
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

OpenVMS KP
Services

Doug Gordon

OpenVMS Engineering

September 3, 2004 OpenVMS KP Services 2

What exactly are these things called
anyway…?
• Originally Kernel Process Services.
• Misnamed from the beginning - not processes
• Now not exclusively kernel mode
• For a while, just “KPs”
• All procedure names still have KP

September 3, 2004 OpenVMS KP Services 3

History
• Needed to emulate macro FORK in high level

languages for C as a system language project.
• FORK only saves limited registers
• Difficult to tell C compiler about the limitations of

FORK.
• KPS invented

September 3, 2004 OpenVMS KP Services 4

What is it?
• Conceptually, it’s a procedure that executes on its

own stack[s].
• Procedure may be stalled and resumed.
• To the HLL compiler, stall and restart look like

outbound procedure calls and the calls obey the
calling standard.

• Restart causes the KP routine to resume at the
return from the stall call.

• Once set up, all stack and saved register
management is handled by the KP routines.

September 3, 2004 OpenVMS KP Services 5

Why should you use KPs?
• Porting code that switches or manipulates stacks

on Alpha or Vax to Itanium.
• Stack switch was a SMOP in Macro32 or

Macro64
• IPF architecture is much more complicated.
− Two stacks.
−Asynchronous machine state.
−Stack switch code is much more complicated and much

harder to get right.

• IA64 assembler is not for the faint of heart

September 3, 2004 OpenVMS KP Services 6

Why should you use KPs?
• One common solution, one set of bug fixes.
• IAS is not an optimizing assembler. Any

optimization will be done in one place only.
• Supported interface
• Can be implemented and debugged on Alpha

where tools are more mature
• VMS engineering is actively discouraging roll-your-

own solutions.

September 3, 2004 OpenVMS KP Services 7

Rules for Use
• KP routines only replace one [KESU] stack (or pair

of stacks on IA64)
• All subsequent calls to KP routines must be made

from the mode in which KP_START was called.
• KPB and stacks must be allocated from an

appropriate region, at the appropriate mode,
protection and ownership. (Details to follow)

September 3, 2004 OpenVMS KP Services 8

Basic Routines
• EXE$KP_START - start a KP routine
• EXE$KP_STALL_GENERAL - stall a KP routine
• EXE$KP_RESTART - restart a stalled KP routine
• EXE$KP_END - terminate a KP routine and

optionally clean up context.

September 3, 2004 OpenVMS KP Services 9

EXE$KP_START
• Status = EXE$KP_START(kpb, routine, reg-mask)
• kpb - previously allocated and initialized
• routine - KP routine address
• reg-mask - register save mask (Alpha only. IA64

only supports the calling standard.)
• Suspend the current thread of execution, swap to

the new stack[s] and call the specified routine.
The only parameter to the called routine is the
KPB.

September 3, 2004 OpenVMS KP Services 10

Main Thread of execution KP Routine

Kp_rtn(arg)KP_START

September 3, 2004 OpenVMS KP Services 11

EXE$KP_STALL_GENERAL
status = EXE$KP_STALL_GENERAL(kpb)

• Stall the current thread of execution, saving
context onto the KP stack and returning to the most
recent call that started or restarted this routine.

• The status returned from this routine is supplied by
the routine that restarts this procedure.

September 3, 2004 OpenVMS KP Services 12

Main Thread of execution KP Routine

KP_START Kp_rtn(arg)

KP_STALL

September 3, 2004 OpenVMS KP Services 13

EXE$KP_RESTART
EXE$KP_RESTART(kpb [, thread_status])

• Restart a previously stalled thread. Note that this
may be a completely asynchronous operation with
respect to the original thread of execution that
started the KP routine.

• Thread_status, if provided, is used as the return
status from EXE$KP_STALL_GENERAL. If omitted,
SS$_NORMAL is returned.

September 3, 2004 OpenVMS KP Services 14

Main Thread of execution KP Routine

KP_START Kp_rtn(arg)

KP_STALL

KP_RESTART

September 3, 2004 OpenVMS KP Services 15

EXE$KP_END
status = EXE$KP_END(kpb [, status])

• Terminates the KP routine, returning control to the
last thread of execution that started or restarted the
KP routine.

• Status, if supplied, is passed to the optional routine
specified by the end-rtn field of the KPB.
SS$_NORMAL otherwise.

• RET from the KP routine calls KP_END
automatically. In that case, return status from the
KP procedure is used for the status argument.

September 3, 2004 OpenVMS KP Services 16

Main Thread of execution KP Routine

KP_START Kp_rtn(arg)

KP_STALL

KP_RESTART

KP_STALL

KP_RESTART
KP_END or
Ret

September 3, 2004 OpenVMS KP Services 17

KPBs
• A KPB is the data structure that holds the whole

thing together.
• KPB represents all the context required to switch

stacks and the procedure stacks themselves.
• Pointers to the base[s] of the stack[s] and the

current SP on the non-active stack are stored in the
KPB.

• KPB is semi-transparent. KP services maintain
some fields. Many are directly or indirectly user-
maintained.

September 3, 2004 OpenVMS KP Services 18

KPBs cont.
• KPBDEF is in LIB, not STARLET
−Code that switches stacks is not ordinary user code

• KPB consists of multiple sections.
−Base section (required)
−Scheduling
−VMS Special Parameters
−Spinlock
−Debug
−General Parameters

September 3, 2004 OpenVMS KP Services 19

KPB - base section
Contains
• standard structure header
• stack sizes in bytes & stack base addresses
• flags (includes what areas are present.)
• saved memory stack pointer
• pointers to other optional areas.
• Other fields required by base routines

September 3, 2004 OpenVMS KP Services 20

KPB - scheduling area
• Stall handling routine
• Restart handling routine
• Pointer to fork block
• End routine (required for user alloc call)
• A fork block
All except the end routine are primarily for driver-

level code

September 3, 2004 OpenVMS KP Services 21

KPB - other areas
• VEST - driver level IO code
• SPINLOCK - High IPL code
• DEBUG - limited tracing, limited support
• User Parameter - Application-defined

September 3, 2004 OpenVMS KP Services 22

KPB - interesting flags
These may be set in the allocation calls:
• Area flags (VEST, SPLOC, DEBUG, PARAM)

• DEALLOC_AT_END
− only if allocated via EXE$KP_ALLOCATE_KPB

• SAVE_FP - save floating point state (IA64 only)

• SET_STACK_LIMITS - call $SETSTK_64 at every
stack switch
− Correct stack limits are critical on IA64 for anything that

signals, unwinds, or uses condition handlers.

September 3, 2004 OpenVMS KP Services 23

Suggested Memory Allocation Attributes and
Routines

Mode – Scope KPB Memory Stack Register Stack
Kernel – System

EXE$KP_ALLOC_KPB

Non-paged Pool
KW
EXE$ALONONPAGED

S0/S1
KW
EXE$KP_ALLOC_MEM_STACK

S2
KW
EXE$KP_ALLOC_RSE_STACK

Kernel – Process Non-Paged Pool or P1
EXE$ALONONPAGED
or EXE$ALOP1PROC

P1 – Permanent
$CREATE_REGION/$CRETVA

P2 – Permanent
KW
EXE$KP_ALLOC_RSE_STACK_P2

Kernel – Image P1
EXE$ALOP1IMAG

P1 – Non-permanent
$CREATE_REGION/$CRETVA

P2 – Non-permanent
KW

Exec – Process P1
EXE$ALOP1PROC

P1 – Permanent
$CREATE_REGION/$CRETVA

P2 – Permanent
EW
EXE$KP_ALLOC_RSE_STACK_P2

Exec – Image P1
EXE$ALOP1IMAG

P1 – Non-permanent
$CREATE_REGION/$CRETVA

P2 – Non-permanent
EW

Super – Process P1
EXE$ALOP1PROC

P1 – Permanent
$CREATE_REGION/$CRETVA

P2 – Permanent
SW
EXE$KP_ALLOC_RSE_STACK_P2

Super – Image P1
EXE$ALOP1IMAG

P1 – Non-permanent
$CREATE_REGION/$CRETVA

P2 – Non-permanent
SW

User – Image P0
Heap/Malloc

P0
UW
EXE$KP_ALLOC_MEM_STACK_USER

P2 – Non-permanent
UW
EXE$KP_ALLOC_RSE_STACK_P2

Note: Permanent regions survive image rundown. Permanent regions are not allowed in User mode.

September 3, 2004 OpenVMS KP Services 24

Supplied Allocation Routines
• The system provides a set of convenience routines to aid in

allocation of KPBs and stacks.

• EXE$KP_ALLOCATE_KPB(KPB_PPS kpb, int stack_size, int
flags, int param_size)

• Kernel mode only. Same prototype as original Alpha
routine.

• Note short pointer return for KPB to remain compatible with
the previous implementation for device drivers written in C.

• On IA64, RSE stack size = memory stack size.
• Note, stack size is in BYTES. Will be minimized with

KSTACKPAGES

September 3, 2004 OpenVMS KP Services 25

Allocation Routines, continued
EXE$KP_USER_ALLOC_KPB(KPB_PPS kpb,

int flags, int param_size, int (*kpb_alloc)(),
int mem_stack_bytes, int (*memstk_alloc)(),
int rse_stack_bytes, int (*rsestk_alloc)(),
void (*end_rtn)())

Any-mode allocation with user-supplied allocation routines.
End routine required if clean up necessary.
System-supplied stack allocation routines are provided for

most common needs.

September 3, 2004 OpenVMS KP Services 26

Stack Allocation Routines
Most stack allocation routines have the same prototype:
status = routine(KPB_PQ, kpb, const int stack_pages)

• EXE$KP_ALLOC_MEM_STACK (kernel mode)
• EXE$KP_ALLOC_MEM_STACK_USER (user mode)
• EXE$KP_ALLOC_RSE_STACK (caller’s mode)
• EXE$KP_ALLOC_RSE_STACK_P2 (caller’s mode)
• EXE$KP_ALLOC_RSE_STACK_P2_ANY takes two additional

parameters - region protection and access mode

• The first four calls may be used as the allocation routines
required for EXE$KP_USER_ALLOC_KPB

September 3, 2004 OpenVMS KP Services 27

Matching Deallocation Routines
• EXE$KP_DEALLOCATE_KPB
−Only KPBs allocated by EXE$KP_ALLOCATE_KPB
−Deallocates stack[s] and KPB

• EXE$KP_DEALLOC_MEM_STACK
• EXE$KP_DEALLOC_MEM_STACK_USER
• EXE$KP_DEALLOC_RSE_STACK
• EXE$KP_DEALLOC_RSE_STACK_P2
−Handles RSE stacks allocated by

EXE$KP_ALLOC_RSE_STACK_P2 or
EXE$KP_ALLOC_RSE_STACK_P2_ANY

September 3, 2004 OpenVMS KP Services 28

Useful files
• KPBDEF.*
−Structure definitions

• KPSTACKDEF.* (IA64 only)
− stack layout for the saved context

• EXE_ROUTINES.H
−C prototypes

• IODEF.STB
−Symbols for SDA

September 3, 2004 OpenVMS KP Services 29

Consumers in the base OS
• F11XQP
• RMS (exec mode)
• DCL (supervisor mode)
• DDTM
• DECnet Phase V

• DECdns
• TCP/IP
• MTAACP

RMS and the XQP run this way on Alpha as well. They
were the guinea pigs for proof of concept.

September 3, 2004 OpenVMS KP Services 30

Example, DCL
• On VAX and Alpha, DCL saves supervisor stack state at

initialization of the process and at the beginning of the
command loop simply resets the stack to the saved state.
This is much harder on IA64.

• Now the DCL main command loop runs as the KP process.
When an image is run, DCL stalls the command loop and
returns to the original stack. In that context, an REI call is
performed to switch to outer mode which resets the
supervisor mode stack to base.

• DCL’s super mode exit handler takes control at image exit
and the command loop is resumed via KP_RESTART.

September 3, 2004 OpenVMS KP Services 31

For more info on the original KP implementation see:
OpenVMS AXP Internals and Data Structures - Chapter 5
Writing OpenVMS Alpha Device Drivers in C

Note: Although the documentation on the original KP
implementation states that KPs can only be used in kernel
mode at IPL 3 or higher, the current implementation does
not impose these restrictions. KP services may now be
used in any mode at any IPL.

	OpenVMS KP Services
	What exactly are these things called anyway…?
	History
	What is it?
	Why should you use KPs?
	Why should you use KPs?
	Rules for Use
	Basic Routines
	EXE$KP_START
	EXE$KP_STALL_GENERAL
	EXE$KP_RESTART
	EXE$KP_END
	KPBs
	KPBs cont.
	KPB - base section
	KPB - scheduling area
	KPB - other areas
	KPB - interesting flags
	Suggested Memory Allocation Attributes and Routines
	Supplied Allocation Routines
	Allocation Routines, continued
	Stack Allocation Routines
	Matching Deallocation Routines
	Useful files
	Consumers in the base OS
	Example, DCL

