
1 

 

     

 

   

OpenVMS floating-point arithmetic on the Intel®  
Itanium® architecture 

  

 

table of contents 
 

 

 executive summary 2 
hp solution 2 
values of numbers represented 3 
rounding rules 4 
exception behavior 4 
performance considerations 5 
summary 6 
for more information 6 

 

May 2003 
 

hp business critical 
systems 

 
 

technical  
white paper 



OpenVMS floating-point arithmetic on the Intel®  Itanium® architecture  

2 

executive 
summary  

 HP is bringing its OpenVMS operating system, middleware, and application portfolio to 
the Intel® Itanium® architecture.  The Itanium architecture has a 64-bit model and basic 
system functions similar to the Alpha chip.  However, there are some implementation 
differences between the two platforms that might affect user-written applications. 

One of the differences is the availability of hardware-supported floating-point formats.  
The Itanium architecture implements floating-point arithmetic in hardware using the IEEE 
floating-point formats, including IEEE single and IEEE double.  The Alpha architecture 
supports both IEEE and VAX floating-point formats in hardware, and OpenVMS 
compilers generate code using the VAX formats by default, with options (on Alpha) to 
use IEEE formats.  Irrespective of whether it was originally written for VAX or Alpha, an 
OpenVMS application that uses the default VAX floating-point formats needs to produce 
equivalent behavior on the Itanium architecture using IEEE formats at the lowest level. 

This white paper is for developers who will need to move applications that use VAX 
floating-point formats.  It describes how VAX floating-point formats will be supported on 
the Itanium architecture, as well as how and why data might be affected. 

hp solution  On OpenVMS VAX and OpenVMS Alpha, VAX float is the default.  VAX format data is 
assumed and VAX floating instructions are used. 

On OpenVMS Alpha, you can specify the compiler option /FLOAT=IEEE.  In this case, 
IEEE format data is assumed and IEEE floating instructions are used. 

On OpenVMS I64, IEEE float is the default.  IEEE format data is assumed and IEEE 
floating instructions are used. 

On OpenVMS I64, you can specify the compiler option /FLOAT=D_FLOAT or 
/FLOAT=G_FLOAT. 

VAX floating-point formats are supported on the Itanium architecture by converting them 
to IEEE single and IEEE double floating types.  By default, this is a transparent process 
that will not impact most applications.  All you need to do is recompile your application.  
HP is providing compilers for C, C++, Fortran, BASIC, PASCAL, and COBOL, all with 
the same floating-point options.  The compiler-specific documentation will describe all the 
floating-point options in detail.  Because IEEE floating-point format will be the default, 
unless your build explicitly specifies VAX floating-point format options, a simple rebuild 
for OpenVMS I64 will use the native IEEE formats directly.  For the large class of 
programs that do not directly depend on the VAX formats for correct operation, this is 
the most desirable way to build for OpenVMS I64. 

When you compile an OpenVMS application that specifies an option to use VAX 
floating-point on the Itanium architecture, the compiler automatically generates code for 
converting floating-point formats.  Whenever the application performs a sequence of 
arithmetic operations, this code does the following: 

1. Converts VAX floating-point formats to either IEEE single or IEEE double 
floating-point formats. 

2. Performs arithmetic operations in IEEE floating-point arithmetic. 

3. Converts the resulting data from IEEE formats back to VAX formats. 

Note that where no arithmetic operations are performed (VAX float fetches followed by 
stores), conversions will not occur.  The code handles such situations as moves. 

VAX floating-point formats have the same number of bits and precision as their 
equivalent IEEE floating-point formats.  For most applications, the conversion process will 
be transparent. 
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In a few cases, arithmetic calculations might have different results because of the 
following differences between VAX and IEEE formats (described in detail later in this 
paper): 

 Values of numbers represented 

 Rounding rules 

 Exception behavior 

These differences might cause problems for applications that do any of the following: 

 Depend on exception behavior 

 Measure the limits of floating-point behaviors 

 Implement algorithms at maximal processor-specific accuracy 

 Perform low-level emulations of other floating-point processors 

 Use direct equality comparisons between floating-point values, instead 
of appropriately ranged comparisons (a practice that is extremely 
vulnerable to changes in compiler version or compiler options, as well 
as architecture) 

You can test an application’s behavior with IEEE floating-point values today by compiling 
it on an OpenVMS Alpha system with an IEEE qualifier.  If that produces acceptable 
results, you should simply build the application on an Itanium-based system (and Alpha, 
if you wish) using the same qualifier. 

If you determine that simply recompiling with an IEEE qualifier is not sufficient because 
your application depends on the binary representation of floating point values, then you 
should first try building for OpenVMS I64 by specifying the VAX floating-point option 
that was in effect for your VAX or Alpha build.  This causes the representation seen by 
your code and on disk to remain unchanged, with some additional run-time cost for the 
conversions generated by the compiler.  If this is not an efficient approach for your 
application, you can convert VAX floating-point binary data in disk files to IEEE floating-
point formats prior to moving the application to the Itanium platform.  This entails writing 
and running a data conversion utility.  To support customers who choose this approach, 
hp will provide algorithms and routines to make this task easier. 

values of 
numbers 
represented 

 The set of numbers exactly represented by VAX and IEEE floating-point formats is 
different because of the different ways in which each represents the exponent.  Table 1 
shows the range and precision for each floating-point format. 
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Table 1: Range matrix 

floating-point 
format 

lowest normalized value1 highest normalized value2 

IEEE single 1.17549435E–38 3.402823E38 Single 
precision VAX F 2.9387359E–39 1.701411E38 

IEEE 
double 

2.2250738585072014E–308 1.797693134862316E308 

VAX G 5.562684646268003E–309 8.988465674311579E307 
Double 
precision 

VAX D 2.93873587705571877E–39 1.70141183460469229E38 

1.  Smallest normalized value greater than zero 
2.  Maximum value before overflow 

 

Floating-point source code using VAX format should produce nearly equivalent results, 
within the accuracy of the types and language rules, when compiled for the Itanium 
architecture using IEEE floating-point format.  If the operands and result of a VAX 
floating-point operation fall between the lowest and highest normalized IEEE values, the 
corresponding IEEE float result will usually be identical to the VAX result.  In the case of a 
difference, the IEEE float result will have at least the same accuracy as the VAX float 
result.  The situation is more complicated for VAX float operations involving values less 
than the corresponding lowest normalized IEEE value.  Most programs will not be 
sensitive to these differences involving arithmetic with underflows. 

An application that is extremely sensitive to the last bits of precision produced by 
individual VAX floating-point operations might exhibit unexpected behavior.  VAX 
instructions that result in values too small to be represented with normalization produce a 
zero result.  The default IEEE emulation of VAX instructions preserves denormal 
intermediate results instead of forcing them to zero immediately.  Only when the final 
result of a computation is converted to VAX format for storage in a variable does the 
VAX emulation force an IEEE denormal to zero. 

If subsequent operations in a computation multiply an intermediate denormal result by a 
very large value, the emulation might produce a nonzero VAX floating result, where the 
same computation with VAX instructions would have produced zero.  The worst case is 
that you will lose two bits of precision for numbers near the VAX underflow threshold. 

rounding rules  Rounding might sometimes produce different results.  This is caused by the differences in biased 
rounding used by VAX floating-point and unbiased rounding used by IEEE floating-point. 
In VAX floating-point operations, the result half way between two representable values is 
always rounded up (that is, by adding half the value of the least significant bit retained 
to the magnitude of the result).  In IEEE floating-point operations, the result half way 
between two representable values is rounded to the nearest even value (that is, when 
exactly halfway between two representable values, the low-order bit of the result is 
forced to zero). 

Programs might see different results, but they are equally correct. 

exception 
behavior 

 

 Because the underflow threshold is four times larger with IEEE than it is with VAX, some 
operations that currently do not underflow with VAX floating point might underflow when 
the operation is done in IEEE floating point.  The VAX, Alpha, and Itanium architectures 
behave differently in the presence of floating underflow.  For the few programs that 
depend on operations that underflow, OpenVMS provides several options to control 
underflow behavior.  An OpenVMS programmer working with VAX formats can choose 
to have operations that underflow generate one of the following: 
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 An exception trap -- 
The underflow exception option lets you detect when an underflow 
might cause a difference in behavior.  On a VAX or Alpha system, 
underflow exceptions are generated when a result is less than the lowest 
normalized VAX float result.  On an Itanium system, underflow 
exceptions are generated when a result is less than the lowest 
normalized IEEE float result. 

 A zero result -- 
The flush-to-zero option makes all operations with an underflow produce 
a zero result.  On a VAX or Alpha system, flush-to-zero happens when a 
result is less than the lowest normalized VAX float value.  On an 
Itanium-based system, flush to zero happens when a result is less than 
the lowest normalized IEEE float value. 

 A denormalized intermediate result -- 
The denormalized intermediate option is available only on OpenVMS 
I64 systems.  This option lets OpenVMS Itanium systems produce 
intermediate expression values smaller than the lowest normalized IEEE 
float value.  These denormalized intermediate values are less precise.  
Denormalized intermediate values smaller than the lowest normalized 
VAX float value are flushed to zero when the value is stored in a VAX 
float variable.  Intermediate denormalized values larger than the lowest 
normalized VAX value will lose no more than two low-order bits of 
precision compared with the corresponding VAX float intermediate 
value. 

Overflow traps will occur less frequently on the Itanium architecture than on Alpha 
because the IEEE floating-point format supports values two times larger than the VAX 
floating-point format.  An intermediate result that would overflow on VAX might not 
overflow on IEEE.  If the final result of that computation results in a value that can be 
represented in VAX format, the computation will not raise an exception on IEEE, whereas 
it would have raised an overflow on VAX.  If the final result is too large for VAX, the 
overflow will be raised in IEEE when the conversion to VAX takes place. 

These differences are similar to those seen in VAX applications that depended on VAX D 
floating-point when they were ported to Alpha D-float implementation. 

If an application is sensitive to the exact point in a computation at which an exception 
will be raised, it might exhibit unexpected behavior.  Otherwise, floating-point codes 
using VAX format that do not depend upon the raising of an exception at a specific point 
in a computation to produce a correct result should produce nearly equivalent results. 

performance 
considerations 

 

 For applications using VAX floating-point formats, performance will vary from 
application to application.  Run-time performance could be affected by data conversion 
that occurs “on the fly” for an arithmetic operation because conversion requires several 
additional instructions.  There is a run-time cost to each conversion that occurs when a 
variable’s value is fetched from memory or a computed result is stored back to memory. 

Reading and writing to disk is slow relative to the computations done on the high-speed 
Itanium processor.  Applications that require VAX floating-point format for on-disk 
representation are less likely to notice the cost of converting VAX floating-point data than 
those that are compute bound. 

Commercial applications that are I/O intensive or scientific applications that are 
computation intensive should be aware of these factors.  If there are continual 
manipulations or calculations on floating-point data after reading in external VAX 
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floating-point data, you might want to modify such an application to do the following: 

 Convert external VAX floating-point data to IEEE format when read in 

 Use native IEEE representation for variables and computations within the 
program 

 Convert back to VAX floating-point when the data is written back out 

An applications that is performance critical should definitely be converted to use IEEE 
formats. 

summary 

 

 If you are moving an OpenVMS application to Itanium-based systems and the 
application performs floating-point arithmetic, you need to know that VAX floating-point 
formats are not directly supported by the Itanium architecture.  In most cases, simply 
recompiling using the default IEEE floating point options OpenVMS I64 systems will 
produce equivalent results to using VAX formats on OpenVMS VAX or Alpha systems, 
and at maximum efficiency. 

For programs that directly depend on the VAX formats, explicitly specifying the same 
VAX format option on Itanium that was in effect for the VAX or Alpha build of the 
program will usually produce functionally equivalent results, with some amount of 
overhead caused by on-the-fly conversions.  If the overhead of on-the-fly conversions 
proves to be too high, data can be converted in bulk before the programs starts, the 
program can be run using native IEEE formats, and the results can be converted back 
when the program completes.  Alternatively, a one-time application data migration might 
be most appropriate.  Only those rare programs that heavily rely on the limits or detailed 
exception behaviors of the VAX formats are likely to require pervasive source code 
changes in moving to the Itanium architecture. 

for more 
information 

 

 IA-64 Software Conventions and Runtime 
Architecture Guide 

http://www.intel.com/design/Itanium/D
ownloads/24535802.pdf 

IEEE Standard 754-1985 for Floating-
point Computations 

http://grouper.ieee.org/groups/754/fa
q.html#obtaining 

Intel® Itanium® Architecture Software 
Developer’s Manual 

http://www.intel.com/design/itanium/ 
manuals/ 

Itanium® Processor Floating-point 
Software Assistance Handler 

http://www.intel.com/design/itanium/ 
downloads/245415.htm 

Compaq Standard 032-0 VAX 
Architecture Standard 

Order Number:  EL-00032-00-0000 

Alpha Architecture Handbook http://www.support.compaq.com/ 
alpha-tools/documentation/current 
/alpha-archt/alpha-architecture.pdf  
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