
© Copyright 2009 Hewlett-Packard Development Company, L.P     1� 

OpenVMS Technical 

Journal V12 
Calling OpenVMS native routines from Java 

Tim E. Sneddon 

 

 

 

 

 

 

Calling OpenVMS native routines from Java.................................................. 1 
Overview .................................................................................................................... 2 
The “legacy” application ................................................................................................................ 2 
Setting up the run-time library .......................................................................................................... 2 
Building the Java layer .................................................................................................................... 3 
Wrapping it all up in a Java jacket .................................................................................................. 5 
Conclusion .................................................................................................................................... 7 
For more information .................................................................................................... 9 



 

 

 

 

Overview 

Developing a Java application that calls native routines can be tedious. Along with the native routines 

and the Java application, there is also the need to develop a Java Native Interface (JNI) layer. This 

article presents a collection of tools and libraries that remove the need to develop the JNI layer—

allowing Java to call native routines and manipulate data structures directly. 

 
The “legacy” application 

For this tutorial, a simple native application written in PL/I has been selected as the target of an 

“upgrade”. The application is an address/phone book program, called PHONE1 (not to be confused 

with the OpenVMS utility of the same name). It uses the SMG$ API to draw the screen and an RMS 

index file to store each phone book record. Figure 1 shows the record entry screen. 

 

 

The intention is to be able to access the phone book data file from Java so a new GUI can be built. 

By using Java, the options for future development are expanded to allow development of either a 

Swing-based (GUI) interface or a web-based front end (using Tomcat). However, the most important 

requirement is to allow the original application to continue being used with little or no change. 

 
Setting up the run-time library 

In order for Java to call a native routine it must be in a shareable image. The first step is to identify the 

modules that are necessary for accessing the data file. In this case, it is simple: the DATABASE.PLI 

module contains all routines related to file access. From this module, the information about its entry 

points are as follows: 

 

 OPEN_PHONEBOOK—This routine opens the phone book datafile. 

 CLOSE_PHONEBOOK—This routine closes the phone book datafile. 

                                                 
1 For those with a PL/I compiler this program can be found in the examples directory for the Kednos VAX and Alpha PL/I compilers. 

Figure 1. PHONE data entry screen 



 

 GET_A_RECORD—This routine reads a record with the specified last name and returns a 

pointer to that record. 

 GET_A_MONTH_RECORD—This routine reads a record for an event that occurs in the 

specified month. It returns a pointer to the record. 

 GET_A_DATE_RECORD—This routine reads a record for an event that occurs on the specified 

date. It returns a pointer to the record. 

 WRITE_A_RECORD—This routine writes the specified record into the phone book database. 

 DELETE_A_RECORD—This routine deletes the specified record from the phone book 

database. 

 

This information is then used to build a shareable image symbol vector that details the entry points to 

the linker. Example 1 shows the original build procedure for the self-contained application, which is 

one single executable. Example 2 shows the new build procedure (changed sections are highlighted 

in yellow). 

 

It is now possible to rebuild the application with the user interface in PHONE.EXE and the phone 

book file interface in DATABASE_RTL.EXE.  

 
Building the Java layer 

Once the RTL has been set up and shown to work correctly with the existing data file, the next step is 

to generate the Java definitions of the entry points and record structures. This is done using the Java 

back end for the SDL compiler. 

 

SDL stands for Structure Definition Language. It is a language and compiler for taking language-

independent record, constant, and entry-point definitions and generating language-specific 

include/header files. 

 

Normally this header file would have to be built by hand. However, for PL/I developers there is a 

/SDL qualifier on the PL/I compiler that allows PL/I source modules to be translated to SDL. Example 

3 demonstrates using the PL/I SDL generator and its output. 

  

$ PLI PHONE 
$ PLI DATABASE 
$ PLI SCREEN 
$ LINK PHONE,DATABASE,SCREEN 
$ IF (F$SEARCH(“PHONE.DAT”) .EQS. “”) THEN - 
$ CREATE/FDL=PHONE.DAT 

Example 1. Original PHONE build procedure 

$ PLI PHONE 
$ PLI DATABASE 
$ PLI SCREEN 
$ LINK/SHARE=DATABASE_RTL.EXE DATABASE,SYS$INPUT/OPTION 
SYMBOL_VECTOR = ( - 
 OPEN_PHONEBOOK = PROCEDURE, - 
 CLOSE_PHONEBOOK = PROCEDURE, - 
 GET_A_RECORD = PROCEDURE, - 
 GET_A_MONTH_RECORD = PROCEDURE, - 
 GET_A_DATE_RECORD = PROCEDURE, - 
 WRITE_A_RECORD = PROCEDURE, - 
 DELETE_A_RECORD = PROCEDURE - 
 ) 
$DEFINE/NOLOG DATABASE_RTL SYS$DISK:[]DATABASE_RTL 
$ LINK PHONE,SCREEN,SYS$INPUT/OPTION 
DATABASE_RTL/SHARE 
$ IF (F$SEARCH(“PHONE.DAT”) .EQS. “”) THEN - 
$ CREATE/FDL=PHONE.DAT 

Example 2. New PHONE build procedure (BUILD_PHONE.COM) 



 

The newly generated SDL source file can then be processed by the Java back end to generate a Java 

module that defines the same information in a way that can be used by the J2VMS package. A 

severely trimmed example of the Java class generated from DATABASEDEF.SDL (shown in Example 2) 

can be seen in Example 4. 

 

The two SDLJAVA_* logicals are required to give the Java back end information necessary for 

building the Java source file correctly. The SDLJAVA_PACKAGE logical details the Java package 

name giving the source module a place in the class hierarchy. SDLJAVA_LIBNAME defines the name 

of the run-time library (as required by LIB$FIND_IMAGE_SYMBOL) where J2VMS will locate the 

routines. 

 

Incidentally, the steps up to now make it possible to use the SDL definitions with a host of other 

languages including C, Fortran, Ada, and BLISS—so not only can you expose your code to Java, but 

it is available in the common language environment. 

$ PLI/SDL=(MODULE=DATABASEDEF,OUTPUT=DATABASEDEF.SDL) DATABASE.PLI 
$ TYPE DATABASEDEF.SDL 
module DATABASEDEF; 
entry "DELETE_A_RECORD" parameter( 
 character length 65 reference 
 ) returns boolean; 
entry "WRITE_A_RECORD" parameter( 
 pointer value 
 ); 
entry "GET_A_DATE_RECORD" parameter( 
 character length 5 reference, 
 boolean value, 
 boolean value 
 ) returns pointer; 

 ⋮ 
aggregate "ENTRY" union; 
 "ENTRY_STRING" character length 266; 
 "FIELDS" structure; 
 "NAME" union; 
 "FULL_NAME" character length 65; 
 "PIECES" structure; 
 "LAST" character length 32; 
 "SPACE" character length 1; 
 "FIRST" character length 32; 
 end "PIECES"; 
 end "NAME"; 
 "ADDRESS1" character length 60; 
 "ADDRESS2" character length 60; 
 "CITY" character length 32; 
 "STATE" character length 2; 

 ⋮ 
end_module DATABASEDEF; 

Example 3. Generating the SDL definitions from PL/I source (DATABASEDEF.SDL) 



 

 

Wrapping it all up in a Java jacket 

Now that the relevant modules have been shifted into a run-time library and the Java declarations 

have been generated, it is time to build the Java application. Figure 2 shows a screen shot of the Java 

equivalent of the data-entry screen shown in Figure 1. However, the focus of this article is the use of 

the J2VMS package and not the Swing toolkit, so the remainder of this article will focus on the 

interface to the phone book data file. 

$ DEFINE/USER SDLJAVA_PACKAGE "com.kednos.jphone" 
$ DEFINE/USER SDLJAVA_LIBNAME "DATABASE_RTL" 
$ SDL/ALPHA/LANGUAGE=JAVA DATABASEDEF.SDL/VMS_DEVELOPMENT 
$ TYPE DATABASEDEF.JAVA 
//****************************************************************************** 
// Created: 15-Dec-2008 11:24:14 by OpenVMS SDL EV2-3 
// Source: 05-DEC-2008 22:59:24 SYSPROG:[TSNEDDON.SCRATCH.SWING]DATABASEDEF.SDL 
//****************************************************************************** 
package com.kednos.jphone; 
import vs.VMSparam; 
import vs.SystemCall; 
import vs.FieldDescriptor; 
public class DATABASEDEF { // IDENT 
private static SystemCall nullclass; 
private static final String libname = "DATABASE_RTL"; 
private static SystemCall delete_a_record_return; 
public static int delete_a_record(VMSparam[] args) { 
 if (delete_a_record_return == nullclass) { 
 delete_a_record_return = new SystemCall("DELETE_A_RECORD",libname); 
 } 
 return delete_a_record_return.call(args); 
} 

⋮ 
public static final int S_ENTRY = 266; 
public static final FieldDescriptor entry_string = new FieldDescriptor(0,0,0,0); 
public static final FieldDescriptor ENTRY_STRING = entry_string; 
public static final int S_ENTRY_STRING = 266; 
public static class _0 extends FieldDescriptor { // FIELDS 
public _0() { super(0,0,0,0); } 

⋮ 
public static final _0 fields = new _0(); 
public static final _0 FIELDS = fields; 
public static final int S_FIELDS = 266; 
} 
 

Example 4. Generating Java class from SDL (DATABASEDEF.JAVA) 



 

 

J2VMS is a Java package that provides a collection of classes that help Java feel more like a native 

OpenVMS language. It provides support for easily calling native routines and manipulating native 

data structures, and provides an interface to common OpenVMS argument-passing mechanisms. 

 

To give the run-time library a Java “feel”, it is hidden behind the class 

com.kednos.jphone.Database. Each of the native routines is given an equivalent method in the 

Database class. These are shown in Table 1. To make manipulating the phone book data record 

easier, the Database class extends the J2VMS class vs.VmsStruct. This means that the instance of 

Database becomes the record buffer also. Each of the methods operates on this buffer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manipulating the record is facilitated via the inherited get and put methods from vs.VmsStruct. It 

would be possible to go one step further and create a set of get/set methods that manipulate each of 

the record fields. However, it is a reasonable amount of extra work for little (if any) gain. Example 5 

demonstrates the field ADDRESS1 being updated with the contents of the address1 object (a text 

input field from the GUI). The object db is an instance of the Database class. 

 

 

Figure 2. jPhone data entry screen 

Java method Native routine 

Database OPEN_PHONEBOOK 

finalize CLOSE_PHONEBOOK 

getRecord GET_A_RECORD 

getMonthRecord GET_A_MONTH_RECORD 

getDateRecord GET_A_DATE_RECORD 

deleteRecord DELETE_A_RECORD 

writeRecord WRITE_A_RECORD 

 

Table 1. Database class methods compared to native routines 



 

 

To prevent problems with threading, the instance of the DATABASEDEF class (the SDL-generated 

“header” file) is declared static and used as a mutex. In Example 6, the code for the method 

getRecord is shown. It demonstrates the use of the rtl object as a mutex. The file access statements 

used in the native PL/I routines rely on the internal I/O buffers maintained by the PL/I run-time library. 

PL/I assumes that applications are single threaded, which conflicts with the Java environment. By 

using the mutex, the RTL will only be called by one thread at a time. To ensure that the active record is 

not lost, it is copied into the storage allocated by the Database class using the routine LIB$ 

LIB$MOVC3 before the mutex is released. 

 
Conclusion 

In conclusion, by using the PL/I SDL, SDL tools, and the J2VMS package, the task of writing a Java 

application that makes use of native routines and data structures has been greatly simplified. The 

work in creating a custom JNI layer has been completely avoided. Instead, all calls to native code 

and data manipulation are done from Java, making the application easier to understand and 

maintain. Using these tools allows more time to be spent on writing the new application, rather than 

working on the existing part that already works. 

 db.put(DATABASEDEF.FIELDS.ADDRESS1, 

  DATABASEDEF.FIELDS.S_ADDRESS1, address1.getText(), ' '); 

Example 5. Updating the ADDRESS1 field (Database.java) 



 

 

 

 

public class Database 

 extends VmsStruct 

{ 

 

// Own storage 

// 

private static boolean  isOpen = false; 

 

private LibRoutines  lib = new LibRoutines(); 

private static DATABASEDEF rtl = new DATABASEDEF(); 

⋮ 
public boolean getRecord(String name, 

     boolean first) 

{ 

 int   pointer; 

 boolean   result = false; 

 

 /* The native run-time library we rely on for accessing the 

 * phone book file is not thread-friendly and makes use of 

 * PL/I internal file buffers. To prevent acess problems 

 * we synchronize access to 'rtl'. 

 */ 

 synchronized(rtl) 

 { 

 pointer = rtl.get_a_record(new VMSparam[] { 

     new ByRef(trunc(name, 

       DATABASEDEF.FIELDS.S_NAME)), 

     new ByVal(first ? 1 : 0) 

     }); 

 

 if (pointer != 0) 

 { 

  /* To make sure we don't lose the record we've just 

  * fetched (through a call from another instance) we 

  * copy the record buffer into our own internal 

  * storage. 

  */ 

  lib.lib$movc3(new VMSparam[] { 

    new ByRef(DATABASEDEF.S_ENTRY), 

    new ByVal(pointer), 

    new ByRef(getTarget()) 

    }); 

 

  result = true; 

 } 

 } 

 

 return(result); 

} 

⋮ 
} 

 

Example 6. Fetching a record (Database.java) 



© Copyright 2009 Hewlett-Packard Development Company, L.P  9� 

 

For more information  

Tim Sneddon can be contacted via email at tsneddon@kednos.com. 

 

For additional information, including the full source of the example application and kits for all 

software mentioned in this article, go to: 

 

 www.kednos.com/kednos/Integration 

 

For further information on creating shareable images, see the HP OpenVMS Linker Utility Manual at: 

 

 http://h71000.www7.hp.com/doc/83final/4548/4548PRO.HTML 

 

For more information regarding Java, see: 

 

 http://h18012.www1.hp.com/java/alpha/ 
 www.kednos.com/kednos/Integration/Java 

mailto:tsneddon@kednos.com
http://www.kednos.com/kednos/Integration
http://h71000.www7.hp.com/doc/83final/4548/4548PRO.HTML
http://h18012.www1.hp.com/java/alpha/
http://www.kednos.com/kednos/Integration/Java

