
RMS Performance: Duplicate key chains
Hein van den Heuvel
Overview

Does your application use RMS Indexed files? Do you know what a SIDR is? Do you know what a
duplicate key chain is? You probably should, since SIDRs and duplicate key chains can cause
thousands of read I/Os as the result of a single record insert. With that, they can have a
tremendous impact not just on the application doing the insert, but also on total system
performance. Application managers, of course, notice a slowdown over time, and all too often they
solve that by throwing more hardware at the problem. But what if you already have the biggest
box on the market? Modest file tuning and a convert can help avoid all those read I/Os and
restore performance. I have yet to investigate an RMS application that did not have this duplicate
key chain problem. Maybe this is because I get called in only for bad cases, or because indeed so
many applications have this problem, at least to some degree.

Problem statement
In recent years, HP systems engineers have investigated and improved several applications in large
commercial systems where more than half of the resources for an entire system were wasted by
updating duplicate key chains. In one case, a simple CONVERT of a single indexed file changed
application end-user response time from several minutes to subseconds. In another case, the total
system I/O rate was reduced from 1500 I/Os per second to 200 I/Os per second, all without
changing application functionality. Why did this happen? Because of duplicate key chains.

Duplicate key chains are a (long) series of (single) linked RMS data buckets containing records all
with the same key value and identified only by a single index entry. (The next section clarifies this
definition.) Although the problems described in this paper can occur with primary keys, in real-life
applications they typically occur with secondary keys. Therefore, the illustrations in this paper show
duplicate key chains in secondary keys. It may be that application designers tend to pick unique or
nearly unique keys for the primary key.

To establish a frame of reference, the following section describes the internals of an RMS indexed
file. Subsequent sections describe how to identify the problem and suggest a number of possible
solutions. You will see that some solutions are very easy to implement and can be very rewarding.

For additional information about indexed files and tuning, refer to the Guide to OpenVMS File
Applications in the OpenVMS documentation set.

Overview of RMS Indexed File Internals
RMS stores user data records (UDRs) in primary-key order in buckets. Buckets are the unit of
I/O to and from the file. Typically, a bucket contains 5 to 50 records. Records cannot cross bucket
boundaries. If an entire record does not fit in a bucket, then a new bucket is added to hold the
record. This process is called bucket split. You can identify records both by their key and by a
record file address (RFA). The latter consists of the starting virtual block number (4-byte
VBN) of the bucket in which the record is stored and the record’s ID (2 bytes). The index structure is
a balanced b-tree with pairs of key values and VBN addresses.

For secondary keys (referred to in this article as alternate keys), the data records pointed to by their
key structure are called secondary index data records (SIDRs). A SIDR consists of a key value

© Copyright 2003 Hewlett-Packard Development Company, L.P. 1

http://h71000.www7.hp.com/doc/731FINAL/4506/4506PRO.HTML
http://h71000.www7.hp.com/doc/731FINAL/4506/4506PRO.HTML

(optionally compressed) and an array of one or more record retrieval vectors (RRVs). If your
application allows duplicates for the key in question, then there will be one RRV for each duplicate
value that a key has. Each RRV is 7 bytes in size and consists of a flag byte plus an RFA pointing to
the UDR.

The following figure illustrates an indexed file, a number as primary key, and a name as first
alternate key.

Here’s where the trouble starts
In addition to the file internals described here, RMS follows three rules that work very well in
general but that can add up to serious performance problems in certain situations.

• Duplicate key values are to be added in order of arrival.
• There is only one index entry for a given key value that points to the first bucket that

contains a record with that key value.
• If a new, duplicate value does not fit in the target bucket, then a new record is created in a

new bucket. That bucket is pointed to by the old target bucket by using the next VBN field
in the old bucket header.

What are the implications? Suppose you have an alternate key on an item file to indicate a status.
That status can be ‘Request’, ‘Active’, or ‘Done’. Every new item is inserted into the file with a status
of ‘Request’. Appropriately, according to rule 1, the item is added to the end of the array of

© Copyright 2003 Hewlett-Packard Development Company, L.P. 2

‘Request’ item. Next, the item gets processed, and the status key is updated to ‘Active’. Eventually,
all items are updated to the status ‘Done’. Still, according to rule 1, as an item status is updated to
‘Done’, it is placed at the end of the ‘Done’ array, keeping the first item that was ever ‘Done’ as the
first RRV in the SIDR.
Now, for the sake of the illustration, assume a SIDR can hold up to 100 RRVs. (In actual files, this is
likely to be in the 150 – 1500 range.) The SIDR with the RRVs for the first few ‘Done records fits in
the same bucket as the SIDR for the ‘Active’ key. When the number of RRVs reaches more than a
few hundred, multiple buckets are needed. When the status for item 200 is updated to ‘Done’,
RMS walks down the index to find the first ‘Done’ record. RMS determines that this is the first, but
not the last, SIDR record for the target key, and it reads the next bucket. RMS continues to read
buckets until it reaches the final bucket. It then adds the RRV for item 200 to that SIDR and writes
that bucket out to the file. This is the crux of the problem. The series of linked buckets, all with SIDRs
for the same key value, is called a duplicate key chain. The system will need lots of read I/Os to
perform the single write that it sets out to do. The following figure summarizes this layout.

As long as RMS needs to read just a few more buckets to find the last SIDR for a key, any
additional I/Os don’t cause a problem. However, when there are millions of Done records with
thousands of continuation buckets to store their pointers, it starts to hurt. These thousands of I/Os
will bring any system to its knees, no matter how big the box.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 3

Detecting a duplicate key chain problem

Monitor I/O rates
The biggest indicator that an application may have a problem with duplicate key chains is
excessive I/O rates for seemingly basic functions. For a multiple-key indexed file insert, you can
expect 2 – 4 reads per key and 1 or 2 writes per key, for a total of 10 – 20 I/Os for a typical file.
If you observe an average of 100 I/Os or more per insert, then you need an explanation and a fix,
preferably an easy fix.

A hot-file tool, combined with the SET FILE /STAT command and the standard MONITOR RMS
command can help identify the files to analyze. You should also check out the rms_stats freeware in
the RMS tools directory with the OpenVMS Freeware. The rms_stats software reports I/Os per
record operation for files with RMS statistics enabled.

Analyze files

A tell-tale sign for the duplicate key chain performance problem is the presence of very short
alternate keys (1- 5 bytes) in files with large numbers of records. For example, for a 1-byte field,
there can be 256 distinct values in a single byte (0 – 255). Practically speaking, a single-byte key
has just two key values; for example: M(ale)/F(emale) or Y(es)/N(o). If a file has a million records
and just two key values for a specific index, then there will be at least a half million duplicates on
one of those values. Even a 5-byte key (such as a zip code, an item code, or a date) often has but
a few hundred frequently used values; again, with a million records, several values will have tens
of thousands of duplicates.

The standard tool ANALYZE/RMS/FDL can help identify the problem, but it can also be
misleading. Its DUPLICATES_PER_SIDR counter is reset for every new bucket, treating a continuation
SIDR just like a new SIDR. When ANALYZE reports DUPLICATES_PER_SIDR=500, this is an average
that, to the casual observer, suggests a flat distribution. In reality, though, a single chain of 1000
buckets each with 1000 duplicates each for each single value, and 1000 more SIDRs with a single
entry, averages out to 500 but is more accurately represented by a duplicate count of 1,000,000.

A better indication within the ANALYZE stats is a large difference between the number of level 1
index records and the number of SIDR buckets. The difference indicates the number of buckets
without an index, that is, those in use by duplicate key chains. The following example shows part of
the analysis output for a file with a bucket size of 12:

ANALYSIS_OF_KEY 1
:
DATA_SPACE_OCCUPIED 1968
DUPLICATES_PER_SIDR 969
LEVEL1_RECORD_COUNT 9

For 1968/12 = 143 SIDR buckets, there are just 9 index pointers. This difference suggests an
average of 13 continuation buckets, or an average duplicate key chain of 12000 records. More
likely, there was a single duplicate key chain of 100,000 records spanning 100 or more bucket.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 4

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

RMS Tune Check Tool
A powerful alternative to the standard ANALYZE is the rms_tune_check tool. This tool is available
on the recent RMS tools directory with the OpenVMS Freeware. (An older tool called SIDR, which is
similar to rms_tune_check, is available on earlier Freeware CD-ROMs.)

The rms_tune_check tool scans specifically for duplicate key chains larger then a specified
threshold. The help text for the tool shows an example script that will help analyze all large
indexed files.

The following is sample output from a single real file:

1DGA3014:[xxxxxxxxx.DATA]xxxxxx.IDX;2
- SIDR: Key 2, 203801 Dups in 704 Buckets for value "11"
- SIDR: Key 3, 99252 Dups in 332 Buckets for value "902 "
- SIDR: Key 4, 24648 Dups in 88 Buckets for value " "
- SIDR: Key 5, 462729 Dups in 1580 Buckets for value "01"

The same program can also report a “top ten” list of duplicate values.

That SIDR data, together with a minimal understanding of the application, makes fixing the
performance relatively easy. The following two examples demonstrate a problem situation as found
in a real file earlier this year. Once you have read the next section I believe the solution for both
cases will become obvious. (Hint for later: think null keys and adding segments.)

Duplicate count, Buckets, Key value
--

1759748 4045 000000000
46 1 292164044
27 1 211941745
25 1 211147595
22 1 220995050

Duplicate count, Buckets, Key value
--

220461 189 CA
182738 156 NY
167123 143 TX
104023 89 FL
86792 73 PA
85524 72 MA

How to Solve a Duplicate Key Chain Problem
It is not always possible to solve this performance problem entirely in all cases but more often than
not we can optimize the performance to a large extent. Here are a few techniques to consider.

Drop the Key
The easiest and most effective solution for this duplicate key chain problem is to drop the key
altogether. You laugh; but it might just work for you.

Maybe you have a key on a stray field in a file where some data (perhaps a back reference or
additional date stamp) was going to be stored. However, that functionality in your application

•

© Copyright 2003 Hewlett-Packard Development Company, L.P. 5

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

was not implemented and the field was left filled with blanks all along. The blank key never
seemed to cause problems when the application was tested with a few thousand records, but
now that the file has grown over time to contain millions of record, it is slowing the system down.

How about that key in the Country or State field of an address? Already the set of values to
choose from is limited, and maybe not all are used yet. For example, a company in the United
States might do business with 30 out of 50 states, but in reality the bulk of the records are from
only a handful of states. Perhaps this key is used only by a weekly batch job that reports business
across the states or for a particular state. Consider changing that job to read the whole file by
primary key and to filter for the selected state. Alternatively, you could have it to pass records to
(callable) sort. Consider putting a process in place to convert the file to add a key with the state
field just before it is needed, instead of maintaining it for each record inserted. In all likelihood,
there is very little business value in an online lookup (such as, “Find the first customer in
California.”)

•

Use a NULL KEY value
The null key is a mechanism RMS has always provided specifically to avoid duplicate key chain
problems. Although it is restrictive, it is frequently useful.

The null key value is a double-barreled key attribute you can define with FDL (or XABs for the
diehard programmers). First specify NULL_KEY yes, then specify a single null key byte. For
example, use NULL_VALUE ‘ ‘ for a single space. ANAL/RMS/FDL will report this as follows:

KEY X
CHANGES yes
DUPLICATES yes
:
NULL_KEY yes
NULL_VALUE 32
:
SEG0_LENGTH LL
SEG0_POSITION PP

What’s the consequence for RMS? If a new record is inserted into the file (via the RMS $PUT
operation) and all bytes of this key’s value are identical, and this byte value is that of the one
defined as the NULL KEY value (=SPACE=32 decimal), then no alternate index entry is made for
that record. This solution works immediately for cases with a single-byte key. It also works for the
unimplemented field (as in the stray field example), since such fields often contain a string of space
(or null) characters. This solution does not work directly for the Status=Done example or for the
State=CA scenario, described earlier. For those cases, you need to adapt the application to
replace a single, frequently recurring word by a special, reserved series of repeating characters;
for example, DDDDDD instead of Done or XX for a state. This works around the single-byte
restriction.

For more information, refer to the EDIT/FDL section on null values in the OpenVMS Record
Management Utilities Reference manual.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 6

http://h71000.www7.hp.com/doc/73final/6027/6027pro_008.html

Increase the Bucket Size
Strictly speaking, increasing the bucket size is not a good solution. Rather, it is only an effective
workaround that hides the underlying problem. However, it might provide enough time for you to
implement a real solution. By making the buckets larger, RMS needs far fewer I/Os to find where
to insert a new RRV. There are just as many kilobytes of SIDR data to wade through, but it can be
done with much less overhead. A small alternate-key bucket size of just 2 blocks (found in some
legacy applications) holds fewer than150 RRVs in a SIDR. A typical (and more appropriate) bucket
size of 12 blocks holds almost 900 RRVs. Remember that the maximum bucket size is 63 blocks.
Each such bucket can hold about 4600 pointers.

Note that this should be only a temporary solution, since the system is still doing excess work.

Deduplicate the Key Values
First, let’s remember that a duplicate key value is not a bad thing in itself. Duplicate keys are, in
fact, relatively efficient storage. They tend to be shorter than unique keys and, since all key values
are identical, they allow for 100% key compression. As long as all duplicate pointers fit in a single
bucket, there is no problem using them. Also, many applications can easily tolerate a chain that
spans a few buckets. Only when an application frequently adds duplicate values to an already
long list that spans dozens or hundreds of buckets will duplicates cost too much to update.

Key values are deduplicated by adding additional, changing, bytes to a key field. Sometimes this
is done simply by increasing the key length. For example, suppose a State field is followed by an
adjacent zip code field. By adding a 5-character (or 9-character) zip code to the 2-byte state field
key, the combined key clearly does not become unique. And our goal is not to make them unique.
The millions of duplicates for California will be reduced to a few thousand and will become
manageable.

If no useful adjacent field is available, a key segment can be added. (See the description of
xab$w_pos in the OpenVMS Record Management Services Reference Manual). In the Status
example, you might want to add a Done date or an MMDD from a date field to the Status key,
thereby reducing the number of duplicates from 99% of the file to the number of records processed
every day. (This example assumes that records are purged yearly. If not, a year indicator also
might be needed.)

Please note that no data is added to the record; the Status field in the application is not extended.
Only the definition of the key that used to map directly, and only onto the state field, changes to
point to more data. No change in application code is required.

For other applications, you might be able to add a frequently changing single byte from an
unrelated binary field. With a perfect distribution, this divides the number of duplicates by a factor
of 256. Even with a skewed distribution, you can still expect an improvement of two orders of
magnitude. If only ASCII/decimal bytes are added, then each byte will give only a factor of 10,
and you will need 3 or 4 bytes to sufficiently reduce duplicates. Again, in the Status example, you
can add all or part of an item code (or similar) field as an additional segment.

Adding a segment can be entirely transparent to the application accessing the file by that key as
RMS allows for partial or generic key lookup. The specified key length does not have to match the
full key size; rather, it can be equal to the original key size. (See the description of rab$b_ksz in
the OpenVMS Record Management Services Reference Manual.)

Possible snags associated with adding key segments:

RMS now honors the order of arrival within the new key definition. It takes both the original field
as well as the added segments into account, which can result in a new sort order. This may or
may not be relevant for the application.

•

© Copyright 2003 Hewlett-Packard Development Company, L.P. 7

http://h71000.www7.hp.com/doc/731FINAL/4523/4523pro_019.html
http://h71000.www7.hp.com/doc/731FINAL/4523/4523pro_010.html

Some languages verify that the key specification in the program exactly matches the definition in
the file itself when opening an existing file. This verification creates no problem in MACRO, C,
or BASIC. Programs written in other languages might need to be adjusted and recompiled.

•

• Some languages do not support segmented keys.

Reminder: The goal is not to make unique keys. To have some duplicates, even hundreds, is fine.

Why Me, Why Now?
Because it’s your turn to be a hero!

There are three main reasons for the occurrence of the duplicate key problem: Neglect, Time, and
Fear of All Things New.

As time passes, applications scale to unimagined sizes, and they run with millions of records
although they were designed and tested only for thousands. Brute-force hardware solutions can
ease the pain, but at a price, and eventually hard limits will be reached. Perhaps it will be an
IOLOCK8 VMS internal bottleneck after doing too many I/Os per second. Perhaps the duplicate
key chain used to fit completely in the disk controller cache and now no longer fits. You can buy
still more cache, which would be the “trusted” solution. However, it is far more advisable and
rewarding to change the application so that RMS no longer does all those read I/Os.

Many believe that RMS tuning is “black magic,” but it is not. In a few days of effort, most of us can
pick up the essentials. If you don’t make this effort, then tuning is done only once, shortly after
implementation. Others believe that all that’s required for RMS tuning is a modest automated
procedure with ANAL/RMS … EDIT/FDL/NOINTERACTIVE … CONVERT. Such procedures are
great, but they are not sufficient over years of change.

You will have to make changes to get changes, there is always risk involved with that. You will
also need buy-in from operations, development, and management. But if you find that missing null-
key bit, you could save your company millions of dollars. So use the tools, analyze the data, and
make the change. What a nice change it will be!

Notes
1. The RMS tools directory with the OpenVMS Freeware contains several tools that may be

useful for RMS work, as well as a PowerPoint presentation about RMS tuning and an Excel
spreadsheet to review file design.

2. When dropping an unselective key, forcing an application to read all records by primary
key can help avoid I/Os. Unless there is an associated primary-key order to the alternate
key, you get 1 I/O per record read by an alternate key. Reading a file by primary key,
each single I/O will return a bucket full of records, 5 – 50 records depending on the
bucket and record sizes. Thus, even if an alternate key selects only10% of all records, it
may still be faster to read all records, since more than 10 records fit in a bucket.

3. Duplicate key chains tend not to be cached by global buffers. The subtle reason for this is
that RMS targets buckets to the local cache, if they are not in the global buffer cache yet,
and are requested with write intent. When the duplicate key problem occurs, there is write
intent. On one hand, this is unfortunate, since it would provide a seemingly easy
workaround. On the other hand, it would only hide a problem that ultimately needs to be
fixed. Furthermore, adding thousands of duplicate key buckets to the global buffer cache
can easily exceed the capacity of that cache and make matters much worse for other users
of that cache (that is, thrashing can occur).

© Copyright 2003 Hewlett-Packard Development Company, L.P. 8

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

© Copyright 2003 Hewlett-Packard Development Company, L.P. 9

4. Duplicate key chains are not restricted to alternate keys; they can also happen with the
primary key. But they don’t, because application designers tend to pick unique or near-
unique primary keys.

	RMS Performance: Duplicate key chains
	Overview
	Problem statement
	Overview of RMS Indexed File Internals
	Here’s where the trouble starts
	Detecting a duplicate key chain problem
	Monitor I/O rates
	Analyze files

	RMS Tune Check Tool
	How to Solve a Duplicate Key Chain Problem
	Drop the Key
	Use a NULL KEY value
	Increase the Bucket Size
	Deduplicate the Key Values

	Why Me, Why Now?
	Notes

