
DCPI for OpenVMS
a Technical Introduction to a “System Microscope ”

By Anders Johansson

Anders is a principal software engineer in the kernel tools team of the OpenVMS development
engineering group and the project leader for DCPI on OpenVMS. Other projects currently include
development work for OpenVMS I64 in the areas of LIBRTL and SDA. Anders, who has been with the
company for 16 years and is based in Stockholm, Sweden, is also an OpenVMS Ambassador for
Sweden.

Introduction
How many times have you wondered how your application executes, which parts of the system are used
most often, or where you might have bottlenecks in the code? Several products are available to measure
performance on OpenVMS systems. Most of these products use software performance counters, which
have certain limitations.

HP (Digital) Continuous Profiling Infrastructure, DCPI for OpenVMS, uses the hardware performance
counters of the Alpha chip to overcome these limitations. DCPI provides a “fine-grained” view of the
system. During the analysis of data, DCPI produces information ranging from the time spent in
individual executable images to which instructions are executed within an executable image. It also
provides insight into where stalls and instruction or data cache misses occur, and so on. A normal
sampling frequency for DCPI on a 600MHz Alpha is 10000 samples per second on every CPU in the
system. DCPI does this with a minimum CPU overhead -- usually below 5% of the total available CPU
time.

DCPI for OpenVMS, Some Background Information
DCPI began as a research project to find out how programs could be optimized to run faster on the
Alpha processor. This project, called “Where have all the cycles gone?” resulted in the first version
of DCPI (available on Tru64 Unix), and “SRC Technical Note 1997-016A,” which is available at
the following web site:

http://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/SRC-1997-016a-html/

An investigation into the feasibility of porting DCPI to OpenVMS started in late 1999; most of the
porting work was completed during 2000 and early 2001. DCPI was then used within OpenVMS
engineering to pinpoint performance problems. Early in 2002, a version of DCPI for OpenVMS
became available externally; it is downloadable from the following OpenVMS web site as an
“advanced development kit” under field test license terms:

http://h71000.www7.hp.com/openvms/products/dcpi/

DCPI provides the fundamentals for instruction-level system profiling. In general, DCPI does not
require any modifications to the code being profiled, because it is driven by the hardware
performance counters on the Alpha chip itself. Data is collected on the entire system, including user

© Copyright 2003 Hewlett-Packard Development Company, L.P. 1

http://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/SRC-1997-016a-html/
http://h71000.www7.hp.com/openvms/products/dcpi/

and third-party applications, runtime libraries, device drivers, the VMS executive itself, and so on.
The collected data can then be used for program, routine, and instruction-level profiling of the
environment.

DCPI for OpenVMS. How Does It Work?
DCPI consists of the following major components:

1. A data collection subsystem, which includes a device driver, a “daemon program,” and a
daemon control program (dcpictl) for user intervention with the DCPI daemon.

2. Data analysis tools that are used to break down the collected data into image/routine/code-
line/instruction profiles.

3. A special version of the OpenVMS debugger shareable image.

4. A shareable image containing the API for data collection of dynamic code.

The role of the DCPI device driver (DCPI$DRIVER) is to interface with the Alpha chip registers that
control the hardware performance monitoring of the chip and to handle the performance monitor
interrupts generated when the Alpha chip performance counters overflow. The interrupt handler
stores the data acquired at each interrupt into resident memory. The data stored by the driver
consists of type of event, PC, and PID.

The DCPI Daemon, which runs as an interactive process on OpenVMS, controls the kind of
monitoring that is performed and also starts and stops the data collection. However, the main task
of the DCPI daemon during the data collection is to:

• Read the data out of the driver buffers
• Map the event/PC/PID into an Imagename/Image-offset pair
• Store it into on-disk profiles for later analysis

To do this mapping, the DCPI daemon must have an in-memory map of the activated images within
every process on the system and also a map of the exec loaded image list. The DCPI daemon
builds a “loadmap” during its initialization, including the exec loaded image list and the activated
images in all the processes currently running on the system. Furthermore, to do the mapping on a
running system correctly, the DCPI daemon must track all the subsequent image activations in all the
active processes on the system. This image activation tracking is done using “image activator
hooks” that are available in the OpenVMS operating system starting with OpenVMS V7.3. This
tracking is implemented by means of a mailbox interface between the OpenVMS image activator
and the DCPI daemon. In this interface, the image activator provides detailed information to the
DCPI daemon about all image activations on the system.

The data analysis tools provide various views of the collected data. For these tools to provide
routine names and source code correlations to the profile data, DCPI uses its own version of the
OpenVMS debugger shareable image (DCPI$DBGSHR.EXE). To perform routine/source
correlations, DCPI also needs images with debug information (LINK/DEBUG) or debug symbol files
(.DSF files) for the running images (LINK/DSF). Therefore, while the data collection subsystem

© Copyright 2003 Hewlett-Packard Development Company, L.P. 2

collects data on ALL images running on the system, the analysis tools require debug symbol
information to perform in-depth analysis of the collected data.

The following figure illustrates DCPI data collection principles.

 DCPI Data Collection Principles

DCPI Driver

Exec Image
Information

On-Disk
Profile

Database

CPU n

CPU 1

CPU 0

Per-CPU Data

Overflow
Buffers

Hash Table

Buffered
Samples

Loadmap Info

DCPI Daemon

Kernel Mode

User Mode

Image
Activator

Activated Image

 DCPI Data Collection Principles

© Copyright 2003 Hewlett-Packard Development Company, L.P. 3

Alpha Chip Performance Monitoring

Two different methods exist for collecting performance data using the hardware performance counters of
the Alpha chip:

• Aggregate events

This method is available to a varying degree on all existing Alpha chips. Using
this method, DCPI sets a value (sampling period) in the performance monitor
control register on the Alpha processor and also specifies which event to sample.
Then, each time the event occurs, for example, a “CPU cycle has executed,” this
event will be counted. When the number of events has reached the specified
sampling period, an interrupt is generated, and DCPI stores the PC, PID and event
type. For example: If DCPI is sampling the CPU cycles event with a period of
63488, the Alpha chip generates an interrupt every 63488 cycles.

Although collecting aggregate events is generally a far better method for obtaining reliable
profiling data than collecting software performance counters, collecting aggregate events
has certain disadvantages This method relies on the instruction that is active at the time of
the interrupt being, in fact, the instruction that generated it -- in other words, it counts on the
performance monitor interrupts being precise. This is, however, not always the case. Only
a few of the performance monitor events produce a precise interrupt. Also, on recent
processors -- EV6 and later -- none of these interrupts are precise. This might appear to be
an important problem. However, even though the interrupts are imprecise, they are fairly
predictable, which DCPI takes into account.

Another problem with this method is that it allows for “blind spots” -- for example, any
code executing at or above IPL29 will not be profiled, because the performance monitor
interrupts are at IPL29. Such blind spots also include all the PAL code on Alpha, since the
PAL code runs with interrupts turned off. In those cases, the performance monitor interrupt
takes place on the first instruction after the PAL call, or when IPL drops below 29.

• ProfileMe
This method, which is available on EV67 and upward, is in many ways superior to
“aggregate events” ProfileMe uses some specific ProfileMe registers on the Alpha chip.
When DCPI sets the period for ProfileMe, the CPU counts instruction fetches. When the
period has passed (that is, when the instruction fetch counter overflows), the fetched
instruction is tagged as an instruction to profile. Information about this instruction is then
recorded into the ProfileMe registers throughout the execution phases of the instruction.
When the instruction retires, the interrupt is generated. At this point, DCPI reads all the
information out of the on-chip ProfileMe registers. This method of collecting performance
data is much more reliable, and also provides a much more complete picture of how the
different instructions perform.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 4

The following figure shows the flow of events during ProfileMe sampling.

captured!
tagged?

Interrupt!

done?

miss? Addr stage latencies History mp? retired? miss? pc

Dcache

Arith

Icache

Branch
predict

ProfileMe tag!

Fetch
Counter

overflow?

Retire
Exec

IssueMap
Fetch

Internal processor registers

Data Analysis Tools on DCPI for OpenVMS

For the analysis tools to work, they require access to the exact images that were used when the
data was collected. The reason is that the tools read the instructions directly from the image files,
and the analysis becomes meaningless if the instructions read are not the instructions that were
executed. A test is performed that verifies that the image analyzed is the same image as the one
being profiled. This verification is performed by checking various fields in the image header and
comparing them to what was stored in the DCPI profile database (dcpidb) during the data
collection.

The analysis tools can perform breakdown analysis by image or by routine name. To do this
successfully, the analysis tools require debug symbol information for the image analyzed. This
requirement can be met in two ways:

• The image is linked /DEBUG, which might not be practical, because the image might be
INSTALLed on the running system, which requires the image to be linked /NODEBUG

• The image is linked /NODEBUG/DSF, which creates a separate file (imagename.DSF) that

contains all the debug symbol information for the image. Place this debug symbol file in the
same directory as the image file itself. Another alternative is to place all debug symbol files
in a separate location and define the logical name DBG$IMAGE_DSF_PATH to point to
that directory.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 5

The analysis tools provide slightly different views of the collected data. To perform
complete profiling, you must use several of the analysis tools, which are described in the
following table:

Tool Description
DCPIPROF The top-level analysis tool. It provides either a system-to-image breakdown of the

collected samples, or an image-to-procedure breakdown of the collected samples.
DCPIPROF is usually the first tool used to obtain an initial idea of the images in
which the system is spending time. DCPIPROF is then used to obtain an initial idea
of which routines within an image are spending the most time. DCPIPROF analysis
works on data collected via the ProfileMe method and via aggregate events.

DCPILIST The tool to use for detailed analysis within a procedure in a specified image.

DCPILIST can correlate the collected samples to either source lines in the code,
executed Alpha instructions or both. To do source code correlation, it also
needs the actual source file of the analyzed routine. DCPILIST analysis works
on data collected via the ProfileMe method and via aggregate events.

DCPICALC Generates a control flow graph of the procedure or procedures specified for a
given image. DCPICALC augments the graph with estimated execution
frequencies of the basic blocks, cycle-per-instruction counts, and so on.
DCPICALC works only on data collected via aggregate events.

DCPITOPSTALLS Can be used to identify the instructions within the specified image or images
that account for the most stalls. DCPITOPSTALLS only works on data collected
via aggregate events

DCPIWHATCG Generates the same type of control flow graph as DCPICALC, but instead of
producing at the procedure level, it looks at different images. DCPIWHATCG
works only on data collected via aggregate events.

DCPITOPS Takes the output from a DCPICALC run and generates a PostScript™
representation of the execution of the image, for example using different font
sizes to visualize the execution frequencies of the basic blocks. DCPITOPS
only works on data collected via aggregate events.

DCPICAT Presents the raw profile data in a human readable format. It is normally only
used by the DCPI developer, but is included in the DCPI for OpenVMS kit for
convenience. DCPICAT can handle all types of DCPI events.

DCPIDIFF Compares a set of profiles and lists the differences between them. This can be
very useful when looking at different test cases.

As indicated in the preceding table, several tools operate only on data that is sampled using
aggregate events This somewhat limits the ease of analysis for ProfileMe data, but the richness of
the ProfileMe data is sufficient to find all the causes without those tools. DCPICALC, DCPIWHATCG
and DCPITOPSTALLS all use intimate knowledge of the Alpha CPU execution characteristics to
apply qualified guesswork to find out where problems such as stalls occur. With ProfileMe, all data

© Copyright 2003 Hewlett-Packard Development Company, L.P. 6

is collected on each profiled instruction; therefore, the rationale behind not supporting the tools on
ProfileMe is that because the data is collected by the hardware itself, it is much more reliable.

Also note that all the DCPI tools use a UNIX-style command syntax. Because adding DCL syntax to
the tools would not add anything to the functionality of DCPI, the decision was made to omit the
time-consuming effort of providing a DCL interface to the tools.

Profiling of Code Generated “on the Fly”

Some applications such as Java™ generate code on the fly and then execute it. Standard DCPI needs a
persistent on-disk image for the analysis because it reads the instructions from that image during the
analysis. When building its profile during the data collection, DCPI must also build a loaded image map
to calculate image offsets, and so on. None of these exist for dynamically generated code.

DCPI for OpenVMS includes an API for informing the DCPI daemon about the generated code. This
API also provides a way to generate Debug Symbol Table (DST) entries for the generated code. The
generated code and its associated DSTs are then written to a persistent on-disk “pseudo image,”
which is used during the analysis. This is an area where DCPI for OpenVMS has evolved beyond
the DCPI version available on Tru64 UNIX.

DCPI Usage
A typical sequence of commands to run DCPI data collection is the following:

dcpid, one or more dcpictl commands, and finally dcpictl quit to stop the data collection.

By using the DCPI daemon in conjunction with the DCPI driver, you first collect data into on-disk profiles,
which are stored into epochs on disk. The epochs are the only means of applying a time-line to the DCPI
data. This is very important because it is absolutely impossible to see which data in an epoch were
collected during, for example, a peak period of the load. The typical recommendation of a way to obtain
good results when using DCPI is to keep the load stable within an epoch, because this is the only way to
know what is being profiled. Divide any run that includes ramp-up, ramp-down, peak, and low activity
on the system into epochs to correctly determine which profiles came from which test case. The names of
the profiles come from the GMT time when they were created.

Commands to manipulate epochs during the data collection are:

• Dcpid by default creates a new epoch in the current DCPI database. Using the switch –epoch
on the command line while starting dcpid does not create a new epoch, but rather uses the most
recent one in the DCPI database.

• Dcpic l is an interface to the DCPI daemon during the data collection. Ways to manipulate
epochs include the following:

t

o Dcpictl flush, which performs a user-initiated flush of the in-memory profile data of the
DCPI daemon and DCPI driver, into the current epoch in the DCPI database (the logical

© Copyright 2003 Hewlett-Packard Development Company, L.P. 7

name DCPIDB points to the DCPI database). Flushing also occurs automatically
throughout the data collection and into the current epoch.

o Dcpictl epoch, which flushes the in-memory profile data of the DCPI daemon and the
DCPI driver into the current epoch, and then starts a new epoch.

Running the Data Collection
A typical way of starting the data collection is:

$ dcpid cmoveq$dka100:[dcpi.test]
dcpid: monitoring cycles
dcpid: monitoring imiss
dcpid: logging to comveq$dka100:[dcpi.test]dcpid-COMVEQ.log

Because the DCPI daemon runs as an interactive process on OpenVMS, you might want to use the
following command to avoid locking up the terminal where dcpid is run:

$ spawn/nowait/input=nl: dcpid cmoveq$dka100:[dcpi.test]
%DCL-S-SPAWNED, process SYSTEM_187 spawned
dcpid: monitoring cycles
dcpid: monitoring imiss
dcpid: logging to comveq$dka100:[dcpi.test]dcpid-COMVEQ.log

On pre-EV67 processors, the default events to collect are cycles and imis. On EV67 and newer
processors, the default events are pm (ProfileMe) and cycles.

To end the data collection, type the following command:

$ dcpictl quit

Analyzing the Data

After the data collection is completed (or during the data collection, if data has been flushed) you
can then use dcpiprof to take an initial look at the collected profile data:

$ dcpiprof
dcpiprof: no images specified. Printing totals for all images.
Column Total Period (for events)
------ ----- ------
cycles 1755906 65536
imiss 41991 4096

The numbers given below are the number of samples for each
listed event type or, for the ratio of two event types,
the ratio of the number of samples for the two event types.
===
cycles % cum% imiss % image

1349002 76.83% 76.83% 8154 19.42% DISK$CMOVEQ_SYS:[VMS$COMMON.SYSLIB]DECC$SHR.EXE
176821 10.07% 86.90% 919 2.19% DISK$CMOVEQ_SYS:[VMS$COMMON.SYSLIB]LIBRTL.EXE
65432 3.73% 90.62% 426 1.01%

DISK$ALPHADEBUG1:[DEBUG.EVMSDEV.TST.TST]LOOPER.EXE;1
45788 2.61% 93.23% 8651 20.60% SYS$SYSROOT:[SYS$LDR]SYSTEM_SYNCHRONIZATI
27039 1.54% 94.77% 4598 10.95% SYS$SYSROOT:[SYS$LDR]SYSTEM_PRIMITIVES.EX
16045 0.91% 95.68% 844 2.01%

DISK$CMOVEQ_SYS:[VMS$COMMON.SYSEXE]DCPI$DAEMON.EXE;2
7727 0.44% 96.12% 1969 4.69% SYS$SYSROOT:[SYS$LDR]RMS.EXE;
6993 0.40% 96.52% 2102 5.01% SYS$SYSROOT:[SYS$LDR]SYS$PEDRIVER.EXE;
6741 0.38% 96.91% 1762 4.20% SYS$SYSROOT:[SYS$LDR]PROCESS_MANAGEMENT_M
6587 0.38% 97.28% 1215 2.89% SYS$SYSROOT:[SYS$LDR]F11BXQP.EXE;
5742 0.33% 97.61% 1079 2.57% SYS$SYSROOT:[SYS$LDR]SYS$BASE_IMAGE.EXE;
5385 0.31% 97.92% 1434 3.42% SYS$SYSROOT:[SYS$LDR]SYS$EWDRIVER.EXE;
5344 0.30% 98.22% 1371 3.26% SYS$SYSROOT:[SYS$LDR]IO_ROUTINES_MON.EXE;

© Copyright 2003 Hewlett-Packard Development Company, L.P. 8

5015 0.29% 98.51% 1024 2.44% unknown$MYNODE

This first example shows the output of the top-level dcpiprof run. The next step is to decide which
image is interesting, and use dcpiprof to look into that image.

$ dcpiprof DISK$ALPHADEBUG1:[DEBUG.EVMSDEV.TST.TST]LOOPER.EXE;1
Column Total Period (for events)
------ ----- ------
cycles 84210 65536
imiss 540 4096

The numbers shown below are the number of samples for each
listed event type or, for the ratio of two event types, the
ratio of the number of samples for the two event types.
===
cycles % cum% imiss % procedure image
65774 78.11% 78.11% 334 61.85% get_next_random disk$alphadebug1..
16892 20.06% 98.17% 93 17.22% analyze_samples disk$alphadebug1..
1543 1.83% 100.00% 112 20.74% collect_samples disk$alphadebug1..

1 0.00% 100.00% 1 0.19% main disk$alphadebug1.

Usually, you perform the next level of analysis by using dcpilist to look at the actual code
lines/Alpha instructions that the samples are attributed to:

$ dcpilist –both -f dbg$tstevmsdev:[tst]looper.c get_next_random -
disk$alphadebug1:[debug.evmsdev.tst.tst]looper.exe
cycles imiss

0 0 static int get_next_random (void)
0 0 /*
0 0 ** We want to get the next random number sample.
0 0 ** The samples are SAMPLE_ITERATIONS calls apart.
0 0 */
0 0 {
0 0 long int i;
0 0 int sample;

21 0
21 0 0x2045c STL R31,#X000C(FP)

42355 174 i = 0;
3875 27 0x20460 LDL R1,#X000C(FP)

11536 31 0x20464 LDA R1,#XFF9C(R1)
3923 19 0x20468 LDL R0,#X000C(FP)

12001 50 0x2046c ADDL R0,#X01,R0
3764 13 0x20470 STL R0,#X000C(FP)
3772 21 0x20474 BGE R1,#X000006

. . . .
3484 13 0x2048c BR R31,#XFFFFF4

22013 while (i++ < SAMPLE_ITERATIONS)
4248 19 0x20478 BIS R31,R31,R25

37 0 0x2047c LDQ R26,#X0028(R2)
3689 17 0x20480 LDQ R27,#X0030(R2)
7325 28 0x20484 JSR R26,(R26)
6714 38 0x20488 STL R0,#X0008(FP)

0 0 sample = rand ();
195 2 0x20490 LDL R0,#X0008(FP)

0 0 0x20494 BIS R31,FP,SP
40 0 0x20498 LDQ R26,#X0010(FP)
44 1 0x2049c LDQ R2,#X0018(FP)
85 37 0x204a0 LDQ FP,#X0020(FP)
0 0 0x204a4 LDA SP,#X0030(SP)
0 0 return (sample);

$

The real challenge with this detailed information is to understand why the system executes as it
does, and why certain routines are used as often as they are. Then you need to look into the
routines that need to be used frequently if they appear to have performance problems.

In the preceding examples, the top image is not LOOPER.EXE -- which might be the obvious guess,
because a monitor system would show that the process running LOOPER.EXE is the top CPU
consumer. The top image is, rather, the DECC runtime library. The rand() call in the
get_next_random() routine calls into the DECC runtime library, which most likely also uses one or
more routines in LIBRTL, thus having those two as top images. This example shows, in a fairly

© Copyright 2003 Hewlett-Packard Development Company, L.P. 9

simple way, one reason why getting to the root cause of a problem might be a challenge. The
cause of the “problems” seen here is LOOPER.EXE, because it makes excessive calls into the DECC
runtime library. From the initial dcpiprof, believing that the DECC runtime library has problems is
easy. Although this example is simplistic, it demonstrates that further analysis is often needed to find
the root cause of the system behavior.

Some Basic Hints for DCPI Analysis

 A few hints for DCPI analysis follow. To perform a full analysis of an application requires a very
good understanding of the application itself.

• As indicated above, the DCPI notion of a time-line is called an epoch. No way of “time-
stamping” the individual samples exists, other than creating a new epoch. To obtain
predictable results when using DCPI, you must have as a goal a stable load throughout an
epoch. No way exists to analyze less than an epoch afterwards. Creation of epochs is
done during data collection.

• DCPI samples the whole OpenVMS system, not just the “interesting” program. Calls that

are made into shareable images reflect the sum of all the calls made by ALL programs
currently running on the system. A way to break this up into images run within different
processes is to start the data collection with $dcpid –bypid ‘imagename’.

• Be careful when drawing conclusions. As the above example illustrates, drawing incorrect

conclusions is quite easy. Also, a high number of samples in an image/routine might not
mean that this image/routine has any performance problems. A high number of samples
means only that the image/routine was used frequently. You need to analyze further to find
the root cause of the sample count.

• The DCPI daemon, which is a central piece of the DCPI data collector, is a normal user

process. On a heavily loaded system, the DCPI daemon could be starved for CPU time,
which might be seen as “dropped samples” in the DCPI daemon log file (dcpid-
nodename.log) in the DCPI database. The DCPI database is defined by the logical name
dcpidb. In some cases, it is important to start the data collection with a dcpid –nice
‘priority’ to increase the priority of the DCPI daemon process.

• The DCPI daemon scans all available processes during its initialization, to build an image

map for the images in each process. On a system with many processes and a high load,
this initial scan can take a considerable amount of time. If the system is running OpenVMS
V7.3 or higher, starting the DCPI daemon ahead of time, when the system is relatively idle
greatly reduces the time of the DCPI daemon initialization.

• All activity on the system, or lack of activity, is reflected in the collected data. If the system

is idle, nearly 100% of the time will be attributed to SCH$IDLE() in
PROCESS_MANAGEMENT.EXE. This exec loaded image contains other important code;
therefore, a high number of samples might indicate something else. If the percentage of
samples in PROCESS_MANAGEMENT.EXE is similar to the percentage of idle time, it is
fairly safe to make this assumption.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 10

© Copyright 2003 Hewlett-Packard Development Company, L.P. 11

• Try to minimize the noise level during the data collection by stopping unused CPUs or

unneeded software, or both. Do this only during a second-level data collection, when you
are narrowing down the causes of a problem.

A high number of cycles might be normal for the images or routines seen during analysis. When
using ProfileMe, to find images or routines with possible problems, look at the RETIRED/CYCLES
ratio of the routine. Ideally, the Alpha chip is capable of sustaining 4 instructions per cycle. Any
routine with a ratio of 3 is probably impossible to improve, while a routine with a ratio below 1 is
a good suspect for a routine with performance problems.

	DCPI for OpenVMS�a Technical Introduction to a “�
	Introduction
	DCPI for OpenVMS, Some Background Information
	DCPI for OpenVMS. How Does It Work?
	Alpha Chip Performance Monitoring
	Data Analysis Tools on DCPI for OpenVMS
	Profiling of Code Generated “on the Fly”
	DCPI Usage
	Running the Data Collection
	Analyzing the Data
	Some Basic Hints for DCPI Analysis

