
© Copyright 2009 Hewlett-Packard Development Company, L.P 1

OpenVMS Technical

Journal V13
OpenVMS I64 TIE Internals:

Emulating Alpha Control Instructions

Tim E. Sneddon

OpenVMS I64 TIE Internals: Emulating Alpha Control Instructions.. 1

Preface ... 2

Conventions... 2

What Has The Translator Generated? ... 2

Observing Image Execution ... 3

Alpha Register Mapping ... 4

Introduction ... 5

Taking a JuMP….. 6

Local Branches... 6

Non-Local Branches .. 7

Finding A Place To Go ... 9

Performing The Lookup.. 9

Switching Environments .. 13

Translated to Native ... 13

Native to Translated ... 15

Routine Reference .. 17

TIE$PROC_KIND.. 17

OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED... 17

Relevant Sources.. 18

For more information .. 19

© Copyright 2009 Hewlett-Packard Development Company, L.P 2

Preface

This article is the first of what will hopefully become a series of articles that describe the internals of

the OpenVMS I64 Translated Image Environment. In subsequent issues of the OpenVMS Technical

Journal it is expected that there will be further articles covering topics such as:

 stack walking and unwinding;

 floating-point emulation;

 the Alpha instruction emulator;

 TIE initialization and setup; and

 image translation.

These are but a few of the topics that are likely to be covered in future articles. Suggestions are also

always welcome. See the end of this document for details on contacting the author.

Conventions

Table 1 lists some of the conventions used in this article.

Convention Meaning

Foreign This term is used to describe any code that cannot be run natively on

OpenVMS I64.

Native This term describes any code that runs natively on OpenVMS I64

AEST Alpha Environment Software Translator. The binary translation utility that

generates OpenVMS I64 images from OpenVMS Alpha images.

VEST VAX Environment Software Translator. The binary translation utility that

generates OpenVMS Alpha images from OpenVMS VAX images.

TIE Translate Image Environment. The name given to the execution environment that

allows user-mode programs from different OpenVMS supported architectures to

be executed.

Procedure

Descriptor

This term refers to an OpenVMS Alpha procedure descriptor. This is described

in the Starlet module $PDSCDEF.

Function

Descriptor

This term refers to an OpenVMS I64 function descriptor. This is described in the

Starlet module $FDSCDEF.

Table 1 Conventions Used in this Article

What Has The Translator Generated?

Using certain qualifiers on the AEST translation utility it is possible to observe what happens

to the original OpenVMS Alpha image after it has been translated. Figure 1 demonstrates some of

the output that can be seen. This example shows the correlation between the original Alpha

instructions and the equivalent Itanium instructions.

© Copyright 2009 Hewlett-Packard Development Company, L.P 3

Figure 1 Listing of Alpha Instructions and Corresponding Translated Itanium Instructions

This output was generated using the command:

$ AEST/VERBOSE/LIST/DUMP=IA64=ALL <image>

For more information on the qualifiers accepted by AEST and how to use them, refer to the online DCL

help.

Observing Image Execution

With the help of some debugging features built into the TIE run-time library it is possible to

observe the execution of the translated image. By defining the logical PRTCHK_PRT_ALL to “1”

TIE$SHARE will begin producing a trace to SYS$OUTPUT. If it is inconvenient to have this output

written to SYS$OUTPUT, it is possible to define the logical PRTCHK_FILE to an alternate output file.

Not all routines generate output, but the important ones do. It is also possible to enable interpretation

of all images, even those that had native code generated as part of the translation process. To do

this, define the logical TIE$INTERPRET to “1”. Figure 2 shows a portion of the output from a simple

MACRO-64 program that executes a collection of ZAP and ZAPNOT instructions. It is annotated to

give a brief description of the operations taking place.

Figure 2 TIE Run-Time Library Trace Output

1. Execution has just transferred to the TIE$AXP_JUMP_TO glue routine.

2. A lookup is being performed on the address 000000000002006C to determine what kind

of code is to be executed.

3. It was determined the code was native Alpha and no equivalent translated code was found.

Therefore the Alpha instruction emulator is called and used to execute the code.

4. The last instruction to execute was a JSR. The emulator is now determining how to proceed

with execution.

5. The TIE is now looking up the return address specified in the JSR instruction to determine how

to procede.

© Copyright 2009 Hewlett-Packard Development Company, L.P 4

NOTE: AEST also responds to the PRTCHK_PRT_ALL logical and generates quite a bit of output.

Before translating an image it is usually a good idea to deassign this logical.

Alpha Register Mapping

To make it easier to understand some of the Itanium code samples, the following table shows

the static register mapping used by the TIE to maintain the Alpha register file.

Alpha

Register

Usage Itanium Register

R0 Function value register R101

R1 Conventional scratch register R102

R2-R15 Conventional saved registers R54-R67

R16-R21 Argument registers R32-R37

R22-R24 Conventional scratch registers R103-R105

R25 Argument information (AI) register R106

R26 Return address (RA) register R68

R27 Procedure value (PV) register R69

R28 Volatile scratch register R107

R29 Frame pointer (FP) register R70

R30 Stack pointer (SP) register R12

R31 ReadAsZero/Sink (RZ) register R0*

F0-F1 Floating-point function value register F32-F33

F2-F9 Conventional saved registers F16-F23

F10-F15 Conventional scratch registers F34-F39

F16-F21 Argument registers F8-F13

F22-F30 Conventional scratch registers F40-F48

F31 ReadAsZero/Sink register F0*

MBPR Mailbox pointer register R72

FPCR Floating-point control register R73

PS Processor status register R74

PC Program counter R75

Internal TIE scratch register R3, R21-R24, R26-R31

Internal TIE local registers R76-R80

Internal TIE translator flag register R82

Internal TIE output registers R108-R115

Table 2 Alpha Register Mapping

If some of these mappings don’t appear to follow a logical order it is because many of register

mappings were changed late in the design of TIE. Originally it was intended that Alpha registers

sharing similar functions as Itanium registers would be mapped together (as was done with VAX

registers on the Alpha platform). However, this was eventually changed and so now all Alpha

registers (with the exception of the stack pointer) exist in the register stack frame.

The mapping of VAX registers can be found in OpenVMS Alpha Internals and Data Structures:

Scheduling and Process Control. The mappings have been retained, so all VAX registers map to their

original Alpha registers, which in turn map to the equivalent Itanium register.

* Read-only. Writing to Itanium register R0 or F0 results in an Illegal Operation fault.

© Copyright 2009 Hewlett-Packard Development Company, L.P 5

Introduction

The Translated Image Environment (TIE) is the support environment which executes user mode images

compiled and linked on OpenVMS VAX and OpenVMS Alpha that have been subsequently translated

for execution on the OpenVMS I64 platform. The translation is achieved using the Alpha Environment

Software Translator (AEST) and, in the case of OpenVMS VAX images, the VAX Environment Software

Translator (VEST) binary translation tools. While the VEST translator is only available on OpenVMS

Alpha, it is supported to translate a VEST’d image using the AEST translator.

These translation utilities generate native images that work with the TIE run-time library to emulate a

native OpenVMS Alpha or VAX environment. It is the responsibility of the translator to present the

original image in such a fashion that the TIE run-time library can then execute the foreign code. In

most cases these utilities are able to generate equivalent native code from the foreign code. It is the

branching inside and between these environments that is the focus of this article.

In some areas VAX support is touched on. However, the main focus of this article is the support of the

Alpha control instructions. The OpenVMS Alpha Internals & Data Structures manual is still a relevant

reference as the TIE, present on OpenVMS Alpha for the support of the OpenVMS VAX environment,

has been ported to OpenVMS I64 with minimal changes.

© Copyright 2009 Hewlett-Packard Development Company, L.P 6

Taking a JuMP…

The Alpha architecture presents a collection of closely related control instructions. In the Alpha

Architecture Handbook, these are divided as ‘Conditional Branch’, ‘Unconditional Branch’ and

‘Jumps’. While this division is important to the TIE, a more relevant way to divide them is ‘Local’ and

‘Non-Local’.

Although the two types of branch are handled differently in how they obtain their addresses, all

branches within the Alpha environment use the regular conditional branch, ‘br’, instruction. This is

because the emulated environment is contained within a regular OpenVMS I64 frame. The

conditional procedure call, or ‘br.call’, instruction is only used for native calls.

This does make the process of stack walking and unwinding non-trivial. However, by avoiding a true

procedure call the emulated Alpha registers continue to be available across Alpha calls. There is no

need to consider the consequences of the ‘alloc’ instruction and how to maintain context. The only

time this needs to be considered is when switching environments and that is handled by jacketing

procedures, discussed later in this article†.

Local Branches

Local branches are described as those that are capable of branching forward or backwards

a PC relative distance of +/-1M instructions. It also happens that this encompasses all conditional

branch instructions. Table 3 summarizes the local control instructions.

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit is Clear

BLBS Branch if Register Low Bit is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

Table 3 Local Alpha Control Instructions

These instructions are usually used within a single object module to handle local branching. As such

when it comes to translating these instructions to a native instruction sequence there is almost always

no execution time lost in the resulting image. This is due to the fact that the branch target is known at

the time of translation. However, if the destination of these branch instructions cannot be located

within the image being translated then the instruction will be emulated by TIE run-time library via the

Alpha instruction emulator.

For all non-emulated branches a small native instruction sequence is generated. Figure 3 shows the

sequence generated by AEST when translating an Alpha BNE instruction, it is annotated below.

† See the section ‘

Switching Environments’.

© Copyright 2009 Hewlett-Packard Development Company, L.P 7

Figure 3 Itanium Code Generated for Alpha BNE Instruction

1. Here the compare part of the BNE instruction is performed.

2. In the event that the comparison yields a positive result, the Alpha PC is set to the address of

the branch target.

3. If the comparison is not true, the Alpha PC is updated to point to the next instruction,

following the BNE instruction.

4. Lastly, the branch is taken if the result was positive.

All other conditional branches are of the same format, simply substituting the relevant compare

instruction relation as necessary.

For the unconditional branches it is even simpler. Figure 4 shows the sequence generated by AEST

for a BSR instruction and is annotated below. The only difference between it and a BR instruction is

that BSR sets up a return address.

Figure 4 Itanium Code Generated for Alpha BSR Instruction

1. Here the emulated Alpha R26 register is configured with the return emulated PC.

2. The emulated Alpha PC is then updated to point to the first instruction of the destination.

3. Lastly, the branch is taken.

Non-Local Branches

Non-local branches are described as those that take a register argument containing an

absolute address, rather than a PC offset. Table 4 summarises the non-local control instructions.

Mnemonic Operation

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Table 4 Non-Local Alpha Control Instructions

The emulation of these instructions does incur quite a bit of overhead as the destination is assumed to

be unknown at translation time. This means that these instructions cannot be handled with a small

instruction sequence like local branches. It requires support from the TIE run-time library. This comes

in the form of the routine TIE$AXP_JUMP_TO. This routine is the first stop on all non-local branches

with the exception of JSR. All JSR instructions first branch to TIE$AXP_JSR_TO before falling through

to the routine, TIE$AXP_JUMP_TO.

© Copyright 2009 Hewlett-Packard Development Company, L.P 8

JSR instructions require special pre-processing by TIE$AXP_JSR_TO because in some cases the

destination PC for input to the JSR instruction is fetched from a procedure descriptor (see Figure 5b)

and not a linkage pair (see Figure 5a). This causes problems when the destination is a native routine

as the procedure value register then points to a native function descriptor (see Figure 5c). As can be

seen from the illustrations there is no problem in the instance of a function descriptor being mistaken

for a linkage pair as the offset to the address of the procedure entry point is the same. However, in

the case of the function descriptor being mistaken for a procedure descriptor the global data pointer

(GP) for the native image is then loaded and used as the destination PC. Figure 6 compares the two

instruction sequences.

LKP$Q_ENTRY :0

LKP$Q_PROC_VALUE :8

:0

PDSC$Q_ENTRY :8

a. Alpha Linkage Pair b. Alpha procedure descriptor
(extract)

FDSC$Q_ENTRY :0

FDSC$Q_GP :8

c. I64 Simple Function Descriptor

Figure 5 Alpha and I64 Procedure Descriptors

To remedy this when the TIE walks the list of activated images (IAC$GL_IMAGE_LIST) during

initialisation gathering details for its own internal list of native images, it also gathers up the GPs and

caches them in another list (TIE$CACHED_GPs). When TIE$AXP_JSR_TO is called it attempts to

match the destination PC with an entry in this list. If a match is found, then the destination PC is

altered by fetching the real entry point address from the function descriptor pointed at by the Alpha

register, R27 (procedure value register). At this point TIE$AXP_JSR_TO then falls through to

TIE$AXP_JUMP_TO and continues as normal.

LDQ R27, 20(R27) ; Fetch procedure descriptor
LDQ R26, 08(R27) ; Fetch procedure entry point
JSR R26, (R26) ; Call procedure

LDQ R26, 20(R4) ; Fetch procedure entry point
LDQ R27, 28(R4) ; Fetch procedure descriptor
JSR R26, (R26) ; Call procedure

Figure 6a. Fetching Entry Point From Descriptor b. Fetching Entry Point From Linkage Pair

Once the address lookup has been performed, TIE$AXP_JUMP_TO then transfers control appropriate

to the type of address being branched to. This may mean starting the Alpha instruction emulator,

calling a native routine, branching to another translated Alpha routine or to a pseudo image.

© Copyright 2009 Hewlett-Packard Development Company, L.P 9

Finding A Place To Go

Jumping to an address may be one thing. However, locating that address to determine how to jump is

entirely something else. For the Alpha environment, all call address lookups go through the routine

TIE$XXXX_LOOKUP. For the VAX environment the equivalent routine is TIE$VESTED_LOOKUP. It is

these routines that have the job of determining what kind of code is at the specified address and

locating any translated code that may be associated with it.

For the rest of this section, TIE$XXXX_LOOKUP refers to both the Alpha environment

TIE$XXXX_LOOKUP and the VAX environment TIE$VESTED_LOOKUP, unless otherwise specified.

Performing The Lookup

An address lookup begins with TIE$XXXX_LOOKUP first checking that the address being

looked up is not the special return address used when returning from native code. In this case the

lookup terminates with a return status of TIE$CODE_N2T_RETURN and the caller (usually

TIE$ALPHA_TO_IPF or TIE$VAX_TO_IPF) will then begin the process of translating arguments back to

their respective environments.

The lookup continues by first checking that this address has not previously been requested. This is

done by checking the lookup cache (TIE$GR_LOOKUP_CACHE). To speed up the process of looking

up a call address, all successful address lookups and their results are stored in a 4096 entry hash

table. This table is managed using the FNV-1a‡ hash algorithm. In the event that no match is found

the lookup routine begins walking internal TIE data structures.

The process starts by first looking up the list of pseudo images loaded by the TIE during initialization.

A pseudo image, as the name implies, is not a real image. It exists only as a collection of data

structures in memory. Its purpose is to allow the native TIE to intercept lookups by translated or

emulated code to TIE routines from previous TIE environments, such as the TIE$SHARE image used to

support the VAX environment under OpenVMS Alpha. An example of this is the substitution of the

OpenVMS Alpha routine OTS$CALL_PROC with the internal TIE service,

TIE$$AXP_OTS$CALL_PROC. The original OTS$CALL_PROC from OpenVMS Alpha has no

relevance on OpenVMS I64, so the TIE$$AXP_OTS$CALL_PROC service has been written to act as a

substitute. It is simply a wrapper that jumps to TIE$AXP_JUMP_TO.

Figure 7 TIE Pseudo Image Data Structures

‡ See the section ‘For more information’ for details of the Fowler Noll Vo hash algorithm.

© Copyright 2009 Hewlett-Packard Development Company, L.P 10

Like almost all internal image data blocks the list of pseudo images is stored in a B-tree. The root of

this tree is TIE$PAXP_IMG_DESC_ROOT. Each node in the tree contains a pointer to a TIE pseudo

image header (see Figure 7a). These structures are queried using the routine

TIE$FIND_PSEUDO_IMG. In the event that the call address being looked up exists in the address

space described by the pseudo image, then the routine TIE$FIND_PSEUDO_FP attempts to locate a

matching function

Figure 8 TIE Internal Image Descriptors

The next step is to try and find the call address in the list of loaded translated images. This too is a B-

tree list. The root of this tree Is TIE$IMG_DESC_ROOT and is queried using the routine

TIE$FIND_IMG. If the call address exists in the address space of this image, then TIE$FIND_IMG

© Copyright 2009 Hewlett-Packard Development Company, L.P 11

returns a pointer to the TIE data header (see Figure 8a). TIE$FIND_IMG_AREA then uses this structure

to locate, using a binary search, the specific area containing the call address and return the

corresponding TIE area header (see Figure 8b). The type of code pointed at by the call address can

then be determined based on the flags field of the TIE area header. Table 5 shows possible values

for the flags field.

Value Symbolic Name Meaning

1 tie$vax_code_area_fl Section contains VAX instructions

2 tie$axp_code_area_fl Section contains Alpha instructions

4 tie$ipf_code_area_fl Section contains Itanium instructions

8 tie$axp_nonshraddr_area_fl Section contains Alpha non-shareable address data

Table 5 Tie Area Descriptor Type Flags

In the case that the call address is found to exist in an area containing foreign code (the flag

tie$axp_code_area_fl is set) TIE$XXXX_LOOKUP calls TIE$FIND_AII_BB. This routine performs a

binomial search on the list of basic blocks pointed to by the field aii_bb_map. This field points to an

array of octawords containing the mapping between Alpha basic blocks and their corresponding

native translated blocks. The first quadword contains the address of the Alpha block and the second

contains the address of the corresponding native block. It is also possible to perform a reverse

mapping using the array pointed at by the iia_bb_map field.

Return Status Meaning

TIE$CODE_IPF_TRANSLATED

TIE$CODE_VAX_TRANSLATED#

The lookup address either points to translated native code,

or a foreign basic block that had a corresponding

translated block and TIE$INTERPRET is not active. The

address returned points to translated native code.

TIE$CODE_VESTED_AXP# The lookup address points to VAX code that has

corresponding translated Alpha code, but no valid native

translated code. The return address points to the Alpha

code.

TIE$CODE_AXP

TIE$CODE_VAX

The lookup address points to foreign code that either has

no corresponding translated code, or TIE$INTERPRET is in

effect. The return address matches the lookup address.

TIE$CODE_OUTSIDE The lookup address points to code outside of any

translated image. The return address matches the lookup

address.

TIE$CODE_PSEUDO_AXP

TIE$CODE_PSEUDO_VAX#

When the lookup address is in a pseudo image.

TIE$CODE_VAX_SYS_SERV# When the lookup address points to a VAX system service

entry point. The returned address is the corresponding

native system service entry point.

TIE$CODE_AXP_TIE# The lookup address points to an Alpha TIE image.

TIE$CODE_N2T_RETURN The lookup address points to the return address used by

TIE$NATIVE_TO_TRANSLATED
#These status codes are returned only by TIE$VESTED_LOOKUP.

Table 6 TIE$XXXX_LOOKUP and TIE$VESTED_LOOKUP Return Codes

For the VAX environment lookups are performed using the routine TIE$FIND_VAX_BB. This routine

performs a binomial search of the basic block mapping list pointed at by viai_bb_map in the TIE data

header (not shown in Figure 8a).

© Copyright 2009 Hewlett-Packard Development Company, L.P 12

In the event that no match is found at all TIE$XXXX_LOOKUP assumes that the address is native and

returns the status TIE$CODE_OUTSIDE. Table 6 shows possible values returned by

TIE$XXXX_LOOKUP and TIE$VESTED_LOOKUP.

© Copyright 2009 Hewlett-Packard Development Company, L.P 13

Switching Environments

The final stage in transferring control is the actual branch. As stated in previous sections, transferring

from one foreign procedure to another (in the same processor environment) is nothing special. It is

handled with a simple condition branch instruction. The real complexity starts when transferring

control to another environment and trying to hide that from translated software.

Translated to Native

If a call address is determined to exist in a native image TIE$AXP_JUMP_TO transfers control

by branching to TIE$ALPHA_TO_IPF. This routine is the final stepping stone for all translated code

transferring control to the native OpenVMS I64 environment. The process begins by extracting the

call signature information§ from the callee’s function descriptor. Figure 9 demonstrates the program

logic that determines the final argument information that is used to process the argument list.

Figure 9 Logic to Determine Argument Information

As Figure 9 shows, in the event that the signature is deemed unusable the fail over is to use argument

information from the Alpha AI register (R25). The difference between the call signature and the

argument information register is that a signature provides complete details of all arguments and return

values. It is present purposefully for the translated environment and is usually only available in

images that contain code that has been compiled with the /TIE qualifier. Argument information from

the AI register, on the other hand, is available in all calls. However, it only details the format of the

arguments present in registers.

§ See the HP OpenVMS Calling Standard, referenced in ‘For more information’ for further details.

Is signature
present?

Extract signature from
procedure value.

Use argument information
found in Alpha AI register.

Compare signature with
argument information.

Is signature
consistent?

Is it a default
signature?

Extract all signature
information.

Argument
processing…

No

No

Yes

Yes

No

© Copyright 2009 Hewlett-Packard Development Company, L.P 14

The convention of using the argument information register as the default signature actually defies the

calling standard. It states that when transferring control from the Alpha TIE to a native I64 procedure

the default signature specifies that it should be assumed that all register arguments are

RASE$K_RA_I32 and all memory arguments are MASE$K_MA_I32 (32 bit integers, sign extended to

64 bits). By using the argument information register, the default argument type is actually assumed to

be AI$K_AR_I64 (64 bit integer). The default function result is also assumed to be PSIG$K_FR_I64

(64 bit integer).

Once all argument information has been extracted it is now necessary to prepare the arguments for

the call to a native procedure. While both architectures employ similar methods in argument passing,

the differences are still far too great. Figure 10 shows the logic used to convert Alpha register

arguments to their native I64 counterparts.

Figure 10 Register Argument Conversion Logic

…Argument
information.

Set native argument information
register. Initialize loop.

Still more register
arguments to

convert?

Use signature
information?

Extract argument type
from AI register.

VAX floating
argument?

Integer
argument?

Move to Itanium output
integer register.

Move to Itanium output
integer register and
convert to memory format

IEEE floating point values
require no processing.

No

Yes

Yes

No

No

Extract argument type from
signature.

Yes

Yes

No

Stack arguments…

Update loop counters.
Yes

© Copyright 2009 Hewlett-Packard Development Company, L.P 15

Floating point arguments on the Alpha, like the Itanium, are passed in the floating point registers.

However, the OpenVMS I64 calling standard requires that VAX floating point numbers (F_FLOAT,

G_FLOAT and D_FLOAT) must be passed in general registers in memory format. TIE translated code

stores all floating point numbers in register format in native floating point registers. Therefore all any

arguments must be moved to general registers and converted.

It is also a requirement of the Itanium architecture that a rotating region of output registers be used to

pass arguments to the callee. Therefore it is necessary to copy all arguments in the Alpha registers

R16-R21 (at least as many as the AI register dictates) into these output registers.

Lastly, there are less argument registers on the Alpha than there are on the Itanium. How this is

handled is not shown in Figure 10. However, the process is quite simple. The arguments in slots 7

and 8 (stacked on the Alpha) are fetched and stored in their corresponding output registers. Again, it

is necessary to consider the type of the argument to ensure it is stored in the correct register in the

correct format. Moving these two arguments into register does have an advantage. The I64 calling

standard requires that the caller leave a 16 byte scratch area before stacking any extra arguments

passed to the callee. The stack locations formerly held by arguments 7 and 8 can then be used for

this region preventing the need to re-shuffle the remaining stacked arguments. For calls with less than

8 arguments this scratch region is allocated by adjusting the stack pointer.

Once the arguments have been prepared the Alpha procedure descriptor is examined to determine

the exception mode. Depending on the value in PDSC$V_EXCEPTION_MODE the call may pass

through a wrapper that configures the floating point status application register (as.fpsr).

The final step before making the actual call is to move the contents of the Alpha registers R0 and R1

into their corresponding Itanium register, R8 and R9. Both of these registers can be used by

compilers to pass information between calls. R1 (R9 on the Itanium) is often used to pass a pointer to

the callers automatic storage to support uplevel references.

On returning from the native routine it is necessary to go through the process of converting the return

value to an acceptable format. For return values the Itanium register R8 is copied into the Alpha

register R0. For return values specified as PSIG$K_FR_D64, this also means that the contents of

Itanium register R9 are moved to Alpha register R9. For all return values specified as VAX floating

point they are converted back to register format and moved from the Itanium register F8 to Alpha

register F0. For all complex values, the contents of Itanium register F9 is also moved in to Alpha

register R1. For IEEE values there is no conversion. The contents of the Itanium registers F8 and F9

are copied to their Alpha equivalents. The register F9 is only copied in the case of a complex result.

At this point TIE$ALPHA_TO_IPF has completed the native call. The only thing left to do is to branch

to the Alpha return address. This is done by branching to TIE$AXP_JUMP_TO.

Native to Translated

Although branching from native code into TIE might not strictly be emulation of a JSR

instruction, it certainly needs to appear that way to the TIE. All transfers from native to translated

code should be done through the routine OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED**. While

this routine is largely a wrapper, it is the interface used by all OpenVMS compilers. To call a native

routine without using a compiler requires the call to be coded in Itanium assembly.

To begin, OTS$CALL_PROC calls TIE$NATIVE_TO_TRANSLATED which determines the environment it

needs to transfer control to using the routine TIE$PROC_KIND**. For calls destined for the Alpha

** See the section ‘Routine Reference’.

© Copyright 2009 Hewlett-Packard Development Company, L.P 16

environment this means a branch to TIE$IPF_TO_ALPHA (for the VAX environment it is

TIE$IPF_TO_VAX). This routine is responsible for the translation of all arguments and return values

when going from native to translated code and back again. It can be thought of as the reverse of

TIE$ALPHA_TO_IPF.

TIE$IPF_TO_ALPHA begins in much the same way as TIE$ALPHA_TO_IPF. It fetches the procedure

signature and verifies it. If the signature is not found or invalid the argument information is retrieved

from the Itanium argument information register (R25). The next step is to translate all the arguments

as required. In the case of IEEE floating point and integer values there is no change. VAX floating

point numbers are converted to register format and stored in the relevant floating point register. The

16 byte scratch region is used again. This time it holds any values found in the last two general

register argument slots.

Once all arguments and the stack are prepared some Alpha registers are configured. The Alpha

frame pointer is set and the Alpha return address is set to a special address that begins the process of

converting return values. The contents of the Itanium registers R8 and R9 are also copied into the

Alpha registers R0 and R1. The execution of the Alpha routine is then started by branching to

TIE$AXP_JUMP_TO.

On return from the Alpha routine the return values are converted back to meet the requirements of the

native OpenVMS I64 environment. This is done in much the same way as TIE$ALPHA_TO_IPF. The

final action of TIE$IPF_TO_ALPHA is to branch back to the caller.

© Copyright 2009 Hewlett-Packard Development Company, L.P 17

Routine Reference

The following are some quick notes on the calling details of the publicly defined TIE services

mentioned in this article.

TIE$PROC_KIND

This routine determines the ‘kind’ of a procedure address. This routine is used by

OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED to determine if it should transfer control to the TIE

or not.

Parameters:

ofd.rq.v Address of an official function descriptor. For native images this argument is

the address of a function descriptor. In the case of translated Alpha images

this is the address of a procedure descriptor. Lastly, for translated VAX

images this is a pointer to the original VAX code.

Completion Codes:

The following table describes possible return values of this function. The symbolic names are

found in [IA64_TIE]TIE_DEFS.H and not publicly available.

Value Symbolic Name Description

0 TIE$K_PROC_NATIVE Address points to a native function

descriptor.

1 TIE$K_PROC_ALPHA Address points to an Alpha procedure

descriptor.

2 TIE$K_PROC_VAX Address points to a VAX procedure.

In the event that the function descriptor is not readable this routine will signal

TIE$_WRONG_PV.

OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED

The routine OTS$CALL_PROC is used by all OpenVMS compilers when calling external

routines and the /TIE qualifier is active. In the event that the call is user mode and the TIE is active

(CTL$GQ_TIE_SYMVECT) is non-zero) then OTS$CALL_PROC transfers control to

TIE$NATIVE_TO_TRANSLATED (also known as TIE$CALL_PROC).

Parameters:

p1, …pn All arguments are passed as if directly calling the routine in question.

Floating point arguments are all passed in f16-f23. All other arguments are

passed in r32-r39.

sig.rr.r Address of the call argument signature block. This provides details of the

arguments being passed. This is passed in register r17.

ofd.rr.r The destination function descriptor. This is passed in register r18.

ai.rq.v Argument information. This is passed in through register r25.

ra.ra.v Return address. This is passed in the register b0.

In the case of calling a translated routine, registers r8 and r9 (up level environment value) are

copied into R0 and R1 of the translated environment. They are then copied back on return.

Completion Codes:

Only the completion codes of the routine being indirectly called.

© Copyright 2009 Hewlett-Packard Development Company, L.P 18

Relevant Sources

The following list comprises the source modules from the OpenVMS I64 source tree that are discussed

in this article.

 [IA64_TIE]AUX_CALLING_STANDARD.S

 [IA64_TIE]TIEDATA.H

 [IA64_TIE]TIE_CONT.C

 [IA64_TIE]TIE_CONT.H

 [IA64_TIE]TIE_DEFS.H

 [IA64_TIE]TIE_IMGSUP.C

 [IA64_TIE]TIE_JACKETS.S

 [IA64_TIE]TIE_JUMPS.S

 [LIBOTS]OTS$CALL_PROC_IA64.IAS

 [STARLET]FDSCDEF.SDL

 [STARLET]PDSCDEF.SDL

 [STARLET]PSIGDEF.SDL

© Copyright 2009 Hewlett-Packard Development Company, L.P 19

For more information

Tim Sneddon can be contacted via email at tim.sneddon@bigpond.com.

For further information regarding the OpenVMS Alpha TIE and the VEST binary translation tools,

please see the following:

 Goldenburg, R., Saravanan, S., Duma, D. OpenVMS Alpha Internals and Data Structures:

Scheduling and Process Control: V7.0 (1997) Digital Press ISBN: 978-1555581565

 Sites, R. L., Chernoff, A., Kirk, M. B., Marks, M. P., Robinson, S. G. Binary Translation,

Digital Technical Journal Vol. 4 No.4 (1992)

o http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v04-04_1992.pdf

 HP OpenVMS Migration Software for VAX to Alpha Systems (OMSVA) Documentation

o http://h71000.www7.hp.com/openvms/products/omsva/omsva.html

 For those readers with access to the OpenVMS Alpha source listings (or the source itself), the

source for the TIE$SHARE.EXE run-time library can be found in the [TIE] facility.

For further information regarding the VAX architecture and instruction set, please see the following:

 VAX Architecture Reference Manual (1991) Digital Press ISBN: 978-1555580575

For further information regarding the OpenVMS I64 TIE and the AEST binary translation tool, please

see the following:

 HP OpenVMS Calling Standard

o http://h71000.www7.hp.com/doc/os83_index.html

 HP OpenVMS Migration Software for HP AlphaServer Systems to HP Integrity Servers

(MSAIS) Documentation

o http://h71000.www7.hp.com/openvms/products/omsva/omsais.html

 For those readers with access to the OpenVMS I64 source listings (or the source itself), the

source for the TIE$SHARE.EXE run-time library can be found in the [IA64_TIE] facility.

For further information regarding the Alpha architecture, please see the following:

 Alpha Architecture Committee, Witek, R. T., Alpha Architecture Reference Manual (Third

Edition) (1998) Digital Press ISBN: 978-1555582029

For further information regarding the Itanium, please see the following:

 Evans, J. S., Trimper, G. L. Itanium Architecture for Programmers: Understanding 64-bit

Processors and EPIC Principles (2003) Hewlett-Packard Books ISBN: 0-13-101372-6

 Intel® Itanium® Architecture Software Developer’s Manual (2006) Intel Corporation

o http://www.intel.com/design/itanium/manuals/iiasdmanual.htm

For further information on the Fowler Noll Vo hashing algorithm, please see the following:

 Wikipedia, Fowler Noll Vo hash

o http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash

 Noll, L. C., FNV hash

o http://isthe.com/chongo/tech/comp/fnv/

mailto:tim.sneddon@bigpond.com?subject=%5bOpenVMS%20I64%20TIE%20Internals%5d:%20
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v04-04_1992.pdf
http://h71000.www7.hp.com/openvms/products/omsva/omsva.html
http://h71000.www7.hp.com/doc/os83_index.html
http://h71000.www7.hp.com/openvms/products/omsva/omsais.html
http://h71000.www7.hp.com/openvms/products/omsva/omsais.html
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm
http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash
http://isthe.com/chongo/tech/comp/fnv/

