
Local Area Network Cluster Interconnect Monitoring
Keith Parris
Systems/Software Engineer, HP Multivendor Systems Engineering

Overview
Local Area Network (LAN) technology is increasingly replacing older technologies such as
Computer Interconnect (CI) and Digital Storage Systems Interconnect (DSSI) as the interconnect used
for communications within the majority of OpenVMS Cluster configurations. This article describes
the LAVC$FAILURE_ANALYSIS tool which is supplied with OpenVMS and which can be used to
monitor and troubleshoot LANs that are used as cluster interconnects.

LAN Cluster Interconnect Monitoring using LAVC$FAILURE_ANALYSIS

Background
When support for OpenVMS Cluster communications over a Local Area Network (LAN) was first
introduced, the resulting configuration was known as a Local Area VAX Cluster, or “LAVC” for
short.

Support for multiple LAN adapters in a single system was introduced in VAX/VMS version 5.4-3.
This allowed LAVC configurations with a significant amount of LAN redundancy to be configured,
and allowed the cluster to continue operating and survive the failure of network adapters and
various other network components.

One challenge that is always present when redundancy is configured is the need to monitor the
redundant components to detect failures, or else, as components continue to fail over time, the
entire system may fail when the last remaining working component fails.

To assist with this problem, supplied along with OpenVMS is a tool called
LAVC$FAILURE_ANALYSIS. Its purpose is to monitor and report any LAN component failures. It
reports these using Operator Communication (OPCOM) messages. It also reports when a failure is
repaired.

Implementing LAVC$FAILURE_ANALYSIS
There is a template program for LAVC$FAILURE_ANALYSIS found in the SYS$EXAMPLES: directory
on an OpenVMS system disk. The template program is called LAVC$FAILURE_ANALYSIS.MAR.
The template program is written in Macro-32 assembly language, but you don’t need to know how
to program in Macro-32 just to use it.

To use the LAVC$FAILURE_ANALSYS facility, the program must be:

1. Edited to insert site-specific information

2. Compiled (on Alpha; assembled on VAX)

3. Linked, and

4. Run on each node in the cluster (preferably at boot time)

Maintaining LAVC$FAILURE_ANALYSIS
The program must be re-edited and rebuilt whenever:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 1

1. The LAVC LAN is reconfigured

2. A node’s MAC address changes (for example, when an HP Customer Services
representative replaces a LAN adapter)

3. A node is added or removed (permanently) from the cluster

How Failure Analysis Is Done
PEDRIVER, the Port Emulator code which makes a LAN look and act like a CI (Computer
Interconnect) port to the OpenVMS Cluster code, transmits multicast “Hello” packets every 2-3
seconds or so from each LAN adapter that is enabled for cluster communications. These “Hello”
packets are sent to a multicast address that is associated with the cluster group number, and which
has a MAC address of the form AB-00-04-01-xx-yy, where “xx-yy” is based on the cluster group
number plus an offset. Each cluster member enables receipt of packets addressed to the MAC
address associated with its own cluster group number, and uses the receipt of Hello packets to
discover new communications paths and track the reachability of a node via a given path.

In the information added by editing the LAVC$FAILURE_ANALYSIS program to customize it for a
given cluster, OpenVMS is told what the LAN configuration should be (in the absence of any
failures). The LAN configuration is represented as a mathematical “graph” with “nodes” and
“connections” between the nodes in the graph. From this information, OpenVMS infers which LAN
adapters should be able to “hear” Hello packets from which other LAN adapters. By checking for
the receipt of Hello packets as expected, OpenVMS can thus determine if a path is working or not.

By analyzing Hello packet receipt patterns and correlating them with the mathematical graph of the
network, OpenVMS can tell which nodes in the mathematical network graph are passing Hello
packets and which appear to be blocking Hello packets. OpenVMS determines a Primary Suspect
(and, if there is any ambiguity as to exactly what specific component has failed because more than
one failure scenario might cause the observed symptoms, also identifies one or more Alternate
Suspects), and reports these via OPCOM messages with a “%LAVC” prefix.

Primary Suspects are reported with a message prefix of the form “%LAVC-W-PSUSPECT”. Alternate
Suspects are reported with a message prefix of the form “%LAVC-I-ASUSPECT”. When the failure
that caused a Suspect to be reported is repaired, a message with a prefix of the form “%LAVC-S-
WORKING” is generated.

Getting Failures Fixed
Since notification is done via OPCOM messages, someone or something needs to be scanning
OPCOM output and taking action. If no human is actively watching the OPCOM output, the error
notification may be overlooked.

In one disaster-tolerant cluster there were two expensive DS-3 inter-site links configured, and
LAVC$FAILURE_ANALYSIS was put into place to monitor the inter-site links, but the OPCOM
message reporting a failure of one of the links one day was missed and the failure was not
discovered until six days later. In the intervening time, a failure of the other link would have
caused a loss of communications between the two sites of the disaster-tolerant cluster, which would
likely have been noticed quickly, but would not have been very convenient.

Products such as TecSys Development Inc.’s ConsoleWorks, Computer Associates’ Unicenter
Console Management for OpenVMS (previously known as Console Manager), Ki Networks’
Command Line Interface Manager (CLIM), or Heroix RoboMon can scan for the %LAVC messages
generated by LAVC$FAILURE_ANALYSIS and take some appropriate action (sending e-mail,
sending a notification via pager, etc.).

© Copyright 2003 Hewlett-Packard Development Company, L.P. 2

Gathering Information
To implement LAVC$FAILURE_ANALYSIS, data must be gathered about the LAN configuration. The
data required includes:

• OpenVMS nodes, and the LAN adapters in each node

• Hubs, switches, bridges, and bridge/routers (routers which have bridging enabled)

• Links between all of the above

Network Building Blocks
For the purposes of LAVC$FAILURE_ANALYSIS, OpenVMS considers LAN building blocks as being
divided into 4 classes:

• NODE: An OpenVMS system

• ADAPTER: LAN adapters or Network Interface Cards (NICs) in each OpenVMS system

• COMPONENT: Hubs, switches, bridges, bridge-routers

• CLOUD: Combinations of components that can’t be diagnosed directly

These relationships are illustrated in the following diagram:

Network Building Blocks

OpenVMS
Node 1

Fast Ethernet
FDDI

Gigabit Ethernet

OpenVMS
Node 1

Gigabit Ethernet
FDDI

Fast Ethernet

Hub

Concentrator

GbE Switch

FE Switch

GIGAswitch

GbE Switch

Handling Network Loops
The algorithm used for LAVC$FAILURE_ANALYSIS can’t deal with loops in the mathematical
network graph. Yet redundancy is often configured among LAN components (and this is a good
thing). The bridges’ Spanning Tree algorithm automatically shuts off redundant (backup) links
unless and until a failure occurs. But Hello packets don’t get through these backup links, so
LAVC$FAILURE_ANALYSIS can’t track them directly.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 3

For these cases, you replace the redundant portion of the network with a “network cloud” that
includes all of the redundant components. Then OpenVMS can determine if the network “cloud” as
a whole is functioning or not, and doesn’t have to worry about the internal details of which links
are turned on or off by the Spanning Tree protocol at any given time.

Handling Multiple LANs
Note that multiple, completely separate LANs don’t count as “loops” in the network, and OpenVMS
can track each one separately, independently, and simultaneously.

Gathering Information
Let’s look a bit more closely at the data required for LAVC$FAILURE_ANALYSIS:

• Node names and descriptions

• LAN adapter types and descriptions, and their:

o Media Access Control (MAC) address (e.g., 08-00-2b-xx-xx-xx, 00-00-F8-xx-xx-xx)

o plus DECnet-style MAC address for Phase IV (e.g., AA-00-04-00-yy-zz)

• Network components and descriptions

• Interconnections between all of the above

The names and descriptions supplied will be used in the OPCOM messages which are generated
upon detection of failures and when failures are repaired.

Getting MAC address info
A DCL command procedure similar to the following can be used to help sift through the output from
SDA> SHOW LAN/FULL and pick out the device names and MAC address data.

$! SHOWLAN.COM
$!
$ write sys$output "Node ",f$getsyi("nodename")
$ temp_file := showlan_temp.temp_file
$ call showlan/out='temp_file'
$ search 'temp_file' "(SCA)","Hardware Address" –

/out='temp_file‘-1
$ delete 'temp_file';*
$ search/window=(0,1) 'temp_file‘-1 "(SCA)"
$ delete 'temp_file‘-1;*
$ exit
$!
$ showlan: subroutine
$ analyze/system
show lan/full
exit
$ endsubroutine

Editing the Template Program
Once the necessary data has been gathered, you will need to edit a copy of the
LAVC$FAILURE_ANALYSIS.MAR program found in the SYS$EXAMPLES: directory.

There are five sections to edit, as follows:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 4

Edit 1
In Edit 1, you can give descriptive names to nodes, adapters, components, and clouds. These
names become names of some macros. Later in the code, you will create invocations of these
macros, calling them by the names defined here.

These macro names are for your convenience and reference inside the program, and do not
appear external to the program.

Edit 1 example, taken from the template LAVC$FAILURE_ANALYSIS.MAR program:

; Edit 1.
;
; Define the hardware components needed to describe
; the physical configuration.
;

NEW_COMPONENT SYSTEM NODE
NEW_COMPONENT LAN_ADP ADAPTER
NEW_COMPONENT DEMPR COMPONENT
NEW_COMPONENT DELNI COMPONENT
NEW_COMPONENT SEGMENT COMPONENT
NEW_COMPONENT NET_CLOUD CLOUD

Not very many networks today contain DELNI and DEMPR boxes or thickwire Ethernet cables, but
you might create names like SWITCH, HUB, CISCO, DS3_LINK, and so forth here. Note that you
can create multiple names for a given type of network building block, as we see done here with
COMPONENTs.

Edit 2
In Edit 2, you create an “ASCII art” drawing to document the LAVC LAN configuration. This has no
functional effect on the code, but helps you (and others who follow you) understand the information
in the sections of data that follow.

In the drawing, you choose brief abbreviated names for each network building block (Node,
Adapter, Component, or Cloud). These abbreviated names are only used within the program, and
do not appear externally.

Edit 2 example:

; Edit 2.
;
; Diagram of a multi-adapter LAV cluster.
;
;
; Sa -----+---------------+---------------+-------------+----- Sa
; | | | |
; | MPR_A | |
; | .----+----. | |
; | 1| 1| 1| |
; BrA ALPHA BETA DELTA BrB
; | 2| 2| 2| |
; | `----+----' | |
; | LNI_A | |
; | | | |
; Sb -----+---------------+---------------+-------------+----- Sb

© Copyright 2003 Hewlett-Packard Development Company, L.P. 5

Edit 3
In Edit 3, you name and provide a text description for each system and its LAN adapter(s), and the
MAC address of each adapter. The name and text description will appear in OPCOM messages
indicating when failure or repair has occurred. The MAC address is used to identify the origin of
Hello messages.

For DECnet Phase IV, which changes the MAC address on all LAN adapters (which it calls Circuits)
that it knows about from the default hardware address to a special DECnet address when it starts
up, you provide both:

• The hardware MAC address (e.g., 08-00-2B-nn-nn-nn), and

• The DECnet-style MAC address, which is derived from the DECnet address of the node
(AA-00-04-00-yy-xx)

This way, LAVC$FAILURE_ANALYSIS can work both before and after DECnet Phase IV starts up
and changes the MAC address.

DECnet Phase V (DECnet/OSI) does not change the MAC address, so only the hardware address
is needed.

Edit 3 example:
; Edit 3.
;
; Label Node Description LAN HW Addr DECnet Addr
; ----- ----- -- -------------------- -------------------

SYSTEM A, ALPHA, < - MicroVAX II; In the Computer room>
LAN_ADP A1, , <XQA; ALPHA - MicroVAX II; Computer room>, <08-00-2B-41-41-01>, <AA-00-04-00-01-04>
LAN_ADP A2, , <XQB; ALPHA - MicroVAX II; Computer room>, <08-00-2B-41-41-02

SYSTEM B, BETA, < - MicroVAX 3500; In the Computer room>
LAN_ADP B1, , <XQA; BETA - MicroVAX 3500; Computer room>, <08-00-2B-42-42-01>, <AA-00-04-00-02-04>
LAN_ADP B2, , <XQB; BETA - MicroVAX 3500; Computer room>, <08-00-2B-42-42-02>

SYSTEM D, DELTA, < - VAXstation II; In Dan's office>
LAN_ADP D1, , <XQA; DELTA - VAXstation II; Dan's office>, <08-00-2B-44-44-01>, <AA-00-04-00-04-04
LAN_ADP D2, , <XQB; DELTA - VAXstation II; Dan's office>, <08-00-2B-44-44-02>

Note that only NODE building blocks (named SYSTEM in this example) have a node name; all the
other building block types have a null parameter in that location (indicated by a comma alone).

Edit 4
In Edit 4, you name and provide a text description for each Component and each Cloud. As with
the nodes and adapters you described in Edit 2, the name and text description you provide here
will appear in OPCOM messages indicating when failure or repair has occurred.

Edit 4 example:

; Edit 4.
;
; Label each of the other network components.
;

DEMPR MPR_A, , <Connected to segment A; In the Computer room>
DELNI LNI_A, , <Connected to segment B; In the Computer room>

SEGMENT Sa, , <Ethernet segment A>
SEGMENT Sb, , <Ethernet segment B>

NET_CLOUD BRIDGES, , <Bridging between Ethernet segments A and B>

© Copyright 2003 Hewlett-Packard Development Company, L.P. 6

Here, you give an abbreviated symbolic name and a description for each of the COMPONENT
and CLOUD building blocks. Again, the node name argument is null, indicated by a comma
alone, for the second argument to the macros.

Edit 5
In Edit 5, you indicate which network building blocks have connections to each other. This is a list
of pairs of building blocks, indicating that the two components in a given pair are connected
together.

Pairs of components which have no direct connection between them are simply not listed here.

Edit 5 example:

; Edit 5.
;
; Describe the network connections.
;

CONNECTION Sa, MPR_A
CONNECTION MPR_A, A1
CONNECTION A1, A
CONNECTION MPR_A, B1
CONNECTION B1, B

CONNECTION Sa, D1
CONNECTION D1, D

CONNECTION Sa, BRIDGES
CONNECTION Sb, BRIDGES

CONNECTION Sb, LNI_A
CONNECTION LNI_A, A2
CONNECTION A2, A
CONNECTION LNI_A, B2
CONNECTION B2, B

CONNECTION Sb, D2
CONNECTION D2, D

In this example, the author started with network segments, and indicated each component and LAN
adapter that was connected to that segment. Note that it is necessary to explicitly indicate which
LAN adapters are connected to a given node, even though that might be implied in the naming
convention and thus perfectly obvious to a human being.

The formatting of columns adds to the readability here, with network segments, LAN adapters and
nodes in their own columns.

My personal preference is to begin with the nodes at the left, adapters in the next column to the
right, and so forth, moving outward from a node to the things to which it is connected. But the
order of appearance here, either left to right or top to bottom, does not affect the functional
behavior. Only which building blocks are connected in a pair is significant.

Handling MAC Address Duplications with Multiple LANs
If you are running DECnet Phase IV and have multiple independent LANs, you may end up with
multiple LAN adapters on a single node with the same MAC address, connected to different LANs.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 7

In this case, you will get error messages when you build LAVC$FAILURE_ANALYSIS because of
duplicate symbol definitions unless you “comment out” (by putting a semi-colon in the first column)
the first line of code after the following comment section:

; Within a single extended LAN address must remain unique. The
; following line checks for unique LAN addresses in a single
; extended LAN configuration. If your configuration is using
; multiple extended LANs then LAN address can be duplicated between
; the extended LANs. In this case, the following line should be
; removed.

Level of Detail
There is a trade-off between the level of detail which is provided in diagnostic information
generated and the amount of work required to initially set up the program and to maintain the
program over time. More detail implies more work to set things up in the first place, and more
maintenance work as things change, but provides more specific diagnostic information when
failures occur and repairs are made.

For example, if a bridge/router or switch is represented as a single black box, notifications can
only refer to the box as a whole. If an individual line card or port has failed, but the remainder of
the box is working, it will appear to some nodes as if the entire box has failed, while to other
nodes it will appear that a remote node’s adapter has failed instead, and thus the error messages
generated on different nodes will differ, depending on their view of the failure. If the extra effort is
taken to identify individual line cards and ports within the box, and indicate to which line card and

port each LAN adapter is connected, then failure reports will be able to identify failures down to
the line card level and even to the individual port level. The Level of Detail Example shows, on the
left, a GIGAswitch represented as a black box, and, on the right, a GIGAswitch represented as
line cards and the backplane connecting them in the box.

Level of Detail Example

GIGAswitch Backplane

FDDI Line Card

FDDI Line Card

FDDI Line Card

FDDI Line Card

Gigaswitch

© Copyright 2003 Hewlett-Packard Development Company, L.P. 8

Other tools for use with LAVC$FAILURE_ANALYSIS
A DCL command procedure called EDIT_LAVC.COM is available to automatically gather the
required information and create a working example LAVC$FAILURE_ANALYSIS.MAR program
customized for a given cluster. While the level of detail within the LAN that such an automated tool
can provide is limited, it provides a working example and starting point for further customization
for a given site. This tool may be included on the V6 Freeware CD in the [KP_CLUSTERTOOLS]
directory, but it can also be obtained from http://encompasserve.org/~parris/edit_lavc.com. See
the EDIT_LAVC_DOC.TXT file at the same location for more information on how to use this tool.

The DCL command procedure SIFT_LAVC.COM found at the same location can be used to gather
all the %LAVC messages from the OPERATOR.LOG files on all cluster nodes, and sort and list them
in timestamp order, to gather a better overall picture of the failures as indicated by the varying
views from each of the different nodes in the cluster.

Turning On LAVC$FAILURE_ANALYSIS
Once the LAVC$FAILURE_ANALYSIS program has been customized, it needs to be compiled and
linked. A command procedure LAVC$BUILD.COM provided in SYS$EXAMPLES: can assist with
building the program. Once the program has been built, it should be run once on each member of
the cluster. The program loads the network graph data into non-paged pool, and reports the
amount of space used.

If you make changes to the program, you can simply run the new version, and it will replace the
older network graph data in memory with the newer version.

Because the network graph data goes away when a system reboots, to implement the
LAVC$FAILURE_ANALYSIS facility on an ongoing basis, the program should be run once each time
on each system as it boots up. This can be done by adding a command to run the program into
the SYS$STARTUP:SYSTARTUP_VMS.COM procedure.

Disabling LAVC$FAILURE_ANALYSIS
If you ever wish to turn off LAVC Failure Analysis after it has been started on a given node, you can
use the LAVC$FAILURE_OFF.MAR program found at the same location as EDIT_LAVC.COM.

Using LAVC$FAILURE_ANALYSIS to Monitor Non-cluster LAN
Components
Sometimes cluster system managers will disable the SCS protocol on certain LAN adapters,
particularly if the adapter is to be dedicated to traffic for another network protocol, such as IP. The
SYS$EXAMPLES:LAVC$STOP_BUS.MAR program can be used to turn off the SCS protocol on a
given LAN adapter, as can the new SCACP utility available in OpenVMS version 7.3 and above.

If SCACP is used instead to lower the priority for SCS traffic on a given LAN adapter rather than
turning SCS traffic off entirely on that adapter, then PEDRIVER will transmit Hello packets through
the adapter. LAVC$FAILURE_ANALYSIS can then be used to monitor and track failures on those
additional LANs as well, while preventing the sending of SCS cluster traffic through that LAN,
except as a last resort in the event that all other LANs fail.

Summary
The LAVC$FAILURE_ANALYSIS tool allows monitoring of LAN components and reports failures and
repairs in the form of OPCOM messages. This article covered the theory of operation behind the
LAVC$FAILURE_ANALYSIS tool, and how to set it up for use in a given cluster.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 9

http://encompasserve.org/~parris/edit_lavc.com

© Copyright 2003 Hewlett-Packard Development Company, L.P. 10

For more information

Documentation on LAVC$FAILURE_ANALYSIS
LAVC$FAILURE_ANALYSIS is documented in Appendix D of the OpenVMS Cluster Systems Manual
(http://h71000.www7.hp.com/doc/731FINAL/4477/4477pro_028.html#network_fail_analysis)
. Appendix E (subroutines in OpenVMS that support the programs in Appendix D) and Appendix F
(general information on troubleshooting LAVC LAN problems) can also be very helpful.

Spanning Tree Algorithm
For more information on the Spanning Tree algorithm, I highly recommend the book
“Interconnections” (2nd edition) by Radia Perlman, ISBN 0-201-63448-1.

Contact Information
E-mail: Keith.Parris@hp.com
Web: http://encompasserve.org/~parris/ and http://www.geocities.com/keithparris/

http://h71000.www7.hp.com/doc/731FINAL/4477/4477pro_028.html
mailto:Keith.Parris@hp.com
http://encompasserve.org/~parris/
http://www.geocities.com/keithparris/

	Local Area Network Cluster Interconnect Monitoring
	Overview
	LAN Cluster Interconnect Monitoring using LAVC$FAILURE_ANALYSIS
	Background
	Implementing LAVC$FAILURE_ANALYSIS
	Maintaining LAVC$FAILURE_ANALYSIS
	How Failure Analysis Is Done
	Getting Failures Fixed
	Gathering Information
	Network Building Blocks
	Handling Network Loops
	Handling Multiple LANs
	Gathering Information
	Getting MAC address info
	Editing the Template Program
	Edit 1
	Edit 2
	Edit 3
	Edit 4
	Edit 5
	Handling MAC Address Duplications with Multiple LANs
	Level of Detail

	Other tools for use with LAVC$FAILURE_ANALYSIS
	Turning On LAVC$FAILURE_ANALYSIS
	Disabling LAVC$FAILURE_ANALYSIS
	Using LAVC$FAILURE_ANALYSIS to Monitor Non-cluster LAN Components
	Summary

	For more information
	Documentation on LAVC$FAILURE_ANALYSIS
	Spanning Tree Algorithm
	Contact Information

