
© Copyright 2009 Hewlett-Packard Development Company, L.P

1

OpenVMS Technical

Journal V13
A Starlet1 is Born: New Options for VAX and Alpha

Hardware Replacement

Camiel Vanderhoeven, Hardware Illusionist

A Starlet is Born: New Options for VAX and Alpha Hardware Replacement ... 1

Introduction ... 2

Goals ... 2

Emulator Design... 3

Component hierarchy ... 3

Emulator component ... 3

Master Control Program (MCP) .. 3

Virtualization layer ... 4

Hardware Platform Abstraction Layer.. 4

Use of Object-Oriented Programming (OOP)... 5

Classes ... 5

Inheritance .. 5

Component Base Class ... 5

Multiple Inheritance .. 6

Conclusion .. 6

1 Starlet was the code name for the program that developed the VMS operating system. See the OpenVMS Wikipedia entry

http://en.wikipedia.org/wiki/OpenVMS) for additional information.

© Copyright 2009 Hewlett-Packard Development Company, L.P 2

Introduction

Those who are looking for options to replace aging VAX and Alpha hardware should be

aware of the arrival of a new player in the field. Migration Specialties International, a

respected OpenVMS consulting firm that is well known for its legacy hardware replacement

options, RPG compiler and other migration aids, has teamed up with a number of partners to

deliver its own suite of software-based VAX and Alpha hardware emulators.

For this suite of emulators, we’ve defined an underlying architecture that will allow us to add

different emulated systems and options to the suite with an unprecedented degree of

flexibility.

This article, written by the lead architect, will focus on the internal architecture designed to

support these new emulators.

Goals

We will create a software platform that can virtualize a variety of Alpha and VAX hardware.

We want to be able to emulate enough different systems to provide viable alternatives to any

existing hardware configuration, including multi-CPU systems.

Our emulators will support OpenVMS (VAX and Alpha emulators) and Digital UNIX/Tru64

UNIX (Alpha emulators only) as operating systems running on top of the virtual hardware.

Our emulators will be hosted on Integrity servers running OpenVMS and Proliant servers

running Windows. We will consider supporting a Linux version of the product at a later

stage.

When run on OpenVMS/Integrity as the host platform, our VAX and Alpha emulators running

OpenVMS will offer the same high-availability features that real VAX and Alpha systems

running OpenVMS have to offer.

In the future, we will explore the possibility of coupling our emulators with hardware bus

support to enable the use of the emulator with custom hardware interfaces. It would be

conceivable to see one of our VAX emulators with an attached Q-Bus or XMI card cage used

for replacement of factory automation systems.

We are targeting a production release for a first Alpha emulator in early 2010.

© Copyright 2009 Hewlett-Packard Development Company, L.P 3

Emulator Design

This section provides a high-level overview of the emulator and shows how the various bits

and pieces fit together.

Component hierarchy

The easiest way to think of an emulator is to think of it as a piece of hardware because that is

what it acts like to the operating system and other software running on top of it.

Like the real hardware, the emulator consists of modules (components) that interact with each

other. Most of the components correspond directly to physical hardware components.

Components have a parent-child relationship to each other. Child components are usually

connected to their parent through a virtual bus. For example, disk components are children

of a disk controller component, and PCI device components are children of a PCI controller.

Emulator component

This abstraction poses a problem at the top-level of the emulated system. Most systems have

a top-level bus that has no real controller to act as its parent. For example, in the

AlphaServer ES40, the top-level bus consists of the D-chips that connect the CPU’s to the C-

chips (system chipset), the P-Chips (PCI controllers), and main memory. Therefore, the

decision was made to create both a VAX emulator component and an Alpha emulator

component. These emulator components act as the controller for the top-level bus. For ease

of implementation, these components also include main memory.

Master Control Program (MCP)

Finally, different emulators and components like networks need to be tied together. This is

accomplished through the master control program component. (Are there any fans of either

Burroughs B5000 mainframes or the movie Tron out there?)

The following (simplified) image shows the components used to emulate an AlphaServer 400

and a MicroVAX, interconnected through an Ethernet network that is also connected to the

outside world through one of the host system’s network interfaces. The yellow components

are those that interact with the outside world. The red line indicates the “extra” parent-child

relationship between the network interface cards and the network top-level component.

The easiest way to think of an emulator
is to think of it as a piece of hardware

© Copyright 2009 Hewlett-Packard Development Company, L.P 4

Virtualization layer

From the beginning, the emulator was written to be very flexible. We first created a

framework to be used for writing different emulators. All forthcoming VAX and Alpha

emulators will use this common framework. Into this framework, we incorporated all of the

functions that all or most emulators will be likely to need, such as:

 Functions for configuring the emulator: instantiation, configuration, and connecting

together of all emulator components;

 Functions for controlling the emulator: structured, sequenced discovery, initialization,

starting and stopping of all emulator components;

 Emulated Ethernet connectivity between emulators;

 Common interfaces to the outside world for networking, hard-disk emulation and I/O

components: for example, communications ports provide the ability to communicate

through a telnet session or a physical serial port. This way, this functionality can be

shared by any emulated communications port without requiring additional effort,

simplifying the emulation environment and providing a more consistent user

experience;

 Hiding differences between different host systems from the emulator components, so

the same emulator will run on both OpenVMS and Windows;

 Support for making use of multi-CPU or multi-core host systems by threading;

 Emulator licensing and protection.

In short, these are all the emulator functions that are not directly related to the bits, bytes and

registers of the emulated hardware. We’ve named this framework the “Virtualization Layer”

because it creates a complete virtual environment for the individual emulators.

Hardware Platform Abstraction Layer

As we want our emulators to run on both Windows on Proliant servers and OpenVMS on

Integrity servers, we were confronted with the fact that Windows and VMS behave differently.

To avoid having to write platform-specific code for each emulator component, we

implemented an abstraction layer as part of the virtualization layer that hides these

differences from the rest of our code. These differences are mainly in the following areas:

 Threading and locking. On VMS, we use the Pthreads library; on Windows, we use

the Windows API.

 Physical device access. On VMS, we use QIO’s; on Windows, we use various API’s.

 Timekeeping.

Putting all platform-dependent code in one place helps us to keep our code base clean.

Master Control
Program

Ethernet

External NIC

VAX Emulator
Alpha

Emulator

Alpha EV4
CPU

Apecs chipset

Flash
Non-volatile

RAM

PCI Controller

Tulip NIC SCSI

CD-ROMDisk

Serial

MicroVAX
CPU

Q-Bus
Controller

System
Control Chip

Serial

DELQA NIC RQDX3

Disk

© Copyright 2009 Hewlett-Packard Development Company, L.P 5

Use of Object-Oriented Programming (OOP)

The emulator makes extensive use of OOP, particularly of the features offered by the C++

language. While C and C++ are reviled by some for their perceived cryptic nature (although

there is no rule that says C or C++ code has to be cryptic), they are commonly considered to

be the languages of choice for low-level, portable programming found in operating systems,

device drivers, and emulators. C and C++ give programmers a level of control over the bits

and bytes of their code few other high-level languages offer, and C and C++ compilers that

produce blazingly fast code are available for virtually any platform.

Classes

All components are implemented as classes. That means that a class has been designed for

each different kind of emulated component. For instance, if a RQDX3 controller needs to be

emulated, a RQDX3 class will be written. Once the class exists, the emulator can create as

many instances of that class as required. For example, to emulate a VAX with three RQDX3

controllers, three instances of the RQDX3 class would be generated.

Inheritance

The RQDX3 controller needs to be able to interface with the Q-bus controller and vice versa.

The mechanisms involved are the same for all Q-bus devices; the way the RQDX3

communicates with the Q-bus controller is no different than the way a DELQA network

interface communicates with it. Because of this shared behaviour, all Q-Bus components

share a common base class, the Q-Bus Device base class. This way, the Q-Bus controller can

address each of its child components as Q-Bus Devices, rather than as individual types of

interface. This takes full advantage of the power of inheritance, a defining feature of OOP.

Component Base Class

The Q-Bus Device class in turn has the Component class as its base class. The Component

class is part of the framework, and provides for such basic emulator-wide functions as naming

components, creating parent-child relationships, initializing, stopping and starting the

emulator.

C and C++ give programmers a level of control
over the bits and bytes of their code few other

high-level languages have to offer.

© Copyright 2009 Hewlett-Packard Development Company, L.P 6

Multiple Inheritance

It gets trickier though. Besides being a Q-Bus device, the RQDX3 is also a disk controller. As

not all disk controllers are Q-Bus devices (for example, the KZPAA SCSI disk controller is a

PCI device), the disk controller base class can’t have the Q-Bus device class as its parent. So,

the RQDX3 needs to have both the Q-Bus device class and the disk controller class as its base

classes. This is called multiple-inheritance.

In the case of the KZPAA SCSI controller, it is even more complicated; it inherits from PCI

device, Disk controller, and SCSI device classes. The following diagram illustrates this:

KZPAA SCSI Controller

PCI Controller SCSI Bus

Image file Raw device

PCI Device SCSI Device

SCSI Device SCSI Device

Disk Controller

Disk Disk

Conclusion

Like computer hardware or operating systems, successful, scalable and adaptable hardware

emulation requires an underlying, well-defined architecture. This architecture is the foundation

for the entire product. We have spent considerable effort to define a flexible architecture for

our emulators and, hopefully, we’ve shown you some of its interesting properties in this

article.

For more information

For more information and updates about the upcoming multi-platform VAX and Alpha emulator

discussed in this article, visit http://www.migrationspecialties.com/VAXAlphaEmulator.html.

For more information about the author, visit http://www.camicom.com.

For more information about the open-source ES40 emulator or to download its source code, visit

http://www.es40.org.

http://www.migrationspecialties.com/VAXAlphaEmulator.html
http://www.camicom.com/
http://www.es40.org/

