 0

1 1 1 1 0 0 0 1

0 0 0 0

0 GR

This format is used only by the GR_GR descriptor record.

The bits in the GRMASK field correspond to the preserved general registers
(R4-R7). The bits are read from right to left: bit 0 of byte 1 corresponds to R4,
and bit 3 corresponds to R7. The GR field identifies the general register in which
the first of these registers is stored. Additional general registers are used as
needed. For example, assume that R4, R5, and R7 are stored. The mask bits
would be 1011, and GR might be set to 37, indicating that the three preserved
general registers are stored in R37, R38, and R39, respectively.

B.2.10 Format P10

VM-0986A-AI

Byte 0

Byte 1

Byte 2

7 6 5

ABI

4 3 2 1 0

1 1 1 1 1 1 1 1

CONTEXT

This format is reserved for ABI-specific unwind descriptor records, typically to
identify a region whose stack frame indicates some saved context record (for
example, a Unix signal context).

The value defined to indicate the OpenVMS ABI is 13. Codes for other operating
systems are defined in the Itanium documentation.

The interpretation of the CONTEXT field is ABI dependent. No codes or
interpretations are currently defined for OpenVMS. All codes are reserved
for future use.

B.3 Descriptor Records for Body Regions
The EPILOGUE, LABEL_STATE, and COPY_STATE descriptor records can each
appear in two formats, depending on the magnitudes of their fields.

November 17, 2003 B–9

Unwind Descriptor Record Format
B.3 Descriptor Records for Body Regions

B.3.1 Format B1

VM-0973A-AI

Byte 0

7 6 5

1 0 R LABEL

4 3 2 1 0

This record is used for the short form of LABEL_STATE and COPY_STATE
descriptor records. If the label is no greater than 31, this format may be used;
otherwise, format B4 must be used. The record types are shown in the following
table:

Record Type R

label_state 0

copy_state 1

B.3.2 Format B2

VM-0974A-AI

Byte 0

7 6 5

1 1 0 ECOUNT

4 3 2 1 0

T
(ULEB128)

This format is used only for the short form of the EPILOGUE descriptor record.
If the ECOUNT field is no greater than 31, this format may be used; otherwise,
format B3 must be used.

B.3.3 Format B3

B–10 November 17, 2003

Unwind Descriptor Record Format
B.3 Descriptor Records for Body Regions

T
(ULEB128)

ECOUNT
(ULEB128)

VM-0975A-AI

Byte 0

7 6 5

1 1 1 0 0 0 0 0

4 3 2 1 0

This format is used only for the long form of the EPILOGUE descriptor record.

B.3.4 Format B4

VM-0976A-AI

Byte 0

7 6 5 4 3 2 1 0

LABEL
(ULEB128)

1 1 1 1 R 0 0 0

This format is used only for the long form of the LABEL_STATE and COPY_
STATE descriptor records. The record types are shown in the following table:

Record Type R

label_state 0

copy_state 1

B.4 Descriptor Records for Body or Prologue Regions
The record formats listed here describe general spills and restores, and may
appear in either body or prologue regions.

November 17, 2003 B–11

Unwind Descriptor Record Format
B.4 Descriptor Records for Body or Prologue Regions

B.4.1 Format X1

Byte 1

Byte 0

7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1

R A B REG

T
(ULEB128)

SPOFF/PSPOFF
(ULEB128)

VM-0990A-AI

This format is used by the SPILL_PSPREL and SPILL_SPREL descriptor records,
which identify when a register is saved by spilling to the memory stack. The R
bit identifies the record type, as shown in the following table:

Record Type R

SPILL_PSPREL 0

SPILL_SPREL 1

The A, B, and REG fields identify the register being spilled. The encodings are
given in the following table:

Register A B REG

R3-R31 0 0 GR

F2-F5 or F16-F31 0 1 FR

B1-B5 1 0 BR

P1-P63 1 1 0

PSP 1 1 1

PRIUNAT 1 1 2

RP 1 1 3

AR.BSP 1 1 4

AR.BSPSTORE 1 1 5

AR.RNAT 1 1 6

AR.UNAT 1 1 7

AR.FPSR 1 1 8

B–12 November 17, 2003

Unwind Descriptor Record Format
B.4 Descriptor Records for Body or Prologue Regions

Register A B REG

AR.PFS 1 1 9

AR.LC 1 1 10

B.4.2 Format X2

Byte 2

Byte 1

Byte 0

7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0

Y TREG

X A B REG

T
(ULEB128)

VM-0991A-AI

This format is used only by the SPILL_REG descriptor record, which identifies
when a register is saved by copying to another register, or when a register is
restored from its spill location. The register being saved or restored is identified
by the A, B, and REG fields, using the same encodings given for Format X1.
The target register to which the saved register is copied is identified by the X,
Y, and TREG fields; a special encoding also indicates the restore operation. The
encodings for these fields are given in the following table:

Register X Y TREG

Restore 0 0 0

R1-R127 0 0 GR

F2-F127 0 1 FR

B0-B7 1 0 BR

B.4.3 Format X3

November 17, 2003 B–13

Unwind Descriptor Record Format
B.4 Descriptor Records for Body or Prologue Regions

SPOFF/PSPOFF
(ULEB128)

VM-0992A-AI

Byte 2

Byte 1

Byte 0

7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1

0 REG

R 0 QP

A B

T
(ULEB128)

This format is used by the SPILL_PSPREL_P and SPILL_SPREL_P descriptor
records, which identify when a register is saved under control of a predicate
register. The R bit identifies the record type, as shown in the following table:

Record Type R

SPILL_PSPREL_P 0

SPILL_SPREL_P 1

The QP field identifies the controlling predicate register. The remaining fields are
encoded the same as Format X1.

B.4.4 Format X4

B–14 November 17, 2003

Unwind Descriptor Record Format
B.4 Descriptor Records for Body or Prologue Regions

Byte 3

Byte 2

Byte 1

Byte 0

7 6 5 4 3 2 1 0

0 0 QP

1 1 1 1 1 1 0 0

Y TREG

X A B REG

T
(ULEB128)

VM-0993A-AI

This format is used only by the SPILL_REG_P descriptor record, which identifies
when a register is saved to another register under control of a predicate register,
or when a register is restored under control of a predicate register. The QP field
identifies the controlling predicate register. The remaining fields are encoded the
same as Formats X1 and X2.

November 17, 2003 B–15

C
Summary of Differences from the Itanium

Software Conventions

The OpenVMS Calling Standard on the Intel Itanium processor family is
designed to follow the Itanium software conventions as much as possible while
avoiding user-visible differences from the OpenVMS VAX and Alpha conventions.
The design methodology was basically to start with the Itanium conventions and
make changes only where it was deemed necessary to maintain compatibility
with the historical OpenVMS design in ways that minimize the cost and difficulty
of porting applications and OpenVMS itself to the Itanium architecture.

Following is a brief summary of the differences between the Itanium® Software
Conventions and Runtime Architecture Guide and this Calling Standard. This
summary assumes the reader is already familiar with the Intel Itanium processor
family and related software specifications.

C.1 Changes
Data Model— OpenVMS on Alpha systems is deliberately ambiguous about
the data model in use: many programs are compiled using what appears to
be an ILP32 model, yet most of the system operates as though using either a
P64 or LP64 model. The sign extension rules for integer parameters play a
key role in making this more or less transparent. OpenVMS I64 preserves this
characteristic, while the Itanium conventions define a pure LP64 data model.

Data Terminology— This specification uses the terms word and quadword to
mean 2 bytes and 8 bytes, respectively, while the Itanium terminology uses these
words to mean 4 bytes and 16 bytes respectively.

General Register Usage—General registers are used for integer arithmetic,
some parts of VAX floating-point emulation, and other general-purpose
computation. OpenVMS uses the same (default) conventions for these registers
except for the following cases:

• R8 and R9 (only) are used for return values.

• R10 and R11 are used as scratch registers and not for return values.

• R25 is used for an AI (argument information) register.

Floating-Point Register Usage—Floating-point registers are used for floating-
point computations, some parts of VAX floating-point emulation, and certain
integer computations. OpenVMS uses the same (default) conventions for these
registers except for the following cases:

• F8 and F9 (only) are used for return values.

• F10 through F15 are used as scratch registers and not for return values.

November 17, 2003 C–1

Summary of Differences from the Itanium Software Conventions
C.1 Changes

Parameter Passing—OpenVMS parameter passing is similar to the Itanium
conventions, but with the following differences:

• Add an argument information register (for argument count and parameter
type information).

• No argument is ever duplicated in both general and floating-point registers.

• For parameters that are passed in registers, the first parameter is passed in
either the first general register slot (R32) or the first floating point register
slot (F8), the second parameter in either the second general register slot (R33)
or second floating register (F9) slot, and so on. Floating point parameters
are not packed into the available floating point registers and at most eight
parameters total are passed in registers.

• For 32-bit parameters passed in the general registers, the 32-bit value is
sign-extended to the full 64-bit width of the parameter slot by replicating bit
31 (even for unsigned types).

• There is no even slot alignment for arguments larger than 64-bits.

• There is no special handling for HFA (homogeneous floating-point aggregates)
in general, although some rules for complex types have a similar benefit.

• OpenVMS implements _ _float128 pass-by value semantics using a reference
mechanism.

• OpenVMS supports only little-endian representations.

• OpenVMS supports three additional VAX floating-point types for backward
compatibility: F_floating (32 bits), D_floating (64 bits), and G_floating (64
bits). Values of these types are passed using the general registers.

Return Values— Return values up to at most 16 bytes in size may be returned
in registers; larger return values are returned using a hidden parameter method
using the first or second parameter slot.

C.2 Extensions
Some differences are not changes but rather additions or extensions. These
include:

Floating-Point Data Types— The calling standard for OpenVMS I64 includes
support for the VAX F_floating (32-bit), D_floating (64-bit) and G_floating (64-bit)
data types found on VAX and Alpha systems; it omits support for the Itanium
80-bit double-extended floating-point type.

VAX Compatible Record Layout—The OpenVMS standard adds a user
optional VAX compatible record layout.

Linkage Options—OpenVMS allows additional flexibility and user control in the
use of the static general registers as inputs, outputs, global registers and whether
used at all.

Memory Stack Overflow Checking—OpenVMS defines how memory stack
overflow checking should be performed.

Function Descriptors—OpenVMS defines extended forms of function
descriptors to support additional functionality for bound procedure values
and translated image support.

C–2 November 17, 2003

Summary of Differences from the Itanium Software Conventions
C.2 Extensions

Unwind Information— OpenVMS adds an operating system-specific data
area to the Itanium unwind information block. The presence of an operating
system-specific data area is indicated by a flag in the unwind information header.

Handler Invocation— OpenVMS does not invoke a handler while control is in
either a prologue or epilogue region of a routine. This difference in behavior is
indicated by a flag in the unwind information header.

Translated Images— OpenVMS adds support (signature information and
special ABIs) for calls between native and translated VAX or Alpha images.

November 17, 2003 C–3

Index

A
Active procedure, 3–22, 4–36, 4–37
Addresses

for OpenVMS Alpha, 1–4
for OpenVMS I64, 1–4
for OpenVMS VAX, 1–4

Address representation, 1–4, 3–3, 4–8
AI (argument information)

format, 3–32, 4–29
register, 3–32, 4–29

Aligned record layout, 3–53, 4–60
Application register usage, 4–5
Argument data types, 6–1
Argument descriptors

See DSCs
Argument home area, 3–12, 4–24
Argument information

See AI
Argument Information Register (AI), 3–32, 4–29
Argument items, 3–42, 4–24
Argument lists, 3–12, 3–31, 4–30

definition, 1–4
evaluation, 2–5
for Alpha, 3–43
for I64, 4–23
format, 2–4
for VAX, 2–3
interpreting, 2–4

Argument list structure
Alpha, 3–43
I64, 4–23

Argument mechanisms, 8–13
Argument order

evaluation, 3–47, 4–31
Arguments

passed in memory, 3–9, 3–12, 4–24
Argument vectors

mechanism, 8–15
Array descriptors, 7–7
Asynchronous software interrupts

definition, 1–4
Atomic data types, 6–1
Automatic registers, 4–1

B
Backing store for register stack, 4–17
Base register architecture, 3–34
BASIC file array descriptors, 7–35
Bits

unused in passed data, 3–44, 4–28
Bound procedures, 3–36, 4–33

definition, 1–4
descriptors, 3–36, 4–35
environment value, 3–38, 4–35
values, 3–3, 3–36, 4–35

Branch register usage, 4–5
bss area, 4–57

C
Callback mechanism, overriding, 4–52
Call conventions

invocation and return, 3–31, 4–18
Caller spill register information segment, A–25
Call frames

definition, 1–4
Calling sequence, 2–3, 3–39, 4–19

argument list, 2–3
Calling standard

architectural level, 1–2
goals, 1–2, 1–4
terms, 1–4

Calls
with computed addresses, 3–36, 4–22

Call stack, 3–22, 4–36
how to walk, 3–27, 4–41
transfer of control, 3–31, 4–18

Call tracing, 3–24, 4–37
CHF

See Condition Handling Facility (CHF)
Cluster, 4–18
Compression text descriptors, 7–35
Computed calls

See Calls with computed addresses
Condition handlers, 8–5

coordinating with establisher, 8–24
default, 8–24
definition, 1–4
deleting, 8–8

Index–1

Condition handlers (cont’d)
establishing, 8–7
exceptions, 8–5
memory use, 8–24
multiple active signals, 8–33
operations, 8–6
options, 8–6
parameters and invocation, 8–12
properties, 8–12
register values, 8–28
reinvokable, 8–33
request to unwind, 8–26
returning from, 8–25
searching for, 8–11
stack usage, 8–6

Condition handling
procedure exceptions, 8–1
standards, 8–1
vector processor, 8–16

Condition Handling Facility (CHF), 8–5, 8–6
Conditions

from called procedures, 8–1
Condition values

condition identification, 8–2
control, 8–3
definition, 1–4
description, 8–1
facility, 8–3
format, 8–1
interpreting severity codes, 8–4
message number, 8–3
severity codes, 8–2
symbols, 8–3
use, 8–5

Constant registers, 4–1
Constants, 4–59
Current procedure, 3–23, 4–36

D
Data alignment, 3–51, 4–58
Data allocation, 3–50, 4–57
Data area, 4–57
Data passing, 3–42, 4–26

unused bits, 3–44, 4–27
Data types

atomic
DSC$K_DTYPE_B, 6–2
DSC$K_DTYPE_BU, 6–2
DSC$K_DTYPE_D, 6–2
DSC$K_DTYPE_DC, 6–3
DSC$K_DTYPE_F, 6–2
DSC$K_DTYPE_FC, 6–3
DSC$K_DTYPE_FS, 6–3
DSC$K_DTYPE_FSC, 6–3
DSC$K_DTYPE_FT, 6–3
DSC$K_DTYPE_FTC, 6–3
DSC$K_DTYPE_FX, 6–3

Data types
atomic (cont’d)

DSC$K_DTYPE_FXC, 6–3
DSC$K_DTYPE_G, 6–2
DSC$K_DTYPE_GC, 6–3
DSC$K_DTYPE_H, 6–2
DSC$K_DTYPE_HC, 6–3
DSC$K_DTYPE_L, 6–2
DSC$K_DTYPE_LU, 6–2
DSC$K_DTYPE_O, 6–2
DSC$K_DTYPE_OU, 6–2
DSC$K_DTYPE_Q, 6–2
DSC$K_DTYPE_QU, 6–2
DSC$K_DTYPE_W, 6–2
DSC$K_DTYPE_WU, 6–2
DSC$K_DTYPE_Z, 6–2

codes
facility specific, 6–7
reserved, 6–6

miscellaneous
DSC$K_DTYPE_ADT, 6–6
DSC$K_DTYPE_BLV, 6–5
DSC$K_DTYPE_BPV, 6–5
DSC$K_DTYPE_DSC, 6–5
DSC$K_DTYPE_ZEM, 6–5
DSC$K_DTYPE_ZI, 6–5

string
DSC$K_DTYPE_NL, 6–4
DSC$K_DTYPE_NLO, 6–4
DSC$K_DTYPE_NR, 6–4
DSC$K_DTYPE_NRO, 6–4
DSC$K_DTYPE_NU, 6–4
DSC$K_DTYPE_NZ, 6–4
DSC$K_DTYPE_P, 6–4
DSC$K_DTYPE_T, 6–4
DSC$K_DTYPE_V, 6–4
DSC$K_DTYPE_VT, 6–4, 6–8
DSC$K_DTYPE_VU, 6–5

varying character string, 6–8
DSC$K_DTYPE_VT, 6–8

Decimal string descriptors, 7–14
Default condition handlers, 8–24
Default signature information, 5–13
Default unwind information, A–27
Definition of terms, 1–4
Descriptors

See also DSCs, FDSCs and PDSCs
argument item, 3–42, 4–24
arrays, 7–7
BASIC file array, 7–35
class codes, 7–35
compression text, 7–35
decimal strings, 7–14
definition, 1–5
dynamic strings, 7–6
facility-specific class codes, 7–35
fixed length, 7–5
formats

Index–2

Descriptors
formats (cont’d)

DSC$A_POINTER, 7–4
DSC$B_CLASS, 7–4
DSC$B_DTYPE, 7–4
DSC$K_CLASS_A, 7–7
DSC$K_CLASS_BFA, 7–35
DSC$K_CLASS_CT, 7–35
DSC$K_CLASS_D, 7–6
DSC$K_CLASS_J, 7–35
DSC$K_CLASS_JI, 7–35
DSC$K_CLASS_NCA, 7–16
DSC$K_CLASS_P, 7–12
DSC$K_CLASS_PI, 7–35
DSC$K_CLASS_S, 7–5
DSC$K_CLASS_SB, 7–31
DSC$K_CLASS_SD, 7–14
DSC$K_CLASS_UBA, 7–27
DSC$K_CLASS_UBS, 7–26
DSC$K_CLASS_UBSB, 7–33
DSC$K_CLASS_V, 7–35
DSC$K_CLASS_VS, 7–21
DSC$K_CLASS_VSA, 7–23
DSC$W_LENGTH, 7–4
DSC64$B_CLASS, 7–4
DSC64$B_DTYPE, 7–4
DSC64$L_MBMO, 7–4, 7–6, 7–7, 7–10,

7–13, 7–15, 7–19, 7–22, 7–26
DSC64$PQ_POINTER, 7–4
DSC64$Q_LENGTH, 7–4
DSC64$W_MBO, 7–4, 7–5, 7–7, 7–10,

7–13, 7–15, 7–19, 7–22, 7–26
prototype, 7–2

label, 7–35
noncontiguous arrays, 7–16
obsolete class codes, 7–35
procedure argument, 7–12
reserved class codes, 7–35
strings with bounds, 7–31
unaligned bit arrays, 7–27
unaligned bit strings, 7–26
unaligned bit strings with bounds, 7–33
variable buffer, 7–35
varying string arrays, 7–23
varying strings, 7–21

Direct calls
See Calling Sequence

DSCs (descriptors)
argument descriptors, 7–1 to 7–35
procedure descriptors, 7–12

Dynamic string descriptor, 7–6

E
Entry code sequences, 3–39

example for register frame procedures, 3–41
example for stack frame procedures, 3–40

Environment value, 3–38, 4–35
Exception conditions, 8–1

definition, 1–5
handler, 8–5
indicating, 8–8
signaling, 8–8

Exceptions
continuation from, 8–25
synchronization, 8–24

Exit code sequences, 3–41, 4–19
example for register frame procedures, 3–42
example for stack frame procedures, 3–41

F
Facility-specific data type codes, 6–7
Facility-specific descriptor class codes, 7–35
FDSCs

bound function descriptor, 4–34
simple function descriptor, 4–33

Fixed length
returned to stack, 2–8

Fixed-length descriptor, 7–5
Fixed-size stack frames, 3–9, 4–12
Fixed temporary locations, 3–12
Floating-point register usage, 3–2, 4–4
Flow control, 3–3, 4–9
Frame markers, 4–17
free routine, 4–56
Full function, 3–4
Function

definition, 1–5
Function descriptor, 4–57

See also PDSC for Alpha
Function pointer, 4–57

definition, 1–5
Function result, 3–32
Function value returns, 2–6, 3–47, 4–32

by descriptor, 3–49
by immediate value, 3–48
by reference, 3–48
dynamic text, 3–49
in registers, 2–6
object created by called routine, 3–50
object created by calling routine, 3–49
registers, 2–1
to stack, 2–7, 2–8

Index–3

G
General information segment, A–23
General register usage, 4–2
GENTRAP instruction, 8–9
Global data, 4–59
Global registers, 4–1
Global variables, 4–59
GOTO unwinds, 8–29

nonlocal, 8–29
GP register, 4–18
Guard pages, 3–55, 4–13
Guard regions, 3–55, 4–13

H
Handler invocations

during unwind, 8–32
Hardware exceptions, 8–1

definition, 1–5
High-level languages

argument evaluation, 2–5
argument transmission, 2–5
mapped into argument lists, 2–5

I
I64

jacket function descriptor, 5–4
Image, 4–18
Immediate value

argument item, 3–42, 4–24
definition, 1–5
large, 3–46, 4–25

Indirect calls, 4–19
See Calls with computed addresses

Initial context
I64, A–2

Inline code, 3–57, 4–15
Inline procedures calls

and invocation chains, 4–41
optimized

and invocation chains, 4–41
Input registers, 4–2, 4–8, 4–16
Integer register usage, 3–1

See also General register usage
Invocation chains

in optimized procedure calls, 4–41
Invocation context

access routines, 3–28, 4–40, 4–46
analyzing, 4–44
functions, 3–28, 4–40, 4–46
obtaining handle, 3–29, 4–43
updating, 3–30, 4–45

Invocation context block, 3–25, 4–37

Invocation context callback routines, 4–52
allocating memory, 4–55
deallocating memory, 4–56
obtaining the initial context, 4–53
obtaining unwind information, 4–53
transfering data, 4–54
writing data, 4–55

Invocation handles, 3–24, 4–40
creating, 3–27
encoding, 3–24
format for procedure, 3–24, 4–40

IP
definition, 1–5

J
Jacket function descriptor, 5–4

L
Label descriptors, 7–35
Language extensions, 2–5
Language-specific Data Area, A–27
Language-support procedure, 1–5
Large immediate value, 3–46, 4–25
Leaf procedure, 1–5
LIB$GET_CURR_INVO_CONTEXT routine, 3–29
LIB$GET_INVO_CONTEXT routine, 3–28
LIB$GET_INVO_HANDLE routine, 3–29
LIB$GET_PREV_INVO_CONTEXT routine, 3–29
LIB$GET_PREV_INVO_HANDLE routine, 3–30
LIB$I64_GET_CURR_INVO_CONTEXT routine,

4–42
LIB$I64_GET_CURR_INVO_HANDLE routine,

4–43
LIB$I64_GET_INVO_CONTEXT routine, 4–41
LIB$I64_GET_INVO_HANDLE routine, 4–43
LIB$I64_GET_PREV_INVO_CONTEXT routine,

4–42
LIB$I64_GET_PREV_INVO_HANDLE routine,

4–44
LIB$I64_PUT_INVO_REGISTERS routine, 4–45
LIB$I64_REV_INVO_END routine, 4–44
LIB$PUT_INVO_REGISTERS routine, 3–30
LIB$SIGNAL routine

signaling, 8–8, 8–13
LIB$STOP routine

using, 8–8, 8–11, 8–13
LIBICB$PH_UO_FREE routine, 4–56
LIBICB$PH_UO_GETCONTEXT routine, 4–53
LIBICB$PH_UO_GETUEINFO routine, 4–53
LIBICB$PH_UO_MALLOC routine, 4–55
LIBICB$PH_UO_READ_MEM routine, 4–54
LIBICB$PH_UO_WRITE_MEM routine, 4–54
LIBICB$PH_UO_WRITE_REG routine, 4–55
Library procedures, 1–5

Index–4

Lightweight procedures
Alpha requirements, 3–14

Linkage pair blocks, 3–35
Linkage pointers, 3–34
Linkage sections, 3–34
Linkage table, 4–57
Literals, 4–59
Local calls, 4–19
Local registers, 4–16
Local static data, 4–59
Long bss area, 4–57
Long data area, 4–57

M
malloc routine, 4–55
Memory stack, 4–10
Memory stack parameters, 4–30
Miscellaneous data types, 6–5
Multiple active signals, 8–33
Multithreaded execution environments, 3–54,

4–12

N
Natural alignment

definition, 1–5
Nested unwind, 8–34
New stack region, 3–55, 4–13
Noncontiguous array descriptors, 7–16
Non-leaf procedure, 1–5
Non-local calls, 4–19
Non-own data items, 4–57
Null frame procedures, 3–20, 4–9

O
Obsolete descriptor class codes, 7–35
Operating system-specific data area, A–23
Optimized procedure calls

and invocation chains, 4–41
OTS$CALL_PROC, 4–36

Alpha version, 5–3
I64 version, 5–5

OTS$JUMP_TO_BPV, 4–36
Output registers, 4–2, 4–8, 4–16
Overlapping unwind, 8–34
Override callback mechanism, 4–52
Own data items, 4–57

P
Parameter passing, 3–46, 4–23
Parameter slots, 3–43, 4–26
Partitioning, 4–1
Passing mechanisms

descriptor
definition, 1–5

Passing mechanisms (cont’d)
immediate value

definition, 1–5
language extensions, 2–5
reference

definition, 1–6
PC

definition, 1–6
PDSCs (procedure descriptors), 3–3

for bound procedures, 3–36
for null frame procedures, 3–20
for register frame procedures, 3–15
for stack frame procedures, 3–5

Predicate register usage, 4–4
Preserved registers, 2–1, 3–1, 4–1
Procedure calls

optimized
and invocation chains, 4–41

stack, 3–22, 4–36
tracing, 3–24

Procedure descriptors
See also FDSCs for I64
See PDSCs for Alpha or DSCs for VAX and

Alpha
Procedure frames, 3–9, 4–10
Procedure invocation, 3–22, 4–36

handle, 3–24, 4–40
Procedure linkage, 4–18
Procedures, 3–3

definition, 1–6
language support, 1–5
library, 1–5
types, 4–9
without frames, 3–20

Procedure signature
see Signature information

Procedure signature information blocks
See PSIGs

Procedure types, 3–3, 4–9
Procedure values, 1–6, 3–31, 4–57

bound, 3–3, 3–36
definition, 3–3, 4–9
examining, 3–36

Process
definition, 1–6

PSIGs ((procedure) signature information blocks),
5–6

field conversions, 5–10

R
Read-only registers, 4–1
Receiving data

Alpha, 3–47
Record layout, 3–52, 4–59

VAX compatible, 3–54, 4–61

Index–5

Reference
definition, 1–6

Reference argument item, 3–42, 4–25
Register classes, 4–1
Register frame procedures, 3–14, 4–36

descriptors, 3–15, 4–36
Registers, 2–1, 3–1, 4–1

application usage, 4–5
automatic, 4–1
branch usage, 4–5
floating-point usage, 3–2, 4–4
for returns, 2–1
general usage, 4–2
global, 4–1
input, 4–8
integer usage, 3–1
output, 4–8
predicate usage, 4–4
preserved, 4–1
scalar, 2–1
scratch, 4–1
special, 4–1
user mask, 4–18
VAX usage, 2–1
vector, 2–2
volatile, 4–8

Register save area
See RSA

Register stack, 4–15
Request to unwind, 8–26
Reserved data type codes, 6–6
Reserved descriptor class codes, 7–35
Reserve region, 3–55, 4–13
Returning data, 3–47
Returning from condition handlers, 8–25
Returning function value

fixed length to stack, 2–8
to stack, 2–7
varying string to stack, 2–8

Returns
address, 3–31
condition value, 8–1
function value, 2–6

Return values, 4–32
Revert to caller’s handling, 8–8
Rotating registers, 4–17
RSA (register save area)

layout, 3–12, 3–13
stack frames, 3–12

S
Scalars

processor synchronization, 2–8
register usage, 2–1

Scratch registers, 4–1
Sending data

argument order evaluation, 3–47, 4–31
mechanisms, 3–46, 4–25

Severity codes, 8–2
handling, 8–4
interpreting, 8–4
meanings, 8–4
symbols, 8–4

Short bss area, 4–57
Short data area, 4–57
Signal

definition, 1–6
Signal argument vectors, 8–13
Signaler’s register, 8–28
Signaling conditions, 8–8

with GENTRAP, 8–9
with LIB$SIGNAL, 8–9

Signature information, 5–6
default, 5–13

Simple procedure, 3–36, 4–33
Special calls, 4–19
Special registers, 4–1
Stack frames

fixed size, 3–9
format, 3–9
procedure descriptors, 3–5
procedures, 3–4, 4–10
register save area, 3–12
variable size, 3–10, 4–12

Stack guard region
multithreads, 3–55, 4–13

Stack limit checking
explicit, 3–57, 4–14
implicit, 3–56, 4–13
methods, 3–55, 4–13
multithreads, 3–55, 4–13

Stack overflow, 3–55, 4–12, 4–13
handling, 3–58, 4–13
multithreads, 3–55, 4–13

Stack reserve region
checking, 3–57, 4–13
multithreads, 3–55, 4–13

Stack return
mechanism, 3–50
values to top, 2–7

Stack temporary area, 3–11, 4–11
Stack usage, 3–34, 8–6

for Alpha systems, 3–9
for VAX, 2–2

Standard calls
definition, 1–6

Standard-conforming procedures
definition, 1–6

Static data, 3–50, 4–59
Static data alignment, 3–51, 4–58

Index–6

String data types, 6–4
String with bounds descriptors, 7–31
Synchronization

exception, 2–8
memory, 2–8

SYS$CALL_HANDL+4 routine
using, 8–28

SYS$GOTO_UNWIND routine, 8–30
unwinding, 8–33

SYS$GOTO_UNWIND_64 routine, 8–30
unwinding, 8–33

SYS$UNWIND routine
unwinding, 8–26, 8–33

T
TEBs (thread environment blocks), 3–54, 4–12
Thread environment blocks

See TEBs
Thread-safe code

definition, 1–6
Threads of execution

definition, 1–6
Transfer code

address, 3–38
sequence, 3–38

Translated images
overview, 5–1

TRAPB instruction, 8–24

U
Unaligned bit array descriptors, 7–27
Unaligned bit string descriptors, 7–26
Unaligned bit string with bounds descriptors,

7–33
Unused bits in passed data, 3–44, 4–28
Unwind information, default, A–27
Unwinding the stack, A–2
Unwinds

completion, 8–28, 8–32
exit, 8–30
GOTO, 8–29
handler invocation, 8–32
nested, 8–34
operations, 8–26

multiple active, 8–34
overlapping, 8–34

User mask, 4–7
User override callback mechanism, 4–52

V
Variable buffer descriptors, 7–35
Variable-size stack frames, 3–10
Varying character string data types, 6–8

Varying string
returned to stack, 2–8

Varying string array descriptors, 7–23
Varying string descriptors, 7–21
VAX language extension, 2–5
VAX scalar

See Scalars
VAX vector

See Vector processors; Vector registers
Vector processors

exception handling, 8–16
synchronization, 2–8

Vector registers
usage, 2–2

Volatile registers, 4–2, 4–8

Index–7

