
1

OpenVMS floating-point arithmetic on the Intel®
Itanium® architecture

table of contents

 executive summary 2
hp solution 2
values of numbers represented 3
rounding rules 4
exception behavior 4
performance considerations 5
summary 6
for more information 6

May 2003

hp business critical
systems

technical
white paper

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

2

executive
summary

 HP is bringing its OpenVMS operating system, middleware, and application portfolio to
the Intel® Itanium® architecture. The Itanium architecture has a 64-bit model and basic
system functions similar to the Alpha chip. However, there are some implementation
differences between the two platforms that might affect user-written applications.

One of the differences is the availability of hardware-supported floating-point formats.
The Itanium architecture implements floating-point arithmetic in hardware using the IEEE
floating-point formats, including IEEE single and IEEE double. The Alpha architecture
supports both IEEE and VAX floating-point formats in hardware, and OpenVMS
compilers generate code using the VAX formats by default, with options (on Alpha) to
use IEEE formats. Irrespective of whether it was originally written for VAX or Alpha, an
OpenVMS application that uses the default VAX floating-point formats needs to produce
equivalent behavior on the Itanium architecture using IEEE formats at the lowest level.

This white paper is for developers who will need to move applications that use VAX
floating-point formats. It describes how VAX floating-point formats will be supported on
the Itanium architecture, as well as how and why data might be affected.

hp solution On OpenVMS VAX and OpenVMS Alpha, VAX float is the default. VAX format data is
assumed and VAX floating instructions are used.

On OpenVMS Alpha, you can specify the compiler option /FLOAT=IEEE. In this case,
IEEE format data is assumed and IEEE floating instructions are used.

On OpenVMS I64, IEEE float is the default. IEEE format data is assumed and IEEE
floating instructions are used.

On OpenVMS I64, you can specify the compiler option /FLOAT=D_FLOAT or
/FLOAT=G_FLOAT.

VAX floating-point formats are supported on the Itanium architecture by converting them
to IEEE single and IEEE double floating types. By default, this is a transparent process
that will not impact most applications. All you need to do is recompile your application.
HP is providing compilers for C, C++, Fortran, BASIC, PASCAL, and COBOL, all with
the same floating-point options. The compiler-specific documentation will describe all the
floating-point options in detail. Because IEEE floating-point format will be the default,
unless your build explicitly specifies VAX floating-point format options, a simple rebuild
for OpenVMS I64 will use the native IEEE formats directly. For the large class of
programs that do not directly depend on the VAX formats for correct operation, this is
the most desirable way to build for OpenVMS I64.

When you compile an OpenVMS application that specifies an option to use VAX
floating-point on the Itanium architecture, the compiler automatically generates code for
converting floating-point formats. Whenever the application performs a sequence of
arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Note that where no arithmetic operations are performed (VAX float fetches followed by
stores), conversions will not occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their
equivalent IEEE floating-point formats. For most applications, the conversion process will
be transparent.

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

3

In a few cases, arithmetic calculations might have different results because of the
following differences between VAX and IEEE formats (described in detail later in this
paper):

 Values of numbers represented

 Rounding rules

 Exception behavior

These differences might cause problems for applications that do any of the following:

 Depend on exception behavior

 Measure the limits of floating-point behaviors

 Implement algorithms at maximal processor-specific accuracy

 Perform low-level emulations of other floating-point processors

 Use direct equality comparisons between floating-point values, instead
of appropriately ranged comparisons (a practice that is extremely
vulnerable to changes in compiler version or compiler options, as well
as architecture)

You can test an application’s behavior with IEEE floating-point values today by compiling
it on an OpenVMS Alpha system with an IEEE qualifier. If that produces acceptable
results, you should simply build the application on an Itanium-based system (and Alpha,
if you wish) using the same qualifier.

If you determine that simply recompiling with an IEEE qualifier is not sufficient because
your application depends on the binary representation of floating point values, then you
should first try building for OpenVMS I64 by specifying the VAX floating-point option
that was in effect for your VAX or Alpha build. This causes the representation seen by
your code and on disk to remain unchanged, with some additional run-time cost for the
conversions generated by the compiler. If this is not an efficient approach for your
application, you can convert VAX floating-point binary data in disk files to IEEE floating-
point formats prior to moving the application to the Itanium platform. This entails writing
and running a data conversion utility. To support customers who choose this approach,
hp will provide algorithms and routines to make this task easier.

values of
numbers
represented

 The set of numbers exactly represented by VAX and IEEE floating-point formats is
different because of the different ways in which each represents the exponent. Table 1
shows the range and precision for each floating-point format.

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

4

Table 1: Range matrix

floating-point
format

lowest normalized value1 highest normalized value2

IEEE single 1.17549435E–38 3.402823E38 Single
precision VAX F 2.9387359E–39 1.701411E38

IEEE
double

2.2250738585072014E–308 1.797693134862316E308

VAX G 5.562684646268003E–309 8.988465674311579E307
Double
precision

VAX D 2.93873587705571877E–39 1.70141183460469229E38

1. Smallest normalized value greater than zero
2. Maximum value before overflow

Floating-point source code using VAX format should produce nearly equivalent results,
within the accuracy of the types and language rules, when compiled for the Itanium
architecture using IEEE floating-point format. If the operands and result of a VAX
floating-point operation fall between the lowest and highest normalized IEEE values, the
corresponding IEEE float result will usually be identical to the VAX result. In the case of a
difference, the IEEE float result will have at least the same accuracy as the VAX float
result. The situation is more complicated for VAX float operations involving values less
than the corresponding lowest normalized IEEE value. Most programs will not be
sensitive to these differences involving arithmetic with underflows.

An application that is extremely sensitive to the last bits of precision produced by
individual VAX floating-point operations might exhibit unexpected behavior. VAX
instructions that result in values too small to be represented with normalization produce a
zero result. The default IEEE emulation of VAX instructions preserves denormal
intermediate results instead of forcing them to zero immediately. Only when the final
result of a computation is converted to VAX format for storage in a variable does the
VAX emulation force an IEEE denormal to zero.

If subsequent operations in a computation multiply an intermediate denormal result by a
very large value, the emulation might produce a nonzero VAX floating result, where the
same computation with VAX instructions would have produced zero. The worst case is
that you will lose two bits of precision for numbers near the VAX underflow threshold.

rounding rules Rounding might sometimes produce different results. This is caused by the differences in biased
rounding used by VAX floating-point and unbiased rounding used by IEEE floating-point.
In VAX floating-point operations, the result half way between two representable values is
always rounded up (that is, by adding half the value of the least significant bit retained
to the magnitude of the result). In IEEE floating-point operations, the result half way
between two representable values is rounded to the nearest even value (that is, when
exactly halfway between two representable values, the low-order bit of the result is
forced to zero).

Programs might see different results, but they are equally correct.

exception
behavior

 Because the underflow threshold is four times larger with IEEE than it is with VAX, some
operations that currently do not underflow with VAX floating point might underflow when
the operation is done in IEEE floating point. The VAX, Alpha, and Itanium architectures
behave differently in the presence of floating underflow. For the few programs that
depend on operations that underflow, OpenVMS provides several options to control
underflow behavior. An OpenVMS programmer working with VAX formats can choose
to have operations that underflow generate one of the following:

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

5

 An exception trap --
The underflow exception option lets you detect when an underflow
might cause a difference in behavior. On a VAX or Alpha system,
underflow exceptions are generated when a result is less than the lowest
normalized VAX float result. On an Itanium system, underflow
exceptions are generated when a result is less than the lowest
normalized IEEE float result.

 A zero result --
The flush-to-zero option makes all operations with an underflow produce
a zero result. On a VAX or Alpha system, flush-to-zero happens when a
result is less than the lowest normalized VAX float value. On an
Itanium-based system, flush to zero happens when a result is less than
the lowest normalized IEEE float value.

 A denormalized intermediate result --
The denormalized intermediate option is available only on OpenVMS
I64 systems. This option lets OpenVMS Itanium systems produce
intermediate expression values smaller than the lowest normalized IEEE
float value. These denormalized intermediate values are less precise.
Denormalized intermediate values smaller than the lowest normalized
VAX float value are flushed to zero when the value is stored in a VAX
float variable. Intermediate denormalized values larger than the lowest
normalized VAX value will lose no more than two low-order bits of
precision compared with the corresponding VAX float intermediate
value.

Overflow traps will occur less frequently on the Itanium architecture than on Alpha
because the IEEE floating-point format supports values two times larger than the VAX
floating-point format. An intermediate result that would overflow on VAX might not
overflow on IEEE. If the final result of that computation results in a value that can be
represented in VAX format, the computation will not raise an exception on IEEE, whereas
it would have raised an overflow on VAX. If the final result is too large for VAX, the
overflow will be raised in IEEE when the conversion to VAX takes place.

These differences are similar to those seen in VAX applications that depended on VAX D
floating-point when they were ported to Alpha D-float implementation.

If an application is sensitive to the exact point in a computation at which an exception
will be raised, it might exhibit unexpected behavior. Otherwise, floating-point codes
using VAX format that do not depend upon the raising of an exception at a specific point
in a computation to produce a correct result should produce nearly equivalent results.

performance
considerations

 For applications using VAX floating-point formats, performance will vary from
application to application. Run-time performance could be affected by data conversion
that occurs “on the fly” for an arithmetic operation because conversion requires several
additional instructions. There is a run-time cost to each conversion that occurs when a
variable’s value is fetched from memory or a computed result is stored back to memory.

Reading and writing to disk is slow relative to the computations done on the high-speed
Itanium processor. Applications that require VAX floating-point format for on-disk
representation are less likely to notice the cost of converting VAX floating-point data than
those that are compute bound.

Commercial applications that are I/O intensive or scientific applications that are
computation intensive should be aware of these factors. If there are continual
manipulations or calculations on floating-point data after reading in external VAX

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

6

floating-point data, you might want to modify such an application to do the following:

 Convert external VAX floating-point data to IEEE format when read in

 Use native IEEE representation for variables and computations within the
program

 Convert back to VAX floating-point when the data is written back out

An applications that is performance critical should definitely be converted to use IEEE
formats.

summary

 If you are moving an OpenVMS application to Itanium-based systems and the
application performs floating-point arithmetic, you need to know that VAX floating-point
formats are not directly supported by the Itanium architecture. In most cases, simply
recompiling using the default IEEE floating point options OpenVMS I64 systems will
produce equivalent results to using VAX formats on OpenVMS VAX or Alpha systems,
and at maximum efficiency.

For programs that directly depend on the VAX formats, explicitly specifying the same
VAX format option on Itanium that was in effect for the VAX or Alpha build of the
program will usually produce functionally equivalent results, with some amount of
overhead caused by on-the-fly conversions. If the overhead of on-the-fly conversions
proves to be too high, data can be converted in bulk before the programs starts, the
program can be run using native IEEE formats, and the results can be converted back
when the program completes. Alternatively, a one-time application data migration might
be most appropriate. Only those rare programs that heavily rely on the limits or detailed
exception behaviors of the VAX formats are likely to require pervasive source code
changes in moving to the Itanium architecture.

for more
information

 IA-64 Software Conventions and Runtime
Architecture Guide

http://www.intel.com/design/Itanium/D
ownloads/24535802.pdf

IEEE Standard 754-1985 for Floating-
point Computations

http://grouper.ieee.org/groups/754/fa
q.html#obtaining

Intel® Itanium® Architecture Software
Developer’s Manual

http://www.intel.com/design/itanium/
manuals/

Itanium® Processor Floating-point
Software Assistance Handler

http://www.intel.com/design/itanium/
downloads/245415.htm

Compaq Standard 032-0 VAX
Architecture Standard

Order Number: EL-00032-00-0000

Alpha Architecture Handbook http://www.support.compaq.com/
alpha-tools/documentation/current
/alpha-archt/alpha-architecture.pdf

© 2003 Copyright Hewlett-Packard Development Company, L.P
All brand names are trademarks of their respective owners.
Technical information in this document is subject to change without notice.
Intel® and Itanium ® are trademarks of Intel Corporation in the US and other countries and are used under
license. All other product names mentioned herein may be the trademarks of their respective companies.

Neither HP nor any of its subsidiaries shall be liable for technical or editorial errors or omissions contained
herein. The information in this document is provided "as is" without warranty of any kind and is subject to
change without notice. The warranties for HP products are set forth in the express limited warranty
statements accompanying such products. Nothing herein should be construed as constituting an additional
warranty.

OpenVMS floating-point arithmetic on the Intel® Itanium® architecture

7

