
© Copyright 2009 Hewlett-Packard Development Company, L.P 1

© Copyright 2009 Hewlett-Packard Development Company, L.P 2

Table of Contents

Configuring TCP/IP Services for OpenVMS.. 3

OpenVMS I64 TIE Internals: Emulating Alpha Control Instructions 11

Trouble-shooting iCAP (Instant Capacity) on OpenVMS.. 31

A Starlet is Born: New Options for VAX and Alpha Hardware Replacement 56

The MultiNet Intrusion Prevention System .. 63

OpenVMS and Perl – a Powerful Match .. 70

Performance Management for OpenVMS Systems.. 83

Adding Physical CD Support to the SIMH VAX .. 90

© Copyright 2009 Hewlett-Packard Development Company, L.P 3

OpenVMS Technical Journal V13

Configuring TCP/IP Services for OpenVMS
Bart Zorn

© Copyright 2009 Hewlett-Packard Development Company, L.P 4

Overview

A technique will be presented to configure TCP/IP Services for OpenVMS for multiple
systems in a consistent way, without having to go through all of TCPIP$CONFIG.COM
for every system. With this method, changes in the hardware configuration are also easy
to handle. No changes are made to the standard TCP/IP software, only two DCL
command procedures are added. These procedures do not use any undocumented feature
of TCP/IP Services.

Introduction

TCP/IP Services for OpenVMS is not very flexible with regards to changes in the
hardware configuration. The TCP/IP interfaces such as we0, ie0, and ie1 are based
directly on the corresponding physical devices such as EWA0, EIA0, and EIB0. There is
no way to change that relationship using logical names in a similar manner as we are
accustomed to doing for most other devices in OpenVMS.

In a real life example, I had to add one Gigabit network adapter to each of four ES47
systems. These ES47 (model 4) systems consist of two 2P boxes and an I/O drawer.
Logically, this I/O drawer appears to sit in between the two 2P boxes. (I am not a
hardware expert, so I do not know if there are ways to change that.) The new network
cards had to be placed in the I/O drawers, because there was no room in either of the two
2P boxes. The result was that the new adapters received a device name somewhere in
between the existing ones, and some of the existing ones got a new name! The result of
these changes was that I would have to reconfigure TCP/IP services quite extensively. I
had anticipated that.

Implementation

Because TCP/IP Services do not allow the use of logical names to designate physical
interfaces, a method had to be found to circumvent that.

Two DCL command procedures have been developed and both these procedures contain
relevant information for all systems. Identical copies of the procedures can be used on all
systems.

The first command should be executed before TCPIP$STARTUP.COM runs. It does the
following:

 Sets up logical names to identify all LAN adapters (and their TCPIP alias names)
by their hardware MAC address. This is done using the output of the “LANCP
SHOW DEVICE/CHAR” command. Of course, this is the infamous technique of
parsing the output of a utility, which is prone to cause problems when a new
version of that utility provides a different layout. This has actually happened with

© Copyright 2009 Hewlett-Packard Development Company, L.P 5

the LANCP utility recently! On the other hand, TCP/IP services itself rely on
parsing the output of both the TCPIP utility and the LANCP utility.

 Clears out the permanent TCPIP interface database and repopulates it with a
default interface described below.

 Clears out any permanent default router information and supplies a new default
route described below.

The logical names have the following format:

”ADAPTER_00-0F-20-2B-A1-38” = ”EWA0”,”WE0”

The default interface and default route for each system are defined in DCL symbols like
the following:

$ base_interface_<nodename> = -
”00-0F-20-2B-A1-38 10.5.50.11/24 10.5.50.3”

representing the MAC address, the IP address in CIDR format and the default route for
this address. This information, combined with the corresponding logical name, is then
used to assemble the “TCPIP SET CONFIGURATION INTERFACE” command for this
interface. At least one interface needs to be defined because otherwise TCP/IP Services
will not start.

Once this DCL procedure has been run, TCP/IP Services can be started and it will operate
on one interface.

The second DCL procedure is called by TCPIP$SYSTARTUP.COM. This procedure
does two things:

 Configures all interfaces and alias addresses
 Sets and resets the default route

The site where this configuration was developed makes extensive use of alias addresses.
It appears that the ifconfig utility is much more flexible and powerful than the “TCPIP
SET INTERFACE” command. Ifconfig does not create pseudo interfaces for alias
addresses. The drawback is that the “TCPIP SHOW INTERFACE” command cannot
display information about aliases which were created with ifconfig.

Another quirk is that ifconfig is supposed to create interface entities. I could not get it
working. On the other hand, “TCPIP SET INTERFACE <ifname>” without further
information creates the interface if it does not already exist. Conveniently, in that case, it
does not issue an error message.

To sum it up, for every interface, a “TCPIP SET INTERFACE” command is issued, to
make sure that it exists. All further configurations are done with ifconfig.

© Copyright 2009 Hewlett-Packard Development Company, L.P 6

Next, for every interface, first the DCL symbol MAC is defined and then for each IP
address, a call to a set_interface routine is made:

$ MAC := 00-0F-20-2B-A1-38
$ call set_interface 10.5.50.11/24
$ call set_interface 192.168.35.1/24 alias

The set_interface routine will figure out which interface is to be defined. This one gets IP
address 10.5.50.11, and 192.168.35.1 as alias address.

Of course, DCL symbols can be used instead of constants. At the beginning of this
procedure, symbols are defined for all IP addresses that are being used. Several IP
addresses are being used more than once, for IP failover or cluster alias purposes.

A side effect of setting an address for an interface is that the default route may be erased.
Therefore, once all the interfaces have been defined, the default route is set again. This
default route is not necessarily the same as the one defined in the first DCL procedure
described above.

The DCL command procedures

The first one is called TCPIP_INIT_CONFIG.COM. It must be called before TCPIP$STARTUP.COM
is invoked. I added this procedure to the CONFIG phase of SYSMAN STARTUP,
but it can be done in other ways.

$ set noon
$ nodename = f$getsyi("nodename")
$ if f$trnlnm("sys$pipe") .nes. "" then goto 'p1'
$!
$ call say_msg "-I- Executing CLUSTER_COMMON:TCPIP_INIT_CONFIG.COM"
$ nodename = f$getsyi("nodename")
$ debug = p1 .nes. ""
$ icalc := systools:icalc ! freeware tool, used for mask calculation
$ saved_parse_style = f$getjpi("","parse_style_perm")
$ set process/parse=traditional ! Needed for icalc, a ^ is being used
$ this_proc = f$environment("procedure")
$!
$! TCPIP_INIT_CONFIG.COM
$!
$! 31-Aug-2006, Bart Zorn
$!
$! This procedure is called before TCPIP$STARTUP.COM and does three things:
$!
$! 1. It sets up logical names to identify all lan adapters (and their TCPIP
$! alias names) by their hardware MAC address. In addition, logical names
$! that are common to all systems are defined.
$!
$! 2. It clears out the permanent tcpip interface database and repopulates
$! it with the default interface defined below.
$!
$! 3. It clears out any permanent default router information and supplies
$! a new default route defined below.
$!

© Copyright 2009 Hewlett-Packard Development Company, L.P 7

$ base_interface_node01 := 00-0F-20-2B-A1-38 10.5.50.11/24 10.5.50.3
$ base_interface_node02 := 00-0B-CD-F4-E4-A8 10.5.50.12/24 10.5.50.3
$!
$! 1. Lookup all hardware MAC addresses
$!
$ pipe mcr lancp show device/characteristics | -

search sys$pipe "Device Characteristics","Hardware LAN address" | -
@ 'this_proc' do_define

$!
$! 2a. Delete current permanent interface configuration
$!
$ pipe tcpip show configuration interface/full –

> sys$manager:tcpip_saved_configuration.txt 2> nl:
$ pipe tcpip set configuration nointerface */noconfirm > nl: 2> nl:
$!
$! 2b. Repopulate the configuration database
$!
$ lognam = "adapter_" + f$element(0," ",base_interface_'nodename')
$ interface = f$trnlnm(lognam,,1)
$ if interface .eqs. ""
$ then
$ call say_msg –

"-F- TCP/IP default interface is not defined. TCP/IP will not startup."
$ goto exit
$ endif
$ ip_address = f$element(1," ",base_interface_'nodename')
$ mask_length = f$element(1,"/",ip_address)
$ ip_address = f$element(0,"/",ip_address)
$ call generate_mask mask_length mask_longword
$ call convert_longword_to_address mask_longword mask_address
$ vf = f$verify(1)
$ tcpip set configuration interface 'interface' –

/host='ip_address' /network_mask='mask_address'
$! 'f$verify(vf)'
$!
$! 3a. Delete current permanent routing configuration, ignoring errors.
$!
$ pipe tcpip show route/permanent > sys$manager:tcpip_saved_routing.txt 2> nl:
$ pipe tcpip set noroute/permanent/noconfirm/gate=* > nl: 2> nl:
$!
$! 3b. Define permanent default route information
$!
$ def_route = f$element(2," ",f$edit(base_interface_'nodename',"compress,trim"))
$ vf = f$verify(1)
$ tcpip set route/gateway='def_route'/default/permanent
$! 'f$verify(vf)'
$!
$exit:
$ set process/parse='saved_parse_style'
$ exit
$!
$say_msg: subroutine
$ msg = f$fao("!8%T !AS",0,P1)
$ write sys$output msg
$ if f$trnlnm("sys$output") .nes. f$trnlnm("sys$error") then write sys$error msg
$ endsubroutine
$!
$do_define:
$!
$! Read the first line, it contains the device name

© Copyright 2009 Hewlett-Packard Development Company, L.P 8

$!
$ read/end=eof sys$pipe line
$ device = f$element(2," ",line)
$!
$! The second line contains the physical address
$!
$ read/end=eof sys$pipe line
$ address = f$element(0," ",f$edit(line,"trim,compress"))
$!
$! Build the TCP/IP style interface name from the device name
$! This assumes that we have no more than 6 devices of any given type
$!
$ interface = f$extract(1,1,device) + f$extract(0,1,device)
$ unit = %X'f$extract(2,1,device)' - 10
$ interface := 'interface''unit'
$!
$ vf = f$verify(1)
$ define/system/exec/nolog adapter_'address' 'device','interface'
$! 'f$verify(vf)'
$ goto do_define
$eof:
$ exit
$!
$generate_mask: subroutine
$ i = 32 - 'p1'
$ pipe icalc 2^'i' > nl:
$ 'p2' == .not. ('ICALC_OUT' - 1)
$ endsubroutine
$!
$convert_longword_to_address: subroutine
$ hex_longword = f$fao("!XL",'p1')
$ a1 = %x'f$extract(0,2,hex_longword)'
$ a2 = %x'f$extract(2,2,hex_longword)'
$ a3 = %x'f$extract(4,2,hex_longword)'
$ a4 = %x'f$extract(6,2,hex_longword)'
$ 'p2' :== 'a1'.'a2'.'a3'.'a4'
$ endsubroutine

The second procedure is called CREATE_INTERFACES.COM. It is called from
TCPIP$SYSTARTUP.COM.

$!
$! CREATE_INTERFACES.COM
$!
$! 24-Mar-2003, Bart Zorn
$!
$ SET NOON
$ CALL SAY_MSG "-I- Executing CLUSTER_COMMON:CREATE_INTERFACES.COM"
$ ifconfig := $tcpip$ifconfig
$ nodename = f$getsyi("nodename")
$!
$! Define symbols to be used here
$!
$ NODE01 := 10.5.50.11/24
$!
$ GOTO SYSTEM_'NODENAME'
$ EXIT ! Do not fall through
$!

© Copyright 2009 Hewlett-Packard Development Company, L.P 9

$SYSTEM_NODE01:
$!
$ MAC := 00-0F-20-2B-A1-38
$ call set_interface ‘NODE01’
$ call set_interface 192.168.35.1/24 alias
$!
$ MAC := 00-0F-20-2B-A1-37
$ call set_interface ‘NODE01’
$ call set_interface 192.168.35.1/24 alias
$!
$ goto exit
$!
$SYSTEM_NODE02:
$!
$ MAC := 00-0B-CD-F4-E4-A8
$ call set_interface 10.5.50.12/24
$ call set_interface 10.5.50.18/24 alias ! Cluster alias
$!
$ MAC := 00-0B-CD-F4-E4-A9
$ call set_interface 10.5.50.12/24
$ call set_interface 10.5.50.18/24 alias ! Cluster alias
$!
$ MAC := 00-08-02-91-88-CA
$ call set_interface 10.5.50.13/24
$ call set_interface 10.5.50.33/24 alias
$!
$ call set_interface 10.5.52.1/24 home ! Apllication alias
$!
$ goto exit
$!
$EXIT:
$ gosub reset_default_route
$ EXIT
$!
$say_msg: subroutine
$ msg = f$fao("!8%T !AS",0,p1)
$ write sys$output msg
$ if f$trnlnm("sys$output") .nes. f$trnlnm("sys$error") then –

write sys$error msg
$ endsubroutine
$!
$set_interface: subroutine
$!
$! p1 - address/mask
$! p2 - optional parameters
$! p3 - additional parameters for ifconfig
$!
$ lnm = "ADAPTER_" + MAC
$ interface = f$trnlnm(lnm,,1)
$ if interface .eqs. ""
$ then
$ call say_msg "-E- ''lnm' logical name is missing"
$ exit
$ endif
$!
$! Create interface if it does not already exist
$!
$ tcpip set interface 'interface'
$!
$ if f$edit(p2,"lowercase") .eqs. "home" then p2 := home alias

© Copyright 2009 Hewlett-Packard Development Company, L.P 10

$ params = f$edit(f$fao("!AS !AS !AS",p3,interface,p2),"trim,compress,lowercase")
$ sv = f$verify(1)
$ ifconfig 'params' 'p1'
$! 'f$verify(sv)'
$ endsubroutine
$!
$reset_default_route:
$ if "''new_default_route'" .eqs. "" then return
$ if f$mode() .eqs. "INTERACTIVE"
$ then
$ if f$trnlnm("tt") .nes. "OPA0:" then return
$ else
$ if f$mode() .nes. "OTHER" then then return
$ endif
$!
$ pipe tcpip netstat -rn | search sys$pipe default | -

(read sys$pipe line ; define/job/nolog line &line)
$ line = f$edit(f$trnlnm("line"),"trim,compress")
$ deassign/job line
$ default_present = f$element(0," ",line) .eqs. "default"
$ if default_present
$ then
$ current_default_route = f$element(1," ",line)
$ if current_default_route .eqs. new_default_route then return
$ endif
$ vf = f$verify(1)
$ tcpip set route /gate='new_default_route' /default
$! 'f$verify(vf)'
$ if default_present
$ then
$ if current_default_route .nes. new_default_route
$ then
$ vf = f$verify(1)
$ tcpip set noroute /gate='current_default_route' /noconfirm
$! 'f$verify(vf)'
$ endif
$ endif
$ return

Things yet to be done

When a new system needs to be configured, it is still necessary to run
TCPIP$CONFIG.COM once. I have not yet reverse engineered what steps
TCPIP$CONFIG.COM takes with regard to the host name and domain name settings.
Also, the client and server configuration needs to be done with TCPIP$CONFIG.COM.

Summary

The techniques described here allow for a complete interface configuration for TCP/IP
Services for OpenVMS with two DCL command procedures. These procedures are
organized in such a way that they contain all relevant information for all systems to be
configured. This makes it a lot easier to configure many systems and prevent duplicate IP
addresses and other errors.

The author can be contacted at Bart.Zorn@Yahoo.com

mailto:Bart.Zorn@Yahoo.com

© Copyright 2009 Hewlett-Packard Development Company, L.P 11

OpenVMS Technical Journal V13

OpenVMS I64 TIE Internals: Emulating Alpha Control
Instructions

Tim E. Sneddon

Preface

This article is the first of what will hopefully become a series of articles that describe the
internals of the OpenVMS I64 Translated Image Environment. In subsequent issues of
the OpenVMS Technical Journal it is expected that there will be further articles covering
topics such as:

 stack walking and unwinding;
 floating-point emulation;
 the Alpha instruction emulator;
 TIE initialization and setup; and
 image translation.

These are but a few of the topics that are likely to be covered in future articles.
Suggestions are also always welcome. See the end of this document for details on
contacting the author.

Conventions

Table 1 lists some of the conventions used in this article.

Convention Meaning
Foreign This term is used to describe any code that cannot be run natively on

OpenVMS I64.
Native This term describes any code that runs natively on OpenVMS I64
AEST Alpha Environment Software Translator. The binary translation

utility that generates OpenVMS I64 images from OpenVMS Alpha
images.

VEST VAX Environment Software Translator. The binary translation utility
that generates OpenVMS Alpha images from OpenVMS VAX
images.

TIE Translate Image Environment. The name given to the execution
environment that allows user-mode programs from different
OpenVMS supported architectures to be executed.

Procedure
Descriptor

This term refers to an OpenVMS Alpha procedure descriptor. This is
described in the Starlet module $PDSCDEF.

Function
Descriptor

This term refers to an OpenVMS I64 function descriptor. This is
described in the Starlet module $FDSCDEF.

Table 1 Conventions Used in this Article

What Has The Translator Generated?

Using certain qualifiers on the AEST translation utility it is possible to observe what
happens to the original OpenVMS Alpha image after it has been translated. Figure 1

demonstrates some of the output that can be seen. This example shows the correlation
between the original Alpha instructions and the equivalent Itanium instructions.

Figure 1 Listing of Alpha Instructions and Corresponding Translated Itanium Instructions

This output was generated using the command:

$ AEST/VERBOSE/LIST/DUMP=IA64=ALL <image>

For more information on the qualifiers accepted by AEST and how to use them, refer to
the online DCL help.

Observing Image Execution

With the help of some debugging features built into the TIE run-time library it is possible
to observe the execution of the translated image. By defining the logical
PRTCHK_PRT_ALL to “1” TIE$SHARE will begin producing a trace to
SYS$OUTPUT. If it is inconvenient to have this output written to SYS$OUTPUT, it is
possible to define the logical PRTCHK_FILE to an alternate output file. Not all routines
generate output, but the important ones do. It is also possible to enable interpretation of
all images, even those that had native code generated as part of the translation process.
To do this, define the logical TIE$INTERPRET to “1”. Figure 2 shows a portion of the
output from a simple MACRO-64 program that executes a collection of ZAP and
ZAPNOT instructions. It is annotated to give a brief description of the operations taking
place.

Figure 2 TIE Run-Time Library Trace Output

1. Execution has just transferred to the TIE$AXP_JUMP_TO glue routine.
2. A lookup is being performed on the address 000000000002006C to determine

what kind of code is to be executed.
3. It was determined the code was native Alpha and no equivalent translated code

was found. Therefore the Alpha instruction emulator is called and used to execute
the code.

4. The last instruction to execute was a JSR. The emulator is now determining how
to proceed with execution.

5. The TIE is now looking up the return address specified in the JSR instruction to
determine how to proceed.

Note: AEST also responds to the PRTCHK_PRT_ALL logical and generates quite a bit
of output. Before translating an image it is usually a good idea to deassign this logical.

Alpha Register Mapping

To make it easier to understand some of the Itanium code samples, the following table
shows the static register mapping used by the TIE to maintain the Alpha register file.

Alpha
Register

Usage Itanium Register

R0 Function value register R101
R1 Conventional scratch register R102
R2-R15 Conventional saved registers R54-R67
R16-R21 Argument registers R32-R37
R22-R24 Conventional scratch registers R103-R105
R25 Argument information (AI)

register
R106

R26 Return address (RA) register R68
R27 Procedure value (PV) register R69
R28 Volatile scratch register R107

Alpha
Register

Usage Itanium Register

R29 Frame pointer (FP) register R70
R30 Stack pointer (SP) register R12
R31 ReadAsZero/Sink (RZ) register R01

F0-F1 Floating-point function value
register

F32-F33

F2-F9 Conventional saved registers F16-F23
F10-F15 Conventional scratch registers F34-F39
F16-F21 Argument registers F8-F13
F22-F30 Conventional scratch registers F40-F48
F31 ReadAsZero/Sink register F01

MBPR Mailbox pointer register R72
FPCR Floating-point control register R73
PS Processor status register R74
PC Program counter R75

Internal TIE scratch register R3, R21-R24, R26-R31
Internal TIE local registers R76-R80
Internal TIE translator flag register R82
Internal TIE output registers R108-R115

Table 2 Alpha Register Mapping

If some of these mappings don’t appear to follow a logical order it is because many of
register mappings were changed late in the design of TIE. Originally it was intended that
Alpha registers sharing similar functions as Itanium registers would be mapped together
(as was done with VAX registers on the Alpha platform). However, this was eventually
changed and so now all Alpha registers (with the exception of the stack pointer) exist in
the register stack frame.

The mapping of VAX registers can be found in OpenVMS Alpha Internals and Data
Structures: Scheduling and Process Control. The mappings have been retained, so all
VAX registers map to their original Alpha registers, which in turn map to the equivalent
Itanium register.

Introduction

The Translated Image Environment (TIE) is the support environment which executes user
mode images compiled and linked on OpenVMS VAX and OpenVMS Alpha that have
been subsequently translated for execution on the OpenVMS I64 platform. The

1 Read-only. Writing to Itanium register R0 or F0 results in an Illegal Operation fault.

translation is achieved using the Alpha Environment Software Translator (AEST) and, in
the case of OpenVMS VAX images, the VAX Environment Software Translator (VEST)
binary translation tools. While the VEST translator is only available on OpenVMS
Alpha, it is supported to translate a VEST’d image using the AEST translator.

These translation utilities generate native images that work with the TIE run-time library
to emulate a native OpenVMS Alpha or VAX environment. It is the responsibility of the
translator to present the original image in such a fashion that the TIE run-time library can
then execute the foreign code. In most cases these utilities are able to generate equivalent
native code from the foreign code. It is the branching inside and between these
environments that is the focus of this article.

In some areas VAX support is touched on. However, the main focus of this article is the
support of the Alpha control instructions. The OpenVMS Alpha Internals & Data
Structures manual is still a relevant reference as the TIE, present on OpenVMS Alpha for
the support of the OpenVMS VAX environment, has been ported to OpenVMS I64 with
minimal changes.

Taking a JuMP…

The Alpha architecture presents a collection of closely related control instructions. In the
Alpha Architecture Handbook, these are divided as ‘Conditional Branch’, ‘Unconditional
Branch’ and ‘Jumps’. While this division is important to the TIE, a more relevant way to
divide them is ‘Local’ and ‘Non-Local’.

Although the two types of branch are handled differently in how they obtain their
addresses, all branches within the Alpha environment use the regular conditional branch,
‘br’, instruction. This is because the emulated environment is contained within a regular
OpenVMS I64 frame. The conditional procedure call, or ‘br.call’, instruction is only
used for native calls.

This does make the process of stack walking and unwinding non-trivial. However, by
avoiding a true procedure call the emulated Alpha registers continue to be available
across Alpha calls. There is no need to consider the consequences of the ‘alloc’
instruction and how to maintain context. The only time this needs to be considered is
when switching environments and that is handled by jacketing procedures, discussed later
in this article2.

Local Branches

Local branches are described as those that are capable of branching forward or backwards
a PC relative distance of +/-1M instructions. It also happens that this encompasses all
conditional branch instructions. Table 3 summarizes the local control instructions.

2 See the section ‘Switching Environments’.

Mnemonic Operation
BEQ Branch if Register Equal to Zero
BGE Branch if Register Greater Than or Equal to Zero
BGT Branch if Register Greater Than Zero
BLBC Branch if Register Low Bit is Clear
BLBS Branch if Register Low Bit is Set
BLE Branch if Register Less Than or Equal to Zero
BLT Branch if Register Less Than Zero
BNE Branch if Register Not Equal to Zero
BR Unconditional Branch
BSR Branch to Subroutine

Table 3 Local Alpha Control Instructions

These instructions are usually used within a single object module to handle local
branching. As such when it comes to translating these instructions to a native instruction
sequence there is almost always no execution time lost in the resulting image. This is due
to the fact that the branch target is known at the time of translation. However, if the
destination of these branch instructions cannot be located within the image being
translated then the instruction will be emulated by TIE run-time library via the Alpha
instruction emulator.

For all non-emulated branches a small native instruction sequence is generated. Figure 3
shows the sequence generated by AEST when translating an Alpha BNE instruction, it is
annotated below.

Figure 3 Itanium Code Generated for Alpha BNE Instruction

1. Here the compare part of the BNE instruction is performed.
2. In the event that the comparison yields a positive result, the Alpha PC is set to the

address of the branch target.
3. If the comparison is not true, the Alpha PC is updated to point to the next

instruction, following the BNE instruction.
4. Lastly, the branch is taken if the result was positive.

All other conditional branches are of the same format, simply substituting the relevant
compare instruction relation as necessary.

For the unconditional branches it is even simpler. Figure 4 shows the sequence generated
by AEST for a BSR instruction and is annotated below. The only difference between it
and a BR instruction is that BSR sets up a return address.

Figure 4 Itanium Code Generated for Alpha BSR Instruction

1. Here the emulated Alpha R26 register is configured with the return emulated PC.
2. The emulated Alpha PC is then updated to point to the first instruction of the

destination.
3. Lastly, the branch is taken.

Non-Local Branches

Non-local branches are described as those that take a register argument containing an
absolute address, rather than a PC offset. Table 4 summarises the non-local control
instructions.

Mnemonic Operation
JMP Jump
JSR Jump to Subroutine
RET Return from Subroutine
JSR_COROUTINE Jump to Subroutine Return

Table 4 Non-Local Alpha Control Instructions

The emulation of these instructions does incur quite a bit of overhead as the destination is
assumed to be unknown at translation time. This means that these instructions cannot be
handled with a small instruction sequence like local branches. It requires support from the
TIE run-time library. This comes in the form of the routine TIE$AXP_JUMP_TO. This
routine is the first stop on all non-local branches with the exception of JSR. All JSR
instructions first branch to TIE$AXP_JSR_TO before falling through to the routine,
TIE$AXP_JUMP_TO.

JSR instructions require special pre-processing by TIE$AXP_JSR_TO because in some
cases the destination PC for input to the JSR instruction is fetched from a procedure
descriptor (see Figure 5b) and not a linkage pair (see Figure 5a). This causes problems
when the destination is a native routine as the procedure value register then points to a
native function descriptor (see Figure 5c). As can be seen from the illustrations there is
no problem in the instance of a function descriptor being mistaken for a linkage pair as
the offset to the address of the procedure entry point is the same. However, in the case of
the function descriptor being mistaken for a procedure descriptor the global data pointer

(GP) for the native image is then loaded and used as the destination PC. Figure 6
compares the two instruction sequences.

LKP$Q_ENTRY :0

LKP$Q_PROC_VALUE :8

:0

PDSC$Q_ENTRY :8

a. Alpha Linkage Pair b. Alpha procedure
descriptor (extract)

FDSC$Q_ENTRY :0

FDSC$Q_GP :8

c. I64 Simple Function Descriptor

Figure 5 Alpha and I64 Procedure Descriptors

To remedy this when the TIE walks the list of activated images
(IAC$GL_IMAGE_LIST) during initialisation gathering details for its own internal list
of native images, it also gathers up the GPs and caches them in another list
(TIE$CACHED_GPs). When TIE$AXP_JSR_TO is called it attempts to match the
destination PC with an entry in this list. If a match is found, then the destination PC is
altered by fetching the real entry point address from the function descriptor pointed at by
the Alpha register, R27 (procedure value register). At this point TIE$AXP_JSR_TO then
falls through to TIE$AXP_JUMP_TO and continues as normal.

LDQ R27, 20(R27) ; Fetch procedure
descriptor
LDQ R26, 08(R27) ; Fetch procedure entry
point
JSR R26, (R26) ; Call procedure

LDQ R26, 20(R4) ; Fetch procedure entry
point
LDQ R27, 28(R4) ; Fetch procedure
descriptor
JSR R26, (R26) ; Call procedure

Figure 6a. Fetching Entry Point From Descriptor b. Fetching Entry Point From Linkage Pair

Once the address lookup has been performed, TIE$AXP_JUMP_TO then transfers
control appropriate to the type of address being branched to. This may mean starting the
Alpha instruction emulator, calling a native routine, branching to another translated
Alpha routine or to a pseudo image.

Finding A Place To Go

Jumping to an address may be one thing. However, locating that address to determine
how to jump is entirely something else. For the Alpha environment, all call address
lookups go through the routine TIE$XXXX_LOOKUP. For the VAX environment the
equivalent routine is TIE$VESTED_LOOKUP. It is these routines that have the job of
determining what kind of code is at the specified address and locating any translated code
that may be associated with it.

For the rest of this section, TIE$XXXX_LOOKUP refers to both the Alpha environment
TIE$XXXX_LOOKUP and the VAX environment TIE$VESTED_LOOKUP, unless
otherwise specified.

Performing the Lookup

An address lookup begins with TIE$XXXX_LOOKUP first checking that the address
being looked up is not the special return address used when returning from native code.
In this case the lookup terminates with a return status of TIE$CODE_N2T_RETURN and
the caller (usually TIE$ALPHA_TO_IPF or TIE$VAX_TO_IPF) will then begin the
process of translating arguments back to their respective environments.

The lookup continues by first checking that this address has not previously been
requested. This is done by checking the lookup cache (TIE$GR_LOOKUP_CACHE).
To speed up the process of looking up a call address, all successful address lookups and
their results are stored in a 4096 entry hash table. This table is managed using the FNV-
1a3 hash algorithm. In the event that no match is found the lookup routine begins walking
internal TIE data structures.

The process starts by first looking up the list of pseudo images loaded by the TIE during
initialization. A pseudo image, as the name implies, is not a real image. It exists only as
a collection of data structures in memory. Its purpose is to allow the native TIE to
intercept lookups by translated or emulated code to TIE routines from previous TIE
environments, such as the TIE$SHARE image used to support the VAX environment
under OpenVMS Alpha. An example of this is the substitution of the OpenVMS Alpha
routine OTS$CALL_PROC with the internal TIE service,
TIE$$AXP_OTS$CALL_PROC. The original OTS$CALL_PROC from OpenVMS
Alpha has no relevance on OpenVMS I64, so the TIE$$AXP_OTS$CALL_PROC
service has been written to act as a substitute. It is simply a wrapper that jumps to
TIE$AXP_JUMP_TO.

Figure 7 TIE Pseudo Image Data Structures

Like almost all internal image data blocks the list of pseudo images is stored in a B-tree.
The root of this tree is TIE$PAXP_IMG_DESC_ROOT. Each node in the tree contains a
pointer to a TIE pseudo image header (see Figure 7a). These structures are queried using

3 See the section ‘For more information’ for details of the Fowler Noll Vo hash algorithm.

the routine TIE$FIND_PSEUDO_IMG. In the event that the call address being looked
up exists in the address space described by the pseudo image, then the routine
TIE$FIND_PSEUDO_FP attempts to locate a matching function.

Figure 8 TIE Internal Image Descriptors

The next step is to try and find the call address in the list of loaded translated images.
This too is a B-tree list. The root of this tree Is TIE$IMG_DESC_ROOT and is queried

using the routine TIE$FIND_IMG. If the call address exists in the address space of this
image, then TIE$FIND_IMG returns a pointer to the TIE data header (see Figure 8a).
TIE$FIND_IMG_AREA then uses this structure to locate, using a binary search, the
specific area containing the call address and return the corresponding TIE area header
(see Figure 8b). The type of code pointed at by the call address can then be determined
based on the flags field of the TIE area header. Table 5 shows possible values for the
flags field.

Value Symbolic Name Meaning
1 tie$vax_code_area_fl Section contains VAX instructions
2 tie$axp_code_area_fl Section contains Alpha instructions
4 tie$ipf_code_area_fl Section contains Itanium instructions
8 tie$axp_nonshraddr_area_fl Section contains Alpha non-shareable address

data

Table 5 Tie Area Descriptor Type Flags

In the case that the call address is found to exist in an area containing foreign code (the
flag tie$axp_code_area_fl is set) TIE$XXXX_LOOKUP calls TIE$FIND_AII_BB. This
routine performs a binomial search on the list of basic blocks pointed to by the field
aii_bb_map. This field points to an array of octawords containing the mapping between
Alpha basic blocks and their corresponding native translated blocks. The first quadword
contains the address of the Alpha block and the second contains the address of the
corresponding native block. It is also possible to perform a reverse mapping using the
array pointed at by the iia_bb_map field.

Return Status Meaning
TIE$CODE_IPF_TRANSLATED
TIE$CODE_VAX_TRANSLATED#

The lookup address either points to translated native
code, or a foreign basic block that had a
corresponding translated block and
TIE$INTERPRET is not active. The address
returned points to translated native code.

TIE$CODE_VESTED_AXP# The lookup address points to VAX code that has
corresponding translated Alpha code, but no valid
native translated code. The return address points to
the Alpha code.

TIE$CODE_AXP
TIE$CODE_VAX

The lookup address points to foreign code that either
has no corresponding translated code, or
TIE$INTERPRET is in effect. The return address
matches the lookup address.

TIE$CODE_OUTSIDE The lookup address points to code outside of any
translated image. The return address matches the
lookup address.

TIE$CODE_PSEUDO_AXP
TIE$CODE_PSEUDO_VAX#

When the lookup address is in a pseudo image.

Return Status Meaning
TIE$CODE_VAX_SYS_SERV# When the lookup address points to a VAX system

service entry point. The returned address is the
corresponding native system service entry point.

TIE$CODE_AXP_TIE# The lookup address points to an Alpha TIE image.
TIE$CODE_N2T_RETURN The lookup address points to the return address used

by TIE$NATIVE_TO_TRANSLATED
#These status codes are returned only by TIE$VESTED_LOOKUP.

Table 6 TIE$XXXX_LOOKUP and TIE$VESTED_LOOKUP Return Codes

For the VAX environment lookups are performed using the routine
TIE$FIND_VAX_BB. This routine performs a binomial search of the basic block
mapping list pointed at by viai_bb_map in the TIE data header (not shown in Figure 8a).

In the event that no match is found at all TIE$XXXX_LOOKUP assumes that the address
is native and returns the status TIE$CODE_OUTSIDE. Table 6 shows possible values
returned by TIE$XXXX_LOOKUP and TIE$VESTED_LOOKUP.

Switching Environments

The final stage in transferring control is the actual branch. As stated in previous sections,
transferring from one foreign procedure to another (in the same processor environment) is
nothing special. It is handled with a simple condition branch instruction. The real
complexity starts when transferring control to another environment and trying to hide that
from translated software.

Translated to Native

If a call address is determined to exist in a native image TIE$AXP_JUMP_TO transfers
control by branching to TIE$ALPHA_TO_IPF. This routine is the final stepping stone
for all translated code transferring control to the native OpenVMS I64 environment. The
process begins by extracting the call signature information4 from the callee’s function
descriptor. Figure 9 demonstrates the program logic that determines the final argument
information that is used to process the argument list.

4 See the HP OpenVMS Calling Standard, referenced in ‘For more information’ for further details.

Figure 9 Logic to Determine Argument Information

As Figure 9 shows, in the event that the signature is deemed unusable the fail over is to
use argument information from the Alpha AI register (R25). The difference between the
call signature and the argument information register is that a signature provides complete
details of all arguments and return values. It is present purposefully for the translated
environment and is usually only available in images that contain code that has been
compiled with the /TIE qualifier. Argument information from the AI register, on the
other hand, is available in all calls. However, it only details the format of the arguments
present in registers.

The convention of using the argument information register as the default signature
actually defies the calling standard. It states that when transferring control from the
Alpha TIE to a native I64 procedure the default signature specifies that it should be
assumed that all register arguments are RASE$K_RA_I32 and all memory arguments are
MASE$K_MA_I32 (32 bit integers, sign extended to 64 bits). By using the argument
information register, the default argument type is actually assumed to be AI$K_AR_I64
(64 bit integer). The default function result is also assumed to be PSIG$K_FR_I64 (64
bit integer).

Once all argument information has been extracted it is now necessary to prepare the
arguments for the call to a native procedure. While both architectures employ similar

Is signature
present?

Extract signature from
procedure value.

Use argument information
found in Alpha AI register.

Compare signature with
argument information.

Is signature
consistent?

Is it a default
signature?

Extract all signature
information.

Argument
processing…

No

No

Yes

Yes

No

methods in argument passing, the differences are still far too great. Figure 10 shows the
logic used to convert Alpha register arguments to their native I64 counterparts.

Figure 10 Register Argument Conversion Logic

Floating point arguments on the Alpha, like the Itanium, are passed in the floating point
registers. However, the OpenVMS I64 calling standard requires that VAX floating point
numbers (F_FLOAT, G_FLOAT and D_FLOAT) must be passed in general registers in
memory format. TIE translated code stores all floating point numbers in register format

…Argument
information.

Set native argument information
register. Initialize loop.

Still more register
arguments to

convert?

Use signature
information?

Extract argument type
from AI register.

VAX floating
argument?

Integer
argument?

Move to Itanium output
integer register.

Move to Itanium output
integer register and
convert to memory format

IEEE floating point values
require no processing.

No

Yes

Yes

No

No

Extract argument type from
signature.

Yes

Yes

No

Stack arguments…

Update loop counters.
Yes

in native floating point registers. Therefore all any arguments must be moved to general
registers and converted.

It is also a requirement of the Itanium architecture that a rotating region of output
registers be used to pass arguments to the callee. Therefore it is necessary to copy all
arguments in the Alpha registers R16-R21 (at least as many as the AI register dictates)
into these output registers.

Lastly, there are less argument registers on the Alpha than there are on the Itanium. How
this is handled is not shown in Figure 10. However, the process is quite simple. The
arguments in slots 7 and 8 (stacked on the Alpha) are fetched and stored in their
corresponding output registers. Again, it is necessary to consider the type of the
argument to ensure it is stored in the correct register in the correct format. Moving these
two arguments into register does have an advantage. The I64 calling standard requires
that the caller leave a 16 byte scratch area before stacking any extra arguments passed to
the callee. The stack locations formerly held by arguments 7 and 8 can then be used for
this region preventing the need to re-shuffle the remaining stacked arguments. For calls
with less than 8 arguments this scratch region is allocated by adjusting the stack pointer.

Once the arguments have been prepared the Alpha procedure descriptor is examined to
determine the exception mode. Depending on the value in
PDSC$V_EXCEPTION_MODE the call may pass through a wrapper that configures the
floating point status application register (as.fpsr).

The final step before making the actual call is to move the contents of the Alpha registers
R0 and R1 into their corresponding Itanium register, R8 and R9. Both of these registers
can be used by compilers to pass information between calls. R1 (R9 on the Itanium) is
often used to pass a pointer to the callers automatic storage to support uplevel references.

On returning from the native routine it is necessary to go through the process of
converting the return value to an acceptable format. For return values the Itanium
register R8 is copied into the Alpha register R0. For return values specified as
PSIG$K_FR_D64, this also means that the contents of Itanium register R9 are moved to
Alpha register R9. For all return values specified as VAX floating point they are
converted back to register format and moved from the Itanium register F8 to Alpha
register F0. For all complex values, the contents of Itanium register F9 is also moved in
to Alpha register R1. For IEEE values there is no conversion. The contents of the
Itanium registers F8 and F9 are copied to their Alpha equivalents. The register F9 is only
copied in the case of a complex result.

At this point TIE$ALPHA_TO_IPF has completed the native call. The only thing left to
do is to branch to the Alpha return address. This is done by branching to
TIE$AXP_JUMP_TO.

Native to Translated

Although branching from native code into TIE might not strictly be emulation of a JSR
instruction, it certainly needs to appear that way to the TIE. All transfers from native to
translated code should be done through the routine
OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED5. While this routine is largely a
wrapper, it is the interface used by all OpenVMS compilers. To call a native routine
without using a compiler requires the call to be coded in Itanium assembly.

To begin, OTS$CALL_PROC calls TIE$NATIVE_TO_TRANSLATED which
determines the environment it needs to transfer control to using the routine
TIE$PROC_KIND5. For calls destined for the Alpha environment this means a branch
to TIE$IPF_TO_ALPHA (for the VAX environment it is TIE$IPF_TO_VAX). This
routine is responsible for the translation of all arguments and return values when going
from native to translated code and back again. It can be thought of as the reverse of
TIE$ALPHA_TO_IPF.

TIE$IPF_TO_ALPHA begins in much the same way as TIE$ALPHA_TO_IPF. It
fetches the procedure signature and verifies it. If the signature is not found or invalid the
argument information is retrieved from the Itanium argument information register (R25).
The next step is to translate all the arguments as required. In the case of IEEE floating
point and integer values there is no change. VAX floating point numbers are converted
to register format and stored in the relevant floating point register. The 16 byte scratch
region is used again. This time it holds any values found in the last two general register
argument slots.

Once all arguments and the stack are prepared some Alpha registers are configured. The
Alpha frame pointer is set and the Alpha return address is set to a special address that
begins the process of converting return values. The contents of the Itanium registers R8
and R9 are also copied into the Alpha registers R0 and R1. The execution of the Alpha
routine is then started by branching to TIE$AXP_JUMP_TO.

On return from the Alpha routine the return values are converted back to meet the
requirements of the native OpenVMS I64 environment. This is done in much the same
way as TIE$ALPHA_TO_IPF. The final action of TIE$IPF_TO_ALPHA is to branch
back to the caller.

Routine Reference

The following are some quick notes on the calling details of the publicly defined TIE
services mentioned in this article.

5 See the section ‘Routine Reference’.

TIE$PROC_KIND

This routine determines the ‘kind’ of a procedure address. This routine is used by
OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED to determine if it should
transfer control to the TIE or not.

Parameters:
ofd.rq.v Address of an official function descriptor. For native images this

argument is the address of a function descriptor. In the case of
translated Alpha images this is the address of a procedure
descriptor. Lastly, for translated VAX images this is a pointer to
the original VAX code.

Completion Codes:
The following table describes possible return values of this function. The
symbolic names are found in [IA64_TIE]TIE_DEFS.H and not publicly available.

Value Symbolic Name Description
0 TIE$K_PROC_NATIVE Address points to a native function

descriptor.
1 TIE$K_PROC_ALPHA Address points to an Alpha

procedure descriptor.
2 TIE$K_PROC_VAX Address points to a VAX

procedure.

In the event that the function descriptor is not readable this routine will signal
TIE$_WRONG_PV.

OTS$CALL_PROC/TIE$NATIVE_TO_TRANSLATED

The routine OTS$CALL_PROC is used by all OpenVMS compilers when calling
external routines and the /TIE qualifier is active. In the event that the call is user mode
and the TIE is active (CTL$GQ_TIE_SYMVECT) is non-zero) then OTS$CALL_PROC
transfers control to TIE$NATIVE_TO_TRANSLATED (also known as
TIE$CALL_PROC).

Parameters:
p1, …pn All arguments are passed as if directly calling the routine in

question. Floating point arguments are all passed in f16-f23. All
other arguments are passed in r32-r39.

sig.rr.r Address of the call argument signature block. This provides
details of the arguments being passed. This is passed in register
r17.

ofd.rr.r The destination function descriptor. This is passed in register r18.
ai.rq.v Argument information. This is passed in through register r25.
ra.ra.v Return address. This is passed in the register b0.

In the case of calling a translated routine, registers r8 and r9 (up level
environment value) are copied into R0 and R1 of the translated environment.
They are then copied back on return.

Completion Codes:
Only the completion codes of the routine being indirectly called.

Relevant Sources

The following list comprises the source modules from the OpenVMS I64 source tree that
are discussed in this article.

 [IA64_TIE]AUX_CALLING_STANDARD.S
 [IA64_TIE]TIEDATA.H
 [IA64_TIE]TIE_CONT.C
 [IA64_TIE]TIE_CONT.H
 [IA64_TIE]TIE_DEFS.H
 [IA64_TIE]TIE_IMGSUP.C
 [IA64_TIE]TIE_JACKETS.S
 [IA64_TIE]TIE_JUMPS.S
 [LIBOTS]OTS$CALL_PROC_IA64.IAS
 [STARLET]FDSCDEF.SDL
 [STARLET]PDSCDEF.SDL
 [STARLET]PSIGDEF.SDL

For more information

Tim Sneddon can be contacted via email at tim.sneddon@bigpond.com.

For further information regarding the OpenVMS Alpha TIE and the VEST binary
translation tools, please see the following:

 Goldenburg, R., Saravanan, S., Duma, D. OpenVMS Alpha Internals and Data
Structures: Scheduling and Process Control: V7.0 (1997) Digital Press ISBN:
978-1555581565

 Sites, R. L., Chernoff, A., Kirk, M. B., Marks, M. P., Robinson, S. G. Binary
Translation, Digital Technical Journal Vol. 4 No.4 (1992)

o http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v04-04_1992.pdf

 HP OpenVMS Migration Software for VAX to Alpha Systems (OMSVA)
Documentation

o http://h71000.www7.hp.com/openvms/products/omsva/omsva.html

 For those readers with access to the OpenVMS Alpha source listings (or the
source itself), the source for the TIE$SHARE.EXE run-time library can be found
in the [TIE] facility.

mailto:tim.sneddon@bigpond.com?subject=%5bOpenVMS%20I64%20TIE%20Internals%5d:%20
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v04-04_1992.pdf
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v04-04_1992.pdf
http://h71000.www7.hp.com/openvms/products/omsva/omsva.html
http://h71000.www7.hp.com/openvms/products/omsva/omsva.html

For further information regarding the VAX architecture and instruction set, please see the
following:

 VAX Architecture Reference Manual (1991) Digital Press ISBN: 978-
1555580575

For further information regarding the OpenVMS I64 TIE and the AEST binary
translation tool, please see the following:

 HP OpenVMS Calling Standard

o http://h71000.www7.hp.com/doc/os83_index.html

 HP OpenVMS Migration Software for HP AlphaServer Systems to HP Integrity
Servers (MSAIS) Documentation

o http://h71000.www7.hp.com/openvms/products/omsva/omsais.html

 For those readers with access to the OpenVMS I64 source listings (or the source
itself), the source for the TIE$SHARE.EXE run-time library can be found in the
[IA64_TIE] facility.

For further information regarding the Alpha architecture, please see the following:

 Alpha Architecture Committee, Witek, R. T., Alpha Architecture Reference
Manual (Third Edition) (1998) Digital Press ISBN: 978-1555582029

For further information regarding the Itanium, please see the following:

 Evans, J. S., Trimper, G. L. Itanium Architecture for Programmers:
Understanding 64-bit Processors and EPIC Principles (2003) Hewlett-Packard
Books ISBN: 0-13-101372-6

 Intel® Itanium® Architecture Software Developer’s Manual (2006) Intel
Corporation

o http://www.intel.com/design/itanium/manuals/iiasdmanual.htm

For further information on the Fowler Noll Vo hashing algorithm, please see the
following:

 Wikipedia, Fowler Noll Vo hash

o http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash

 Noll, L. C., FNV hash

o http://isthe.com/chongo/tech/comp/fnv/

http://h71000.www7.hp.com/doc/os83_index.html
http://h71000.www7.hp.com/openvms/products/omsva/omsais.html
http://h71000.www7.hp.com/openvms/products/omsva/omsais.html
http://www.intel.com/design/itanium/manuals/iiasdmanual.htm
http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash
http://isthe.com/chongo/tech/comp/fnv/

OpenVMS Technical Journal V13

Trouble-shooting iCAP (Instant Capacity) on OpenVMS

Abu Sarkar

© Copyright 2009 Hewlett-Packard Development Company, L.P

Executive Summary

This white paper outlines how HP OpenVMS is embracing the utility pricing solutions
like iCAP/TiCAP/GiCAP and provides information on how to address issues in
configuring iCAP and dependent products.

The following topics are covered:

• An introduction to the utility pricing solutions offered from HP

• Configuration of iCAP and Dependent software on HP Integrity servers

• Troubleshooting

• Quick Check

• ICAP_SERVER does not start on reboot of a partition in a complex

• iCAP command does not work in a mixed environment due to HP-UX
OS upgrade

• HTTP Error (500 Internal Server Error)

© Copyright 2009 Hewlett-Packard Development Company, L.P

Introduction to the Utility Pricing Solutions offered from HP

HP Instant Capacity software provides the ability to instantly increase or decrease
computing capacity on partionable HP enterprise servers. The Instant Capacity software
provides the means to:

• Increase or decrease (load balance) system processing capacity (icapmodify command).

• View status and configuration of the system components (icapstatus command).

• Administer system identification and notification information (icapmodify command).

• If configured, send system asset reports through encrypted email to HP
(ICAP_SERVER process on OpenVMS).

• Send configuration change notification, through encrypted email, to the specified
system contact.

• Monitor and report system compliance (ICAP_SERVER process on OpenVMS).

For the OpenVMS equivalents of these commands, see DCL ICAP Commands in the
Special OpenVMS-Specific Features and Considerations section.

Note: HP Instant Capacity for HP 9000 and HP Integrity Servers, also known as Instant
Capacity or iCAP, was known in earlier versions as Instant Capacity on Demand, or
iCOD. Although the commands, warning messages and error messages refer to the
software as iCAP, some internal files might still refer to iCOD.

With Instant Capacity, you initially purchase an HP enterprise server with a specified
amount of active processing capacity, and a specified amount of inactive processing
capacity. This amount can vary based on your sales contract with HP.

Processing capacity consists of the system components:

• Processors containing cores

• Cell boards

For each type of component, the number of components that can be active is equal to the
number of usage rights applied to the complex for that type of component. Components
that are purchased with a part number identifying them as “Instant Capacity” and without
the label “Right to Use” come without usage rights. Components that are not labeled
“Instant Capacity” implicitly include usage rights that can be applied to any component
of that type that is installed on the complex.

Prior to activation of an inactive component, you must obtain additional usage rights.
The fundamental method is to purchase usage rights by purchasing the appropriate Instant
Capacity products that include the label “Right to Use (RTU)”. HP then supplies an RTU
codeword. When the codeword is applied to the HP enterprise server, the inactive
component can be activated.

Additional methods for activating components for which usage rights have not been
purchased include:

© Copyright 2009 Hewlett-Packard Development Company, L.P

• If a server is a member of a Global Instant Capacity (GiCAP) group, and if extra
capacity is available from other members of the group, capacity can be “borrowed” from
another member of the group.

• You can purchase additional temporary capacity and apply the Temporary Instant
Capacity (TiCAP) codeword in order to activate one or more cores temporarily. If a
server is a member of a GiCAP group, temporary capacity can be shared among
members of the group.

• You can temporarily activate one or more inactive cores using the Instant Access
Capacity (IAC) provided with the initial purchase of the Instant Capacity component.
Instant Access Capacity is the same as TiCAP except it is automatically provided with
an Instant Capacity component and cannot be purchased separately. It provides an
immediate buffer of temporary capacity in case extra capacity is needed before there is
time to purchase an RTU or a TiCAP codeword.

Note: It is always a good idea to keep some quantity of temporary capacity in reserve.
Purchase of codewords may take one or more days, so having a buffer of temporary
capacity allows you to avoid delays in activation of additional cores. Instant Access
Capacity provides this buffer initially, but as that capacity is depleted, ongoing purchases
of additional temporary capacity are recommended to replenish it. Global Instant
Capacity features, including the use of the icapmanage command, are not supported on
OpenVMS.

Instant Capacity Software in Virtual Environment

Instant Capacity must be run on a partitionable system. In an Integrity Virtual
Machine (VM) environment, Instant Capacity software provides meaningful
functionality only on the VM Host system; it does not run on a virtual machine (also
known as a “guest”).

Utility Pricing Solutions Portal

The Utility Pricing Solutions (or Instant Capacity) portal is located at the HP web site:
http://www.hp.com/go/icap/portal
After you purchase a component without usage rights, HP sends you a letter containing
instructions on how to obtain an RTU codeword from the Utility Pricing Solutions portal.

Instant Capacity Administration System

If asset reporting is configured, the ICAP_SERVER process sends asset reports, in the
form of encrypted email messages, to the Instant Capacity Administration System, which
saves information in the Instant Capacity database.

Instant Capacity Database

The Instant Capacity database is a repository on an HP (internal) corporate server that
tracks system resources and provides the information for codeword generation. Note that

http://www.hp.com/go/icap/portal

© Copyright 2009 Hewlett-Packard Development Company, L.P

this database should not be confused with a Global Instant Capacity database, which is
created on a customer Group Manager system.

Fig: Instant Capacity System Elements

Special OpenVMS-Specific Features and Considerations

Core Activation and Deactivation

The ICAP command or the corresponding HP-UX foreign commands must be used on
OpenVMS systems when stopping and starting CPUs in complexes containing iCAP
components. To start cores on OpenVMS, use the ICAP ACTIVATE/CPU= command.

© Copyright 2009 Hewlett-Packard Development Company, L.P

To stop cores on OpenVMS, use the ICAP DEACTIVATE/CPU= command. HP
recommends not to use START /CPU and STOP /CPU command or the corresponding
system services in order to start or stop processor resources in an iCAP complex. When
you enter the START /CPU command on an OpenVMS system in a complex containing
iCAP resources, the ICAP_SERVER process validates that the start operation does not
take the complex out of compliance. When you enter the STOP /CPU command, the CPU
might restart at a later time if the count of intended active cores on the system is greater
than the actual active cores. Using the START /CPU command can result in unintended
consequences, such as an unexpected usage of temporary capacity or the deactivation of
cores on the system or on another system in the complex. Using the STOP /CPU
command can result in an unexpected restart of the core or the unexpected start of a core
in another system in the complex.

Email Considerations

The iCAP software requires that SMTP mail be configured on the OpenVMS system to
send email to the system contact. For more information about setting up SMTP mail, see
your IP provider’s documentation.

Time zone Considerations

On OpenVMS systems, the ICAP_SERVER process performs routine Instant Capacity
software tasks on a daily basis. A partition’s local time zone setting affects what time
zone the ICAP_SERVER process uses for the timing of these tasks. Be sure that the time
zone is set properly to ensure synchronization among the partitions.

On OpenVMS systems, the ICAP_SERVER uses the time zone settings defined by the
SYS$STARTUP:TDF$UTC_STARTUP.COM file.

To view the time zone settings, enter the command
$ @sys$manager:utc$time_setup “show”

Enter the command
$ @sys$manager:utc$time_setup

and follow the menu instructions to modify the time zone setting for the iCAP partition.

Restrictions

 Instant Capacity software on OpenVMS Version 8.3-1H1 does not support HP
virtual partitioning (vPars) since OpenVMS itself doesn’t support vPars.

 Global Instant Capacity features, including the use of the icapmanage command,
are not supported on OpenVMS.

 Instant Capacity on OpenVMS does not support internationalization. Only
English language support is provided.

 LPMC and HPMC are not available on OpenVMS systems.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Removing Instant Capacity Software

To participate in the Instant Capacity version 9.x program, you must comply with the
following conditions of the HP Utility Pricing Solutions program:
• Maintain the HP Instant Capacity software on each HP-UX or OpenVMS partition in
the system. The Instant Capacity software is a nonintrusive, low-overhead software
module that resides on the partition.

• Migrate to later Instant Capacity software versions as they become available. For
specifics about your individual program requirements, see the Utility Pricing Solutions
contract from HP or your authorized channel partner.

NOTE: HP recommends that you do not remove the Instant Capacity software.
Participants in the Utility Pricing Solutions program who do not meet these requirements
may be in breach of contract. This can result in unnecessary expense for both the program
participant and HP.

Configuration of iCAP and Dependent software on HP

Integrity servers

iCAP Product Versions and Supported Platforms

The table lists the current versions of Instant Capacity and the platforms supported for
each version.

Special Requirements

Installation disk of all the products (including the dependency products & patches) should
be ODS-5 formatted since UNIX-style file names are used in some cases, which is not
supported on ODS-2 formatted disks.

Dependency Products

• HP TCP/IP Services of OpenVMS (ECO2 is required for TCP/IP Services Versions
5.5 and 5.6)

• HP SSL V1.3
• HP WBEM Services V2.61

© Copyright 2009 Hewlett-Packard Development Company, L.P

Please do maintain the order of installation of the dependency products as mentioned
above.

Required Patches

• HP I64VMS VMS831H1I_PCSI V1.0,
• HP I64VMS VMS831H1I_UPDATE V2.0.

Note: Please do maintain the order of installation of the patches as mentioned above since
the later is dependent on the previous one. It is recommended to upgrade your system
with the latest SYS and UPDATE patches. Update patches make functional changes to
the system and requires reboot in order to have the images in the kit to fully take effect.
The patches could be downloaded from the hp ITRC site.

Compatibility Matrix

Operating System/Patch version WBEM Services version iCAP version
HP I64VMS OPENVMS V8.3-
1H1

HP I64VMS WBEMCIM V2.61-
A070728

iCAP B.08.02

VMS831H1_ICAP-V0200 ECO
kit (releasing shortly)

HP I64VMS WBEMCIM V2.91-
A090219

iCAP B.08.02

Note that not all the WBEM Services versions are compliant with the iCAP software.

Installation & Configuration of WBEM Services for

OpenVMS

WBEM Services for OpenVMS is installed automatically with OpenVMS. As with other
similar products, an OpenVMS upgrade does not automatically include WBEM Services
for OpenVMS if it is not already installed on the target system disk. In this case, you
must install the product separately using the PCSI PRODUCT INSTALL command. You
must configure WBEM Services for OpenVMS to obtain the services provided by HP
SIM (Version 5.2 or later) and products such as Instant Capacity, and gWLM. To provide
services over the network, HP recommends using TCP/IP Services for OpenVMS and
SSL (for security purposes).

Before configuring WBEM Services for OpenVMS, configure TCP/IP Services for
OpenVMS. For information about configuring TCP/IP Services for OpenVMS, see
Section 7.7.5 (page 122) of
HP OpenVMS Version 8.3-1H1 for Integrity Servers Upgrade and Installation Manual.

To configure WBEM Services for OpenVMS on a system on which WBEM Services for
OpenVMS has never been installed and configured, follow the steps described in Section
4.1. If you are configuring the product on a system on which it has been configured
previously, see Section 4.2.

ftp://ftp.itrc.hp.com/openvms_patches/i64/V8.3-1H1/
http://docs.hp.com/en/BA322-90077/BA322-90077.pdf

© Copyright 2009 Hewlett-Packard Development Company, L.P

For more information about HP WBEM products, see the following website:
http://www.hp.com/go/wbem.

Configuring WBEM Services for OpenVMS (Where Not Configured

Previously)

To configure WBEM Services for OpenVMS on a system for the first time, follow these
steps:

1. Enter the following command
$ RUN SYS$SYSROOT:[WBEM_SERVICES]WBEM_SERVICES$CONFIG

This command invokes the utility that configures and initializes the environment for
WBEM Services for OpenVMS.

2. After displaying the initial configuration utility banner, the utility informs you where it
will store the configuration files and repository and asks if you want to change the
location.

The configuration files and repository will be placed in the following location:
SYS$SPECIFIC:[WBEM_Services].

Do you want to change this location (Yes/No) [No]?:

Note: The repository, a compiled version of the Common Information Model (CIM) class
schema, requires an ODS-5 formatted disk (the repository uses UNIX-style file names,
which are not supported on ODS-2 formatted disks). If the default location is on an ODS-
2 formatted disk, you must change the location to an ODS-5 disk.

When you accept the default location, the utility informs you that all configuration
questions have been answered and asks whether you want to continue, as shown in the
following example. If you choose to continue, the utility creates the CIMSERVER
repository tree in the location indicated earlier. The CIMSERVER is the WBEM Services
for OpenVMS process that runs on the system to support certain applications. It also
creates the following command files:

SYS$STARTUP:WBEM_Services$Startup.com
SYS$STARTUP:WBEM_Services$Shutdown.com
SYS$SYSROOT:[WBEM_SERVICES]WBEM_Services$Define_Commands.com

The SYS$STARTUP:WBEM_Services$Startup.com file defines system logicals
for the WBEM Services for OpenVMS environment.

All configuration questions have been answered.

Do you want to continue (Yes/No) [YES]?:
%WBEMCONFIG-I-CREREPBEGIN, Create Repository Begins...
%WBEMCONFIG-I-CREREPCOMPLETE, Create Repository Complete.

http://www.hp.com/go/wbem

© Copyright 2009 Hewlett-Packard Development Company, L.P

This utility creates:
SYS$STARTUP:WBEM_Services$Startup.com

which should be added to SYS$STARTUP:SYSTARTUP_VMS.COM.

This utility creates:
SYS$STARTUP:WBEM_Services$Shutdown.com

which should be added to SYS$STARTUP:SYSHUTDWN.COM.

This utility creates:
SYS$SYSROOT:[wbem_services]WBEM_Services$Define_Commands.com

which users who use this product can add to their login.com.

3. The utility asks whether to start the CIMSERVER:

Do you want to start the CIMServer now (Yes/No) [Yes]?:

CIMSERVER must be running so that your system can use such applications as Instant
Capacity, and gWLM. You can start CIMSERVER now, or you can perform other post-
installation or post-upgrade tasks first and then start CIMSERVER. If you choose to start
CIMSERVER now, the utility displays the progress and operating system information, as
in the following example:

%RUN-S-PROC_ID, identification of created process is 21A00599
%WBEMCIM-I-STARTUPWAIT, Waiting for CIMServer to start... 120 seconds
remaining.
%WBEMCIM-S-CSSTARTED, CIMServer successfully started.
OperatingSystem Information

Host: boston.hp.com
Name: OpenVMS
Version: V8.3-1H1
UserLicense: Unlimited user license
Number of Users: 1 users
Number of Processes: 29 processes
OSCapability: 64 bit
LastBootTime: Jul 31, 2007 10:52:55 (-0400)
LocalDateTime: Aug 3, 2007 10:14:58 (-0400)
SystemUpTime: 256923 seconds = 2 days, 23 hrs, 22 mins, 3 secs

4. To ensure that CIMServer starts automatically at each reboot, add the following line to
the

SYS$MANAGER:SYSTARTUP_VMS.COM file:
$ @SYS$STARTUP:WBEM_Services$Startup.com

To have CIMServer shut down automatically with the operating system, add the
following line to the SYS$MANAGER:SYSSTARTUP:SYSHUTDWN.COM file:

$ @SYS$STARTUP:WBEM_Services$Shutdown.com

All users who use this product should also add the following line to their LOGIN.COM
file:
$ @SYS$STARTUP:WBEM_Services$Define_Commands.com

© Copyright 2009 Hewlett-Packard Development Company, L.P

5. In an OpenVMS Cluster, each member that runs WBEM Services for OpenVMS needs
its own repository. Therefore, you must perform the WBEM Services for OpenVMS
configuration procedure on each of those cluster members.

Configuring WBEM Services for OpenVMS (Where Configured

Previously)

To configure WBEM Services for OpenVMS on a system where it has been configured
previously, follow these steps:

1. Enter the following command
$ RUN SYS$SYSROOT:[WBEM_SERVICES]WBEM_SERVICES$CONFIG

This command starts the utility that configures and initializes the environment for
WBEM Services for OpenVMS.

If the WBEM Services for OpenVMS product (Version 2.0) available with OpenVMS
I64 Version 8.3 is already configured on your system, the following error message and
the recommended remedial actions appear:

%WBEMCONFIG-E-SYSCOMMONLOGICAL, WBEM_VAR can no longer be defined to
point to a location in SYS$COMMON. The repository files in WBEM_VAR
should not be shared with other cluster members.

Follow these manual steps to move the repository out of the SYS$COMMON area and
complete the post installation configuration tasks:

 Delete the sys$common:[WBEM_Services.var...] directory tree.
 Deassign the WBEM_VAR system logical.
 Run this procedure again.

Perform the recommended steps, as in the following example:

$ DELETE SYS$COMMON:[WBEM_SERVICES.VAR]*.*;*
$ DELETE SYS$COMMON:[WBEM_SERVICES]VAR.DIR;*
$ DEASSIGN/SYS WBEM_VAR
$ RUN SYS$SYSROOT:[WBEM_SERVICES]WBEM_SERVICES$CONFIG

After you start the configuration procedure, go to Section A and follow the steps
described there, starting with step 2.

2. After displaying the initial configuration utility banner, the utility informs you where it
will store the configuration files and repository and asks if you want to change the
location.

The configuration files and repository will be placed in the following location:

© Copyright 2009 Hewlett-Packard Development Company, L.P

SYS$SPECIFIC:[WBEM_Services].

Do you want to change this location (Yes/No) [No]?:

The repository is a compiled version of the CIM class schema. This example assumes
you accept the current location.

3. As shown in the following example, the utility informs you that all configuration
questions have been answered and asks whether you want to continue.

If the utility determines that the repository schema has not changed, the utility informs
you and continues. The utility does not need to upgrade the repository.

If the utility determines that the current repository needs upgrading, or if the utility does
not find a repository (perhaps WBEM Services for OpenVMS had been installed but not
configured), the utility displays a message informing you that the repository will be
upgraded or created and that this will take 10 to 15 minutes depending on your processor
and disk I/O speed. In the following example, the utility needs to create the repository
tree.

The utility also creates the SYS$STARTUP:WBEM_Services$Startup.com,
SYS$STARTUP:WBEM_Services$Shutdown.com, and
SYS$SYSROOT:[WBEM_SERVICES]WBEM_Services$Define_Commands.com command
files. The SYS$STARTUP:WBEM_Services$Startup.com file defines system logicals for
the WBEM Services for OpenVMS environment.

All configuration questions have been answered.

Do you want to continue (Yes/No) [Yes]?:

%WBEMCONFIG-I-CREREPBEGIN, Create Repository Begins...
%WBEMCONFIG-I-CREREPCOMPLETE, Create Repository Complete.
This utility creates:

SYS$STARTUP:WBEM_Services$Startup.com
which should be added to SYS$STARTUP:SYSTARTUP_VMS.COM.

This utility creates:
SYS$STARTUP:WBEM_Services$Shutdown.com

which should be added to SYS$STARTUP:SYSHUTDWN.COM.

This utility creates:
SYS$SYSROOT:[wbem_services]WBEM_Services$Define_Commands.com

which users who use this product can add to their login.com.

4. The utility now asks you whether to start the CIMSERVER:

Do you want to start the CIMServer now (Y/N) {Y}?:

CIMSERVER must be running so that your system can use such applications as Instant
Capacity, Pay per use, and gWLM. You can start CIMSERVER now, or you can perform
other post-installation or post-upgrade tasks first and then start CIMSERVER. If you

© Copyright 2009 Hewlett-Packard Development Company, L.P

choose to start CIMSERVER now, the utility displays the progress and operating system
information, as in the following example:

%RUN-S-PROC_ID, identification of created process is 21A00599
%WBEMCIM-I-STARTUPWAIT, Waiting for CIMServer to start... 120 seconds
remaining.
%WBEMCIM-S-CSSTARTED, CIMServer successfully started.
OperatingSystem Information

Host: boston.hp.com
Name: OpenVMS
Version: V8.3-1H1
UserLicense: Unlimited user license
Number of Users: 1 users
Number of Processes: 29 processes
OSCapability: 64 bit
LastBootTime: Jul 31, 2007 10:52:55 (-0400)
LocalDateTime: Aug 3, 2007 10:14:58 (-0400)
SystemUpTime: 256923 seconds = 2 days, 23 hrs, 22 mins, 3 secs

5. To ensure that CIMSERVER starts automatically at each reboot, add the following line
to the

SYS$MANAGER:SYSTARTUP_VMS.COM file:
$ @SYS$STARTUP:WBEM_Services$Startup.com

To have CIMServer shut down automatically with the operating system, add the
following line to the SYS$MANAGER:SYSSTARTUP:SYSHUTDWN.COM file:

$ @SYS$STARTUP:WBEM_Services$Shutdown.com

All users who use this product should also add the following line to their LOGIN.COM
file:
$ @SYS$STARTUP:WBEM_Services$Define_Commands.com

6. In an OpenVMS Cluster, each member that will run WBEM Services for OpenVMS
needs its own repository. Therefore, you must perform the WBEM Services for
OpenVMS configuration procedure on each of those cluster members.

NOTE: HP recommends that you do not remove the WBEM Services for OpenVMS
product even if you do not have a need for it. If you attempt to use the PRODUCT
REMOVE command to remove this product, you might see a message similar to the
following. This message is automatically displayed for any product that is required with
OpenVMS. The consequences of removing WBEM Services for OpenVMS might not be
as severe as implied by the message unless other software is using the product on your
server.

%PCSI-E-HRDREF, product HP I64VMS WBEMCIM V2.61 is referenced by HP
I64VMS OPENVMS V8.3-1H1

The two products listed above are tightly bound by a software
dependency.

If you override the recommendation to terminate the operation, the

© Copyright 2009 Hewlett-Packard Development Company, L.P

referenced product will be removed, but the referencing product will
have an unsatisfied software dependency and may no longer function
correctly.

Please review the referencing product’s documentation on
requirements.

Answer YES to the following question to terminate the PRODUCT
command.

However, if you are sure you want to remove the referenced product
then answer NO to continue the operation.

Terminating is strongly recommended. Do you want to terminate? [YES]

Installation & Configuration of Instant Capacity (iCAP) on

OpenVMS Systems

Post installation & configuration of OpenVMS V8.3-1H1, WBEMCIM V2.61-A070728
kits, install the following update patches with /SAVE_RECOVERY_DATA qualifier (so
that in case of the patches not functioning properly, we can revert to the previous state) in
the order mentioned below and reboot the system.

HP I64VMS VMS831H1I_PCSI V1.0
HP I64VMS VMS831H1I_UPDATE V2.0

The above-mentioned OpenVMS V8.3-1H1 patches need to be installed for the following
fixes:

 nPAR Provider fix for dynamic profile write error;
 C Runtime Library channel leak fix;
 iCAP and nPAR fixes to support Hyperthreading on Montecito.

NOTE: Update patches make functional changes to the system and requires reboot in
order to have the images in the kit to fully take effect.

This kit will make functional changes to your system.
Before installing this kit you should make a backup
copy of your system disk. If you do not make a copy
of your system disk you will not be able to restore
your system to a pre-kit installation state.

Do you want to continue? [YES]

Installing this patch kit requires a reboot.

Hewlett Packard strongly recommends that you reboot your
system immediately after installation of this kit. The
images in this kit will not fully take effect until the
system is rebooted. However, if you do not re-boot
immediately after kit installation, the system may become
unstable and may not function as expected.

© Copyright 2009 Hewlett-Packard Development Company, L.P

If you have other nodes in your VMS cluster, they must also
be rebooted in order to make use of the new image(s). If it
is not possible or convenient to reboot the entire cluster
at this time, a rolling re-boot (kit installation and reboot
on one node at a time) may be performed.

Before configuring the iCAP software, start the CIMSERVER process by executing the
following command procedure:

$ @SYS$STARTUP:WBEM_Services$Startup.com

Define the WBEM Services logical with the following command:

$ @SYS$COMMON:[WBEM_SERVICES]WBEM_Services$Define_Commands.com

Ensure that the CIM Server is running and verify the list of Providers installed by
entering the following command:

$ CIMPROVIDER -L -S

An output similar to the following is displayed:

MODULE STATUS
OperatingSystemModule OK
ComputerSystemModule OK
ProcessModule OK
ProcessorProviderModule OK
IPProviderModule OK

Execute the following command procedure in order to configure the iCAP software:

$ @SYS$MANAGER:ICAP$CONFIG.COM

Note that, this procedure will stop and restart the CIMSERVER process during the
configuration. The procedure will enquire if you want to configure GiCAP (Answer NO
since GiCAP is not supported on OpenVMS V8.3-1H1), system-contact’s e-mail address,
configuration change notification and start the iCAP software.

A sample configuration output is provided below for your reference:

$ @SYS$MANAGER:ICAP$CONFIG.COM

hp OpenVMS Industry Standard 64

Instant Capacity on Demand (iCAP) configuration utility

**************** W A R N I N G ****************

This procedure stops and restarts the CIMSERVER
process. ALL WBEM provider modules will be

© Copyright 2009 Hewlett-Packard Development Company, L.P

unavailable for a short period of time during the
configuration.

**************** W A R N I N G ****************

%DCL-I-SUPERSEDE, previous value of SRC_MOF$ has been superseded
%ICAP-I-CHECK, Checking for iCAP configuration requirements
%ICAP-I-CHEDONE, Check Done requirements OK

Are you satisfied with the backup of your WBEMCIM repository (Yes/No)?:
y
%ICAP-I-UNREGNPAR, Unregistering at 30-OCT-2008 08:04:57.32
Disabling provider module...
Provider module disabled successfully.
Deleting provider module...
Provider module deleted successfully.
Disabling provider module...
Provider module disabled successfully.
Deleting provider module...
Provider module deleted successfully.
Disabling provider module...
Provider module disabled successfully.
Deleting provider module...
Provider module deleted successfully.
Disabling provider module...
Provider module disabled successfully.
Deleting provider module...
Provider module deleted successfully.
%ICAP-I-UNREGDON, Unregistering iCAP/nPAR modules done at 30-OCT-2008
08:05:47.90
%ICAP-I-STOPCIM, Stopping the cimserver process.
%WBEMCIM-I-SHUTDOWN, Shutting down WBEM Services for OpenVMS......
%WBEMCIM-I-SHUTDOWNPROV, Shutting down WBEM Providers...
%WBEMPROVIDERS-I-SHUTDOWN, Info:Shutting down WBEMPROVIDERS.
%WBEMCIM-I-SHUTDOWNCS, Shutting down CIMServer.exe...
CIM Server stopped.
%WBEMCIM-I-CSEXITSTS, CIMServer.exe exit status=%X00000001.
%ICAP-I-RESCIM, Restarting the cimserver process.
%RUN-S-PROC_ID, identification of created process is 00000474
%WBEMCIM-I-STARTUPWAIT, Waiting for CIMServer to start... 120 seconds
remaining.
%WBEMCIM-S-CSSTARTED, CIMServer successfully started.
OperatingSystem Information

Host: part0.ind.hp.com
Name: OpenVMS
Version: V8.3-1H1
UserLicense: Unknown
Number of Users: 1 users
Number of Processes: 18 processes
OSCapability: 64 bit
LastBootTime: Oct 30, 2008 6:33:16 (00000)
LocalDateTime: Oct 30, 2008 2:36:04 (00000)
SystemUpTime: 4294953064 seconds = 49710 days, 2 hrs, 31 mins, 4 secs

%WBEMCIM-I-STARTPROV, Starting WBEM Providers...
%WBEMPROVIDERS-I-STARTING , Info:Starting WBEMPROVIDERS.
%WBEMPROVIDERS-I-WAIT, Info:Waiting for 1 Minute for the Inventory to
Initialize

© Copyright 2009 Hewlett-Packard Development Company, L.P

%RUN-S-PROC_ID, identification of created process is 00000475
%iCAP-I-CRENAM, Creating root/cimv2/npar namespace
%ICAP-I-BEGUPDREP, Begin updating WBEMCIM repository at 30-OCT-2008
08:07:20.49

%ICAP-I-ENDUPDREP, End updating WBEMCIM repository at 30-OCT-2008
08:08:44.58
%ICAP-I-REGNPAR, Registering iCAP Mofs at 30-OCT-2008 08:08:44.58

%ICAP-I-REGDone, Registering iCAP Mofs Done at 30-OCT-2008 08:09:24.46
Registering iCAP Command Language Definition file...
Command Language Definition file successfully registered
Enter (Y)es to configure this system with GiCAP support (N):
Would you like to set the System-Contact's E-mail Address? (Y/N): y
Enter the System-Contact's E-mail Address: xyz@hp.com

The contact e-mail address has been set to xyz@hp.com.

Would you like to turn configuration change notification on? (Y/N): y
Configuration change notification has been turned on.

Would you like to start the iCAP software now? (Y/N): y
%RUN-S-PROC_ID, identification of created process is 00000480

%ICAP-I-EXIT, Exiting ICAP configuration elapsed time 0:05:40.64

Check if all the iCAP related Providers are installed and running by entering the
following command:

$ CIMPROVIDER -L -S

An output similar to the following is displayed:

MODULE STATUS
OperatingSystemModule OK
ComputerSystemModule OK
ProcessModule OK
ProcessorProviderModule OK
IPProviderModule OK
HP_NParProviderModule OK
HP_iCODProviderModule OK
HP_iCAPProviderModule OK
HP_GiCAPProviderModule OK

To verify that the Instant Capacity software is installed and configured, run the following
OpenVMS commands:

$ @SYS$MANAGER:ICAP$CLI_UTILS.COM CONFIG_CHECK
$ show log ICAP$CONFIGURED
"ICAP$CONFIGURED" = "TRUE" (LNM$JOB_nnnnnnnn)

© Copyright 2009 Hewlett-Packard Development Company, L.P

Troubleshooting

 Quick Check

 ICAP_SERVER doesn’t start on reboot of a partition in a complex

 iCAP command doesn’t work in a mixed environment due to HP-UX OS upgrade

 HTTP Error (500 Internal Server Error)

Quick Check

Check if the WBEM Services is running and all the iCAP related providers are
configured with the following commands:

$ SHOW SYSTEM/PROCESS=CIMSERVER

An output similar to the following is displayed:

OpenVMS V8.3-1H1 on node PART0 25-FEB-2009 03:26:56.17 Uptime 12
01:34:27

Pid Process Name State Pri I/O CPU Page flts
Pages
00000C42 CIMSERVER HIB 10 1041866 0 00:07:00.87 7572
4259 M

$ @SYS$COMMON:[WBEM_SERVICES]WBEM_SERVICES$DEFINE_COMMANDS.COM
$ CIMPROVIDER -L -S

An output similar to the following is displayed:

MODULE STATUS
OperatingSystemModule OK
ComputerSystemModule OK
ProcessModule OK
ProcessorProviderModule OK
IPProviderModule OK
HP_NParProviderModule OK << needed by icap
HP_iCODProviderModule OK << needed by icap
HP_iCAPProviderModule OK << needed by icap
HP_GiCAPProviderModule OK << needed by icap (for GiCAP
functionality)

Verify that the Instant Capacity software is installed and configured, run the following
OpenVMS commands:

$ SHOW SYSTEM/PROCESS=ICAP_SERVER

An output similar to the following is displayed:

OpenVMS V8.3-1H1 on node PART0 25-FEB-2009 03:28:44.19 Uptime 12
01:36:15

Pid Process Name State Pri I/O CPU Page flts
Pages

© Copyright 2009 Hewlett-Packard Development Company, L.P

00000471 ICAP_SERVER HIB 10 465890 0 00:01:07.25 1408
1894

$ @SYS$MANAGER:ICAP$CLI_UTILS.COM CONFIG_CHECK
$ show log ICAP$CONFIGURED
"ICAP$CONFIGURED" = "TRUE" (LNM$JOB_nnnnnnnn)

ICAP_SERVER Does not Start on Reboot of a Partition in a Complex

ICAP_SERVER process should start automatically post reboot of a partition in a
complex; it takes a few minutes, as it needs to wait for ERRFMT to write some data.
Wait for a few minutes, even after that if ICAP_SERVER doesn’t get started, then check
if the HP TCP/IP & HP WBEMCIM services is configured properly and running. HP
TCP/IP & HP WBEMCIM services should be running post reboot in order to run the
ICAP_SERVER. Ensure that the following lines are appended to the
SYS$STARTUP:SYSTARTUP_VMS.COM file in order get the HP TCP/IP & HP
WBEMCIM services started automatically post reboot.

$ @SYS$STARTUP:TCPIP$STARTUP.COM
$ @SYS$STARTUP:WBEM_Services$Startup.com

iCAP Command Does not Work in a Mixed Environment due to HP-

UX OS Upgrade

Customer might find some OPCOM messages like “failed to update the dynamic profile”
displayed on the VMS partition for all iCAP commands after a HP-UX partition was
upgraded. Prior to upgrading, customer is advised to read the documentation and if it
states that all partitions must be upgraded, they should contact HP to validate if the HP-
UX patch is compatible with the VMS version.

HTTP Error (500 Internal Server Error)
$ icap show status
ERROR: The following low-level error occurred:

HTTP Error (500 Internal Server Error).

This error typically occurs when the CIMSERVER process has exhausted some resource.
Pagefile quota and i/o channels are two resources that have had problems in the past. If
this error is seen the CIMSERVER process should be examined with $ SHOW
PROCESS /CONTINUOUS hit <Q> command. The i/o channels in use can be examined
using SDA.

If CIMSERVER runs out of channel than a newer version of DECC$SHR.EXE is
needed.

© Copyright 2009 Hewlett-Packard Development Company, L.P

If the CIMSERVER process "Total number of channels" assigned is very close to the
sysgen paramter CHANNELCNT, the CIMSERVER will loop or hang. As a workaround
customer is advised to stop and restart the CIMSERVER.

CLI Support on OpenVMS

OpenVMS provides a CLI (command-line interface) to the Instant Capacity software.
The HP-UX command syntax can be implemented using foreign command symbols. The
DCL ICAP command provides DCL command support.

HP-UX Style Commands

The HP-UX command syntax can be used on OpenVMS systems by defining foreign
command symbols to the iCAP images. Add the following three symbol declarations to
your LOGIN.COM file or to the SYLOGIN file to define commands that use the HP-UX
syntax:

$ icapmodify :== $ICAP_MODIFY
$ icapnotify :== $ICAP_NOTIFY
$ icapstatus :== $ICAP_STAT

Command options are specified as described in the HP-UX documentation for each
command.

OpenVMS Command Mapping

The following table shows the HP-UX iCAP commands and their OpenVMS equivalents.

Table: HP-UX and OpenVMS Command Equivalents

© Copyright 2009 Hewlett-Packard Development Company, L.P

DCL ICAP Commands

The ICAP command supports six command options to perform iCAP operations on
OpenVMS systems.

ICAP ACTIVATE

Name
ICAP ACTIVATE - Immediately activates additional cores on the system. (HP-UX
equivalent: icapmodify –a)

Format
ICAP ACTIVATE /CPU=n [/DEFER] [/TICAP]

© Copyright 2009 Hewlett-Packard Development Company, L.P

Qualifiers
/CPU=n Specifies the number of additional cores to activate. This qualifier is required.
[/DEFER] Defers the activation until the next reboot. (HP-UX equivalent: -D option)
[/TICAP] Authorize the use of temporary capacity to satisfy this activation request.
(HP-UX equivalent: -t option)

ICAP APPLY
Name
ICAP APPLY - Apply an iCAP codeword. (HP-UX equivalent: icapmodify –C)

Format
ICAP APPLY "codeword"

Parameter
"codeword" An iCAP codeword obtained from the HP Utility Pricing Solutions
portal. Enclose the codeword in double quotation marks.

ICAP DEACTIVATE
Name
ICAP DEACTIVATE - Deactivates cores on the system. (HP-UX equivalent:
icapmodify –d)

Format
ICAP DEACTIVATE /CPU=n [qualifiers]

Qualifiers
/CPU=n Specifies the number of cores to deactivate. This qualifier is required.
/DEFER Defers the deactivation until the next shutdown. (HP-UX equivalent: -D
option)

ICAP RECONCILE
Name
ICAP RECONCILE - Activates or deactivates cores (subject to compliance limits) to
bring the system to a state where the intended active number of cores are active.
(HP-UX equivalent: icapmodify –r)

Format
ICAP RECONCILE

ICAP SET
Name
ICAP SET - Sets various iCAP management variables.

Format

© Copyright 2009 Hewlett-Packard Development Company, L.P

ICAP SET parameter [qualifiers]

Parameters
ACTIVE_CPU Sets the number of active cores and the number of intended active
cores.

(HP-UX equivalent:icapmodify –s)

Format
ICAP SET ACTIVE_CPU count

Value
count: the number of cores to set active in the npartition.

ASSET Sets the asset reporting email on or off.
(HP-UX equivalent: icapnotify –a)

Format
ICAP SET ASSET [qualifier]

Qualifiers
/STATE=state: specify ON or OFF for the state qualifier value.

EMAIL Sets the system contact email addresses.
(HP-UX equivalent: icapmodify -c)

Format
ICAP SET EMAIL qualifiers

Qualifiers
/CONTACT: The email address that receives the configuration
change notifications and exception reports.
/FROM: The From address for the email sent from the iCAP

system.

NOTIFICATION Sets the iCAP change configuration email notifications on or off.
(HP-UX equivalent: icapnotify –n)

Format
ICAP SET NOTIFICATION [qualifier]

Qualifiers
/STATE=state: specify ON or OFF for the state qualifier

value.

© Copyright 2009 Hewlett-Packard Development Company, L.P

SYSTEM_ID Sets the system identification used for iCAP asset
reporting.

(HP-UX equivalent: icapmodify –I)

Format
ICAP SET SYSTEM_ID “id”

Value
id: A user-defined string to identify this system when tracking or
reporting usage. Specify a null string ("") to set the system ID to
the default value. The default value is the local hostname.

WARNING_DAYS Sets the temporary capacity warning period to the number of days
specified.

(HP-UX equivalent: icapmodify –w)

Format
ICAP SET WARNING_DAYS days

Value
days: the number of days of temporary capacity before temporary
capacity expiration warning email is sent to the system contact.

ICAP SHOW

Name
ICAP SHOW - Show the status and settings of the iCAP software on the OpenVMS
system.
(HP-UX equivalent: icapstatus)

Format
ICAP SHOW STATUS [qualifiers]

Parameter
STATUS Show the iCAP status and system settings to the standard output device.

Qualifiers
/SNAPSHOT Creates a string of snapshot information containing encrypted audit data
and
displays the string to the standard output device. (HP-UX equivalent: icapstatus –s
)

ICAP_SERVER

Name
ICAP_SERVER - iCAP server process.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Description
The ICAP_SERVER process performs the same functions as the icapd daemon process
on HP-UX systems. For more information, see the HP-UX icapd manpage. To ensure
compliance, the ICAP_SERVER is always running on OpenVMS systems in an iCAP
complex.

For more information, refer the HP Instant Capacity User's Guide for Versions 8.x.

Reference Documentation

The following list provides links to some references:

 HP OpenVMS Version 8.3-1H1 for Integrity Servers Upgrade and Installation Manual.
 HP WBEM products

 HP Utility Pricing Solutions portal
HP Instant Capacity User's Guide for Versions 8.x

http://docs.hp.com/en/B9073-90183/B9073-90183.pdf
http://docs.hp.com/en/BA322-90077/BA322-90077.pdf
http://www.hp.com/go/wbem
http://www.hp.com/go/icap/portal
http://docs.hp.com/en/B9073-90183/B9073-90183.pdf

© Copyright 2009 Hewlett-Packard Development Company, L.P

OpenVMS Technical Journal V13

A Starlet1 is Born: New Options for VAX and Alpha
Hardware Replacement

Camiel Vanderhoeven, Hardware Illusionist

1 Starlet was the code name for the program that developed the VMS operating system. See the OpenVMS Wikipedia entry

http://en.wikipedia.org/wiki/OpenVMS) for additional information.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Introduction

Those who are looking for options to replace aging VAX and Alpha hardware should be
aware of the arrival of a new player in the field. Migration Specialties International, a
respected OpenVMS consulting firm that is well known for its legacy hardware
replacement options, RPG compiler and other migration aids, has teamed up with a
number of partners to deliver its own suite of software-based VAX and Alpha hardware
emulators.

For this suite of emulators, we’ve defined an underlying architecture that will allow us to
add different emulated systems and options to the suite with an unprecedented degree of
flexibility.

This article, written by the lead architect, will focus on the internal architecture designed
to support these new emulators.

Goals

We will create a software platform that can virtualize a variety of Alpha and VAX
hardware. We want to be able to emulate enough different systems to provide viable
alternatives to any existing hardware configuration, including multi-CPU systems.

Our emulators will support OpenVMS (VAX and Alpha emulators) and Digital
UNIX/Tru64 UNIX (Alpha emulators only) as operating systems running on top of the
virtual hardware.

Our emulators will be hosted on Integrity servers running OpenVMS and Proliant servers
running Windows. We will consider supporting a Linux version of the product at a later
stage.

When run on OpenVMS/Integrity as the host platform, our VAX and Alpha emulators
running OpenVMS will offer the same high-availability features that real VAX and
Alpha systems running OpenVMS have to offer.

In the future, we will explore the possibility of coupling our emulators with hardware bus
support to enable the use of the emulator with custom hardware interfaces. It would be
conceivable to see one of our VAX emulators with an attached Q-Bus or XMI card cage
used for replacement of factory automation systems.

We are targeting a production release for a first Alpha emulator in early 2010.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Emulator Design

This section provides a high-level overview of the emulator and shows how the various
bits and pieces fit together.

Component Hierarchy

The easiest way to think of an emulator is to think of it as a piece of hardware because
that is what it acts like to the operating system and other software running on top of it.
Like the real hardware, the emulator consists of modules (components) that interact with
each other. Most of the components correspond directly to physical hardware
components.
Components have a parent-child relationship to each other. Child components are
usually connected to their parent through a virtual bus. For example, disk components
are children of a disk controller component, and PCI device components are children of a
PCI controller.

Emulator Component

This abstraction poses a problem at the top-level of the emulated system. Most systems
have a top-level bus that has no real controller to act as its parent. For example, in the
AlphaServer ES40, the top-level bus consists of the D-chips that connect the CPU’s to
the C-chips (system chipset), the P-Chips (PCI controllers), and main memory.
Therefore, the decision was made to create both a VAX emulator component and an
Alpha emulator component. These emulator components act as the controller for the top-
level bus. For ease of implementation, these components also include main memory.

Master Control Program (MCP)

Finally, different emulators and components like networks need to be tied together. This
is accomplished through the master control program component. (Are there any fans of
either Burroughs B5000 mainframes or the movie Tron out there?)

The following (simplified) image shows the components used to emulate an AlphaServer
400 and a MicroVAX, interconnected through an Ethernet network that is also connected
to the outside world through one of the host system’s network interfaces. The yellow
components are those that interact with the outside world. The red line indicates the
“extra” parent-child relationship between the network interface cards and the network
top-level component.

The easiest way to think of an emulator
is to think of it as a piece of hardware

© Copyright 2009 Hewlett-Packard Development Company, L.P

Virtualization Layer

From the beginning, the emulator was written to be very flexible. We first created a
framework to be used for writing different emulators. All forthcoming VAX and Alpha
emulators will use this common framework. Into this framework, we incorporated all of
the functions that all or most emulators will be likely to need, such as:

 Functions for configuring the emulator: instantiation, configuration, and
connecting together of all emulator components;

 Functions for controlling the emulator: structured, sequenced discovery,
initialization, starting and stopping of all emulator components;

 Emulated Ethernet connectivity between emulators;
 Common interfaces to the outside world for networking, hard-disk emulation and

I/O components: for example, communications ports provide the ability to
communicate through a telnet session or a physical serial port. This way, this
functionality can be shared by any emulated communications port without
requiring additional effort, simplifying the emulation environment and providing
a more consistent user experience;

 Hiding differences between different host systems from the emulator components,
so the same emulator will run on both OpenVMS and Windows;

 Support for making use of multi-CPU or multi-core host systems by threading;
 Emulator licensing and protection.

In short, these are all the emulator functions that are not directly related to the bits, bytes
and registers of the emulated hardware. We’ve named this framework the “Virtualization
Layer” because it creates a complete virtual environment for the individual emulators.

Hardware Platform Abstraction Layer

As we want our emulators to run on both Windows on Proliant servers and OpenVMS on
Integrity servers, we were confronted with the fact that Windows and VMS behave
differently. To avoid having to write platform-specific code for each emulator

Master Control
Program

Ethernet

External NIC

VAX Emulator
Alpha

Emulator

Alpha EV4
CPU

Apecs chipset

Flash
Non-volatile

RAM

PCI Controller

Tulip NIC SCSI

CD-ROMDisk

Serial

MicroVAX
CPU

Q-Bus
Controller

System
Control Chip

Serial

DELQA NIC RQDX3

Disk

© Copyright 2009 Hewlett-Packard Development Company, L.P

component, we implemented an abstraction layer as part of the virtualization layer that
hides these differences from the rest of our code. These differences are mainly in the
following areas:

 Threading and locking. On VMS, we use the Pthreads library; on Windows, we use
the Windows API.

 Physical device access. On VMS, we use QIO’s; on Windows, we use various API’s.
 Timekeeping.

Putting all platform-dependent code in one place helps us to keep our code base clean.

Use of Object-Oriented Programming (OOP)

The emulator makes extensive use of OOP, particularly of the features offered by the
C++ language. While C and C++ are reviled by some for their perceived cryptic nature
(although there is no rule that says C or C++ code has to be cryptic), they are commonly
considered to be the languages of choice for low-level, portable programming found in
operating systems, device drivers, and emulators. C and C++ give programmers a level
of control over the bits and bytes of their code few other high-level languages offer, and
C and C++ compilers that produce blazingly fast code are available for virtually any
platform.

Classes

All components are implemented as classes. That means that a class has been designed
for each different kind of emulated component. For instance, if a RQDX3 controller
needs to be emulated, a RQDX3 class will be written. Once the class exists, the emulator
can create as many instances of that class as required. For example, to emulate a VAX
with three RQDX3 controllers, three instances of the RQDX3 class would be generated.

Inheritance

The RQDX3 controller needs to be able to interface with the Q-bus controller and vice
versa. The mechanisms involved are the same for all Q-bus devices; the way the RQDX3
communicates with the Q-bus controller is no different than the way a DELQA network
interface communicates with it. Because of this shared behaviour, all Q-Bus components
share a common base class, the Q-Bus Device base class. This way, the Q-Bus controller
can address each of its child components as Q-Bus Devices, rather than as individual
types of interface. This takes full advantage of the power of inheritance, a defining
feature of OOP.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Component Base Class

The Q-Bus Device class in turn has the Component class as its base class. The
Component class is part of the framework, and provides for such basic emulator-wide
functions as naming components, creating parent-child relationships, initializing,
stopping and starting the emulator.

Multiple Inheritance

It gets trickier though. Besides being a Q-Bus device, the RQDX3 is also a disk
controller. As not all disk controllers are Q-Bus devices (for example, the KZPAA SCSI
disk controller is a PCI device), the disk controller base class can’t have the Q-Bus device
class as its parent. So, the RQDX3 needs to have both the Q-Bus device class and the
disk controller class as its base classes. This is called multiple-inheritance.

In the case of the KZPAA SCSI controller, it is even more complicated; it inherits from
PCI device, Disk controller, and SCSI device classes. The following diagram illustrates
this:

KZPAA SCSI Controller

PCI Controller SCSI Bus

Image file Raw device

PCI Device SCSI Device

SCSI Device SCSI Device

Disk Controller

Disk Disk

Conclusion

Like computer hardware or operating systems, successful, scalable and adaptable
hardware emulation requires an underlying, well-defined architecture. This architecture is

C and C++ give programmers a level of control
over the bits and bytes of their code few other

high-level languages have to offer.

© Copyright 2009 Hewlett-Packard Development Company, L.P

the foundation for the entire product. We have spent considerable effort to define a
flexible architecture for our emulators and, hopefully, we’ve shown you some of its
interesting properties in this article.

For More Information

For more information and updates about the upcoming multi-platform VAX and Alpha
emulator discussed in this article, visit
http://www.migrationspecialties.com/VAXAlphaEmulator.html.
For more information about the author, visit http://www.camicom.com.
For more information about the open-source ES40 emulator or to download its source
code, visit http://www.es40.org.

http://www.migrationspecialties.com/VAXAlphaEmulator.html
http://www.camicom.com/
http://www.es40.org/

© Copyright 2009 Hewlett-Packard Development Company, L.P

OpenVMS Technical Journal V13

The MultiNet Intrusion Prevention System

Jeremy Begg, Managing Director
VSM Software Services Pty Ltd.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Introduction

MultiNet® is a TCP/IP network stack for OpenVMS which runs on all OpenVMS
hardware platforms. It was initially created by TGV Inc as a VAX/VMS port of the BSD
Unix TCP/IP stack, and has for the past 12 years been owned and enhanced by Process
Software LLC6.

The most recent release (V5.3, February 2009) is based on BSD 4.4 and includes an
interesting new security feature, the MultiNet Intrusion Prevention System, or “IPS”. IPS
enables the system manager to configure MultiNet so that it detects intrusion attempts
and then blocks further access from the remote system that is the source of the attack.
Several of the commonly-targeted MultiNet services such as SSH, FTP and TELNET
come equipped to use IPS and mechanisms are provided to allow any network application
to do likewise.

This article describes the author’s early experiences with IPS in a production
environment.

Why Use IPS?

VSM Software Services Pty Ltd runs an AlphaServer DS20E to provide services to
customers on the Internet including DNS, webserving and email. We also allow
incoming FTP and SSH access for server management and customer website
maintenance. In addition to the DS20E we also have a number of VAX, Alpha and
Integrity systems for product support & development.

There is no doubt that the Internet has become a hostile place, even for servers running
OpenVMS. In operating our services we regularly see VMS breakin events logged by
MultiNet’s SSH and FTP servers and by PMDF’s POP3, IMAP and SMTP servers7. We
also see suspicious DNS update attempts but (fortunately for us!) not much in the way of
Denial-of-Service attacks (i.e. attempts to flood the server with so much traffic that it
can’t maintain acceptable responsiveness).

To date we have used a variety of methods to control this activity, all of them relying on
manual observation of an attack and manual updating of a configuration file. For
example,

 PORT_ACCESS mapping rules in PMDF to block access from persistently
annoying systems

 Configuring DNS to refuse recursive lookups from outside the local network
 Manually updating MULTINET:FILTER-SE0.DAT to block all IP traffic from

specified hosts.

6 MultiNet is a registered trademark and Process Software and the Process Software logo are trademarks of Process Software.
7 PMDF is a standards-based, robust, electronic mail platform and gateway for OpenVMS, Solaris, Tru64 Unix, Windows and Linux. PMDF

has been supported and developed by Process Software since October 2000.

© Copyright 2009 Hewlett-Packard Development Company, L.P

MultiNet IPS uses information provided by network services to detect suspicious activity
and then dynamically updates the MultiNet packet filter to disrupt that activity. (In this
context the term “network service” means a server process on the local system which
provides a TCP/IP application service such as SSH, POP3, HTTP, etc.)

We already had a lot of experience with MultiNet’s packet filter mechanism so the ability
to have it automatically updated by IPS was very appealing.

Configuring IPS

IPS is documented in Chapter 32 of the MultiNet V5.3 Installation & Administration
Guide. It is installed as part of the standard MultiNet installation but until its
configuration files are set up it doesn’t do anything. These files are described in detail in
the MultiNet documentation but briefly the procedure is as follows:

1. Copy MULTINET:FILTER_SERVER_CONFIG.TEMPLATE to
MULTINET:FILTER_SERVER_CONFIG.TXT.

2. Edit MULTINET:FILTER_SERVER_CONFIG.TXT and set desired
configuration options. In particular, use INCLUDE statements to specify the
service-specific configuration files which will be loaded when IPS starts.

3. Set up each of the service-specific configuration files specified in step 2. For
example, copy MULTINET:SSH_FILTER_CONFIG.TEMPLATE to
MULTINET:SSH_FILTER_CONFIG.TXT.

4. Edit each of the service-specific configuration files to specify the criteria for
each service, such as the template packet filter rule and the trigger for
activating the packet filter.

5. When all configuration files have been prepared, issue the command
$ MULTINET SET/IPS/RELOAD

to activate them.

Services Protected by IPS

The MultiNet installation kit comes with templates for protecting the most common
MultiNet services including FTP, IMAP, POP3, REXEC, RLOGIN, RSHELL, SMTP,
SNMP, SSH and TELNET.

OpenVMS systems which are running MultiNet V5.3 and PMDF V6.4 can use IPS to
protect the PMDF IMAP, POP3 and SMTP servers. The configuration files for these are
shipped in the PMDF_TABLE: directory as part of the standard PMDF V6.4 installation.

The service-specific configuration file

There is a configuration file for each service. Reasonable defaults are provided in the
.TEMPLATE files but some changes are required:

destination_address This must match the IP address (in CIDR format) of the
interface to be monitored for intrusion activity. For example,

© Copyright 2009 Hewlett-Packard Development Company, L.P

destination_address 150.101.13.12/27

This specifies that the interface with IP address 150.101.13.12 is to be monitored. The
subnet portion of the address (/27 in this case) is required but ignored.

exclude_address This specifies one or more remote IP addresses which are
to be ignored, i.e. the packet filter will never block those addresses. The template files
come with this configured to block a commonly-used local address (192.168.0.10/24) but
sites may wish to remove or change it.

Each template file also specifies a prototype packet filter entry which looks a little odd at
first glance:

proto_filter "deny tcp 192.168.0.100/24 192.168.0.1/24 log"

The two IP address ranges in CIDR format will be automatically replaced by the actual
source and destination addresses when the rule is activated by MultiNet IPS. This rule
only needs to be changed if you wish to change the action, e.g. from “deny” to “drop”.

Monitoring IPS

The Intrusion Prevention System generates a wealth of evidence for its effectiveness
including assorted MultiNet log files, OPCOM, SNMP and the OpenVMS Security Audit
logs.

There are several log files created by MultiNet IPS:

 MULTINET:FILTER_SERVER.OUT is the primary log file for the filter server
process.

 MULTINET:FILTER_SERVER_HOURLY_LOG.yyyymmdd is a “day file”
containing a summary of filter actions each hour during the day. A new file is
created every day at 1am.

Here is an extract from the FILTER_SERVER.OUT file on one of our systems:

FILTER_SERVER V1.0.0

20-MAR-2009 12:14:07.28 - Using configuration file
MULTINET_ROOT:[MULTINET]FILTER_SERVER_CONFIG.TXT;

20-MAR-2009 12:14:07.30 - Processing include file
"multinet:ssh_filter_config.txt"

20-MAR-2009 12:14:07.30 - Using configuration file
MULTINET_ROOT:[MULTINET]SSH_FILTER_CONFIG.TXT;

20-MAR-2009 20:37:03.46 - Event message received
20-MAR-2009 20:37:03.46 - Component: SSH
20-MAR-2009 20:37:03.46 - Rule : SSH_BOGUS_ID
20-MAR-2009 20:37:03.46 - Time : 20-MAR-2009 20:37:03.46
20-MAR-2009 20:37:03.47 - Src Port : 54232
20-MAR-2009 20:37:03.47 - Src Addr : 68.54.152.69
20-MAR-2009 20:37:03.47 - Dst Addr : 150.101.13.12

© Copyright 2009 Hewlett-Packard Development Company, L.P

20-MAR-2009 20:37:03.47 - Process : SSHD Master
20-MAR-2009 20:37:03.47 - PID : 208000AD
20-MAR-2009 21:12:01.31 - Event message received
20-MAR-2009 21:12:01.31 - Component: SSH
20-MAR-2009 21:12:01.31 - Rule : SSH_INVALIDUSER
20-MAR-2009 21:12:01.31 - Time : 20-MAR-2009 21:12:01.31
20-MAR-2009 21:12:01.32 - Src Port : 55839
20-MAR-2009 21:12:01.32 - Src Addr : 68.54.152.69
20-MAR-2009 21:12:01.32 - Dst Addr : 150.101.13.12
20-MAR-2009 21:12:01.32 - Process : SSHD 0000
20-MAR-2009 21:12:01.32 - PID : 20800B83
20-MAR-2009 21:12:06.49 - Event message received
20-MAR-2009 21:12:06.49 - Component: SSH
20-MAR-2009 21:12:06.49 - Rule : SSH_INVALIDUSER
20-MAR-2009 21:12:06.49 - Time : 20-MAR-2009 21:12:06.49
20-MAR-2009 21:12:06.50 - Src Port : 55991
20-MAR-2009 21:12:06.50 - Src Addr : 68.54.152.69
20-MAR-2009 21:12:06.50 - Dst Addr : 150.101.13.12
20-MAR-2009 21:12:06.50 - Process : SSHD 0001
20-MAR-2009 21:12:06.50 - PID : 20800C04

.

... Event messages removed for brevity ...

.

20-MAR-2009 21:12:47.13 - Event message received
20-MAR-2009 21:12:47.13 - Component: SSH
20-MAR-2009 21:12:47.13 - Rule : SSH_INVALIDUSER
20-MAR-2009 21:12:47.13 - Time : 20-MAR-2009 21:12:47.12
20-MAR-2009 21:12:47.13 - Src Port : 50039
20-MAR-2009 21:12:47.13 - Src Addr : 68.54.152.69
20-MAR-2009 21:12:47.14 - Dst Addr : 150.101.13.12
20-MAR-2009 21:12:47.14 - Process : SSHD 0009
20-MAR-2009 21:12:47.14 - PID : 20800C20
20-MAR-2009 21:12:47.14 - Creating a filter for component ssh

rule ssh_invaliduser
20-MAR-2009 21:12:47.14 - src address = 68.54.152.69/32
20-MAR-2009 21:12:47.14 - dst address = 150.101.13.12/27
20-MAR-2009 21:12:47.14 - interface = se0
20-MAR-2009 21:12:47.14 - filter expires 20-MAR-2009

21:17:47.14
21-MAR-2009 00:00:00.50 - Performing daily maintenance

The extract above shows that the filter server started at 20-MAR-2009 12:14:07.28 and
loaded a single service-specific configuration file (for SSH). At 20:37:03.46 the SSH
server reported suspicious activity but this was not followed by any other such activity
within the specified timeout (5 minutes by default) and so was ignored. Then at 21:12:01
the SSH server reported more suspicious activity and this time the remote system
(68.54.152.69) persisted in its breakin attempts. After ten such reports in the space of
under a minute the IPS created a packet filter to block the remote system.

The FILTER_SERVER_HOURLY_LOG files contain hourly snapshots of IPS activity.
For example the time period corresponding to the extract above looks like this:

Filter server hourly snapshot for hour 21 of 03/20/2009

Component ssh

© Copyright 2009 Hewlett-Packard Development Company, L.P

Rule ssh_bogus_id
number of hits: 0
destination address: 150.101.13.12/27

Address 68.54.152.69/32
number of still-queued events: 0
number of all events: 0
number of filters created: 0
Address entry to be deleted: 21-MAR-2009 00:42:03.46

Rule ssh_authfailed
number of hits: 0
destination address: 150.101.13.12/27

Rule ssh_userauth
number of hits: 0
destination address: 150.101.13.12/27

Rule ssh_invaliduser
number of hits: 10
destination address: 150.101.13.12/27

Address 68.54.152.69/32
number of still-queued events: 0
number of all events: 10
number of filters created: 1
Address entry to be deleted: 21-MAR-2009 01:12:47.19

In addition to the log files, the regular MultiNet interface commands can be used to see
what packet filters are in place at any given moment:

$ mu show/int se0/filter
Device se0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,D2>

VMS Device = EWA0
IP Address = 150.101.13.12
No common links defined

MultiNet Packet Filter List for se0:

Logging is disabled

Source Address / Port
Action Proto Hits Destination Address / Port
------ ----- ----- ---
--
drop tcp 29 213.174.151.17/32

150.101.13.0/27
FLTSVR,LOG

$

(Note that the output above was generated some days after the events shown in the log
file extracts.)

© Copyright 2009 Hewlett-Packard Development Company, L.P

Closing Remarks

We’re still in the early days of using IPS here at VSM but it’s already proven to be
effective at limiting intrusion activity. In general the default settings are very good but
some adjustments might give better results, and here are a few suggestions.

 In setting up the SSH filters for IPS we chose to change the default proto_filter
rule from “deny” to “drop”. In our experience with SSH-based attacks the remote
systems keep sending packets to the server even though they’re getting
“administratively denied” responses. Changing the rule to “drop” causes nothing
whatsoever to be sent back to the remote systems, and they seem to stop trying
much sooner.

 The default trigger for many events is 10 occurrences inside 5 minutes. At our
site where most SSH users are what you might call “sophisticated” we could
probably tighten this to (say) three login failures inside 5 minutes. On the other
hand if we had a large number of users the probability that any given user would
enter the wrong password would be somewhat higher, and “3 in 5” might be too
restrictive.

 Once we get PMDF upgraded on our primary server we will look at implementing
IPS for PMDF’s IMAP, POP3 and SMTP servers. All of them are popular targets
for password-hunting netbots.

If you run MultiNet at your site and you suffer from intrusion attempts, have a look at
IPS - it might be just what you need!

For More Information

The author will be happy to field enquiries of a technical nature about MultiNet IPS or
indeed any aspect of MultiNet or PMDF; please send your enquiry to
jeremy@vsm.com.au (For technical support about a specific problem please use your
usual support channel.)
For general enquiries about MultiNet, PMDF or any other Process Software product
please visit the Process Software web site, http://www.process.com/.

The MultiNet documentation can be viewed on-line at
http://www.process.com/tcpip/mndocs.html
and the IPS documentation can be found at
http://www.process.com/tcpip/mndocs53/ADMIN_GUIDE/ch32.htm

mailto:jeremy@vsm.com.au
http://www.process.com/
http://www.process.com/tcpip/mndocs.html
http://www.process.com/tcpip/mndocs53/ADMIN_GUIDE/ch32.htm

© Copyright 2009 Hewlett-Packard Development Company, L.P

OpenVMS Technical Journal V13

OpenVMS and Perl – a Powerful Match

Bernd Ulmann

© Copyright 2009 Hewlett-Packard Development Company, L.P

Introduction – OpenVMS and Perl a Powerful Match

Although OpenVMS has a powerful command language with its DCL interpreter, there
are everyday tasks which can be solved way more easily using another interpreted
language like Perl which is readily available for OpenVMS on all three architectures. The
following article is the result of my experiences with Perl on this platform as well as
some talks covering this topic I delivered at DECUS and HP in 2008 and 2009. All
examples in the following were chosen from my own daily work on a large OpenVMS
system and range from simple code snippets, programs for one time usage to larger Perl
programs running as batch jobs and performing crucial tasks like fetching mail from a
POP3-server and the like.

To make one point clear at the beginning: Perl is not a replacement for DCL but it makes
life much more easier when it comes to parsing and modifying files, socket
communications, data base access etc.

Some Basics about Perl

Let us start with summing up some facts about Perl – although Perl is way too powerful
to be described exhaustingly in a few pages like this, at least an impression of some of its
basic features may be given for those who have never seen or written any actual Perl
code.

First of all there is one main source of information and enlightenment for the Perl
programmer, the so called Camel Book, “Programming Perl”, published by O'Reilly. This
book is a joy to read and contains a wealth of Perl know how with lots of practical
examples and should not be missing on every desk of a Perl programmer, even an
experienced one.

But now to the promised basic facts about Perl: First of all, Perl was developed initially
by Larry Wall and its name is not an acronym but a retronym with a variety of
interpretations (some people claim that it stands for “Pathological Eclectic Rubbish
Lister” but “Practical Extraction and Report Language” fits better). Perl is a modern
interpreter language – in fact, the interpreter does a terrific job so Perl programs tend to
run surprisingly fast, even on slow machines like a VAX (compare that with Java which
does not run on a VAX at all). Furthermore Perl runs on a wide variety of architectures
and operating systems (maybe even more than Java is available for) making it a language
for really portable applications. Perl is extremely powerful and concise and there is a
plethora of modules readily available for nearly all purposes. Perl's basic philosophy is
“There is more than one way to do it” (compared with other languages like Python which
try to force the programmer to only one way to solve a problem which is good for the
bondage and discipline fraction but not for those of us who like to write elegant code).

Most programmers who are not Perl-aware tend to call Perl an unreadable language,
which is only true at first sight at best – at a first glimpse Perl code can really look like
line noise, but for the initiated Perl programmer code like this is very readable (compare
it with APL, eg.).

© Copyright 2009 Hewlett-Packard Development Company, L.P

First of all, Perl does not care about the type of its variables – in fact it is basically a type
free language. Instead, Perl cares about the structure of variables – in essence there are
three such basic structures:

 Scalars: A scalar variable can hold a single value at a time. The name of such a
variable is always prefixed by a dollar sign like in “$pi = 3.14159265;”.

 Arrays: An array is an indexed list consisting of scalars as its elements. The name of
an array variable is prefixed by @ like in “my @entries;”.

 Hashes: These are similar to arrays since their elements are scalars, but instead of
numerical indices strings are used to address elements within a hash. The name of a
hash variable is preceded by % as in “my %data;” for example.

Some examples for these basic structures are shown in the following:

my $pi = 'three_point_one_four';
my @array;
$array[0] = 'Something';
$array[1] = 'Something else';
$array[2] = 2.718;
my %data;
$data{'name'} = 'Bernd';
$data{'occupation'} = 'VMS enthusiast';

Perl supports all of the common control structures like “if...else”, “while”,
“do...while”, “for” etc. Every such statement controls a block surrounded by braces
which can not be left out like in C if only a single statement is to be controlled, so a
typical if-statement has this form:

if (some_condition)
{

do_something;
...

}

If only a single statement is to be controlled, a second form of control can be used, the so
called statement modifier:

do_something if condition;

This is quite similar to spoken English and helps to keep program sources short. In the
following some simple examples of loops are shown:

for (my $i = 0; $i < 10; $i++) # This is not very common in Perl
{

print “$i\n”;
}
for my $i (0..9) # This looks more like Perl
{

print “$i\n”;
}
print “$_\n” for (0..9); # A for loop as a statement modifier

© Copyright 2009 Hewlett-Packard Development Company, L.P

As powerful as these control structures provided by Perl are, much of its power results
from its embedded regular expression parser. Regular expressions really tend to look a bit
like line noise so no reasonable example will be given now as some may be found in the
examples section.

As already mentioned there is a wealth of modules which can be used with Perl readily
and which are available at a central location called CPAN, short for “Comprehensive Perl
Archive Network”, which can be accessed at http://www.cpan.org and
http://search.cpan.org. Regardless what your initial problem is, you should always have a
look at CPAN first – normally there already is a module which solves at least part of your
problem if not the whole problem at all. Examples for the power of Perl's modules are
countless as you will see in the examples section.

It is time to give some advices about what to do in general and what not:

Do:
 Be open for the Perl way of solving problems. Perl programs tend to be very short

and powerful, especially when compared with equivalent solutions in other
programming languages.

 Use functions like split, join, map, grep and the like instead of unnecessary C-style
loops.

 Use hashes when you need to lookup values.
 Always use regular expressions to parse, manipulate or split (complicated) strings.
 Be strict and use warnings all the time.
 Get the Camel Book.

Do not – do not even think about it:
 ...program in Perl like you program in C or Java or DCL or anything else.
 ...use arrays when you can use hashes – especially never ever loop over an array to

find an element.
 ...write linear narrative code.

How does one get a running Perl installation on an OpenVMS system (or any other
system as well)? Basically there are two ways to get a Perl interpreter up and running on
a given system:

1. You can use a precompiled package – for OpenVMS there is a HP-supplied
distribution kit, for other platforms there are equivalent such kits available.

2. Get the sources and compile, link and install the system yourself.

Personally, I always prefer the second method since I like to know what is really running
on my system and sometimes I want to do things differently compared with a
precompiled installation kit. (Compiling a Perl system on an Alpha or Itanium system is
fast, but on a VAX this can take several hours, so be prepared!)

http://www.cpan.org/
http://search.cpan.org/

© Copyright 2009 Hewlett-Packard Development Company, L.P

As all of you know (and love), OpenVMS is different from (and superior to :-)) other
operating systems which has to be taken into account when porting or writing software.
There are quite some modules to be found on CPAN which encapsulate OpenVMS
specific tasks like interfacing the mail system etc. In addition to that there are modules to
handle operating system specific tasks as transparently as possible which should be used
whenever possible to yield operating system agnostic code.

In the following a short and definitely incomplete list of modules is shown which are
especially useful in an OpenVMS environment:

 VMS::Device – interface to $GETDVI and the like.
 VMS::Filespec – converts between OpenVMS and UNIX filespecs.

 VMS::FlatFile – use hashes to work with index files.
 VMS::ICC – intra cluster communication services.

 VMS::Mail – interface to the OpenVMS mail system.

 VMS::Process – manage OpenVMS processes.
 VMS::Queue – work with queues and their entries.

 VMS::Stdio – file operations like binmode, flush, vmsopen etc.
 VMS::System – retrieve system information.

 File::Basename – system independent operations on filenames and the like.

Having all this said, it is time to show some real live examples of Perl in an OpenVMS
environment.

Examples

Some of the following examples, especially the simpler ones, are accompanied with their
source code which may be of interest, although more complex examples are only
described textual with some code snippets. (If you are interested in the source code of one
of these more complex examples, please feel free to contact the author directly by mail.)

Programs for one-time-usage

Many everyday tasks require that system administrators as well as programmers solve
unexpected problems like clever pattern matching, parsing logfiles etc. which are not
readily handled with standard DCL tools. Many of these problems can be solved on the
fly using a couple of lines of Perl code.

Perl can be used as a command line tool like awk for example. This can be very useful
when you have a puzzling problem which does not deserve a real program but
nevertheless needs a clever data conversion on the fly or something like that. Since there
are a variety of command line options for Perl which are useful in this context, only
simple examples are given in the following (more information may be found elsewhere
like the Camel Book).

© Copyright 2009 Hewlett-Packard Development Company, L.P

Adapting configuration files to VMS

Once I inherited a configuration file transfer.ini which looked like this (but contained
literally hundreds of such sections):

[logging]

log = log/transfer.log

ticket = log/ticket.log

[templates]

ticket = templates/ticket.tpl

mail = templates/mail.tpl

Of course, these pathnames are not very OpenVMS like and it would have been quite
cumbersome to edit all of the manually. Now one could write a Perl program reading the
file, performing the necessary changes using regular expressions and then writing the
result back to disk. Since tasks like these are commonplace, Perl can be used as a mighty
command line tool for performing in-place edit operations like transforming the
pathnames in the example above into valid OpenVMS file names. In the example shown,
this was accomplished with the following command line:

$ perl -i -pe “s/^(.*\s*)=(\s*)(.+)\/(.+)/$1=$2\[\.$3\]$4/” transfer.ini

It looks a bit like line noise, right? What does it do? First of all it loops over all lines in
transfer.ini and matches lines which contain an equal sign with a string to its left and two
strings separated by a slash to its right. These three strings are captured using parentheses
and then the line which matched this expression will be substituted by a new line
constructed out of the parts just captured. Applying this single line statement to the
configuration file shown above yields a new version of this file with the following
structure:

[logging]

log = [.log]transfer.log

ticket = [.log]ticket.log

[templated]

ticket = [.templates]ticket.tpl

mail = [.templates]mail.tpl

which is exactly what was desired.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Repairing HTML files

Another problem I was faced with was that a user of a WASD web server insisted on
creating her web pages using “modern” tools running on a MAC. Unfortunately these
particular tools just refused to generate proper HTML encoding for special German
characters like “ä” which should be coded as “ä” in HTML. Instead these tools just
insert “ä” which results in a completely bogus display of the resulting web page. This
problem can be corrected on the fly with a Perl call like this:

$ perl -i -pi “s/\xC3\xA4/\ä\;/g; s/\xC3\xB6/\ö\;/g;
s/\xC3\xBC/\ü\;/g; s/\xC3\x84/\Ä\;/g; s/\xC3\x96/\Ö\;/
g; s/\xC3\x9C/\Ü\;/g; s\xC3\x9F/\ß\;/g;” [...]*.html

OK – it really looks like line noise, but it can be easily put into a DCL routine which can
be called after each upload of HTML files by this particular user and thus correcting the
problem on the fly. This very special user (my beloved wife, to be exact) also wanted to
include a background picture into her web pages which the tool used just does not
support. Using Perl it was simple to extend the generated HTML-code by a proper
background-image-directive, too.

Making sure that a large LaTeX document is consistent

Another problem came up when I wrote a really large book using LaTeX without using
BibTeX (which is stupid, but the project grew from a pet project to a major project and
when I realized that the simple bibliography of basic LaTeX was not really powerful
enough to cope with the bibliography, it was literally too late to switch to BibTeX).
Having a very long list of literature, I feared that some entries could have been rendered
unused in the text body due to changes in its structure etc. Although LaTeX tells you
when you cite something which is not defined, it does not tell you if you have
bibliography entries which are not cited which is annoying.

A typical entry has the form:

\bibitem{zachary} %book

G. Pascal Zachary, \emph{Endless Frontier – Vannevar Bush,
Engineer of the American Century},

The MIT Press, 1999

while a citation looks like

cf. \cite{zachary}[p.~142]

Having a document with more than 120000 lines of LaTeX code resulting in about 600
pages of text with more than 600 bibliography entries, a solution was necessary to make
sure that no entry went uncited. This was accomplished with the following Perl program
which reads in the complete LaTeX source code with a single statement and parses this
for all citations in a first run while building a hash containing these citations. In a second
run through this data all bibliography entries are processed and a message is printed for
every bibliography entry without a corresponding citation:

© Copyright 2009 Hewlett-Packard Development Company, L.P

use strict;

use warnings;

die "Usage bib.pl <filename.tex>\n" unless @ARGV + 0;

my $data;

open my $fh, '<', $ARGV[0] or die "Could not open $ARGV[0]: $!\n";

{

local $/;

$data = <$fh>;

}

close $fh;

my %cite;

$cite{$_}++ for $data =~ m/\\cite\{(.+?)\}/g;

$cite{$_} or print "$_\n" for $data =~ m/\\bibitem\{(.+?)\}/g;

Parsing a Log File and Generating Some Statistics

Some months ago I had to parse a log file containing entries like these:

[LOG|SYSTEM|2008 May 13, 14:15:26 (886)|ENGINE.batch]

Loaded 16 events in 497 milliSecs

[END]

[LOG|SYSTEM|2008 May 13, 14:15:55 (281)|Risk|BatchJob]

Time to execute Scenario 24902 ms

[END]

[LOG|SYSTEM|2008 May 13, 14:15.55 (283)|Risk|BatchJobThread]

Time to execute Scenario 13662 ms

[END]

I was asked to calculate the arithmetic mean and possibly other values of the time
necessary to execute scenarios and thus wrote the following short Perl program:

use strict;

use warnings;

die “Usage: stat3 \”yyyy mm dd\” \”hh:mm:ss\”\n” if @ARGV != 3;

my ($file, $date, $min_time) = @ARGV;

my @values;

open my $fh, '<', $file or die “Could not open $file: $!\n”;

© Copyright 2009 Hewlett-Packard Development Company, L.P

{

local $/ = '[END]';

while (my $entry = <$fh>)

{

my ($time, $duration) = $entry =~

m/^.+\|.+\|$date,\s(\d\d:\d\d:\d\d\s).*execute
Scenario\s(\d+)\sms/s;

push (@values, $duration) if $time and $time ge $min_time;

}

}

close $fh;

print 'Average: ', in(eval(join('+'. @values)) / @values) / 1e3,

' s (', @values + 0, “)\n” if @values + 0;

Of course, the simple arithmetic mean could have been calculated in the main loop
without the need of storing all values captured from the log file into an array but since it
was not clear if more complex calculations might be necessary, it was decided to save all
values first and use them for the calculations in the next step. This led to the funny way
of computing the arithmetic mean by concatenating all array elements in a single long
character string, joined together with '+'-characters. This string is then fed into an eval
which is not efficient but shows what can be done using a dynamic programming
language like Perl.

Are there any files with W:WD-rights on my system disk?

Another day I was asked “How can you be sure there are no files on your system disk
which are writable by WORLD?” Good question – this calls for a short Perl program,
too, which shows how external commands and functions can be called using backticks
while capturing their output into program variables:

use strict;

use warnings;

my ($fc, $mc) = (0, 0);

for my $line (`dir/prot/width=(file=60) [...[`)

{

my ($file, $w) = $line =~ m/(.+)\s+.+,(.*)\)/;

next unless $file;

$fc++;

print “$file\n” and $mc++ if ($w =~ m/[WD]/);

}

© Copyright 2009 Hewlett-Packard Development Company, L.P

print “$fc files processed, $mc are world writable/deletable!\n”;

It turned out that no files were endangered by wrong protection settings and yes, the
program was tested by creating a file with W:WD rights deliberately.

Migrating a MySQL Database to Oracle/RDB

Another one time script which proved itself being very useful was written to migrate a
MySQL database running on a LINUX machine to an Oracle/RDB system running on an
OpenVMS system (cf. “Bringing Vegan Recipes to the Web with OpenVMS”,
OpenVMS Technical Journal, No. 8, June 2006). All out of the box attempts to solve this
problem did not work directly due to the very different output/input formats regarding the
generated files. A first attempt to transform a MySQL output file into a suitable load file
for Oracle/RDB proved to be quite complicated and having much overhead, so it was
decided to give up this approach and try an online approach using a simple Perl program
to connect to both databases at once, reading data from MySQL and writing it directly
into Oracle/RDB.

The resulting program turned out to be quite generic and only expects the necessary
database connection parameters as well as a list of tables to be copied. The copy
operation itself was faster than expected and even outperformed the first attempt using
file based export/import with an external transformation routine implemented in Perl.

Larger Perl Programs

Many problems which occur on a regular basis can be solved using Perl, too. Examples
for such problems are:

 Generating simple web server statistics on a daily basis.

 Fetching stock market data from a web server and storing it into a MySQL
database.

 Fetching mail from a POP3 server in regular time intervals and distributing these
mails to the OpenVMS mail system.

 Sending outgoing mails to an SMTP server requiring authentication which is not
currently supported by OpenVMS's TCPIP stack.

 Caching results from database queries to speed up execution time of programs
requesting data from a database etc.

These four examples will be described briefly in the following showing the power of Perl
in larger applications:

Simple Web Server Statistics

After observing that the WASD web server running on an OpenVMS system was
unexpectedly busy, a simple web server statistics was to be programmed to see which
files were requested how often. All in all a result like this should be generated:

© Copyright 2009 Hewlett-Packard Development Company, L.P

2734: my_machines/dornier/do80/chapter_1.pdf

288: my_machines/bbc/tisch_analogrechner/anleitung.pdf

117: publications/anhyb.pdf

97: publications/handson.pdf

This was accomplished after only a couple of minutes with the following short Perl
program:

use strict;

use warnings;

die "File name and account name expected!\n" unless @ARGV == 2;

my ($log_file, $account) = @ARGV;

open my $fh, '<', $log_file or die "Unable to open log file $log_file,
$!\n";

my %matches;

while (my $line = <$fh>)

{

my ($ip, $key) = $line =~ m/^(\d+\.\d+\.\d+\.\d+).*"GET
\/$account\/(.+?)\s/;

next if !$ip or $ip =~ '^192.168.31';

$key =~ s/"//g;

$key .= 'index.html' if $key =~ m:/$:;

$matches{$key}++ if $key =~ m/(html|pdf|txt)$/;

}

close $fh;

printf "%5d: %s\n", $matches{$_}, $_

for (sort {$matches{$b} <=> $matches{$a}} keys(%matches));

A couple of months later my friend Michael Monscheuer wrote an equivalent web server
statistics script in pure DCL which was much (very much, in fact) longer than the
program shown above, although I have to admit that his solution seemed more easy to
read at first sight, but due to the sheer amount of code this impression faded rather
quickly.

© Copyright 2009 Hewlett-Packard Development Company, L.P

Fetching Mail from a POP3-server

Sometimes it would be desirable to fetch mails from a standard POP3-server and make
these mails available in the OpenVMS mail system so the system's users can access their
mails using MAIL or a suitable webinterface like yahmail or soymail. To make this
possible, a Perl written batch job is required which polls in regular intervals a variety of
POP3-servers and their associated mailboxes, fetches mails and distributes these mails to
the various users of the OpenVMS system.

The overall Perl code for implementing this batch job consists of only 140 lines since
most of the really complicated subtasks were already implemented in the following
modules readily found on CPAN:

 Net::POP3 – client interface to the POP3-protocol.

 IO::File – file creation and access methods.

 POSIX qw(tmpnam) – used to create temporary file names.

 VMS::Mail – interface to the OpenVMS mail system.

When it is possible to receive mails, it would be nice to be able to send mails, too, as the
following example shows:

SMTP-Proxy

Almost every current mail provider requires that its clients authenticate prior to sending
mail via their SMTP server(s). Unfortunately, authentication is not supported by the
TCPIP package for OpenVMS. Since a requirement was to send output mail directly from
the OpenVMS system, i.e. without an intermediate proxy system like a LINUX host or
the like, it was decided to implement a small SMTP-proxy in Perl running on the
OpenVMS system itself.

This proxy connects on the local machine to port 25 and listens for outgoing mail while
another connection is maintained to port 25 of the provider. Every outgoing mail is
parsed and enriched with the necessary authentication information before being sent to
the provider which solved the initial problem quite easily.

This SMTP-proxy makes use of the following modules yielding an overall code size of
only 68 lines of Perl code:

 Net::ProxyMod – this module allows easy TCPIP-packet modification.

 MIME::Base64 – MIME-encoding and -decoding.

 Tie::RefHash – allows using references as hash keys.

Database-Proxy

Sometimes it is desirable to perform database accesses not directly but via a proxy which
might either contain some business logic and/or cashing mechanisms to reduce database
load and to speed up the application at the cost of some additional memory consumption.
Since a former article already described this Perl based proxy in detail (cf. “Bringing

© Copyright 2009 Hewlett-Packard Development Company, L.P

Vegan Recipes to the Web with OpenVMS”, OpenVMS Technical Journal No. 8, June
2006) only the obtained speedup of a factor of 10 obtained with this proxy should be
noted here.

Conclusion

Over the years it turned out that Perl is an invaluable tool for solving everyday problems
as well as for writing large and complex programs running interactively as well as in
batch mode. Especially in an OpenVMS environment which often poses very special
needs when it comes to system connectivity, interfacing and the like, Perl can be
employed with much benefit.

Perl does not consume too many resources and is really fast for an interpreted language
so it even runs very well on smaller VAX systems (where not even a JVM is available).

It is important to realize that Perl is not just a “scripting language” as it is sometimes
called. Instead it is mighty programming language and programming environment, thus
Perl should be taken seriously. So, have fun with Perl and OpenVMS – a perfect team for
all of us.

For More Information

The author can be reached at ulmann@vaxman.de.

mailto:ulmann@vaxman.de

© Copyright 2009 Hewlett-Packard Development Company, L.P

OpenVMS Technical Journal V13

Performance Management for OpenVMS Systems

Jeff Maffe, SightLine Systems Corporation

© Copyright 2009 Hewlett-Packard Development Company, L.P 84

Introduction

HP’s OpenVMS platform is typically used to host mission critical applications with
stringent service level agreements – down time is definitely not an option. The personnel
responsible for managing the OpenVMS platforms must have accurate, real time metrics
and analytic capabilities at their disposal in order to assure that these mission critical
systems are always performing the way they were intended to, and that the applications
and services hosted on these machines are always available to the user community. The
reality is that IT organizations cannot expect to manage OpenVMS and other business
critical systems with the commodity solutions available from a myriad of software
vendors, these systems need to be managed using software that is purpose built for
OpenVMS.

IT organizations face a litany of challenges when looking to effectively manage and
monitor any system for performance and capacity planning, let alone the business critical
systems responsible for most of the workload and much of the revenue coming into the
business, including:

 Understanding the IT resources needed to effectively deliver services to internal
and external customers.

 Balancing service requirements and available resources to support those
requirements effectively.

 Centralizing data and administrative/management capabilities.
 Rapidly identifying the root cause of performance, bottleneck or response time

issues, eliminating finger pointing among departments or teams (IT versus
Network, and so on.)

 Preventing outages or performance issues prior to them having a negative impact
on business

 Minimizing the time the analysts spend in poring over massive amounts of
disparate data from multiple sources.

 Eliminating silos or point solutions without sacrificing management capabilities.
 Extending the life of existing IT assets to reduce costs.
 Getting things accomplished in a proactive, real time fashion as opposed to being

in constant reactive mode.

Most performance management and capacity planning software packages do not provide
the breadth or the granularity to help the IT organization even come close to addressing
these challenges. To make things worse, most IT organizations are using multiple
applications to manage the performance of their infrastructure, creating problems around
disparate and conflicting data and multiple data sources, burdening even further the
analysts that spend most of their day poring over this data.

© Copyright 2009 Hewlett-Packard Development Company, L.P 85

SightLine for OpenVMS

SightLine Systems has been providing performance and capacity management solutions
to large enterprises for almost 30 years, and has been delivering VAX and OpenVMS
solutions for 20 years. SightLine’s applications are purpose built to support complex,
mission critical systems. With SightLine, system administrators can collect current and
historical information through a centralized console, providing real time status of your
entire OpenVMS environment. SightLine’s OpenVMS solution provides several key
benefits, including the abilities to:

 Detect, diagnose, prevent and predict data loss and downtime through a wide range
of analytics and automation.

 Monitor multiple OpenVMS systems (as well as other mission critical platforms)
concurrently.

 Improve overall performance through proactive system tuning and troubleshooting
and the ability to track and monitor a full array of OpenVMS specific parameters.

 Provide full support for the performance, reliability and availability offered by
OpenVMS and its related resources via monitoring and managing OpenVMS
clusters.

Commodity solutions will not allow users to have the visibility needed to manage
OpenVMS systems effectively. Because they have been purpose built for OpenVMS,
SightLine’s solutions allow for the most efficient monitoring of those platforms in real
time, and provides the granular, in-depth information needed to manage these systems
effectively, including the following:

CPU Statistics

Modes Metrics - The Modes metrics describe CPU utilization both in total and by
component parts. Each metric is expressed on a scale that has zero as its minimum and
one hundred times the number of active processors (Active CPU Cnt) as its maximum.

States Metrics - The States metrics describe the scheduling State Queues. OpenVMS
assigns processes to those queues so that their scheduler can prioritize their use of system
resources. SightLine delivers the number of processes in each of these states, as well as
total processes on the system. SightLine also provides the count of processes on the COM
queue to indicate how many are Batch, Interactive and Network processes.

Memory Statistics

MPW Metrics - The Modified Page Writer (MPW) metrics describe the nature of
activity, and performance of the Modified Page Writer Mechanism, which is the portion
of the OpenVMS Swapper that maintains the Modified List.

Page Metrics - The Page metrics describe the behavior and performance of the
OpenVMS memory management software. The metrics Modified List Size, Free List and
Zeroed List Size measure the three respective components of the Secondary Page Cache.

© Copyright 2009 Hewlett-Packard Development Company, L.P 86

The remainder of the Page metrics reported by SightLine measure the rate at which
various memory management activities occur.

Pool Metrics - The Pool metrics describe memory that OpenVMS allocates for its own
use and the use of its requesting processes in the pool (including both Paged and Non-
Page Pool). Pool metrics include request, expansion, and failure rates for both types of
pool.

I/O Statistics

Disk Metrics - Disk metrics describe the level of activity and performance of your disks.
All disk metrics except Disk Count are subscripted, which means that for each metric
SightLine provides a value for each device on the system. This allows you to display and
analyze the performance of each individual disk relative to Operation Count, Queue
Length, Disk Errors, Response Time, Disk Space, and Read and Write Rates.

Disk Controller Metrics - SightLine can report on many disk, HotFile and XFC metrics
on a per-controller basis, for use by those who want to balance loads between multiple
Fibre Channel paths.

FCP Metrics - The File Control Primitive (FCP) metrics describe the performance of the
OpenVMS file system. They can be monitored to determine the nature, efficiency, and
system impact of file operations.

XQP Metrics – The XQP metrics include call rates, XQP disk read and XQP write rates,
Cache hits, CPU time, Window hits, split transfers, XQP page faults, allocations, file
creations, volume lock waits, erases, and window turns.

I/O Metrics - The I/O metrics describe system-wide input/output activity. Once you
become familiar with their behaviors during periods of normal activity, you can detect
abnormalities by setting thresholds on those that affect (or reflect) your system’s
performance. Using these abnormalities as an investigative starting point, you can
quickly pinpoint performance problems within your I/O subsystem. I/O metrics include
Direct and Buffered I/O Rate, Log Xlate Rate, File Open Rate, Process Inswaps Rate, and
Open File Count.

MSCP Metrics - The MSCP metrics describe the nature of activity, level of activity, and
performance of the Mass Storage Control Protocol, which provides cluster-wide access to
local devices.

Files Metrics - The Files metrics describe the levels of activity and the performance of
the system-wide file system, including the file system caches and other indicators. File
system cache metrics include Tries, Hits, Hit Rate, Misses and Index for FIDs, Extent
Cache, File Headers, Directory FCBs, Quota, Bitmap, and Directory Data.

Virtual I/O Cache Metrics – The Virtual I/O Cache metrics describe the nature of
activity, level of activity, and performance of the Virtual I/O Cache, which was
introduced to OpenVMS beginning with v6.0 on VAX and v1.0 on AXP systems. The
Virtual I/O Cache is a single, file-oriented cache designed to improve I/O performance on
stand-alone and clustered systems. For the Virtual I/O Cache, SightLine can report total
pages, bytes, free pages, free bytes, pages in use, bytes in use, read attempts, read hits,

© Copyright 2009 Hewlett-Packard Development Company, L.P 87

read hit percentages, write attempts, write hits, write hit percentages, read bypasses, write
bypasses and files retained.

eXtended File Cache (XFC) Metrics – SightLine collects XFC metrics from
OpenVMS v7.3 and later. SightLine gathers all XFC performance data, including XFC
Cache, Disk, and I/O Size information.

Network Statistics

DECnet Metrics - The DECnet metrics describe the level of DECnet activity on your
local system. DECnet metrics include Arriving Local and Transit Packet Rates, Departing
Local Packet Rate, Transit Congestion Loss Rate, and Receive Buffer Failure Rate.

Ethernet Metrics - SightLine provides information about Ethernet Performance and
Levels of on the system, including Blocks Sent and Received, Data Overruns, Fails,
Errors, and Buffer Availability.

SCS Metrics - The SCS metrics describe the level and activity of performance of the
System Communication Services. The SCS metrics are subscripted, which means that for
each metric, SightLine measures the activity for each virtual circuit. SCS metrics include
Datagram Send and Receive Rates, Message Send and Receive Rates, Connection Queue
Rates, and additional metrics related to Block Data Transfers.

SYSGEN Statistics

Dynamic SYSGEN Metrics - The Dynamic SYSGEN category contains System
Generation parameters that you can change while the system is running. In other words,
you can implement changes to Dynamic SYSGEN parameters without rebooting your
system. In some cases, changes to these parameters take effect almost immediately. Other
times, changes take effect only after certain non-routine external events occur. Wherever
possible, the SightLine data dictionary displays the effective time of any changes you
make.

Static SYSGEN Metrics - The Static SYSGEN category contains those System Generation
parameters that can be implemented only by changing their values using the OpenVMS
SYSGEN (or SYSMAN), or AUTOGEN utility and rebooting the system.

HotFiles Statistics

The HotFiles statistics show the files that have the most activity. The activity may be
based on the number of reads/writes or the amount of data read/written. A user-defined
minimum “score” can be used to determine the level of activity a file must have for a
given interval before it is considered a “HotFile”. The user may also choose (by
filename) which files to include or exclude from HotFiles report, for example, one could
choose to ignore all .EXE files from the statistics.

Workload Statistics

SightLine can be configured so that process data (CPU usage, page faults, Direct I/O,
Buffered I/O, average memory usage, image activations and total process count) can be
reported based on Groupings you define, dividing the processes into separate workloads

© Copyright 2009 Hewlett-Packard Development Company, L.P 88

according to UIC, Account Username, Processname Image, Mode or combinations
thereof. This makes it much easier to identify rogue users or applications, and is used by
some customers for chargeback purposes.

Lock Manager Statistics

SightLine can report rates for new and conversion enqueues, enqueue waits, enqueues not
queued, dequeues, blocking ASTs, deadlock searches, deadlock finds, total locks and
total resources.

Distributed Lock Manager Statistics

SightLine collects metrics that describe the activity required for the Distributed Lock
Manager to synchronize operations across a clustered system. Reported metrics include
rates for incoming and outgoing messages in support of each of the Lock Manager’s
functions in the cluster.

Virtual Balance Set Statistics

Rates can be reported for bytes read, bytes written, real and virtual transitions, map buffer
allocations, real slot availability, virtual selection failure rates, virtual map hit rates, map
count, fluid balance, recopy rate, and Virtual Balance Set CPU time.

DEC Distributed Transaction Manager Statistics

DDTM is the protocol used for two-phase commits by RMS, Oracle Rdb and Oracle
DBMS. As of OpenVMS v7.3.1, HP has also documented it for public use. SightLine can
report on DDTM rates for start, prepare, abort, end, 1-phase commits, remote branch and
remote add branch as well as a range of transaction lengths.

Uptime Statistics

SightLine will report on total uptime since the last boot or uptime for the current month
either on a 24-hour basis for the full week or divided according to a schedule of selected
time periods.

Galaxy Events

For systems that are instances in an OpenVMS Galaxy, SightLine can provide
notification of various Galaxy-related events, such as other instances joining and leaving
the Galaxy, CPUs becoming active or inactive in the instance, CPUs joining or leaving
the configure set for the instance, updates to the Galaxy configuration tree, modifications
to CPU I/O preferences, and time differential changes.

Galaxy Statistics

For ongoing data pertaining to a system which is an instance in an OpenVMS Galaxy,
SightLine can report shared memory statistics (total, used, free, bad and CPP count),
CPUs active, made active, made inactive, added to the configure set, leaving the instance,
instances joined, Instances left, Tree updates, potential CPUs, number of times the

© Copyright 2009 Hewlett-Packard Development Company, L.P 89

Galaxy has been incarnated, as well as, identification information regarding the particular
Galaxy member.

Contact Information

SightLine Systems Corporation
11130 Fairfax Boulevard
Suite 200
Fairfax, VA 22030
(703) 563-3000
sales@sightlinesystems.com

mailto:sales@sightlinesystems.com

© Copyright 2009 Hewlett-Packard Development Company, L.P 90

OpenVMS Technical Journal V13

Adding Physical CD Support to the SIMH VAX
Michael D. Duffy

© Copyright 2009 Hewlett-Packard Development Company, L.P 91

Introduction

As aging hardware keeps chugging along, maintenance costs continue to rise and
replacement parts become more and more scarce. In some cases, that ancient MicroVAX
is still running a critical application that has never been ported to another platform. But
since the VAX never crashes and always comes back up after a power failure, nobody
seems too concerned that everyone who understood the application left the company
years ago. In the back of your mind, you know you should really do something about
that.

Some sites choose to keep the application intact but move it to an emulated VAX running
on some other system, usually at a substantial performance increase and cost reduction.
Commercial emulators can be quite expensive, but open source solutions may not have
all the features required to get the most out of the product.

In response to these concerns, Migration Specialties asked me if a copy of OpenVMS
running under SIMH could be allowed direct access of a CDROM device on the host
computer, whether it was running OpenVMS or Windows. (UNIX systems need no such
enhancement, as pointing a container file specification to /dev/cdrom works with the
standard SIMH version.)

SIMH is a hardware simulator that can act as any one of more than twenty different
machines, but I was asked to concentrate on the VAX 3900 simulator, as it was the most
likely existing configuration to be used by the customer sites we envisioned.

This article explores the challenges and solutions found by the author while adding Host
CD support to the SIMH open source VAX emulator. The solution demonstrates that a
developer may not need a wealth of experience with SIMH in order to add significant
functionality to it, and may serve as a template for your own enhancement ideas.

The Plan

SIMH disk I/O is based on container files representing disk drives, a standard approach
among many different emulators. A file on a host device acts as a repository for a bit-for-
bit copy of the entire contents of a disk volume attached to the computer to be simulated.
Previously, a user could create a disk image file from the contents of a physical CD and
then attach the image file to the simulator. Our goal was to eliminate this time-
consuming step and allow access directly to the host CD drive.

The problems I anticipated at the outset were the lengthy delays inherent in CD access
and how to support OpenVMS mount verification and CD volume switching between the
emulated environment and the host.

SIMH disk I/O is synchronous, that is, the simulator stops and waits for container file
reads and writes before continuing. This is true whether or not the data are immediately
delivered to the guest OS. Some experimentation would be necessary to determine how

© Copyright 2009 Hewlett-Packard Development Company, L.P 92

tolerant OpenVMS would be of these delays, and whether an asynchronous delivery
mechanism would be needed.

Experimentation with CD volume changes and guest MOUNT and DISMOUNT
activities would be needed to determine 1) whether there is a simple, reliable way to tell
within SIMH itself when the guest has mounted or dismounted a volume and 2) whether
allowing a host I/O to fail is sufficient to trigger OpenVMS mount verification on the
guest side.

Proof of Concept

I decided to put together the simplest solution to probe these areas. Intercepting what
SIMH thought would be a container file read and redirecting it to a CD device seemed
like the obvious choice. After reading the data, I would insert it into the same buffer that
would have been used for container file data and allow SIMH to proceed from there. How
hard could it be?

The first step was to determine where the I/O should be intercepted and how to determine
which of the I/Os passing through that point were the right ones to redirect. Routine
sim_fread() in source file SIM_FIO was chosen because all container file reads pass
through it. Since writes were to be disallowed, placing the test in the read dispatcher
would automatically prevent writes from being attempted by any new code I would write.
Later testing indicated an improvement might be made possible by moving the test
elsewhere, which will be discussed later.

One of the arguments to sim_fread() is a unique file identifier, called fptr, that could be
used to identify the I/Os of interest. I quickly decided that for the proof of concept, I
would open a container file as normal when SIMH was initialized, but intercept the I/Os
to that file at runtime and send them to the CD instead. Later, after proving the concept, I
would remove the container file or at least make it into a tiny stub file that did not
consume space on the host disk.

The VAX implementation in SIMH uses some of the same code as the PDP11 for I/O.
Specifically the RQ* controllers and disk types are shared via the PDP11_RQ* code
found in SIMH’s PDP11 source directory. I looked through the code defining device
types and the data structures that represent them in SIMH, finding that due to the number
of bits representing the device type and the number of devices already supported, there
were no available slots for adding a new device type. I therefore used the slot that had
previously been taken by the RA70 device type, the last device in the list, and also one of
the smaller disk models. I renamed that device PHYCD and copied the remaining values
from the RRD40 device definition already present in SIMH. I then created a Physical CD
Control Block to store various information related to the PHYCD device.

The next step was to modify the SET and ATTACH commands to recognize references to
the PHYCD type. SET and ATTACH are used when SIMH is started, to define the
devices that will be present on the simulated system and associate them with container
files, respectively. I modified the ATTACH code to open a stub container file and store

© Copyright 2009 Hewlett-Packard Development Company, L.P 93

its file pointer in the PHYCD control block, so that Physical CD I/Os passing through
sim_fread() could be identified via the fptr argument. I also changed ATTACH to treat
the container file argument as a device specification when the device type is PHYCD.
The new syntax is compared with the existing method below.

Traditional container file examples:

SET RQ1 RRD40
ATTACH RQ1 DKA0:[SIMH]CD_IMAGE_FILE.DAT

New Physical CD access examples:

SET RQ1 PHYCD
ATTACH RQ1 DKB400: (OpenVMS host)

This example causes SIMH device RQ1 to be attached to physical CD device DKB400:
on the host system.

Now it was time to actually redirect an I/O to the CD drive once it was detected, but the
information passed to sim_fread was still incomplete: The desired length of the read is
present, but the starting position is not. SIMH sets the container file read offset via an
fseek() before sim_fread() is called, so I added a similar test at the fseek() to record the
desired starting position in the Physical CD control block.

Since the guest OpenVMS always starts reads on 512-byte boundaries, I did not have to
make any adjustments to the starting position or length of read on an OpenVMS host. On
a Windows host, however, reads start on 2048-byte boundaries, so some calculations
must be performed to read the proper block and extract the portion the OpenVMS guest
requested (and introduce an opportunity for a small read-ahead cache, since the data
would otherwise be wasted.)

These values were passed to a $QIOW to read the CD and place the data into the buffer
ordinarily used for the container file.

For the purposes of initial testing, I added a $MOUNT system service at SIMH startup to
ensure the CD device would be available. For now, no provision for removing or
switching CDs was included. That would come later.

Initial Testing

Once this bare-bones approach was ready, I booted up a copy of OpenVMS/VAX V7.3
with the PHYCD unit attached to device DUA1: and placed a CD in the host drive.

As I anticipated, there were delays of a few seconds whenever the CD needed to spin up,
but the guest copy of OpenVMS was very tolerant of these delays, with no failures or

© Copyright 2009 Hewlett-Packard Development Company, L.P 94

errors noticed to date. A given application might be less forgiving, but OpenVMS itself
seems not to mind very much.

Once the CD was up to speed, further reads proceed normally, with no effect on the
simulated system that would be obvious to a human. However, overall system throughput
is reduced during the time the CD is being actively read. This is also true of container
files, but is magnified somewhat by the lower performance of CD drives.

It was decided to expand this concept to include support for switching CD volumes,
handling errors and triggering OpenVMS mount verification within the guest OS at the
right times.

Supporting CD Swapping and Removal (OpenVMS)

My initial thoughts were that the OpenVMS and Windows-host version would differ
greatly with regard to handling the user removing or switching the CD in the drive. The
two versions turned out to resemble one another much more than I originally thought, due
to an error I made early in development and didn’t catch until a significant amount of
code had been written. The reader can use my mistake to avoid doing extra work on any
similar project.

My first attempt at mount verification support on OpenVMS hosts was based on this
general idea:
I planned to detect mount verification on the host and simply pass it into the emulated
environment. First, I would issue the I/O with a timeout event flag. If the I/O timed out, I
would check to see if the host CD is in mount verification. If so, I would cancel the I/O,
perform an internal DISMOUNT/ABORT and Mount the CD again. Then I would reissue
the I/O, while simultaneously notifying the guest operating system that mount
verification should be triggered.

It was at this last step where I made a slight mistake by writing all the other code first
before carefully examining the mechanism by which I would notify the guest that
something unusual had happened. As it turned out, the code worked well, but by the time
it was triggered, it was already too late to notify the guest OS.

Had I checked in a little more depth, I would have found that the opportunity to signal
mount verification (which means to return an offline status for the emulated device) had
already passed. Routine rq_rw_valid(), a series of validity checks that gets performed
before the I/O is started, is the right place to do this, but is already finished before the I/O
is sent on its way.

In order to get the solution working more quickly, I made the OpenVMS version behave
more like the Windows version (already underway), but left the aforementioned code in
place with an eye toward fixing it at a later date. I envision doing the read preemptively
in rq_rw_valid() and leaving the data in a buffer that can be retrieved later in sim_fread().
In this way, timely mount verification alerts can happen, while avoiding extra steps.

© Copyright 2009 Hewlett-Packard Development Company, L.P 95

Supporting CD Swapping and Removal (Windows)

How, then, to support OpenVMS-style mount verification on other than an OpenVMS
host? Some mechanism was required to detect when a different CD appeared in the
drive. I decided to copy the first 2KB of the drive “from time to time,” the exact meaning
of which had yet to be determined. Then, when a different CD appeared in the drive, a
different 2K of data would be found in the first block, and SIMH could return “offline” to
the client while simultaneously updating the cached copy of the new data. SIMH could
then continue normally, while the guest OS began its mount verification processing.

In order to have the volume checked on a regular basis, I decided to close the handle to
the host drive after a few seconds of inactivity. Any period of time long enough to
physically switch the CD would trigger this condition, after which SIMH would detect
the new CD.

Regularly opening and closing the handle to the drive does add some overhead, but the
delay happens at the same time the CD is coming up to speed, and so only slightly
lengthens an already noticeable delay.

Once this mechanism was working, I modified the OpenVMS version to do the
equivalent opening and closing via $DISMOU and $MOUNT. It works as well for
OpenVMS as it does for Windows, but the OpenVMS version also contains the code
described in the OpenVMS-specific section, which a future version can take advantage
of.

Both the OpenVMS and Windows host version also return “offline” if the CD drive
contains no CD, causing the guest OS to behave as expected. OpenVMS returns “medium
is offline” if a MOUNT is attempted, or retries once per second when mount verification
is underway.

Room for Improvement

The code described above represents the first attempt at supporting physical CD access
within SIMH. There are a couple of obvious improvements that can and will be made as
time allows.

First, the inactivity timer test is currently located in the VAX CPU instruction dispatcher.
This was a convenient and reliable place to put it during testing, but is not ideal. Ideally, a
standard SIMH timer event should be used, which will reduce overhead.

Secondly, the OpenVMS version could benefit from placing a read into rq_rw_valid() for
the reasons described above.

Finally, the code as currently designed sometimes triggers an “offline” signal when it is
not necessary to do so. Any time a CD volume is switched (and also when SIMH is
started with an empty CD tray), the “First-2K test” will trigger. Mainly, this is because I

© Copyright 2009 Hewlett-Packard Development Company, L.P 96

am currently unaware of a good way to tell when the OpenVMS client has dismounted a
volume. From SIMH’s perspective, I/O simply stops for some period of time and resumes
later. If SIMH could reliably know when a DISMOUNT has occurred, First-2K testing
could be suppressed for the next sequence of I/Os.

Possible ways to improve this behavior include detecting a guest MOUNT, perhaps by
recognizing the specific block number(s) requested, or by detecting a
DISMOUNT/UNLOAD by some condition recognizable from the PDP11_RQ code.
Currently, a spurious “medium is offline” or transient mount verification cycle remain as
the only obvious bug in the new functionality. It should be noted that the guest OS can
simply retry the operation and everything will work itself out, but it would be preferable
to remove this behavior.

For More Information

You can find the SIMH base source code at http://simh.trailing-edge.com and the source
code and installation kits for the enhanced SIMH functionality at
http://www.MigrationSpecialties.com.

To subscribe to the SIMH mailing list, send a SUBSCRIBE message to simh@trailing-
edge.com.

http://simh.trailing-edge.com/
http://www.migrationspecialties.com/
mailto:simh@trailing-edge.com
mailto:simh@trailing-edge.com

