
OpenVMS Technical
Journal V11 Hints and Tricks When Using Dynamic Volume Expansion

(DVE) on OpenVMS Systems
Rob Eulenstein, Multivendor Systems Engineering

Hints and Tricks When Using Dynamic Volume Expansion (DVE) on OpenVMS Systems 1
Overview.. 2
Introduction... 2

How DVE works... 4
A Closer Look at BITMAP.SYS.. 11
Actual DDS/DVE Cases .. 15

Summary .. 18

© Copyright 2008 Hewlett-Packard Development Company, L.P 1

Overview
This article provides hints and tricks for using Dynamic Volume Expansion (DVE) on OpenVMS
systems. Dynamic volume expansion, which was first available in OpenVMS Alpha Version 7.3-2
and HP OpenVMS for Integrity servers Version 8.2, allows system managers to increase the size (the
number of logical blocks) of a mounted volume. Although often associated with OpenVMS Host-
Based Volume Shadowing, DVE can be implemented on nonshadowed volumes.

Introduction
The early groundwork for DVE began with OpenVMS Alpha Version 7.2. Prior to that release, the
size of the [000000]BITMAP.SYS file was limited to 256 blocks. In Version 7.2, the maximum size of
BITMAP.SYS was increased to 65,536 blocks. The initial impact of this change was to allow disks to
be initialized with much smaller disk cluster sizes than was previously possible. Prior to Version 7.2,
the smallest disk cluster size was approximately equal to the total blocks on the volume divided by 1
million (255 x 4096). For large volumes that contained many small files, this limitation resulted in
much wasted space. With the change in Version 7.2, volumes as large as 400 GB could have a disk
cluster size of 3 blocks. As we discuss in this article, allowing for a larger BITMAP.SYS file was a key
prerequisite for DVE.

At the present time, the maximum volume size supported by OpenVMS is slightly less than 1 TB. The
actual number is 2,147,475,456 blocks decimal or 7FFFE000 hexadecimal. The OpenVMS file
system (Extended QIO Processor, or XQP) as well as current versions of SYS$DKDRIVER enforce this
limit. For the history buffs among us, in OpenVMS VAX Version 5.5-2 and earlier versions, the
maximum supported volume size was 16,777,215 blocks decimal or 00FFFFFF hexadecimal. The
maximum number of files on an OpenVMS volume is 16,711,679. This value is calculated as
follows: 2**24 – 2**16 – 1.

Prior to OpenVMS Alpha Version 7.3-2, when a volume became full, the system manager had a
couple of choices. They could delete or purge files on the volume to free up some space, or they
could move all the files and directories via BACKUP or COPY to a larger volume. The output of the
SHOW DEVICE/FULL command was often used to monitor free space. The output showed the total
blocks on the volume plus the number of free blocks on the volume. The total blocks was the value
from the unit control block (UCB) field UCB$L_MAXBLOCK. This same value was also stored in the
storage control block (SCB) field SCB$L_VOLSIZE. (The SCB is virtual block number, or VBN, 1 of
BITMAP.SYS.) Figure 1 is an example of the output of the pre-Version 7.3-2 SHOW/DEVICE/FULL
command.

$ show device dsa218/full

Disk DSA218:, device type MSCP served SCSI disk, is online, mounted, file-
 oriented device, shareable, available to cluster, error logging is enabled.

 Error count 0 Operations completed 670148
 Owner process "" Owner UIC [SYS,SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:RW,W:RW
 Reference count 1 Default buffer size 512
 Total blocks 2050353 Sectors per track 57
 Total cylinders 2570 Tracks per cylinder 14

 Volume label "DISK18" Relative volume number 0
 Cluster size 3 Transaction count 1
 Free blocks 1708314 Maximum files allowed 256294
.
.
.

© Copyright 2008 Hewlett-Packard Development Company, L.P 2

Figure 1 – Pre-Version 7.3-2 SHOW DEVICE/FULL Command Output

To help manage DVE, two new items were added to the SHOW DEVICE/FULL output in OpenVMS
Alpha Version 7.3-2: Logical Volume Size and Expansion Size Limit. Logical Volume Size is the value
from the SCB$L_VOLSIZE field in the SCB. Expansion Size Limit is calculated when the volume is
mounted, as shown in Figure 2. The value calculated is stored in the volume control block (VCB) field
VCB$L_EXPSIZE.

Expansion Size Limit = (blocks allocated to BITMAP.SYS – 1) *
 disk cluster size * 4096

Figure 2 – Calculating Expansion Size Limit

Figure 3 shows an example of the new SHOW DEVICE/FULL output.

$ show device/full dsa218:

Disk DSA218:, device type MSCP served SCSI disk, is online, mounted, file-
 oriented device, shareable, available to cluster, error logging is enabled,
 device supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 228
 Owner process "" Owner UIC [FIELD,SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Total blocks 2050353 Sectors per track 57
 Total cylinders 2570 Tracks per cylinder 14
 Logical Volume Size 2050353 Expansion Size Limit 2052096

 Volume label "DISK18" Relative volume number 0
 Cluster size 3 Transaction count 1
 Free blocks 1708314 Maximum files allowed 256294
.
.
.

Figure 3 – Version 7.3-2 SHOW DEVICE/FULL Output

In this version of the command output, the Total blocks value is still displayed and continues to
represent UCB$L_MAXBLOCK from the UCB. The UCB$L_MAXBLOCK value represents the number of
logical blocks presented to OpenVMS by the storage controller. Logical Volume Size is the number of
logical blocks on the volume currently in use by the OpenVMS file system (the XQP). In Figure 3, the
Total blocks value equals the Logical Volume Size value, which is often the case on disks that cannot
be expanded (local SCSI disks), or on disks that have already completed DVE. Expansion Size Limit
represents the largest number of logical blocks that can be mapped by the current size of the
BITMAP.SYS file. In Figure 3, Expansion Size Limit is slightly higher than Total blocks and Logical
Volume Size for two reasons:

• The number of blocks allocated to BITMAP.SYS must be divisible by the disk cluster size.

• Logical Volume Size might not be evenly divisible by 4096 (512 bytes x 8 bits per byte).

Figure 4 shows the relationship between Expansion Size Limit and the size of the BITMAP.SYS file.

$ dir/size=all dsa218:[000000]bitmap.sys

Directory DSA218:[000000]

© Copyright 2008 Hewlett-Packard Development Company, L.P 3

BITMAP.SYS;1 168/168

Total of 1 file, 168/168 blocks.

$ expsize = (168 – 1) * 3 * 4096

$ show symbol expsize
 EXPSIZE = 2052096

Figure 4 – Relationship between Expansion Size Limit and size of BITMAP.SYS

In addition to the new items added to the SHOW DEVICE/FULL output, new qualifiers were added for
the DCL commands INITIALIZE and SET VOLUME. The INIT/LIMIT, INIT/SIZE, SET VOLUME/LIMIT,
and SET VOLUME/SIZE commands were added to implement DVE. For both commands, the /LIMIT
qualifier affects the size of BITMAP.SYS and, ultimately, the Expansion Size Limit value for the volume.
The /SIZE qualifier sets or increases (you can not decrease) the Logical Volume Size. The Logical
Volume Size value can never exceed the Expansion Size Limit for the volume.

How DVE works

Now that we have some background, let’s see how DVE works. If you are initializing a new disk
from an OpenVMS system, preparing for a future expansion of this volume is easy. Simply add the
/LIMIT qualifier to the INIT command. This results in preallocating sufficient blocks to BITMAP.SYS to
map up to the current 1TB volume-size limit. The actual size of the BITMAP.SYS file created depends
on the disk cluster size on the volume. In Figure 5, OpenVMS defaults to a disk cluster size of 8
blocks because 8 blocks is the smallest disk cluster size possible for a 1TB volume.

$ init/limit 1dga150: scratch
%INIT-I-DEFCLUSTER, value for /CLUSTER defaulted to 8

$ mount/system 1dga150: scratch
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA150: (HSV2AL)

$ show device/full 1dga150:

Disk 1DGA150: (HSV2AL), device type HSV210, is online, mounted, file-oriented
 device, shareable, available to cluster, device has multiple I/O paths,
 error logging is enabled.

 Error count 0 Operations completed 1274
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 WWID 01000010:6005-08B4-0010-3F6B-0000-9000-052E-0000
 Total blocks 75497472 Sectors per track 128
 Total cylinders 4608 Tracks per cylinder 128
 Logical Volume Size 75497472 Expansion Size Limit 2147450880
 Allocation class 1

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 8 Transaction count 1
 Free blocks 75427792 Maximum files allowed 16711679
.
.
.

$ dir/size=all 1dga150:[000000]bitmap.sys

Directory 1DGA150:[000000]

BITMAP.SYS;1 2305/65536

© Copyright 2008 Hewlett-Packard Development Company, L.P 4

Total of 1 file, 2305/65536 blocks.

$ expsize = (65536 - 1) * 4096 * 8

$ show symbol expsize
 EXPSIZE = 2147450880 Hex = 7FFF8000

Figure 5 – INIT/LIMIT Command Example

In Figure 5, if 1DGA150: becomes full, the volume can be expanded without dismounting. The
system manager must first increase the size of 1DGA150: from the storage controller. Because
1DGA150: is an EVA-based disk (LUN), the system manager can use the StorageWorks utility
Command View EVA to increase the size of 1DGA150:. In this example the size was increased
from 36 GB to 72 GB.

Next, the system manager enters the SET VOLUME/SIZE command on the OpenVMS system. If the
volume is mounted by multiple cluster nodes, it is necessary to enter the SET VOLUME/SIZE command
from only one node. The other cluster nodes acknowledge the larger volume size the next time an
I/O involving the XQP occurs. In Figure 6, the blocks allocated to the BITMAP.SYS file do not
increase; only the “used” blocks increase.

At this point 1DGA150: was grown from 36 GB to 72 GB at the controller.

$ set volume/size 1dga150:

$ show device/full 1dga150:

Disk 1DGA150: (HSV2AL), device type HSV210, is online, mounted, file-oriented
 device, shareable, available to cluster, device has multiple I/O paths,
 error logging is enabled.

 Error count 0 Operations completed 8045
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 WWID 01000010:6005-08B4-0010-3F6B-0000-9000-052E-0000
 Total blocks 150994944 Sectors per track 128
 Total cylinders 9216 Tracks per cylinder 128
 Logical Volume Size 150994944 Expansion Size Limit 2147450880
 Allocation class 1

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 8 Transaction count 1
 Free blocks 150925264 Maximum files allowed 16711679
.
.
.

$ dir/size=all 1dga150:[000000]bitmap.sys

Directory 1DGA150:[000000]

BITMAP.SYS;1 4609/65536

Total of 1 file, 4609/65536 blocks.

Figure 6 – SET VOLUME/SIZE Command Example

As easy and straightforward as this example is, most system managers do not have the luxury of
being able to start with a brand new disk. Rather, they must implement DVE on existing volumes that

© Copyright 2008 Hewlett-Packard Development Company, L.P 5

already contain data. In these cases, the SET VOLUME/LIMIT command must be used instead of the
INIT/LIMIT command to extend the existing BITMAP.SYS file. The one significant restriction when
using SET VOLUME/LIMIT is that the volume must be mounted privately. Failure to do so
results in the following error:

$ set volume/limit 1dga150:
%SET-E-NOTMOD, 1DGA150: not modified
-SET-W-NOTPRIVATE, device must be mounted privately

This restriction is by far the biggest hurdle that system managers face when using DVE. It is the one
aspect of DVE that is not truly dynamic. However, once BITMAP.SYS has been extended, the Logical
Volume Size value can be increased again and again by using SET VOLUME/SIZE commands while
the volume is mounted using the /SYSTEM or /CLUSTER qualifier, as shown in Figure 7.

$ init 1dga150: scratch Notice That /LIMIT Was Not Specified And
 Disk Cluster Size Defaulted to 145 Blocks

$ mount/system 1dga150: scratch
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA150: (HSV2AL)

$ show device/full 1dga150:

Disk 1DGA150: (HSV2AL), device type HSV210, is online, mounted, file-oriented
 device, shareable, available to cluster, device has multiple I/O paths,
 error logging is enabled.

 Error count 0 Operations completed 8962
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 WWID 01000010:6005-08B4-0010-3F6B-0000-9000-052E-0000
 Total blocks 150994944 Sectors per track 128
 Total cylinders 9216 Tracks per cylinder 128
 Logical Volume Size 150994944 Expansion Size Limit 171642880
 Allocation class 1

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 145 Transaction count 1
 Free blocks 150993575 Maximum files allowed 517105
.
.
.

At this point 1DGA150: was grown from 72 GB to 144 GB at the controller.

$ set volume/limit 1dga150:
%SET-E-NOTMOD, 1DGA150: not modified
-SET-W-NOTPRIVATE, device must be mounted privately

$ set volume/size 1dga150:

$ show device/full 1dga150:

Disk 1DGA150: (HSV2AL), device type HSV210, is online, mounted, file-oriented
 device, shareable, available to cluster, device has multiple I/O paths,
 error logging is enabled.

 Error count 0 Operations completed 9121
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 WWID 01000010:6005-08B4-0010-3F6B-0000-9000-052E-0000
 Total blocks 301989888 Sectors per track 128

© Copyright 2008 Hewlett-Packard Development Company, L.P 6

 Total cylinders 18432 Tracks per cylinder 128
 Logical Volume Size 171642880 Expansion Size Limit 171642880
 Allocation class 1

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 145 Transaction count 1
 Free blocks 171641430 Maximum files allowed 517105
.
.
.

Notice that the above SET VOLUME/LIMIT command failed; however, the SET
VOLUME/SIZE command did increase the “Logical Volume Size” up to maximum number
of blocks that the current size of BITMAP.SYS could map.

$ dismount 1dga150:

$ mount/over=id 1dga150:
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA150: (HSV2AL)

$ set volume/limit 1dga150: Command Works; Volume Mounted Privately

$ set volume/size 1dga150: This Bug Will Be Fixed In The
%SET-E-NOTSET, error modifying 1DGA150: Next Round Of F11X Remedial Kits;
-SYSTEM-F-BADPARAM, bad parameter value Workaround Is To DISMOUNT And
 Then MOUNT
$ dismount 1dga150:

$ mount/system 1dga150: scratch
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA150: (HSV2AL)

$ set volume/size 1dga150:

$ show device/full 1dga150:

Disk 1DGA150: (HSV2AL), device type HSV210, is online, mounted, file-oriented
 device, shareable, available to cluster, device has multiple I/O paths,
 error logging is enabled.

 Error count 0 Operations completed 9788
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 WWID 01000010:6005-08B4-0010-3F6B-0000-9000-052E-0000
 Total blocks 301989888 Sectors per track 128
 Total cylinders 18432 Tracks per cylinder 128
 Logical Volume Size 301989888 Expansion Size Limit 2152366080
 Allocation class 1

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 145 Transaction count 1
 Free blocks 301984975 Maximum files allowed 517105
.

Figure 7 – Expanding an Existing Volume

Dynamic volume expansion also works in conjunction with another new feature in OpenVMS Alpha
Version 7.3-2: dissimilar device shadowing (DDS). Prior to Version 7.3-2, all members of a host-
based shadow set (DSAnnnn: device) were required to have the same number of logical blocks.
Dissimilar device shadowing allows a larger disk to be added to an existing shadow set. Once the
full copy operation completes, the smaller shadow members can be removed from the shadow set.
Dynamic volume expansion can then be used on the virtual unit (the DSAnnnn: device) to increase the
Logical Volume Size value.
Note: At some point the virtual unit must be mounted privately to extend BITMAP.SYS. Removing a
member, performing DVE on this removed member, and then adding this removed member back into

© Copyright 2008 Hewlett-Packard Development Company, L.P 7

the shadow set accomplishes nothing because the removed member becomes a full copy target when
it is re-added to the shadow set. The following scenario illustrates the recommended way to migrate
the data on an existing host-based shadow set to a larger volume.

A system manager has an existing 2-member shadow set, DSA100:, which is running low on free
blocks. The system manager wants to use DDS and DVE to migrate the data on this shadow set to a
larger volume. During the migration, down time must be kept to a minimum and availability of the
data on this shadow set must be kept to a maximum. The current physical members of DSA100: are
1DGA160: and 1DGA170:. Both of these disks (LUNs) are 18 GB in size. At the storage
controller, the system manager has created two new 36GB disks -- 1DGA180: and 1DGA190: -
- and has presented these new disks to OpenVMS. Figure 8 shows the initial setup in this scenario.

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 323 3
1DGA160: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA170: (HSV2AL) ShadowSetMember 0 (member of DSA100:)

$ show device/full dsa100:

Disk DSA100:, device type Generic SCSI disk, is online, mounted, file-oriented
 device, shareable, available to cluster, error logging is enabled, device
 supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 57833416
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 322 Default buffer size 512
 Total blocks 37748736 Sectors per track 128
 Total cylinders 2304 Tracks per cylinder 128
 Logical Volume Size 37748736 Expansion Size Limit 39100416

 Volume label "PROD_DATA" Relative volume number 0
 Cluster size 37 Transaction count 325
 Free blocks 1248084 Maximum files allowed 496693
.
.
.

$ init 1dga180: scratch
$ init 1dga190: scratch

$ mount/over=id 1dga180:
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA180: (HSV2AL)
$ mount/over=id 1dga190:
%MOUNT-I-MOUNTED, SCRATCH mounted on _1DGA190: (HSV2AL)

$ show device 1dga180:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
1DGA180: (HSV2AL) Mounted alloc 0 SCRATCH 75496527 1 1

$ show device 1dga190:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
1DGA190: (HSV2AL) Mounted alloc 0 SCRATCH 75496527 1 1

$ dismount 1dga180:
$ dismount 1dga190:

Figure 8 – Using DDS and DVE on an Existing Shadow Set – Initial Setup

© Copyright 2008 Hewlett-Packard Development Company, L.P 8

Step 1: The first step is to add one of the larger, 36GB disks to the DSA100: shadow set, and then
to allow the full copy operation to complete. The shadow set now contains three physical members,
1DGA160:, 1DGA170:, and 1DGA180:, as shown in Figure 9.

$ mount/system dsa100:/shadow=1dga180: prod_data
%MOUNT-I-MOUNTED, PROD_DATA mounted on _DSA100:
%MOUNT-I-SHDWMEMCOPY, _1DGA180: (HSV2AL) added to the shadow set with a copy
operation
%MOUNT-I-ISAMBR, _1DGA160: (HSV2AL) is a member of the shadow set
%MOUNT-I-ISAMBR, _1DGA170: (HSV2AL) is a member of the shadow set

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 336 3
1DGA160: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA170: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA180: (HSV2AL) ShadowCopying 0 (copy trgt DSA100: 8% copied)

.
.
.

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 318 3
1DGA160: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA170: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA180: (HSV2AL) ShadowSetMember 0 (member of DSA100:)

Figure 9 – Using DDS and DVE on an Existing Shadow Set – Step One

Step 2: At this point, one of the original, smaller disks (1DGA160:) can be removed from the
shadow set and the second, larger disk (1DGA190:) can be added into the shadow set. As
before, allow the full copy operation to complete. Figure 10 illustrates this step.

$ dismount 1DGA160:

$ mount/system dsa100:/shadow=1dga190 prod_data
%MOUNT-I-MOUNTED, PROD_DATA mounted on _DSA100:
%MOUNT-I-SHDWMEMCOPY, _1DGA190: (HSV2AL) added to the shadow set with a copy
operation
%MOUNT-I-ISAMBR, _1DGA170: (HSV2AL) is a member of the shadow set
%MOUNT-I-ISAMBR, _1DGA180: (HSV2AL) is a member of the shadow set

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 297 3
1DGA170: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA180: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA190: (HSV2AL) ShadowCopying 0 (copy trgt DSA100: 27% copied)

.
.

$ show device dsa100:

Device Device Error Volume Free Trans Mnt

© Copyright 2008 Hewlett-Packard Development Company, L.P 9

 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 302 3
1DGA170: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA180: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA190: (HSV2AL) ShadowSetMember 0 (member of DSA100:)

Figure 10 – Using DDS and DVE on an Existing Shadow Set – Step Two

Step 3: The third step is to remove the one remaining small disk (1DGA170:) from the shadow
set. Disk DSA100: now has just 1DGA180: and 1DGA190: as its physical members; however,
there is still only 18GB of usable space on the volume. The Total blocks value has increased to 36
GB, but the Logical Volume Size value is still 18 GB, as shown in Figure 11.

$ dismount 1DGA170:

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 291 3
1DGA180: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA190: (HSV2AL) ShadowSetMember 0 (member of DSA100:)

$ show device/full dsa100:

Disk DSA100:, device type Generic SCSI disk, is online, mounted, file-oriented
 device, shareable, available to cluster, error logging is enabled, device
 supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 892037
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 282 Default buffer size 512
 Total blocks 75497472 Sectors per track 128
 Total cylinders 4608 Tracks per cylinder 128
 Logical Volume Size 37748736 Expansion Size Limit 39100416

 Volume label "PROD_DATA" Relative volume number 0
 Cluster size 37 Transaction count 285
 Free blocks 1248084 Maximum files allowed 496693
.
.
.

Figure 11 – Using DDS and DVE on an Existing Shadow Set – Step Three

Step 4: We have maintained data availability during the migration by ensuring that there are at
least two members in the shadow set at all times. This final step requires a short period of down time
because the volume was not originally initialized with the /LIMIT qualifier. We have to use the SET
VOLUME/LIMIT command to extend BITMAP.SYS, and this command requires that the volume be
mounted privately. On each cluster node, the system manager must reduce the transaction count to 1
prior to dismounting DSA100:, as shown in Figure 12.

$ show device dsa100:

Device Device Error Volume Free Trans Mnt
 Name Status Count Label Blocks Count Cnt
DSA100: Mounted 0 PROD_DATA 1248084 1 3
1DGA180: (HSV2AL) ShadowSetMember 0 (member of DSA100:)
1DGA190: (HSV2AL) ShadowSetMember 0 (member of DSA100:)

$ dismount/cluster dsa100:

© Copyright 2008 Hewlett-Packard Development Company, L.P 10

$ mount/over=id DSA100:/shadow=(1DGA180:,1DGA190:)
%MOUNT-I-MOUNTED, PROD_DATA mounted on _DSA100:
%MOUNT-I-SHDWMEMSUCC, _1DGA180: (HSV2AL) is now a valid member of the shadow
set
%MOUNT-I-SHDWMEMSUCC, _1DGA190: (HSV2AL) is now a valid member of the shadow
set

$ set volume/limit dsa100:

$ dismount dsa100:

$ mount/cluster DSA100:/shadow=(1DGA180:,1DGA190:) prod_data
%MOUNT-I-MOUNTED, PROD_DATA mounted on _DSA100:
%MOUNT-I-SHDWMEMSUCC, _1DGA180: (HSV2AL) is now a valid member of the shadow
set
%MOUNT-I-SHDWMEMSUCC, _1DGA190: (HSV2AL) is now a valid member of the shadow
set

$ set volume/size dsa100:

$ show device/full dsa100:

Disk DSA100:, device type Generic SCSI disk, is online, mounted, file-oriented
 device, shareable, available to cluster, error logging is enabled, device
 supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 22573
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 47 Default buffer size 512
 Total blocks 75497472 Sectors per track 128
 Total cylinders 4608 Tracks per cylinder 128
 Logical Volume Size 75497472 Expansion Size Limit 2147491840

 Volume label "PROD_DATA" Relative volume number 0
 Cluster size 37 Transaction count 50
 Free blocks 38982904 Maximum files allowed 496693
.
.
.

Figure 12 – Using DDS and DVE on an Existing Shadow Set – Final Step

In Figure 12, notice that the Expansion Size Limit for DSA100: is now 1 TB; therefore, future dynamic
volume expansions on this shadow set can be done without mounting privately. Disk DSA100: can
be grown to 72 GB, 144 GB, or even larger while the volume is mounted and in use clusterwide.

A Closer Look at BITMAP.SYS

The preceding scenario makes multiple references to the BITMAP.SYS file and to the SCB, which is
VBN number 1 in the BITMAP.SYS file. The following discussion takes a more in-depth look at some
of the fields in a SCB and at the contents of an actual bitmap block. The SCB shown in Figure 13 is
from the DSA100: shadow set, which we used in the previous DDS/DVE example. I have identified
some of the more important and interesting fields.

$ set default dsa100:[000000]

$ dump/block=count=1 bitmap.sys

Dump of file DSA100:[000000]BITMAP.SYS;1 on 30-AUG-2007 07:54:05.47

© Copyright 2008 Hewlett-Packard Development Company, L.P 11

File ID (2,2,0) End of file block 500 / Allocated 14171

Virtual block number 1 (00000001), 512 (0200) bytes

 00000080 00000001 04800000 00250201 000000
 ^^^^^^^^ SCB$L_VOLSIZE Field - 75497472 Decimal
 00000000 0000000E 00001200 00000080 000010
 21772020 20415441 445F444F 52500001 ..PROD_DATA .. 000020
 ^^^^
 00A6CDB6 BAE76216 000000A6 CDB6B5A9 000030
 |||||||| |||||||| ^^^^ ^^^^^^^^ SCB$Q_MOUNTTIME Field
 ^^^^^^^^ ^^^^^^^^ SCB$Q_GENERNUM Field
 00000000 A0A00001 12610064 00000000 000040
 ^^^^^^^^ ^^^^^^^^ SCB$Q_UNIT_ID Field - Virtual Unit
 10E100BE 00000001 10E100B4 00000001 000050
 |||||||| |||||||| ^^^^^^^^ ^^^^^^^^ SCB$Q_MEMBER_IDS (Index 0)
 ^^^^^^^^ ^^^^^^^^ SCB$Q_MEMBER_IDS (Index 1)
 00000202 022CF4A8 00000000 00000000,..... 000060
 ^^^^^^^^ ^^^^^^^^ SCB$Q_MEMBER_IDS (Index 2)
 00000000 00000000 00000000 00000000 000070
 00000000 00000000 00000000 00000000 000080
 00000000 00000000 00000000 00000000 000090
 00000000 00000000 00000000 00000000 0000A0
 00000000 00000000 00000000 00000000 0000B0
 00000000 00000000 00000000 00000000 0000C0
 00000000 00000000 00000000 00000000 0000D0
 00000000 00000000 00000000 00000000 0000E0
 00000000 00000000 00000000 00000000 0000F0
 00000000 00000000 00000000 00000000 000100
 00000000 00000000 00000000 00000000 000110
 00000000 00000000 00000000 00000000 000120
 00000000 00000000 00000000 00000000 000130
 00000000 00000000 00000000 00000000 000140
 00000000 00000000 00000000 00000000 000150
 00000000 00000000 00000000 00000000 000160
 00000000 00000000 00000000 00000000 000170
 00000000 00000000 00000000 00000000 000180
 00000000 00000000 00000000 00000000 000190
 00000000 00000000 00000000 00000000 0001A0
 00000000 00000000 00000000 00000000 0001B0
 00000000 00000000 00000000 00000000 0001C0
 00000000 00000000 00000000 00000000 0001D0
 00000000 00000000 00000000 00000000 0001E0
 E9A10004 00000000 00000000 00000000!i 0001F0
 ||||^^^^ SCB$W_SHADOWING_STATUS Field
 ^^^^ SCB$W_CHECKSUM Field

Figure 13 – Example Storage Control Block (SCB)

The SCB$Q_UNIT_ID field and the SCB$Q_MEMBER_IDS fields have a unique format. In each of
these quadword fields, the low-order longword contains the allocation class, the low-order word in the
high-order longword is the unit number, and the high-order word in the high-order longword contains
a special 5-bit encoding scheme for the controller designation. Let’s decode the SCB$Q_UNIT_ID
field and the SCB$Q_MEMBER_IDS fields.

The SCB$Q_UNIT_ID field contains 12610064 00000000. The allocation class is 0 (low-order
longword), and the unit number is 100 decimal (low-order word in the high-order longword). The
1261 hex is 0001 0010 0110 0001 in binary. Starting with bit 0 on the right, group these bits into
groups of 5 bits: 0 00100 10011 00001. Ignore the lone 0 on the left and translate the 5-bit groups
into decimal to yield 4, 19 and 1. The corresponding letters of the alphabet are D (4th letter), S
(19th letter), and A (1st letter). This yields DSA as the controller designation. The complete device
name is DSA100:.

© Copyright 2008 Hewlett-Packard Development Company, L.P 12

The SCB$Q_MEMBER_IDS field for index 0 contains 10E100B4 00000001. The allocation class is
1 (low-order longword), and the unit number is 180 decimal (low-order word in the high-order
longword). The 10E1 hex is 0001 0000 1110 0001 in binary. Starting with bit 0 on the right,
group these bits into groups of 5 bits: 0 00100 00111 00001. Ignore the lone 0 on the left and
translate the 5-bit groups into decimal to yield 4, 7, and 1. The corresponding letters of the alphabet
are D (4th letter), G (7th letter), and A (1st letter). This yields DGA as the controller designation. The
complete device name is 1DGA180:.

The SCB$Q_MEMBER_IDS field for index 1 contains 10E100BE 00000001. The allocation class is 1
(low-order longword), and the unit number is 190 decimal (low-order word in the high-order
longword). The 10E1 hex is 0001 0000 1110 0001 in binary. Starting with bit 0 on the right,
group these bits into groups of 5 bits: 0 00100 00111 00001. Ignore the lone 0 on the left and
translate the 5-bit groups into decimal to yield 4, 7, and 1. The corresponding letters of the alphabet
are D (4th letter), G (7th letter), and A (1st letter). This yields DGA as the controller designation. The
complete device name is 1DGA190:.

The SCB$Q_MEMBER_IDS field for index 2 contains 00000000 00000000 because there is no third
member in this shadow set.

Figure 14 provides a closer look at the contents of an actual bitmap block. In a bitmap block, a clear
bit (0) means the corresponding disk cluster is allocated. A set bit (1) means the corresponding disk
cluster is free.

$ dump/block=(start=2,count=1) bitmap.sys

Dump of file DSA100:[000000]BITMAP.SYS;1 on 30-AUG-2007 10:50:33.45
File ID (2,2,0) End of file block 500 / Allocated 14171

Virtual block number 2 (00000002), 512 (0200) bytes

 00000000 00000000 00000000 00000000 000000
 00000000 00000000 00000000 00000000 000010
 00000000 00000000 00000000 00000000 000020
 00000000 00000000 00000000 00000000 000030
 00000000 00000000 00000000 00000000 000040
 00000000 00000000 00000000 00000000 000050
 00000000 00000000 00000000 00000000 000060
 00000000 00000000 00000000 00000000 000070
 00000000 00000000 00000000 00000000 000080
 00000000 00000000 00000000 00000000 000090
 00000000 00000000 00000000 00000000 0000A0
 00000000 00000000 00000000 00000000 0000B0
 00000000 00000000 00000000 00000000 0000C0
 00000000 00000000 00000000 00000000 0000D0
 00000000 00000000 00000000 00000000 0000E0
 00000000 00000000 00000000 00000000 0000F0
 00000000 00000000 00000000 00000000 000100
 00000000 00000000 00000000 00000000 000110
 00000000 00000000 00000000 00000000 000120
 00000000 00000000 00000000 00000000 000130
 00000000 00000000 00000000 00000000 000140
 00000000 00000000 00000000 00000000 000150
 00000000 00000000 00000000 00000000 000160
 00000000 00000000 00000000 00000000 000170
 00000000 00000000 00000000 00000000 000180
 00000000 00000000 00000000 00000000 000190
 00000000 00000000 00000000 00000000 0001A0
 00000000 00000000 00000000 00000000 0001B0
 00000000 00000000 00000000 00000000 0001C0
 00000000 00000000 00000000 00000000 0001D0
 00000000 00000000 00000000 00000000 0001E0
 00000000 00000000 00000000 00000000 0001F0

© Copyright 2008 Hewlett-Packard Development Company, L.P 13

Figure 14 – Example Bitmap Block – All Disk Clusters Allocated

The bitmap block in Figure 14 is not very interesting. All the bits are clear, which means the first
4096 disk clusters (the first 151,552 blocks) on DSA100: are allocated. The 151,552 number was
calculated by multiplying 4096 times 37, the disk cluster size. What would this same bitmap block
look like if a large file on DSA100: was deleted, as shown in Figure 15?

$ dir

Directory DSA100:[000000]

000000.DIR;1 BACKUP.SYS;1 BADBLK.SYS;1 BADLOG.SYS;1
BIG_FILE.DAT;1 BITMAP.SYS;1 CONTIN.SYS;1 CORIMG.SYS;1
INDEXF.SYS;1 SECURITY.SYS;1 VOLSET.SYS;1

Total of 11 files.

$ delete/log BIG_FILE.DAT;1
%DELETE-I-FILDEL, DSA100:[000000]BIG_FILE.DAT;1 deleted (36500019 blocks)

$ dump/block=(start=2,count=1) bitmap.sys

Dump of file DSA100:[000000]BITMAP.SYS;1 on 30-AUG-2007 10:52:56.69
File ID (2,2,0) End of file block 500 / Allocated 14171

Virtual block number 2 (00000002), 512 (0200) bytes
 FFFFFFFF FFFFFFFF FFFFFFFF F7FFFFFC 000000
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000010
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000020
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000030
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000040
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000050
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000060
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000070
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000080
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000090
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000A0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000B0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000C0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000D0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000E0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0000F0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000100
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000110
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000120
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000130
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000140
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000150
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000160
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000170
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000180
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 000190
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001A0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001B0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001C0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001D0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001E0
 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 0001F0

Figure 15 – Example Bitmap Block – Most Disk Clusters Free

This reveals quite a different picture. Most of the disk clusters are now free. The very first longword
in this block contains F7FFFFFC. All of the other longwords contain FFFFFFFF. In F7FFFFFC, bits 0, 1,

© Copyright 2008 Hewlett-Packard Development Company, L.P 14

and 27 are clear. This means that out of the 151,552 blocks mapped by this bitmap block, only
blocks (LBNs) 0 through 73 and 999 through 1035 are allocated.

Actual DDS/DVE Cases

The topics discussed in the next few paragraphs were taken directly from calls about DVE and DDS
that were logged to the Customer Support Center. In most cases, these problems and pitfalls have
been reported on more than one occasion.

When a customer implements DVE, one error they might encounter if they run ANALYZE/DISK is:
%ANALDISK-I-SHORTBITMAP, the storage bitmap on RVN 1, does not cover the entire device.
Although this informational error appears ominous, in almost every case it can be safely ignored. To
understand this SHORTBITMAP error, we need to examine the conditions under which it occurs.

A word-length field at offset 508 decimal (1FC hex) in the SCB is used to hold status flags. The name
of this field is SCB$W_SHADOWING_STATUS. As of OpenVMS Version 7.3-2, three bits are
defined in this field. Bit 0 is the SCB$V_INIT_NO_ERASE bit. This bit is set when the
INIT/SHADOW/NOERASE command was used to initialize the volume. Bit 1 is the
SCB$V_DVE_ENABLED bit. This bit is set when either the Expansion Size Limit or the Logical Volume
Size value does not equal the Total blocks value when the volume is initialized. Bit 2 is the
SCB$V_HBVS_MEMBERS_MAY_DIFFER bit. Figure 16 shows the SCB$W_SHADOWING_STATUS
field in the SCB.

$ dump/block=count=1 dsa600:[000000]bitmap.sys

Dump of file DSA600:[000000]BITMAP.SYS;1 on 8-OCT-2006 09:17:28.70
File ID (2,2,0) End of file block 1087 / Allocated 65536

Virtual block number 1 (00000001), 512 (0200) bytes

 00000020 00000001 021EAE18 00080201Z...... ... 000000
 00000000 00000006 000087AC 00000020 ...Z........... 000010
 79212020 20314B53 49445245 53550001 ..USERDISK1 !y 000020
 00A59093 1A8A34FA 000000A5 8D85D4E3 cT..#...z4....#. 000030
 .
 .
 .
 00000000 00000000 00000000 00000000 0001D0
 00000000 00000000 00000000 00000000 0001E0
 A5120002 00000000 00000000 00000000% 0001F0
 ^^^^ SCB$W_SHADOWING_STATUS Field, Bits 0 & 2 Are Clear, Bit 1 Is Set

Figure 16 - SCB$W_SHADOWING_STATUS Field in an SCB

The SHORTBITMAP error occurs only if the SCB$V_DVE_ENABLED bit (bit 1) is clear in the
SCB$W_SHADOWING_STATUS field, and if the Total blocks value on the volume is greater than the
current Logical Volume Size. Initializing a disk device with either the /SIZE or the /LIMIT qualifier sets
the SCB$V_DVE_ENABLED bit. Using the SET VOLUME/LIMIT command does not set the
SCB$V_DVE_ENABLED bit.

$ show device/full 6dka200:

Disk 6DKA200: (WSC236), device type COMPAQ BF01885A34, is online, mounted,
 file-oriented device, shareable, served to cluster via MSCP Server, error
 logging is enabled.

 Error count 0 Operations completed 814899
 Owner process "" Owner UIC [SYSTEM]

© Copyright 2008 Hewlett-Packard Development Company, L.P 15

 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size 512
 Current preferred CPU Id 0 Fastpath 1
 Total blocks 35565080 Sectors per track 32
 Total cylinders 34732 Tracks per cylinder 32
 Logical Volume Size 5000000 Expansion Size Limit 2147450880
 Allocation class 6
 .
 .
 .

$dump/block=count=1 6dka200:[000000]bitmap.sys

Dump of file 6DKA200:[000000]BITMAP.SYS;1 on 8-OCT-2006 09:56:23.13
File ID (2,2,0) End of file block 154 / Allocated 65536

Virtual block number 1 (00000001), 512 (0200) bytes

 0000002F 00000001 004C4B40 00080201@KL...../... 000000
 00000000 0000000E 000008D8 0000002F /...X........... 000010
 FF822020 20202048 43544152 43530001 ..SCRATCH .. 000020
 00000000 00000000 000000A5 90A480AB +.Z.#........... 000030
 .
 .
 .
 00000000 00000000 00000000 00000000 0001D0
 00000000 00000000 00000000 00000000 0001E0
 90D00000 00000000 00000000 00000000Z. 0001F0
 ^^^^ SCB$W_SHADOWING_STATUS Field, SCB$V_DVE_ENABLED Bit Is Clear

$ analyze/disk 6dka200:
Analyze/Disk_Structure for _6DKA200: started on 8-OCT-2006 09:56:37.97
%ANALDISK-I-SHORTBITMAP, storage bitmap on RVN 1 does not cover the entire device
%ANALDISK-I-OPENQUOTA, error opening QUOTA.SYS
-SYSTEM-W-NOSUCHFILE, no such file

Figure 17 – Example of the %ANALDISK-I-SHORTBITMAP Error

There is no corruption on this volume. The conditions described are likely to occur if the system
manager has grown the volume from the storage controller and has used the SET VOLUME/LIMIT
command, but has not yet used the SET VOLUME/SIZE command.

Another pitfall when attempting to expand a volume is the dreaded SYSTEM-W-DEVICEFULL error.
Often the volume is being expanded because free space is insufficient. Why, then, do you get this
error (shown in Figure 18), which essentially tells you what you already know?

$ set volume/limit 1dga300:
%SET-E-NOTSET, error modifying 1DGA300:
-SYSTEM-W-DEVICEFULL, device full; allocation failure

Figure 18 – Example SYSTEM-W-DEVICEFULL Error

The “device full” error occurs when there is insufficient contiguous free space on the volume to create
the new, larger BITMAP.SYS file. If the volume in question is totally full, you have no choice but to
free up some disk space and then re-enter the SET VOLUME/LIMIT command. If there is some free
space on the volume, try a small increase in volume size first. Then, using this newly created space
(which, by definition, has to be contiguous), enter the SET VOLUME/LIMIT command again to extend
BITMAP.SYS to map up to 1 TB. In Figure 19, the volume in question was originally 36 GB and was
nearly out of free space. From the storage controller, the system manager had grown the volume to
72 GB.

© Copyright 2008 Hewlett-Packard Development Company, L.P 16

$ mount/over=id 1dga300:
%MOUNT-I-MOUNTED, SCRATCH mounted on _1dga300: (HSV2AL)

$ set volume/limit 1dga300:
%SET-E-NOTSET, error modifying 1DGA300:
-SYSTEM-W-DEVICEFULL, device full; allocation failure

$ set volume/limit=80000000 1dga300:

$ dismount 1dga300:

$ mount/over=id 1dga300:
%MOUNT-I-MOUNTED, SCRATCH mounted on _1dga300: (HSV2AL)

$ set volume/size 1dga300:

$ set volume/limit 1dga300:

$ dismount 1dga300:

$ mount/system 1dga300: scratch
%MOUNT-I-MOUNTED, SCRATCH mounted on _1dga300: (HSV2AL)

$ set volume/size 1dga300:

Figure 19 – Workaround to the SYSTEM-W-DEVICEFULL Error

Do not try to expand a volume by just a few blocks. If the expansion requested in the SET
VOLUME/SIZE command is less than 256 times the disk cluster size, the expansion requested is
ignored; however, no error is returned.
Note: The SET VOLUME/SIZE command cannot be used to decrease the size of a volume. If the
new Logical Volume Size is less than the present Logical Volume Size, an SS$_UNSUPPORTED error
is returned, as shown in Figure 20.

$ show device/full dsa100:

Disk DSA100:, device type Generic SCSI disk, is online, mounted, file-oriented
 device, shareable, available to cluster, error logging is enabled, device
 supports bitmaps (no bitmaps active).

 Error count 0 Operations completed 297277
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 251 Default buffer size 512
 Total blocks 37748736 Sectors per track 128
 Total cylinders 2304 Tracks per cylinder 128
 Logical Volume Size 37748736 Expansion Size Limit 39100416

 Volume label "SCRATCH" Relative volume number 0
 Cluster size 37 Transaction count 254
 Free blocks 37748103 Maximum files allowed 496693
.
.
.

$ set volume/size=17000000 dsa100:
%SET-E-NOTSET, error modifying _DSA100:
-SYSTEM-E-UNSUPPORTED, unsupported operation or function

Figure 20 – SS$_UNSUPPORTED Error

Finally, the exact number displayed for the Expansion Size Limit in the output of the SHOW
DEVICE/FULL command depends on the version of the VMSxxx_MOUNT96 patch kit that is installed

© Copyright 2008 Hewlett-Packard Development Company, L.P 17

on the system. As mentioned previously the Expansion Size Limit for a volume is calculated as
follows:

Expansion Size Limit = (blocks allocated to BITMAP.SYS – 1) *
 disk cluster size * 4096

Based on this formula, systems with older or no MOUNT96 kit installed might display a number larger
than 2,147,475,456 decimal for Expansion Size Limit. The display of this errant number is only
cosmetic. The latest versions of VMSxxx_MOUNT96 kits properly limit the number displayed to
2,147,475,456 decimal blocks.

Summary
Dynamic volume expansion and dissimilar device shadowing are two of the most useful new features
in OpenVMS Alpha Version 7.3-2 and HP OpenVMS for Integrity servers Version 8.2. When using
the INIT or SET VOLUME commands, the /LIMIT qualifier is used to preallocate space to or extend
BITMAP.SYS. The /SIZE qualifier is used to set or to increase the Logical Volume Size. Remember
that when you use the SET VOLUME/LIMIT command, the volume in question must be mounted
privately.

© Copyright 2008 Hewlett-Packard Development Company, L.P 18

© Copyright 2008 Hewlett-Packard Development Company, L.P 19

	Hints and Tricks When Using Dynamic Volume Expansion (DVE) o
	Overview
	Introduction
	How DVE works
	A Closer Look at BITMAP.SYS
	Actual DDS/DVE Cases

	Summary

