

HP OpenVMS Technical Journal V2 (July 2003)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 1

HP OpenVMS Technical Journal
V2 (July 2003)... 1

A Survey of Cluster Technologies... 7

Overview ... 7
Introduction ... 7
Single-System and Multi-System-View Clusters.. 7

Multi-System-View Clusters in an Active-Passive Mode... 8
Multi-System-View Clusters in an Active-Active Mode.. 9
Failover of a Multi-System-View Cluster (Active-Active or Active-Passive) 10
Single-System-View Clusters ... 10
How Do the Clusters on HP Systems Fit into These Schemes?................................ 11

Cluster File Systems.. 12
Quorum.. 15
Cluster Configurations .. 16
Application Support .. 17
Single-Instance and Multi-Instance Applications ... 18

Recovery Methods... 18
Cluster Resilience.. 19
Dynamic Partitions.. 19
Data High Availability .. 20
Disaster Tolerance... 21

Summary ... 25
Acknowledgements ... 26
For More Information.. 26

Local Area Network Cluster Interconnect Monitoring 30

Overview ... 30
LAN Cluster Interconnect Monitoring using LAVC$FAILURE_ANALYSIS............ 30

Background ... 30
Implementing LAVC$FAILURE_ANALYSIS.. 30
Maintaining LAVC$FAILURE_ANALYSIS... 30
How Failure Analysis Is Done .. 31
Getting Failures Fixed... 31
Gathering Information... 32
Network Building Blocks.. 32
Handling Network Loops .. 32
Handling Multiple LANs .. 33
Gathering Information... 33
Getting MAC address info .. 33
Editing the Template Program .. 33
Edit 1 ... 34
Edit 2 ... 34

© Copyright 2003 Hewlett-Packard Development Company, L.P. 2

Edit 3 ... 35
Edit 4 ... 35
Edit 5 ... 36
Handling MAC Address Duplications with Multiple LANs..................................... 36
Level of Detail... 37

Other tools for use with LAVC$FAILURE_ANALYSIS .. 38
Turning On LAVC$FAILURE_ANALYSIS.. 38
Disabling LAVC$FAILURE_ANALYSIS... 38
Using LAVC$FAILURE_ANALYSIS to Monitor Non-cluster LAN Components 38

Summary ... 38
For more information .. 39

Documentation on LAVC$FAILURE_ANALYSIS... 39
Spanning Tree Algorithm.. 39
Contact Information .. 39

Internet Technologies for OpenVMS.................................... 40

Overview ... 40
Introduction ... 40
Java.. 40
Data Integration... 46
Application Integration ... 49
Legacy Application Integration... 51
Systems Integration ... 54
Availability.. 56
Summary ... 57
Acknowledgement... 58
For more information .. 58

Configuring TCP/IP for High Availability 60

Overview ... 60
Comparing High Availability Technologies ... 61
failSAFE IP ... 62

Introduction to failSAFE IP .. 62
failSAFE IP Configuration Requirements... 62
failSAFE IP Service – Interface Health Monitor .. 62
Configuring failSAFE IP Service.. 64
Detectable Failures.. 64

Application .. 65
Management Utilities .. 65
Home Interfaces .. 66
Site-Specific Customization of failSAFE IP... 67

Logical Names... 67
Static and Dynamic Routing ... 68
Best Practices .. 68
Validating failSAFE IP ... 68
Configuring failSAFE IP Service.. 70

© Copyright 2003 Hewlett-Packard Development Company, L.P. 3

Avoiding Phantom Failures... 70
Creating IP Addresses with Home Interfaces ... 70
Private Addresses Should Not Have Clusterwide Standbys 70

Examples ... 71
Example 1 – Single node configured with two interfaces... 71
Example 2 – Clustered Nodes configured with Two Interfaces................................ 73
Example 3 – Preferred failSAFE IP Configuration – Putting it all together............. 75

IP Cluster Alias ... 76
Introduction to IP Cluster Alias .. 76
IP Cluster Alias Configuration Requirements... 77
Detectable Failures.. 77
Application .. 77
Management Utilities .. 77
Example... 77

DNS Alias with Load Broker and Metric Server .. 78
Introduction to DNS Alias... 78
DNS Alias Configuration Requirements... 79
DNS Alias ... 79
Load Broker and Metric Server... 80
Detectable Failures.. 80
Application .. 80
Management Utilities .. 81
Example... 81

Summary ... 82
For more information .. 82

DCPI for OpenVMS a Technical Introduction
to a “System Microscope ” ... 83

Introduction ... 83
DCPI for OpenVMS, Some Background Information .. 83
DCPI for OpenVMS. How Does It Work? ... 84
Alpha Chip Performance Monitoring.. 86
Data Analysis Tools on DCPI for OpenVMS ... 87
Profiling of Code Generated “on the Fly”... 89
DCPI Usage... 89
Running the Data Collection ... 90
Analyzing the Data.. 90
Some Basic Hints for DCPI Analysis ... 92

RMS Performance: Duplicate key chains 94

Overview ... 94
Problem statement ... 94
Overview of RMS Indexed File Internals ... 94
Here’s where the trouble starts.. 95
Detecting a duplicate key chain problem .. 97

© Copyright 2003 Hewlett-Packard Development Company, L.P. 4

Monitor I/O rates... 97
Analyze files.. 97

RMS Tune Check Tool ... 98
How to Solve a Duplicate Key Chain Problem... 98

Drop the Key ... 98
Use a NULL KEY value ... 99
Increase the Bucket Size ... 100
Deduplicate the Key Values.. 100

Why Me, Why Now? .. 101
Notes.. 101

A Customer Case Study of Oracle Rdb Database
Consolidation ... 103

Overview ... 103
Company Overview... 103
Acknowledgements ... 104
The Server Consolidation Project: “Golem” — The Middleware to Support
Applications .. 105

Introduction ... 105
Benchmark Setup and Preparation .. 106
History Reports ... 108
Comments About Tests ... 110
Final Results.. 112
Summary ... 112

Technical Analysis of Benchmark .. 114
Methodology ... 114
Hardware Configuration.. 114
Software Configuration ... 115
Analysis of Results.. 124
Database Activity .. 129
Final Considerations.. 130
Looking Forward... 131

Appendix ... 132
Test Summary ... 132
Global Buffer in Standard Memory (32-Bit)... 132
Global Buffer in VLM (64-Bit)... 133
Database Machine, Global Buffer in VLM... 135
Database Machine, Global Buffer and Row Cache in VLM................................... 136
Comparison Test ... 137
Test Summary for Comparison ... 139

© Copyright 2003 Hewlett-Packard Development Company, L.P. 5

Best of the HP Customer Support Center........................... 140
Overview ... 140
What Changed? ... 140
Configuration Profile... 140
Hardware Setup Profile ... 141
System Setup Configuration.. 141
System Boot Profile .. 142
Performance Profile... 143
Managing and Using the Profiles .. 144

Best of Ask the Wizard... 145

HP OpenVMS Support Resources and How to Use Them ... 145
ECO Kits ... 146
Direct and Formal HP Assistance ... 146
Software Code Reproducer ... 147
System Bugchecks... 149
Summary ... 150

Server-Agnostic Perl/DCL
CGI Programming with WASD and OSU............................. 151

Overview ... 151
Hedging My Bets .. 151
Perl CGI Programming in the Different Environments .. 152
Apache for OpenVMS... 159
Summary ... 159
Thanks ... 160
For more information .. 160
Afterword .. 160

© Copyright 2003 Hewlett-Packard Development Company, L.P. 6

A Survey of Cluster Technologies
Ken Moreau
Solutions Architect, OpenVMS Ambassador, MCSE

Overview
This paper discusses the cluster technologies for the operating systems running on HP server
platforms, including HP-UX, Linux, NonStop Kernel, OpenVMS, Tru64 UNIX and Windows 2000.
I describe the common functions which all of the cluster technologies perform, show where they are
the same and where they are different on each platform, and introduce a method of fairly
evaluating the technologies to match them to business requirements. I do not discuss performance,
base functionality of the operating systems, or system hardware.

This article draws heavily from the HP ETS 2002 presentation of the same name.

Introduction
Clustering technologies are highly inter-related, with almost everything affecting everything else.
But I have broken this subject into five areas:

• Single/multi-system views, which defines how you manage and work with a system, whether as
individual systems or as a single combined entity.

• Cluster file systems, which defines how you work with storage across the cluster. Cluster file
systems are just coming into their own in the UNIX world, and I will talk about how they work
in detail.

• Configurations, which defines how you assemble a cluster, both physically and logically.

• Application support, which discusses how applications which are running on your single
standalone system today, can take advantage of a clustered environment. Do they need to
change, and if so how? What benefits are there in a clustered environment?

• Resilience, which talks about when bad things happen to good computer rooms. This covers
things like host-based RAID, wide area “stretch” clusters, extended clusters, and disaster
tolerant scenarios.

I cover the capabilities of Linux LifeKeeper, NonStop Kernel G06.13, Serviceguard 11i both for HP-
UX and Linux, TruCluster V5.1b, OpenVMS Cluster Software V7.3-1, and Windows 2000
DataCenter system clusters.

For Linux, I focus on the High Availability side, not the HPTC (i.e., Beowulf) technologies.

Single-System and Multi-System-View Clusters
In order to evaluate the cluster technologies fairly, we need to define four terms: scalability,
reliability, availability and manageability.

• Availability defines whether the application stays up, even when components of the cluster go
down. If I have two systems in a cluster and one goes down but the other picks up the
workload, that application is available even though half of my cluster is down. Part of
availability is failover time, because if it takes 30 seconds for the application to fail over to the

© Copyright 2003 Hewlett-Packard Development Company, L.P. 7

other system, the users on the first system think that the application is down for those 30
seconds.

• Reliability defines how well the system performs during a failure of some of the components. If
I get sub-second query response and if my batch job finishes in 8 hours with all of the systems
in the cluster working properly, do I still get that level of performance if one or more of my
systems in the cluster is down? If I have two systems in a cluster and each system has 500
active users with acceptable performance, will the performance still be acceptable if one of the
systems fails and there are now 1,000 users on a single system? Keep in mind that your users
neither know nor care how many systems there are in your cluster, they simply care whether
they can rely on the environment to get their work done.

Notice that reliability and availability are orthogonal concepts, where you can have one but
not the other. How many times have you logged into a system (i.e., it was available), but it
was so slow as to be useless (i.e., it was not reliable)?

• Scalability defines the percentage of useful performance you get from a group of systems. For
example, if I add a second system to a cluster, do I double my performance, or do I get a few
percentage points less than that? If I add a third, do I triple the performance of one, or not?

• Manageability tells us how much additional work it is to manage those additional systems in
the cluster. If I add a second system to my cluster, have I doubled my workload because now I
have to do everything twice? Or have I added only a very small amount of work, because I
can manage the cluster as a single entity?

Multi-system-view clusters are generally comprised of two systems, where each system is dedicated
to a specific set of tasks. Storage is physically cabled to both systems, but each file system can
only be mounted on one of the systems. This means that the applications cannot simultaneously
access data from both systems at the same time. It also means that the operating system files
cannot be shared between the two systems, so there needs to be a fully independent boot device
(called a "system root" or "system disk") with a full set of operating system and cluster software files
for each system.

Multi-System-View Clusters in an Active-Passive Mode
Multi-system-view clusters in an active-passive mode are the easiest for vendors to implement. They
simply have a spare system on standby in case the original system fails in some way. The spare
system is idle most of the time, except in the event of a failure of the active system. This is why it is
called active-passive, because one of the systems is active and the other is not during normal
operations. This is classically called N+1 clustering, where N=1 for a two system cluster. For
clusters with larger numbers of systems, you would have a spare server that could take over for any
number of active systems.

Failover can be manual or automatic. Because both systems are cabled to the same storage array,
the spare system will be monitoring the primary system and can start the services on the secondary
system if it detects a failure of the primary system. The “heartbeat” function can be over the
network or by some private interface.

In a multi-system-view cluster in an active-passive mode, the availability, reliability, scalability, and
manageability characteristics can be described as follows:

• Availability is increased because you now have two systems available to do the work. The
odds of both systems being broken at the same time are fairly low but still present.

• Reliability can be perfect in this environment, because if the two systems are identical in terms
of hardware, the application will have the same performance no matter which system it is
running on.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 8

• Scalability is poor (non-existent?) in an active-passive cluster. Because the applications cannot
access a single set of data from both systems, there is no scalability in a multi-system-view
cluster. You have two systems’ worth of hardware doing one system’s worth of work.

• Manageability is poor, because it takes approximately twice as much work to manage as that
of a single system. Because there are two system roots, any patches or other updates need to
be installed twice, backups need to be done twice, etc. Further, you have to test the failover
and failback, which adds to the system management workload

Notice that the second system is idle most of the time, and you are getting no business benefit from
it. So the other alternative is to have both systems working.

Multi-System-View Clusters in an Active-Active Mode
The physical environment of a multi-system-view cluster in an active-active mode is identical to that
of the active-passive mode. There are generally two systems, physically cabled to a common set of
storage, but only able to mount each file system on one of the systems. The difference in this case
is there are multiple systems that are performing useful work as well as monitoring each other’s
health. However, they are not running the same application on the same data, because they are
not sharing anything between the systems.

For example, a database environment could segment their customers into two groups, such as all
people with last names from A-M and from N-Z. Then each group would be set up on a separate
partition on the shared storage, and each system would handle one of the groups. This is known
as a “federated” database. Or one of the systems could be running the entire database and the
other system could be running the applications that access that database.

In the event of a failure, one system would handle both groups.

This is called an N+M cluster, because any of the systems can take over for any of the other
systems. One way to define N and M is to think about how many tires you have on your
automobile. Most people automatically say four, but then realize that they really have five tires,
operating in an N+1 environment, because four tires are required for minimum operation of the
vehicle. A variation is to use the “donut” tires, which offer limited performance but enough to get
by. This can be thought of as having 4½ tires on the vehicle. The key is to define what level of
performance and functionality you require, and then define N and M properly for that environment.

Failover can be manual or automatic. The “heartbeat” function can be over the network or by some
private interface.

In a multi-system-view cluster in an active-active mode, the availability, reliability, scalability, and
manageability characteristics can be described as follows:

• Availability is increased because you now have two systems available to do the work. Just as
in the active-passive environment, the odds of both systems being broken at the same time are
fairly low but still present.

• Reliability is not guaranteed in this situation. If each system is running at 60% of capacity, then
a failure will force the surviving system to work at 120% of capacity, and we all know what
happens when you exceed about 80% of capacity.

• Scalability is poor in this situation because each workload must still fit into one system. There is
no way to spread a single application across multiple systems.

• Manageability is slightly worse than the active-passive scenario, because you still have two
independent systems, as well as the overhead of the failover scripts and heartbeat.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 9

Failover of a Multi-System-View Cluster
(Active-Active or Active-Passive)
One of the factors affecting availability is the amount of time it takes to accomplish the failover of a
multi-system-view cluster, whether active-active or active-passive. The surviving system must:

• Notice that the other system is no longer available, which is when the “heartbeat” function on
the surviving system does not get an answer back from the failed system.

• Mount the disks that were on the failing system. Remember that the file systems are only
mounted on one system at a time: this is an unbreakable rule, and a definition of multi-system-
view clusters. So the surviving system must mount the disks that were mounted on the other
system. If you have a large number of disks, or large RAIDsets, this could take a while.

• Start the applications that were active on the failing system.

• Initiate the recovery sequence for that software. For databases, this might include processing
the re-do logs in order to process any in-flight transactions which the failing system was
performing at the time of the failure.

In large environments, it is not unusual to have this take 30-60 minutes. And during this recovery
time, the applications that were running on the failed system are unavailable, and the applications
that were running on the surviving system are suffering from reliability problems, because the single
system is now doing much more work.

Single-System-View Clusters
In contrast, single-system-view clusters offer a unified view of the entire cluster. All systems are
physically cabled to all storage and can directly mount all storage on all systems. This means that
all systems can run all applications, see the same data on the same partitions, and cooperate at a
very low level. Further, it means that the operating system files can be shared in a single "shared
root" or "shared system disk," reducing the amount of storage and the amount of management time
needed for system maintenance. There are no spare systems. All systems can run all applications
at all times. And in a single-system-view cluster, there can be many systems. In a single-system-
view cluster, the availability, reliability, scalability, and manageability characteristics can be
described as follows:

• Availability is increased because you now have multiple systems to do the work. The odds of
all systems being broken at the same time is now much lower, because you can have
potentially many systems in the cluster.

• Reliability is much better, because with many systems in the cluster, a failure of a single system
will allow that workload to be spread across many systems, increasing their load only slightly.
For example, if each system is running at 60% capacity and one server out of four fails, you
would take 1/3 of the load and place it on each of the other systems, increasing their
performance to 80% of capacity, which will not affect reliability significantly.

• Scalability is excellent because you can spread the workload across multiple systems. So if
you have an application which is simply too big for a single computer system (even one with
64 or 128 CPUs and hundreds of gigabytes of memory and dozens of I/O cards), you can
have it running simultaneously across many computer systems, each with a large amount of
resources, all directly accessing the same data.

• Manageability is much easier than the equivalent job of managing this number of separate
systems, because the entire cluster is managed as a single entity. So there is no increase in
management workload even when you have lots of smaller systems.

Notice how this gives some advantages in failover times over multi-system-view clusters by not
having to do quite so much work during a failover:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 10

• The surviving system must detect the failure of the other system. This is common between the
two schemes.

• The surviving systems do not have to mount the disks from the failed system: they are already
mounted.

• The surviving systems do not have to start the applications: they are already started.

• The execution of the recovery script, is common between the two schemes, and can begin
almost instantly in the single-system-view cluster case. The application recovery time will be
similar on both systems, but if you have a larger number of smaller systems, you can achieve
parallelism even in recovery, which means your recovery might be faster in this case as well.

How Do the Clusters on HP Systems Fit into These Schemes?
So now that we understand the terms, how do the clusters on HP systems fit into these schemes?

 Multi-system view Single-system view Shared root

LifeKeeper
 Linux, Windows

Yes No No

Serviceguard Yes No No

NonStop Kernel Yes Yes Each node
(16 CPUs)

TruCluster No Yes Yes

OpenVMS Cluster
Software

Yes Yes Yes

Windows 2000
 DataCenter

Yes No No

Linux Clustering

Linux clustering is split between massive system compute farms (Beowulf and others) and a multi-
system-view, failover clustering scheme. I am not talking about the High Performance Technical
Computing market here, which breaks down a massive problem into many (hundreds or thousands)
of tiny problems and hands them off to many (hundreds or thousands) of small compute engines.
The point is that this is not a high availability environment, because if any of those compute engines
fails, that piece of the job has to be restarted from scratch.

The high availability efforts going on with SuSE and others are focused on multi-system-view clusters
consisting of two systems so that applications can fail over from one system to the other. I will talk
later about some cluster file system projects such as Lustre, GFS and PolyServe, but these do not
offer shared root, so systems in Linux clusters require individual system disks.

I will not be discussing the work being done by HP as part of the Single System Image Linux
project, because it is not yet a product. But when this becomes a product, it will have significant
capabilities that match or exceed every other clustering product.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 11

Serviceguard

Serviceguard is a multi-system-view failover cluster. Each system in a Serviceguard cluster requires
its own system disk. There are excellent system management capabilities via the Service Control
Manager and the Event Management Service, including the ability to register software in the
System Configuration Repository, get system snapshots, compare different systems in the cluster,
etc. It is also well integrated with HP/OpenView.

Himalaya NonStop Kernel

The Himalaya NonStop Kernel can be configured either as a multi-system-view cluster or, more
commonly, as a single-system-view cluster. It offers the best scalability in the industry, in fact, true
linear scalability because of the superb cluster interconnect, both hardware and software. Each
cabinet of up to 16 processors can share a system disk and is considered one system.

TruCluster V5.1b

TruCluster V5.1b represents a major advance in UNIX clustering technology. It can only be
configured as a single-system-view, with all of the focus on clustering being to manage a single
system or a large cluster in exactly the same way, with the same tools, and roughly the same
amount of effort. It offers a fully shared root, with a single copy of almost all system files.

OpenVMS Cluster Software

OpenVMS Cluster Software has always been the gold standard of clustering. It also can be
configured as either multi-system view or single-system view, although the most common is single-
system view. It supports a single or multiple system disks.

Windows 2000 DataCenter

Windows 2000 DataCenter is a multi-system-view failover scheme. Applications are written to fail
over from one system to another. Each system in a Windows 2000 DataCenter cluster requires its
own system disk. This is not to say that there aren’t tools like the Cluster Administrator, which can
ease some of this burden, but they are still separate system disks that must be maintained.

Cluster File Systems
Cluster file systems are how systems communicate with the storage subsystem in the cluster. There
are really two technologies here: how a group of systems communicates with volumes that are
physically connected to all of the systems, and how a group of systems communicates with volumes
that are only physically connected to one of the systems.

Network I/O allows all of the systems in a cluster to access data, but in a very inefficient way that
does not scale well. Let’s say that volume A is a disk or tape drive which is physically cabled to a
private IDE or SCSI adapter on system A. It cannot be physically accessed by any other system in
the cluster, so if any other system in the cluster wants to access files on it, it must do network I/O,
usually by some variation of NFS.

Specifically, if system B wants to talk to the device that is mounted on system A, the network client
on system B communicates to the network server on system A, in the following way:

• An I/O is initiated across the cluster interconnect from system B to system A.

• System A receives the request, and initiates the I/O request to the volume.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 12

• System A gets the data back from the volume, and then initiates an I/O back to system B.

Notice that there are three I/Os for each disk access. For NFS, there is also significant locking
overhead with many NFS clients. This leads to poor I/O performance with an active/active
system.

So why does every system offer network I/O? To deal with single-user devices that cannot be
shared, such as tapes, CD-ROM, DVD or diskettes, and to allow access to devices that are on
private communications paths, such as disks on private IDE or SCSI busses.

In contrast, direct access I/O (also known as concurrent I/O) means that each system is able to
independently access any and all devices, without bothering any other node in the cluster. Notice
that this is different from direct I/O, which simply bypasses the file systems cache. Most database
systems do direct I/O both in a clustered and non-clustered environment, because they are caching
the data anyway, and don’t need to use the file systems cache.

Implementing direct access I/O allows a cluster file system to eliminate two out of three I/Os
involved in the disk access in network I/O, because each system talks directly over the storage
interconnect to the volumes. It also provides full file system transparency and cache coherency
across the cluster.

Now, you may object that we could overwhelm a single disk with too many requests. Absolutely
true, but this is no different from the same problem with other file systems, whether they are
clustered or not. Single disks, and single database rows, are inevitably going to become
bottlenecks. You design and tune around them on clusters in exactly the same way you design and
tune around them on any other single member operating system, using the knowledge and tools
you use now.

The I/O attributes of HP cluster offerings are summarized in the following table.

 Network I/O Direct Access I/O Distributed Lock
Manager

LifeKeeper
 Linux, Windows

NFS Oracle raw devices,
GFS

Supplied by Oracle

Serviceguard Yes Oracle raw devices OPS Edition

NonStop Kernel Data Access Manager Effectively Yes Not applicable

TruCluster Device Request
Dispatcher

Cluster File System Yes

OpenVMS Cluster
Software

Mass Storage Control
Protocol

Files-11 on ODS-2 or -5 Yes

Windows 2000
 DataCenter

NTFS Supplied by Oracle Supplied by Oracle

Pretty much every system in the world can do client/server I/O, here called network I/O. And this
makes sense, because every system in the world has the problem of sharing devices that are not on
shared busses, so you need to offer this functionality.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 13

FailSafe and Serviceguard do it with NFS or Veritas, NonStop Kernel does it with the Data Access
Manager (DAM), TruCluster does it both with the Device Request Dispatcher (DRD) and the Cluster
File System, OpenVMS Cluster Software does it with the Mass Storage Control Protocol (MSCP),
and Windows 2000 does it with NTFS and Storage Groups.

The more interesting case is direct access I/O. One point I need to make here is that Oracle offers
direct access I/O on raw devices on almost every system they support. Raw devices are not as
functional as file systems, but they do exist and they do (at least with Oracle) offer direct access
I/O on every major computing platform in the industry.

One of the Linux projects being done by HP and Cluster File Systems Inc for the US Department of
Energy will enhance the Lustre File System originally developed at Carnegie Mellon University. It is
focused on high-performance technical computing environments. Oracle has developed a cluster
file system for the database files for Linux, as part of Oracle 9i Real Application Clusters 9.2. It is a
layer on top of raw devices.

NonStop Kernel is interesting, because, strictly speaking, all of the I/O is network I/O, and yet
because of the efficiencies and reliability of NSK, and the ability of NSK to transparently pass
ownership of the volume between CPUs, it shows all of the best features of direct access I/O
without the poor performance and high overhead of all other network I/O schemes. So,
effectively, NSK offers direct access I/O, even though it is done using network I/O. The NonStop
Kernel (effectively NonStop SQL) utilizes a “shared-nothing” data access methodology. Each
processor owns a subset of disk drives whose access is controlled by processes called the Data
Access Managers (DAM). The DAM controls and coordinates all access to the disk so a DLM is not
needed.

Serviceguard and Windows 2000 DataCenter do not offer a direct access I/O methodology of
their own, but rely on Oracle raw devices. Oracle has developed a cluster file system for
Windows 2000 DataCenter for the database files, as part of Oracle 9i Real Application Clusters
9.2. It is a layer on top of raw devices.

TruCluster offers a cluster file system (CFS) which allows transparent access to any file system from
any system in the cluster. However, all write operations, as well as all read operations on files
smaller than 64KBytes, are done by the CFS server system upon request by the CFS client systems.
In effect, all write operations and all read operations on small files are performed using network
I/O. The only exception to this is applications which open the file with O_DIRECTIO.

OpenVMS Cluster Software extends the semantics of the Files-11 file system transparently into the
cluster world. A file which is opened for shared access by two processes on a single system, and
the same file which is opened for shared access by two processes on two different systems in a
cluster, will act identically. In effect, all file operations are automatically cluster-aware.

Every operating system has a lock manager for files in a non-clustered environment. A distributed
lock manager simply takes this concept and applies it between and among systems. Oracle,
because they need to run in the same way across many operating environments, developed their
own distributed lock manager, which is available on Linux and Windows systems.

Serviceguard includes a distributed lock manager as part of the Serviceguard Extension for RAC.

NSK does not even have the concept of a distributed lock manager. All resources (files, disk
volumes, etc) are local to a specific CPU, and all communication to any of those resources is done
via the standard messaging between CPUs, so any locking required is done locally to that CPU.
But again, because of the efficiencies of the implementation, this scales superbly well.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 14

TruCluster has the standard set of UNIX APIs for local locking, and a separate set of APIs that were
implemented to allow applications to perform distributed locking. Applications need to be
modified to use the distributed locking APIs in order to become cluster-aware.

OpenVMS Cluster Software uses the same locking APIs for all locks, and makes no distinction
between local locks and remote locks. In effect, all applications are automatically cluster-aware.

Quorum
Before discussing cluster configurations, it is important to understand the concept of quorum.
Quorum devices (which can be disks or systems) are a way to break the tie when two systems are
equally capable of forming a cluster and mounting all of the disks, and will prevent cluster
partitioning.

When a cluster is first configured, you assign each system a certain number of votes, generally 1.
Each cluster environment defines a value for the number of “expected votes” that there should be
for optimal performance. This is almost always the number of systems in the cluster. From there,
we can calculate the “required quorum” value, which is the number of votes that are required to
form a cluster. If the “actual quorum” value is below this number, the software will refuse to form a
cluster, and will generally refuse to run at all.

For example, assume there are two members of the cluster, system A and system B, each with one
vote, so the required quorum of this cluster is 2.

Now in a running cluster, expected votes is the sum of all of the members with which the
connection manager can communicate. Since the cluster interconnect is working, there are 2
systems available and no quorum disk, so this value is 2. So actual quorum is greater than or
equal to required quorum, and we have a valid cluster.

But what happens if the cluster interconnect fails? The cluster is broken, and a cluster transition
occurs.

The connection manager of system A cannot communicate with system B, so actual votes becomes
1 for each of the systems. Applying the equation, actual quorum becomes 1, which is less than the
number of required quorum that is needed to form a cluster, so both systems stop and refuse to
continue processing.

But what would happen if one or both of the systems continue on its own? Because there is no
communication between the systems, they would both try to form a single system cluster, as follows:

• System A decides to form a cluster, and mounts all of the disks.

• But system B also decides to form a cluster, and also mounts all of the disks. This is called
cluster partitioning.

• The disks are mounted on two systems that cannot communicate with each other. This usually
leads to instant disk corruption, as they both try to create, delete, extend and write to files
without doing things like locking or cache coherency.

So how do we avoid this? A quorum device.

Same configuration as before, but here we have added a quorum disk, which is physically cabled
to both systems. Each of the systems has one vote, and the quorum disk has one vote. The
connection manager of system A can communicate with system B and with the quorum disk, so
expected votes is 3. This means that the quorum is 2. But the cluster interconnect fails again. So
what happens this time?

• Both systems attempt to form a cluster, but system A wins the race and accesses the quorum
disk first. Because it cannot connect to system B, and the quorum disk watcher on system A

© Copyright 2003 Hewlett-Packard Development Company, L.P. 15

observes that at this moment there is no remote I/O activity on the quorum disk, system A
becomes the founding member of the cluster, and writes into the quorum disk things like the
system id of the founding member of the cluster, and the time that the cluster was newly
formed. System A then computes the votes of all of the cluster members (itself and the quorum
disk for a total of 2) and observes it has sufficient votes to form a cluster. It does so, and then
mounts all of the disks on the shared bus.

• System B comes in second and accesses the quorum disk. Because it cannot connect to system
A, it thinks it is the founding member of the cluster, so it checks this fact with the quorum disk,
and discovers that system A is in fact the founding member of the cluster. But system B cannot
communicate with system A, and as such, it cannot access the quorum disk. So system B then
computes the votes of all of the cluster members (itself only, so only one vote) and observes it
does not have sufficient votes to form a cluster. Depending on other settings, it may or may not
continue booting, but it does not attempt to form or join the cluster. There is no partitioning of
the cluster.

In this way only one of the systems will mount all of the disks in the cluster. If there are other
systems in the cluster, the value of required quorum and expected quorum would be higher, but the
same algorithms will allow those systems that can communicate with the founding member of the
cluster to join the cluster, and those systems which cannot communicate with the founding member
of the cluster to be excluded from the cluster.

Cluster Configurations
The following table summarizes important configuration characteristics of HP cluster technologies.

 Max Systems In Cluster Cluster Interconnect Quorum Device

LifeKeeper
 Linux, Windows

16 Network, Serial Yes (Optional)

Serviceguard 16 Network, HyperFabric Yes = 2, optional
>2

NonStop Kernel 255 SystemNet, TorusNet No

TruCluster 8 generally, 32 w/Alpha
SC

100Enet, QSW,

Memory Channel

Yes (Optional)

OpenVMS Cluster
Software

96 CI, Network, MC,
Shared Mem

Yes (Optional)

Windows 2000
 DataCenter

4 Network Yes

Linux is focusing on multi-system-view failover clusters, so FailSafe supports up to 16 systems in a
cluster. These systems are connected by either the network or by serial cables. Any of the systems
can take over for any of the other systems. Quorum disks are supported but not required.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 16

Serviceguard can have up to 16 systems, using standard networking or HyperFabric as a cluster
interconnect. The one special requirement here is that all cluster members must be present to
initially form the cluster (100% quorum requirement), and that >50% of the cluster must be present
in order to continue operation. The quorum disk or quorum system is used as a tie breaker when
there is an even number of production systems and a 50/50 split is possible. For two nodes, a
quorum device is required, either a disk or system. Quorum devices are optional for any other size
cluster. Cluster quorum disks are supported for clusters of 2-4 nodes, and cluster quorum systems
are supported for clusters of 2-16 systems.

NonStop Kernel can have up to 255 systems in the cluster, but given the way the systems interact, it
is more reasonable to say that NonStop Kernel can have 255 systems * 16 processors in each
system = 4,080 processors in a cluster. SystemNet is used as a communications path for each
system, with TorusNet providing the cluster interconnect to the legacy K-series, and SystemNet
providing a more modern cluster interconnect for the S-series, including remote datacenters. NSK
does not use the quorum scheme, because it is a shared nothing environment where the quorum
scheme does not make any sense.

TruCluster can have up to eight systems of any size in a cluster. For the HPTC market, the Alpha
System SuperComputer system farm can have up to 32 systems. This configuration uses the
Quadrix Switch (QSW) as an extremely high-speed interconnect.

OpenVMS Cluster Software supports up to 96 systems in a cluster, spread over multiple datacenters
up to 500 miles apart. Each of these can also be any combination of VAX and Alpha systems, or,
in 2004, any combination of Itanium and Alpha systems, for mixed architecture clusters.

TruCluster and OpenVMS Cluster Software recommend the use of quorum disks for 2 node clusters
but make it optional for clusters with larger numbers of nodes.

Windows 2000 DataCenter can have up to four systems in a cluster, but keep in mind that
Windows 2000 DataCenter is a services sale, and only Microsoft qualified partners like HP can
configure and deliver these clusters. The only cluster interconnect available is standard LAN
networking.

Application Support
The following table summarizes application support provided by the HP cluster technologies.

 Single-instance
(failover mode)

Multi-instance
(cluster-wide)

Recovery
Methods

LifeKeeper
 Linux, Windows

Yes No Scripts

Serviceguard Yes No Packages and
Scripts

NonStop Kernel Yes (takeover) Effectively Yes Paired Processing

TruCluster Yes Yes Cluster Application
Availability

OpenVMS Cluster Software Yes Yes Batch /RESTART

Windows 2000
 DataCenter

Yes No Registration, cluster
API

© Copyright 2003 Hewlett-Packard Development Company, L.P. 17

Single-Instance and Multi-Instance Applications
When talking about applications and clusters, there are really two ways to think about it: single-
instance applications and multi-instance applications. Notice that these terms are the opposite of
multi-system-view and single-system-view cluster terms that we started with, but those are the terms
we are stuck with.

Multi-system-view clusters allow single-instance applications, which offer failover of applications for
high availability, but don’t allow the same application to work on the same data on the different
systems in the cluster.

Single-system-view clusters allow multi-instance applications, which offer failover for high
availability, but also offer cooperative processing, where applications can interact with the same
data and each other on different systems in the cluster.

A good way to determine if an application is single-instance or multi-instance is to run the
application in several processes on a single system. If the applications do not interact in any way,
and therefore run properly whether there is only one process running the application or every
process on a single system is running the application, then the application is single-instance.

An example of a single-instance application is telnet, where multiple systems in a cluster can offer
telnet services, but the different telnet sessions themselves do not interact with the same data or
each other in any way. If a given system fails, the user simply logs in to the next system in the
cluster and re-starts their session. This is simple failover. And this is the way that many systems
including Linux and Windows 2000 DataCenter, and all of our competitors, set up NFS services,
as a single instance application in failover mode.

If, on the other hand, the applications running in the multiple processes interact properly with each
other, such as by sharing cache or locking data structures to allow proper coordination between
the application instances, then the application is multi-instance.

An example of a multi-instance application is a cluster file system that allows multiple systems to all
offer the same set of disks as services to the rest of the environment. Having one set of disks being
offered by multiple systems requires a cluster file system with a single-system-view cluster, which can
be offered either in the operating system software itself (TruCluster and OpenVMS Cluster Software)
or by third party software (Oracle 9i Real Application Clusters). So, even though Linux FailSafe,
Serviceguard and Windows 2000 get a “No” for multi-instance applications, Oracle is the
exception to this. As I mentioned before, NonStop Kernel does this in a different way, but offers
effectively the same functionality.

Recovery Methods
Recovery methods implement how the cluster will recover the applications that were running on a
system which has been removed from the cluster, either deliberately or by a system failure. For
multi-system-view clusters like Linux, this is done by scripts which are invoked when the heartbeat
messages between the cluster members detects the failure of one of the systems. Two examples for
Linux are ‘mon’ and ‘monit.’

For fault tolerant systems like NonStop Kernel, recovery is done by paired processes, where a
backup process is in lockstep with a primary process, ready to take over in the event of any failure.

Serviceguard has extensive tools to group applications and the resources needed to run them, into
"packages" which are then managed as single units. The system administrator can define
procedures to recover and re-start the application packages onto another system in a cluster in the
event of server failure. This is one of the ways Serviceguard leads the industry in UNIX clustering
technology.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 18

Both TruCluster and OpenVMS Cluster multi-instance applications have built-in methods that enable
recovery from failing systems. Both TruCluster and OpenVMS Cluster Software can monitor some
applications and recover them automatically. TruCluster does this via the Cluster Application
Availability facility, and OpenVMS Cluster Software does this by the /RESTART switch on the batch
SUBMIT command.

There are three main recovery methods with Windows 2000 Datacenter:

• Generic application/generic service. This doesn't require development of any kind, simply a
one-time registration of the application for protection by Windows 2000 Datacenter. There is
also a wizard to guide administrators through this process step by step.

• Custom resource type. The application itself is unchanged, but the application vendor (or other
party) develops a custom resource DLL that interfaces an application with Windows 2000
Datacenter to do application-specific monitoring and failover. Again, this doesn't require any
development at integration time, simply registration of the application using the custom
resource DLL.

• Cluster API. Here the application is modified to explicitly comprehend that it's running in a
clustered environment and can perform cluster-related operations, e.g., failover, query nodes,
etc.

Cluster Resilience
The following table summarizes cluster resilience characteristics of HP cluster technologies.

 Dynamic
Partitions

Data High
Availability

Disaster Tolerance

LifeKeeper
 Linux, Windows

No Distributed Replicated
Block Device (DRBD)

Extended Mirroring

Serviceguard vPars Multi-Path I/O (a)
MirrorDisk/UX

Extended Clusters

NonStop Kernel No Multi-Path I/O (p),
RAID-1, Process Pairs

Remote Database
Facility

TruCluster No Multi-Path I/O (a)
LSM RAID-1

StorageWorks
Continuous Access

OpenVMS Cluster Software Galaxy Multi-Path I/O (p)
HBVS RAID-1

DTCS, StorageWorks
Continuous Access

Windows 2000
 DataCenter

No SecurePath (p)
NTFS RAID-1

StorageWorks
Continuous Access

Dynamic Partitions
One of the major selling points of clusters is high availability, even when things go wrong, such as
storage subsystem failures or peak workloads beyond expectations, and even when things go very
wrong, such as physical disasters. So how do clusters on HP systems cope with these things?

© Copyright 2003 Hewlett-Packard Development Company, L.P. 19

Dynamic partitions protect against peaks and valleys in your workload. Traditionally you built a
system with the CPUs and memory for the worst-case workload, accepting the fact that this extra
hardware would be unused most of the time. And with hard partitioning becoming more popular
because of system consolidation, each hard partition would require enough CPUs and memory for
the worst-case workload. But dynamic partitioning lets you share this extra hardware between
partitions of a larger system, so that, for example, you can allocate the majority of your CPUs to the
on-line processing partition during the day, and move them to the batch partition at night. Only
HP-UX with vPars and OpenVMS with Galaxy offers this functionality. Both offer the ability to
dynamically move CPUs between the partitions either via a GUI or the command line. Galaxy
offers the ability to share physical memory that is available to two or more Galaxy partitions. HP-
UX offers the capability for the Work Load Management (WLM) tools to move the CPUs in response
to goal-based operational requirements.

Notice that all of the above software runs in the base operating systems, not just in the clustering
products. Both vPars and Galaxy partitions can be clustered just as any other instances of the
respective operating systems can be clustered.

Data High Availability
Data high availability assumes that all the proper things are being done at the storage sub-system
level, such as redundant host adapters, redundant paths from the host adapters to the storage
controllers (through redundant switches if you are using FibreChannel), redundant storage
controllers configured for automatic failover, and the appropriate RAID levels on the disks
themselves. And some of this redundancy requires cooperation from the host operating system,
specifically in the area of multi-path I/O.

Multi-path I/O allows the system to have multiple physical paths from the host to a specific volume,
such as multiple host adapters connected to redundant storage controllers. This is extremely
common with FibreChannel, but is also achievable with SCSI.

Support for multi-path I/O can be either active or passive. Active multi-path I/O means that both
paths are active at the same time, and the operating system can load balance the I/O requests
between the multiple physical pathsby choosing the host adapter that is least loaded for any given
I/O. In the event of a path failure (caused by the failure of the host adapter or a switch or a
storage controller), the operating system would simply re-issue the I/O request to another path. This
action would be transparent to the application.

Passive multi-path I/O means that only one path is active at one time, but the other path is ready to
take over in the event of the first path failing. This is accomplished in the same way as the active
multi-path I/O, by having the system re-issue the I/O request. The above chart shows whether the
operating system supports active (a) or passive (p) multi-path I/O.

But all of these technologies are not adequate if you have multiple simultaneous disk failures, such
as by physical destruction of a storage cabinet.

The first level of defense against this is host-based RAID, which performs mirroring or shadowing
across multiple storage cabinets. Linux does it with Distributed Replicated Block Device (DRBD),
where one of the systems writes to a local disk and then sends an update to the other system over
the network so it can write a copy of that data to its local disk.

HP-UX uses MirrorDisk/UX to maintain up to three copies of the data. The software needed to
enable active multi-path I/O varies depending on the storage system being used by HP-UX.
PowerPath is an EMC product, which is compiled into the HP-UX kernel to give active multi-path
I/O to EMC storage arrays, where the HP Logical Volume Manager (LVM) gives active multi-path
I/O to the XP and EVA storage sub-systems.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 20

NonStop Kernel provides data high availability using a combination of RAID-1 (mirrored disks),
active multi-path I/O with multiple SystemNet Fabrics, multiple controller paths, etc, and process
pair technology for the fault tolerant Data Access Managers (DAM).

Tru64 UNIX supports RAID-1 and RAID-5 with the Logical Storage Manager, which can protect any
disk including the system root. LSM also supports active multi-path I/O.

OpenVMS supports RAID-1 with Host-Based Volume Shadowing, which can maintain up to three
copies of any disk including the system disk. OpenVMS supports passive multi-path I/O, with
operator controlled load balancing.

Windows 2000 DataCenter does it with NTFS mirroring. Many storage vendors, including HP,
offer software with their storage offerings, which layers on top of Windows 2000 to allow passive
multi-path I/O. On Windows, the software is called SecurePath.

Disaster Tolerance
Disaster tolerance is what you need to protect computer operations and data from physical
disasters. In my area of Florida, we worry about hurricanes. In other areas of the world, we worry
about tornadoes or blizzards. And everybody worries about earthquakes, power failures and fires.
The only way to protect from these things is to make sure that your data is stored somewhere far
away, and to do this in as close to real-time as possible. There are multiple kinds of data
replication, but the two major ones are physical replication and logical replication.

Physical replication can be done by either the system or the storage sub-system. The systems use
the same software that is used for data high availability detailed above, except that the second (or
in some cases, the third) copy of the data is in another physical location. Serviceguard uses
MirrorDisk/UX, NonStop Kernel uses the Remote DataCenter Facility (RDF), TruCluster uses LSM
and OpenVMS Cluster Software uses host-based Volume Shadowing. The rules for accessibility of
the remote volumes by the remote systems are the same as if the remote volumes and the systems
were in the same room as the source systems and volumes. Only TruCluster and OpenVMS Cluster
Software can share volumes between systems, whether local or remote. Having the operating
system accessing volumes across a wide area FibreChannel system is called an “extended cluster”.

We have the same situation here as we had for RAID, in that the storage sub-system offers
significant capabilities for physical replication, regardless of the host operating system or clustering
software capabilities. StorageWorks Continuous Access for the EVA and the XP storage arrays
support the clusters of HP environments and most competitive UNIX systems.

Both the system-based data high availability software and the storage-based Continuous Access
offers active/active bi-directional data replication. Exactly what does that mean?

Assume you have a production system in Los Angeles, which is working fine. You want to
safeguard your data, so you decide to build a disaster recovery site in San Bernardino, about
100km (60 miles) away from Los Angeles.

First, you put in a group of FibreChannel switches, and connect them using the FibreChannel to
ATM adapters to the FibreChannel switches in your Los Angeles data center. Then you put a
duplicate set of storage in San Bernardino, and begin replicating the production system’s data from
Los Angeles to San Bernardino. This is known as active/passive replication, because San
Bernardino is simply a data sink: no processing is going on there, mostly because there are no
systems on that side.

This works well, but as times goes on you need more than this: you need processing to continue in
San Bernardino even if your Los Angeles data center is wiped out. So you put some systems in San

© Copyright 2003 Hewlett-Packard Development Company, L.P. 21

Bernardino, and physically cable them to the storage. But the target volume of the Continuous
Access copy is not available for mounting by the systems, no matter what operating system they are
running, so the San Bernardino site is idle, simply waiting for a signal to take over the operations
from Los Angeles. This signal can be automated or manual, but in either case, the storage sub-
system would break the Continuous Access link, the systems would mount the volumes, and would
then initiate any recovery mechanisms that have been defined for the application.

But your CFO strenuously objects to having a group of systems in San Bernardino just sitting idle,
so you split your workload and give half of it to Los Angeles and half of it to San Bernardino.
Notice that this is a multi-system-view implementation, because the target volume of a Continuous
Access copy is not available for mounting by the systems. So, just as you duplicated the Los
Angeles storage in San Bernardino, now you duplicate the San Bernardino storage in Los Angeles,
which you then connect to the systems in Los Angeles as well, and you setup a Continuous Access
copy from San Bernardino to Los Angeles.

So now you have your Los Angeles production data being replicated to San Bernardino, and your
San Bernardino production data being replicated to Los Angeles. You could survive the loss of
either data center, and have all of your data in the other one.

This is known as active/active bi-directional data replication. Even though each set of storage is
only being replicated in one direction, your business has data being replicated across the
enterprise.

Notice that the replication is being done by the FibreChannel. The hosts don’t know or care that it
is happening.

Failover requires you to explicitly stop the replication process in the surviving datacenter, and then
explicitly mount the storage subsystems on the systems in the surviving datacenter, to get back into
production. Failback requires the same type of operation, where you have to synchronize the data
between the two storage subsystems, and then place one of them back into source mode and the
other into target mode, in order to restore the standard configuration.

Server

 A

Server

B

Los Angeles

Application
Servers

Switches

LA Production
Storage System

Server

 C

Server

 D
Application

Servers

SB Production
Storage System

SB Duplicate
Storage System

LA Duplicate
Storage System

Switches

San Bernardino

Notice that in both cases, system-based data high availability and StorageWorks Continuous
Access, the data being replicated is actually being written multiple times, whether by the system or

© Copyright 2003 Hewlett-Packard Development Company, L.P. 22

by the storage controller. And all of the data on the source disk is being written to the target disk,
whether it is mission-critical database files or temporary files in a scratch area. This requires
careful planning to ensure that you are replicating everything you need (such as the startup scripts
for the database application, which exists outside the database files and is probably not on the
same disk volumes as the database files), but not too much (such as /tmp).

So how is this different from logical replication? Well, the biggest difference is what is being
replicated and how the replication is being done.

Logical replication ignores the disk volumes and replicates the transactions themselves. In the same
way that physical replication takes a single write operation and applies it to multiple disk volumes,
logical replication takes a single update transaction and applies it to multiple databases. The
communications can be done over standard networking, and the systems that operate the multiple
databases may or may not be clustered, depending on the database software chosen.

Once again, you have your data center in Los Angeles, and it is working fine. Once again you
decide you need a disaster recovery site. But in this case, you can put that disaster recovery site
anywhere you want, because we are using standard networking technology. So you choose New
York for your disaster recovery site.

You put a duplicate of your data center in New York, and then connect them with a fast networking
link. Notice that this is a fully functional duplication of the data center, as it requires both systems
and storage. However, it is not required to be a physical duplication: if you only require that some
data is replicated, or if you can accept some lesser performance when a failover occurs, you can
have fewer computing resources in New York than in Los Angeles. Then you use logical replication
to replicate the database records.

You can either leave it like this, in active/standby mode, or you can have the New York site start to
run some type of production. Notice that it has to be different from the production run in Los
Angeles, because these are two different systems or clusters and cannot see the same data. But in
the same way we had bi-directional physical replication, you can have bi-directional logical
replication. This provides both data protection and failover capabilities from New York to Los
Angeles. This is an active/active logical replication scheme. But keep in mind, just like in the
previous example, failover and failback are semi-automated processes, with some human
intervention required.

©

LA Active
Storage System

Switches

Application
Servers

Los Angeles

Application
Servers

New York

Switches

Server
C

Server
C

NY Standby
Storage System

NY Active
Storage System

Data
Replication

NetworkNetwork

Server
B

Server
A

Server
D

 Copyright 2003 Hewlett-Packard Development Company, L.P. 23

Keep in mind what is being replicated here. In the previous example of physical replication, the
storage subsystem was taking whatever bits were written to the disk and copying them across to the
other side. The storage subsystem doesn’t have a clue about file systems, files, database records,
re-do logs or transactions. The advantage of this is that *everything* is being replicated: database
files, log files, flat files, everything. But the disadvantage is that a simple operator error (like “rm –r
” or “DELETE [...]*.*;*” will be replicated to the target disk in real time.

But logical replication is replicating database transactions, not volumes. It does not replicate things
like security information, patches to the operating system or applications, scripts, or any of the
myriad of other files which are needed to maintain the site, all of which have to be replicated and
maintained by hand. But the advantage is that an operator error that works on files cannot
destroy your entire environment.

One last point about the differences between physical and logical replication. Physical replication
does not understand the underlying structure of the data that it works on: it understands which disk
blocks have changed, but not which files those blocks belong to or whether the disk block that was
changed was a database row or a database index. Therefore, it is impossible to ensure atomicity
of a transaction with physical replication. That is, there is a window of time where the write
operation of (for example) the row information was successfully replicated but the index information
has not yet been replicated. If the systems that originated the transaction fail, or the
communications link fails at that moment, the replicated database is probably corrupt.

So, how is this different with OpenVMS Cluster Software and Disaster Tolerant Cluster Services
(DTCS)? Well, one difference is where the physical replication is being done, but a more
important difference is that the target volumes are fully accessible from any member of the wide
area cluster.

Once again, you have your data center in Los Angeles, and it is working fine. Once again you
decide you need a disaster recovery site. But in this case, you can put that disaster recovery site
up to 800 km (500 miles) away, because we are using standard networking technology. So you
choose San Diego for your disaster recovery site.

You put a duplicate of your data center down in San Diego, and then connect the two sites with
an ATM fabric. There are lots of rules around this concerning latency and throughput, and quorum
schemes get really interesting, so I really recommend you allow HP to help you design and
implement it. But we have lots of sites working with this; it isn’t that difficult.

Then you use host-based Volume Shadowing for OpenVMS to replicate the data. Because HBVS is
host-based, all of the systems can mount the volumes directly, with full read/write access to the
drives using direct access I/O. Any writes made by any of the systems will be written to the
storage systems in both Los Angeles and San Diego, and all other systems will be aware of them
with full cache coherency. Any reads will come from the local disks, so it is very efficient.

There are no standby systems here and no passive storage arrays. We recommend that the ATM
fabric be redundant, so you are protected even in the event of network failure. But even if one of
the sites was completely wiped out, the other site would recover very quickly, because the other
systems already have the disks mounted and operational. It would simply be a cluster transition,
and you are back in business.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 24

S
b
b

L
s
m
m
v
s
a
l
g
t
t
h

I
t
o
t
c
t
o

S
F
v

©

Production
Storage System

Switches

Application
Servers

Los Angeles

Server
B

Server
A

San Diego

Switches

Application
Servers

Server
D

Server
C

Production
Storage System

Volume
Shadowing

Network

o, why is there a distance limitation for this scenario, but not for extended clusters or storage
ased Continuous Access? Because this scenario requires a lot of two-way communication
etween the sites, and because of the speed of light.

ight travels in a vacuum at 186,282 miles per second. Let’s round that off to 200,000 miles per
econd to make the math easy. The speed of 200,000 miles per second means light travels 200
iles per milli-second. We are worried about round-trip distances, so light can travel up to 100
iles away and back in 1 milli-second. But light travels somewhat slower in fibre than in a
acuum, and there are the inevitable switch delays, so the rule of thumb is that it takes1 milli-
econd for every 50-mile round trip. So 500 miles adds 10*1 = 10 milli-seconds to the latency of
 disk access. Given normal disk access latency of 10-15 milli-seconds, this merely doubles the

atency, and the OpenVMS Host-Based Volume Shadowing software can cope with that. But if you
et much more than that, the software might think the disk at the other end has gone off-line, and

he software will incorrectly break the shadow set. If we increase the timeout feature to get around
his, the software will think the disk is just being slow when it really is inaccessible, and we will
ave unacceptable delays in breaking the shadow set when it needs to be broken.

n the physical and logical replication scenarios, each volume on one side is merely sending data
o the other side, and eventually getting an acknowledgement back. The acknowledgement is not
verly time critical, and you can keep sending new data while waiting for the acknowledgement of

he data you have already sent. The other side cannot write data to the target disk, so there is no
onflict resolution necessary. So the additional latency of the speed of light is not as important, so
he distance limitations are almost non-existent, as long as you don’t exceed the distance limitations
f your interconnect technology.

ummary
or obvious reasons, every operating system offers a high availability option. But their capabilities
ary widely: some systems offer 2-nodes with manual failover measured in minutes, other systems

 Copyright 2003 Hewlett-Packard Development Company, L.P. 25

offer 16 nodes with automated failover time measured in seconds, while still others offer hundreds
or thousands of processing units with absolutely transparent recovery from failure. And each
system knows how to protect itself in this increasingly insecure world: some systems do it by
depending on FibreChannel replication, others do it by depending on a database to move the data
around the country, and others offer true active/active multi-site clusters over hundreds of miles.

It is up to you as technologists to understand these technologies, and to pick the right one for the
business task. But you have an additional job that you might not think of: letting your senior
management know the exact capabilities of the technology you chose. Because if you implemented
a 2-node, manual failover system with no disaster tolerance, and your management thinks you
have implemented an infinitely expandable fault tolerant system with zero recovery time even if the
primary datacenter is completely and unexpectedly wiped out, you have a problem. And you will
only discover you have a problem when the system behaves exactly as you implemented it, and
management discovers that it didn’t do what they thought it would do.

So the answer is to document exactly what your chosen solution will and won’t do, and get full
agreement from your senior management that this is what they want it to do. And if they come
back and say they need it to do more, then you request more money to get it to do what they need.
In either scenario, HP is available to provide the software and services to help you design and
implement the chosen solution.

Acknowledgements
I wish to thank Kirk Bresniker, Dan Cox, Jon Harms, Keith Parris, Bob Sauers and Wesley Sawyer
for their invaluable input and review of this material.

For More Information
On LifeKeeper for Linux

• http://www.hp.com/linux for general information on HP servers and Linux

• http://h18000.www1.hp.com/solutions/enterprise/highavailability/linux/index.html for
general information on HP servers and Linux and high availability solutions

• http://www.hp.com/hpinfo/newsroom/press/08aug02b.htm for information on Lustre

• http://www.compaq.com/Solutions/enterprise/highavailability/linux/description.html#specs
for specifications on LifeKeeper with ProLiant servers

• http://linux-ha.org

• “What Linux-HA Can Do Now”

• “LAN Mirroring Technologies”

• http://www.missioncriticallinux.com/technology/cluster/ for the white paper on Mission
Critical Linux

• http://technet.oracle.com/tech/linux/ for information on Oracle and Linux

• http://www.steeleye.com/products/linux/#2 and
http://www.steeleye.com/pdf/literature/lkpr4linux.pdf for information on SteelEye LifeKeeper

• http://www.kernel.org/software/mon/ for information on the Service Monitoring Daemon

• http://www.tildeslash.com/monit/ for information on the Monit Utility

© Copyright 2003 Hewlett-Packard Development Company, L.P. 26

http://www.hp.com/linux
http://h18000.www1.hp.com/solutions/enterprise/highavailability/linux/index.html
http://www.hp.com/hpinfo/newsroom/press/08aug02b.htm
http://www.compaq.com/Solutions/enterprise/highavailability/linux/description.html
http://linux-ha.org/
http://www.missioncriticallinux.com/technology/cluster/
http://technet.oracle.com/tech/linux/
http://www.steeleye.com/products/linux/
http://www.steeleye.com/pdf/literature/lkpr4linux.pdf
http://www.kernel.org/software/mon/
http://www.tildeslash.com/monit/

On Serviceguard for HP-UX and Linux

• http://www.hp.com/go/ha for general information on Serviceguard and high availability

• http://www.hp.com/products1/unix/operating/infolibrary/reports/2002Unix_report.pdf for
the DH Brown 2002 UNIX Function Review report

• http://docs.hp.com/hpux/onlinedocs/ha/highly_avail_clust.pdf for Disaster Tolerant and
Highly Available Cluster Technologies

• http://www.hp.com/products1/unix/highavailability/ar/mcserviceguard/infolibrary/index.ht
ml, Information Library

• 5nines Architecture Overview

• System Cluster Technologies and Disaster Tolerance

• Data Protection

• http://www.software.hp.com/cgi-
bin/swdepot_parser.cgi/cgi/displayProductInfo.pl?productNumber=B2491BA for
MirrorDisk/UX

On NonStop Kernel

• http://nonstop.compaq.com/view.asp?PAGE=TIM_Prod for access to the Total Information
Manager (TIM) product, for full NSK information

• http://h71033.www7.hp.com/object/tdnsk3pd.html for details on NSK and high availability

• http://h71033.www7.hp.com/page/RDF_SW.html for information on Remote DataCenter
Facility

On TruCluster

• http://h30097.www3.hp.com/ for general information on Tru64 UNIX and TruCluster

• http://h18000.www1.hp.com/products/quickspecs/11444_div/11444_div.HTML for the
QuickSpecs on TruCluster V5.1b

• http://h30097.www3.hp.com/docs/pub_page/cluster51B_list.html for the documentation.
Specifically:

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHGVETE/TITLE.HTM , Cluster Technical Overview

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHGVETE/TITLE.HTM, Cluster Technical Overview, Section 2.2

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHGVETE/TITLE.HTM, Cluster Technical Overview, Section 3

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHGWETE/TITLE.HTM, Hardware Configuration, Section 1.3.1.4

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHGYETE/TITLE.HTM, Cluster Administration, Section 4.3, Calculating Cluster Quorum

• http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51B_HTML/A
RHH0ETE/TITLE.HTM, Highly Available Applications, Chapter 1, Cluster Applications

© Copyright 2003 Hewlett-Packard Development Company, L.P. 27

http://www.hp.com/go/ha
http://www.hp.com/products1/unix/operating/infolibrary/reports/2002Unix_report.pdf
http://docs.hp.com/hpux/onlinedocs/ha/highly_avail_clust.pdf
http://www.hp.com/products1/unix/highavailability/ar/mcserviceguard/infolibrary/index.html
http://www.hp.com/products1/unix/highavailability/ar/mcserviceguard/infolibrary/index.html
http://www.software.hp.com/cgi-bin/swdepot_parser.cgi/cgi/displayProductInfo.pl?productNumber=B2491BA
http://www.software.hp.com/cgi-bin/swdepot_parser.cgi/cgi/displayProductInfo.pl?productNumber=B2491BA
http://nonstop.compaq.com/view.asp?PAGE=TIM_Prod
http://h71033.www7.hp.com/object/tdnsk3pd.html
http://h71033.www7.hp.com/object/tdnsk3pd.html
http://h71033.www7.hp.com/object/tdnsk3pd.html
http://h71033.www7.hp.com/page/RDF_SW.html
http://h30097.www3.hp.com/
http://h18000.www1.hp.com/products/quickspecs/11444_div/11444_div.HTML
http://h30097.www3.hp.com/docs/pub_page/cluster51B_list.html
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGVCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGWCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHGWCTE/TITLE.HTM
http://www.tru64unix.compaq.com/docs/cluster_doc/cluster_51/HTML/ARHGYCTE/TITLE.HTM
http://www.tru64unix.compaq.com/docs/cluster_doc/cluster_51/HTML/ARHGYCTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHH0CTE/TITLE.HTM
http://h30097.www3.hp.com/docs/cluster_doc/cluster_51/HTML/ARHH0CTE/TITLE.HTM

• http://h18000.www1.hp.com/products/quickspecs/10899_div/10899_div.HTML for
the QuickSpecs for the Logical Storage Manager V5.1b

• http://www.hp.com/techservers/ for the AlphaServer SC home page

On OpenVMS Cluster Software

• http://h71000.www7.hp.com/ for general information on OpenVMS and OpenVMS Cluster
Software

• http://h71000.www7.hp.com/openvms/products/clusters/index.html for information on
OpenVMS Cluster Software V7.3-1

• http://h18000.www1.hp.com/info/SP2978/SP2978PF.PDF for OpenVMS Cluster Software
V7.3-1 SPD

• http://h71000.www7.hp.com/doc/index.html for the documentation. Specifically:

• http://h71000.www7.hp.com/doc/731FINAL/4477/4477PRO.HTML, OpenVMS
Cluster Systems, Section 2.3.2 shows quorum algorithm, and Chapter 7, Setting Up and
Managing Cluster Queues

• http://h71000.www7.hp.com/doc/731FINAL/6318/6318PRO.HTML, Guidelines for
OpenVMS Cluster Configurations, Chapter 8, Configuring OpenVMS Clusters for High
Availability and Appendix D, Multi-Site OpenVMS Clusters

• http://h71000.www7.hp.com/doc/731FINAL/5423/5423PRO.HTML, Volume
Shadowing for OpenVMS, Section 1.5 discusses WAN based RAID-1 for disaster
tolerance

On Windows 2000

• http://www.microsoft.com/windows2000/en/datacenter for general Windows 2000
DataCenter information

• http://www.microsoft.com/windows2000/en/datacenter/help/ for the
documentation. Specifically:

• Choosing a Cluster Model, emphasizes that Windows 2000 DataCenter is a multi-system-
view cluster, and acknowledges the lack of single-system-view capabilities.

• Checklist: Preparing a Server Cluster, states that each system in the cluster must have its
own system disk.

• Server Clusters says up to 4 systems in a server cluster

• Cluster Hardware and Drivers says the network is the only cluster interconnect

• Quorum Disk describes the use of the quorum disk, and Cluster Database discusses how
the cluster database from each system is written to the recovery log on the quorum disk

• Windows Clustering, Server Clusters, How To…, Perform Advanced Administrative Tasks

• Choosing a RAID Method

• Disaster Protection discussing the lack of WAN RAID

On Single System Image Linux

• http://sourceforge.net/projects/ssic-linux for information on this HP project

© Copyright 2003 Hewlett-Packard Development Company, L.P. 28

http://h18000.www1.hp.com/products/quickspecs/10899_div/10899_div.HTML
http://www.hp.com/techservers/
http://h71000.www7.hp.com/
http://h71000.www7.hp.com/openvms/products/clusters/index.html
http://h18000.www1.hp.com/info/SP2978/SP2978PF.PDF
http://h71000.www7.hp.com/doc/index.html
http://h71000.www7.hp.com/doc/731FINAL/4477/4477PRO.HTML
http://h71000.www7.hp.com/doc/731FINAL/6318/6318PRO.HTML
http://h71000.www7.hp.com/doc/731FINAL/5423/5423PRO.HTML
http://www.microsoft.com/windows2000/en/datacenter/help/
http://www.microsoft.com/windows2000/en/datacenter/help/
http://sourceforge.net/projects/ssic-linux

On StorageWorks Continuous Access

• http://h18006.www1.hp.com/storage/software.html for general information on
StorageWorks high availability solutions

• http://www.compaq.com/products/quickspecs/10281_na/10281_na.html, QuickSpecs for
StorageWorks Continuous Access

• http://h18006.www1.hp.com/products/storage/software/conaccesseva/index.html,
SANworks Continuous Access Overview and Features

Books

• “Clusters for High Availability”, Peter Weygant, ISBN 0-13-089355-2

• “In Search of Clusters”, Gregory F. Pfister, ISBN 0-13-899709-8

© Copyright 2003 Hewlett-Packard Development Company, L.P. 29

http://h18006.www1.hp.com/storage/software.html
http://www.compaq.com/products/quickspecs/10281_na/10281_na.html
http://h18006.www1.hp.com/products/storage/software/conaccesseva/index.html

Local Area Network Cluster Interconnect Monitoring
Keith Parris
Systems/Software Engineer, HP Multivendor Systems Engineering

Overview
Local Area Network (LAN) technology is increasingly replacing older technologies such as
Computer Interconnect (CI) and Digital Storage Systems Interconnect (DSSI) as the interconnect used
for communications within the majority of OpenVMS Cluster configurations. This article describes
the LAVC$FAILURE_ANALYSIS tool which is supplied with OpenVMS and which can be used to
monitor and troubleshoot LANs that are used as cluster interconnects.

LAN Cluster Interconnect Monitoring using LAVC$FAILURE_ANALYSIS

Background
When support for OpenVMS Cluster communications over a Local Area Network (LAN) was first
introduced, the resulting configuration was known as a Local Area VAX Cluster, or “LAVC” for
short.

Support for multiple LAN adapters in a single system was introduced in VAX/VMS version 5.4-3.
This allowed LAVC configurations with a significant amount of LAN redundancy to be configured,
and allowed the cluster to continue operating and survive the failure of network adapters and
various other network components.

One challenge that is always present when redundancy is configured is the need to monitor the
redundant components to detect failures, or else, as components continue to fail over time, the
entire system may fail when the last remaining working component fails.

To assist with this problem, supplied along with OpenVMS is a tool called
LAVC$FAILURE_ANALYSIS. Its purpose is to monitor and report any LAN component failures. It
reports these using Operator Communication (OPCOM) messages. It also reports when a failure is
repaired.

Implementing LAVC$FAILURE_ANALYSIS
There is a template program for LAVC$FAILURE_ANALYSIS found in the SYS$EXAMPLES: directory
on an OpenVMS system disk. The template program is called LAVC$FAILURE_ANALYSIS.MAR.
The template program is written in Macro-32 assembly language, but you don’t need to know how
to program in Macro-32 just to use it.

To use the LAVC$FAILURE_ANALSYS facility, the program must be:

1. Edited to insert site-specific information

2. Compiled (on Alpha; assembled on VAX)

3. Linked, and

4. Run on each node in the cluster (preferably at boot time)

Maintaining LAVC$FAILURE_ANALYSIS
The program must be re-edited and rebuilt whenever:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 30

1. The LAVC LAN is reconfigured

2. A node’s MAC address changes (for example, when an HP Customer Services
representative replaces a LAN adapter)

3. A node is added or removed (permanently) from the cluster

How Failure Analysis Is Done
PEDRIVER, the Port Emulator code which makes a LAN look and act like a CI (Computer
Interconnect) port to the OpenVMS Cluster code, transmits multicast “Hello” packets every 2-3
seconds or so from each LAN adapter that is enabled for cluster communications. These “Hello”
packets are sent to a multicast address that is associated with the cluster group number, and which
has a MAC address of the form AB-00-04-01-xx-yy, where “xx-yy” is based on the cluster group
number plus an offset. Each cluster member enables receipt of packets addressed to the MAC
address associated with its own cluster group number, and uses the receipt of Hello packets to
discover new communications paths and track the reachability of a node via a given path.

In the information added by editing the LAVC$FAILURE_ANALYSIS program to customize it for a
given cluster, OpenVMS is told what the LAN configuration should be (in the absence of any
failures). The LAN configuration is represented as a mathematical “graph” with “nodes” and
“connections” between the nodes in the graph. From this information, OpenVMS infers which LAN
adapters should be able to “hear” Hello packets from which other LAN adapters. By checking for
the receipt of Hello packets as expected, OpenVMS can thus determine if a path is working or not.

By analyzing Hello packet receipt patterns and correlating them with the mathematical graph of the
network, OpenVMS can tell which nodes in the mathematical network graph are passing Hello
packets and which appear to be blocking Hello packets. OpenVMS determines a Primary Suspect
(and, if there is any ambiguity as to exactly what specific component has failed because more than
one failure scenario might cause the observed symptoms, also identifies one or more Alternate
Suspects), and reports these via OPCOM messages with a “%LAVC” prefix.

Primary Suspects are reported with a message prefix of the form “%LAVC-W-PSUSPECT”. Alternate
Suspects are reported with a message prefix of the form “%LAVC-I-ASUSPECT”. When the failure
that caused a Suspect to be reported is repaired, a message with a prefix of the form “%LAVC-S-
WORKING” is generated.

Getting Failures Fixed
Since notification is done via OPCOM messages, someone or something needs to be scanning
OPCOM output and taking action. If no human is actively watching the OPCOM output, the error
notification may be overlooked.

In one disaster-tolerant cluster there were two expensive DS-3 inter-site links configured, and
LAVC$FAILURE_ANALYSIS was put into place to monitor the inter-site links, but the OPCOM
message reporting a failure of one of the links one day was missed and the failure was not
discovered until six days later. In the intervening time, a failure of the other link would have
caused a loss of communications between the two sites of the disaster-tolerant cluster, which would
likely have been noticed quickly, but would not have been very convenient.

Products such as TecSys Development Inc.’s ConsoleWorks, Computer Associates’ Unicenter
Console Management for OpenVMS (previously known as Console Manager), Ki Networks’
Command Line Interface Manager (CLIM), or Heroix RoboMon can scan for the %LAVC messages
generated by LAVC$FAILURE_ANALYSIS and take some appropriate action (sending e-mail,
sending a notification via pager, etc.).

© Copyright 2003 Hewlett-Packard Development Company, L.P. 31

Gathering Information
To implement LAVC$FAILURE_ANALYSIS, data must be gathered about the LAN configuration. The
data required includes:

• OpenVMS nodes, and the LAN adapters in each node

• Hubs, switches, bridges, and bridge/routers (routers which have bridging enabled)

• Links between all of the above

Network Building Blocks
For the purposes of LAVC$FAILURE_ANALYSIS, OpenVMS considers LAN building blocks as being
divided into 4 classes:

• NODE: An OpenVMS system

• ADAPTER: LAN adapters or Network Interface Cards (NICs) in each OpenVMS system

• COMPONENT: Hubs, switches, bridges, bridge-routers

• CLOUD: Combinations of components that can’t be diagnosed directly

These relationships are illustrated in the following diagram:

Network Building Blocks

OpenVMS
Node 1

Fast Ethernet
FDDI

Gigabit Ethernet

OpenVMS
Node 1

Gigabit Ethernet
FDDI

Fast Ethernet

Hub

Concentrator

GbE Switch

FE Switch

GIGAswitch

GbE Switch

Handling Network Loops
The algorithm used for LAVC$FAILURE_ANALYSIS can’t deal with loops in the mathematical
network graph. Yet redundancy is often configured among LAN components (and this is a good
thing). The bridges’ Spanning Tree algorithm automatically shuts off redundant (backup) links
unless and until a failure occurs. But Hello packets don’t get through these backup links, so
LAVC$FAILURE_ANALYSIS can’t track them directly.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 32

For these cases, you replace the redundant portion of the network with a “network cloud” that
includes all of the redundant components. Then OpenVMS can determine if the network “cloud” as
a whole is functioning or not, and doesn’t have to worry about the internal details of which links
are turned on or off by the Spanning Tree protocol at any given time.

Handling Multiple LANs
Note that multiple, completely separate LANs don’t count as “loops” in the network, and OpenVMS
can track each one separately, independently, and simultaneously.

Gathering Information
Let’s look a bit more closely at the data required for LAVC$FAILURE_ANALYSIS:

• Node names and descriptions

• LAN adapter types and descriptions, and their:

o Media Access Control (MAC) address (e.g., 08-00-2b-xx-xx-xx, 00-00-F8-xx-xx-xx)

o plus DECnet-style MAC address for Phase IV (e.g., AA-00-04-00-yy-zz)

• Network components and descriptions

• Interconnections between all of the above

The names and descriptions supplied will be used in the OPCOM messages which are generated
upon detection of failures and when failures are repaired.

Getting MAC address info
A DCL command procedure similar to the following can be used to help sift through the output from
SDA> SHOW LAN/FULL and pick out the device names and MAC address data.

$! SHOWLAN.COM
$!
$ write sys$output "Node ",f$getsyi("nodename")
$ temp_file := showlan_temp.temp_file
$ call showlan/out='temp_file'
$ search 'temp_file' "(SCA)","Hardware Address" –

/out='temp_file‘-1
$ delete 'temp_file';*
$ search/window=(0,1) 'temp_file‘-1 "(SCA)"
$ delete 'temp_file‘-1;*
$ exit
$!
$ showlan: subroutine
$ analyze/system
show lan/full
exit
$ endsubroutine

Editing the Template Program
Once the necessary data has been gathered, you will need to edit a copy of the
LAVC$FAILURE_ANALYSIS.MAR program found in the SYS$EXAMPLES: directory.

There are five sections to edit, as follows:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 33

Edit 1
In Edit 1, you can give descriptive names to nodes, adapters, components, and clouds. These
names become names of some macros. Later in the code, you will create invocations of these
macros, calling them by the names defined here.

These macro names are for your convenience and reference inside the program, and do not
appear external to the program.

Edit 1 example, taken from the template LAVC$FAILURE_ANALYSIS.MAR program:

; Edit 1.
;
; Define the hardware components needed to describe
; the physical configuration.
;

NEW_COMPONENT SYSTEM NODE
NEW_COMPONENT LAN_ADP ADAPTER
NEW_COMPONENT DEMPR COMPONENT
NEW_COMPONENT DELNI COMPONENT
NEW_COMPONENT SEGMENT COMPONENT
NEW_COMPONENT NET_CLOUD CLOUD

Not very many networks today contain DELNI and DEMPR boxes or thickwire Ethernet cables, but
you might create names like SWITCH, HUB, CISCO, DS3_LINK, and so forth here. Note that you
can create multiple names for a given type of network building block, as we see done here with
COMPONENTs.

Edit 2
In Edit 2, you create an “ASCII art” drawing to document the LAVC LAN configuration. This has no
functional effect on the code, but helps you (and others who follow you) understand the information
in the sections of data that follow.

In the drawing, you choose brief abbreviated names for each network building block (Node,
Adapter, Component, or Cloud). These abbreviated names are only used within the program, and
do not appear externally.

Edit 2 example:

; Edit 2.
;
; Diagram of a multi-adapter LAV cluster.
;
;
; Sa -----+---------------+---------------+-------------+----- Sa
; | | | |
; | MPR_A | |
; | .----+----. | |
; | 1| 1| 1| |
; BrA ALPHA BETA DELTA BrB
; | 2| 2| 2| |
; | `----+----' | |
; | LNI_A | |
; | | | |
; Sb -----+---------------+---------------+-------------+----- Sb

© Copyright 2003 Hewlett-Packard Development Company, L.P. 34

Edit 3
In Edit 3, you name and provide a text description for each system and its LAN adapter(s), and the
MAC address of each adapter. The name and text description will appear in OPCOM messages
indicating when failure or repair has occurred. The MAC address is used to identify the origin of
Hello messages.

For DECnet Phase IV, which changes the MAC address on all LAN adapters (which it calls Circuits)
that it knows about from the default hardware address to a special DECnet address when it starts
up, you provide both:

• The hardware MAC address (e.g., 08-00-2B-nn-nn-nn), and

• The DECnet-style MAC address, which is derived from the DECnet address of the node
(AA-00-04-00-yy-xx)

This way, LAVC$FAILURE_ANALYSIS can work both before and after DECnet Phase IV starts up
and changes the MAC address.

DECnet Phase V (DECnet/OSI) does not change the MAC address, so only the hardware address
is needed.

Edit 3 example:
; Edit 3.
;
; Label Node Description LAN HW Addr DECnet Addr
; ----- ----- -- -------------------- -------------------

SYSTEM A, ALPHA, < - MicroVAX II; In the Computer room>
LAN_ADP A1, , <XQA; ALPHA - MicroVAX II; Computer room>, <08-00-2B-41-41-01>, <AA-00-04-00-01-04>
LAN_ADP A2, , <XQB; ALPHA - MicroVAX II; Computer room>, <08-00-2B-41-41-02

SYSTEM B, BETA, < - MicroVAX 3500; In the Computer room>
LAN_ADP B1, , <XQA; BETA - MicroVAX 3500; Computer room>, <08-00-2B-42-42-01>, <AA-00-04-00-02-04>
LAN_ADP B2, , <XQB; BETA - MicroVAX 3500; Computer room>, <08-00-2B-42-42-02>

SYSTEM D, DELTA, < - VAXstation II; In Dan's office>
LAN_ADP D1, , <XQA; DELTA - VAXstation II; Dan's office>, <08-00-2B-44-44-01>, <AA-00-04-00-04-04
LAN_ADP D2, , <XQB; DELTA - VAXstation II; Dan's office>, <08-00-2B-44-44-02>

Note that only NODE building blocks (named SYSTEM in this example) have a node name; all the
other building block types have a null parameter in that location (indicated by a comma alone).

Edit 4
In Edit 4, you name and provide a text description for each Component and each Cloud. As with
the nodes and adapters you described in Edit 2, the name and text description you provide here
will appear in OPCOM messages indicating when failure or repair has occurred.

Edit 4 example:

; Edit 4.
;
; Label each of the other network components.
;

DEMPR MPR_A, , <Connected to segment A; In the Computer room>
DELNI LNI_A, , <Connected to segment B; In the Computer room>

SEGMENT Sa, , <Ethernet segment A>
SEGMENT Sb, , <Ethernet segment B>

NET_CLOUD BRIDGES, , <Bridging between Ethernet segments A and B>

© Copyright 2003 Hewlett-Packard Development Company, L.P. 35

Here, you give an abbreviated symbolic name and a description for each of the COMPONENT
and CLOUD building blocks. Again, the node name argument is null, indicated by a comma
alone, for the second argument to the macros.

Edit 5
In Edit 5, you indicate which network building blocks have connections to each other. This is a list
of pairs of building blocks, indicating that the two components in a given pair are connected
together.

Pairs of components which have no direct connection between them are simply not listed here.

Edit 5 example:

; Edit 5.
;
; Describe the network connections.
;

CONNECTION Sa, MPR_A
CONNECTION MPR_A, A1
CONNECTION A1, A
CONNECTION MPR_A, B1
CONNECTION B1, B

CONNECTION Sa, D1
CONNECTION D1, D

CONNECTION Sa, BRIDGES
CONNECTION Sb, BRIDGES

CONNECTION Sb, LNI_A
CONNECTION LNI_A, A2
CONNECTION A2, A
CONNECTION LNI_A, B2
CONNECTION B2, B

CONNECTION Sb, D2
CONNECTION D2, D

In this example, the author started with network segments, and indicated each component and LAN
adapter that was connected to that segment. Note that it is necessary to explicitly indicate which
LAN adapters are connected to a given node, even though that might be implied in the naming
convention and thus perfectly obvious to a human being.

The formatting of columns adds to the readability here, with network segments, LAN adapters and
nodes in their own columns.

My personal preference is to begin with the nodes at the left, adapters in the next column to the
right, and so forth, moving outward from a node to the things to which it is connected. But the
order of appearance here, either left to right or top to bottom, does not affect the functional
behavior. Only which building blocks are connected in a pair is significant.

Handling MAC Address Duplications with Multiple LANs
If you are running DECnet Phase IV and have multiple independent LANs, you may end up with
multiple LAN adapters on a single node with the same MAC address, connected to different LANs.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 36

In this case, you will get error messages when you build LAVC$FAILURE_ANALYSIS because of
duplicate symbol definitions unless you “comment out” (by putting a semi-colon in the first column)
the first line of code after the following comment section:

; Within a single extended LAN address must remain unique. The
; following line checks for unique LAN addresses in a single
; extended LAN configuration. If your configuration is using
; multiple extended LANs then LAN address can be duplicated between
; the extended LANs. In this case, the following line should be
; removed.

Level of Detail
There is a trade-off between the level of detail which is provided in diagnostic information
generated and the amount of work required to initially set up the program and to maintain the
program over time. More detail implies more work to set things up in the first place, and more
maintenance work as things change, but provides more specific diagnostic information when
failures occur and repairs are made.

For example, if a bridge/router or switch is represented as a single black box, notifications can
only refer to the box as a whole. If an individual line card or port has failed, but the remainder of
the box is working, it will appear to some nodes as if the entire box has failed, while to other
nodes it will appear that a remote node’s adapter has failed instead, and thus the error messages
generated on different nodes will differ, depending on their view of the failure. If the extra effort is
taken to identify individual line cards and ports within the box, and indicate to which line card and

port each LAN adapter is connected, then failure reports will be able to identify failures down to
the line card level and even to the individual port level. The Level of Detail Example shows, on the
left, a GIGAswitch represented as a black box, and, on the right, a GIGAswitch represented as
line cards and the backplane connecting them in the box.

Level of Detail Example

GIGAswitch Backplane

FDDI Line Card

FDDI Line Card

FDDI Line Card

FDDI Line Card

Gigaswitch

© Copyright 2003 Hewlett-Packard Development Company, L.P. 37

Other tools for use with LAVC$FAILURE_ANALYSIS
A DCL command procedure called EDIT_LAVC.COM is available to automatically gather the
required information and create a working example LAVC$FAILURE_ANALYSIS.MAR program
customized for a given cluster. While the level of detail within the LAN that such an automated tool
can provide is limited, it provides a working example and starting point for further customization
for a given site. This tool may be included on the V6 Freeware CD in the [KP_CLUSTERTOOLS]
directory, but it can also be obtained from http://encompasserve.org/~parris/edit_lavc.com. See
the EDIT_LAVC_DOC.TXT file at the same location for more information on how to use this tool.

The DCL command procedure SIFT_LAVC.COM found at the same location can be used to gather
all the %LAVC messages from the OPERATOR.LOG files on all cluster nodes, and sort and list them
in timestamp order, to gather a better overall picture of the failures as indicated by the varying
views from each of the different nodes in the cluster.

Turning On LAVC$FAILURE_ANALYSIS
Once the LAVC$FAILURE_ANALYSIS program has been customized, it needs to be compiled and
linked. A command procedure LAVC$BUILD.COM provided in SYS$EXAMPLES: can assist with
building the program. Once the program has been built, it should be run once on each member of
the cluster. The program loads the network graph data into non-paged pool, and reports the
amount of space used.

If you make changes to the program, you can simply run the new version, and it will replace the
older network graph data in memory with the newer version.

Because the network graph data goes away when a system reboots, to implement the
LAVC$FAILURE_ANALYSIS facility on an ongoing basis, the program should be run once each time
on each system as it boots up. This can be done by adding a command to run the program into
the SYS$STARTUP:SYSTARTUP_VMS.COM procedure.

Disabling LAVC$FAILURE_ANALYSIS
If you ever wish to turn off LAVC Failure Analysis after it has been started on a given node, you can
use the LAVC$FAILURE_OFF.MAR program found at the same location as EDIT_LAVC.COM.

Using LAVC$FAILURE_ANALYSIS to Monitor Non-cluster LAN
Components
Sometimes cluster system managers will disable the SCS protocol on certain LAN adapters,
particularly if the adapter is to be dedicated to traffic for another network protocol, such as IP. The
SYS$EXAMPLES:LAVC$STOP_BUS.MAR program can be used to turn off the SCS protocol on a
given LAN adapter, as can the new SCACP utility available in OpenVMS version 7.3 and above.

If SCACP is used instead to lower the priority for SCS traffic on a given LAN adapter rather than
turning SCS traffic off entirely on that adapter, then PEDRIVER will transmit Hello packets through
the adapter. LAVC$FAILURE_ANALYSIS can then be used to monitor and track failures on those
additional LANs as well, while preventing the sending of SCS cluster traffic through that LAN,
except as a last resort in the event that all other LANs fail.

Summary
The LAVC$FAILURE_ANALYSIS tool allows monitoring of LAN components and reports failures and
repairs in the form of OPCOM messages. This article covered the theory of operation behind the
LAVC$FAILURE_ANALYSIS tool, and how to set it up for use in a given cluster.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 38

http://encompasserve.org/~parris/edit_lavc.com

For more information

Documentation on LAVC$FAILURE_ANALYSIS
LAVC$FAILURE_ANALYSIS is documented in Appendix D of the OpenVMS Cluster Systems Manual
(http://h71000.www7.hp.com/doc/731FINAL/4477/4477pro_028.html#network_fail_analysis)
. Appendix E (subroutines in OpenVMS that support the programs in Appendix D) and Appendix F
(general information on troubleshooting LAVC LAN problems) can also be very helpful.

Spanning Tree Algorithm
For more information on the Spanning Tree algorithm, I highly recommend the book
“Interconnections” (2nd edition) by Radia Perlman, ISBN 0-201-63448-1.

Contact Information
E-mail: Keith.Parris@hp.com
Web: http://encompasserve.org/~parris/ and http://www.geocities.com/keithparris/

© Copyright 2003 Hewlett-Packard Development Company, L.P. 39

http://h71000.www7.hp.com/doc/731FINAL/4477/4477pro_028.html
mailto:Keith.Parris@hp.com
http://encompasserve.org/~parris/
http://www.geocities.com/keithparris/

Internet Technologies for OpenVMS
Ken Moreau
S

olutions Architect, OpenVMS Ambassador, MCSE

Overview
This paper discusses Internet technologies and web services available on platforms other than
OpenVMS, and shows how these technologies and services work in an OpenVMS environment.
The topics discussed in this paper include Java, XML, Enterprise Application Integration (EAI),
database connectivity, adding graphical front ends to existing terminal-based applications, and
web browsers and servers.

Introduction
You have a history with OpenVMS. You have years and possibly decades of experience and
knowledge embedded in the data, applications, business logic, and processes that are currently
satisfying your business needs better than any other operating environment. You want to protect
not only this business logic, but also the skills you have developed that built this business logic.

But there is a lot of pressure to move into the “brave new world” of the Internet. The question
becomes, how do we most effectively use the best features of each world?

We do it by taking Internet technologies available on other platforms and making them available
on OpenVMS. We do it by simply taking the data, applications, business logic, and processes
that are currently running very well on OpenVMS, and exposing them to the larger Internet world,
so that, for example, the UNIX client running the browser doesn’t even notice it is using OpenVMS.
So that the Excel spreadsheet on Windows, or the program running on Linux, doesn’t even notice
that the data they are fetching is coming from OpenVMS. So that the business-to-business (B2B)
application that your business partners demand that you use simply works, and they don’t even
notice that they are running programs on OpenVMS.

And we do it by having your OpenVMS applications transparently connect to the rich variety of
information available on the Internet, so that you can fetch data from another system, and you don’t
even notice that it is not running OpenVMS. This gives you transparent and seamless integration,
while keeping all of the advantages of your OpenVMS systems: security (OpenVMS is absolutely
immune to virtually all of the viruses we have seen), reliability, disaster tolerance, scalability, and
so on.

Personally, this integration means you can continue to use the skills you already have and add
some new ones to help you keep up with the latest and greatest technologies.

Java
Java was invented by Bill Joy and his team at Sun Microsystems, and represents one of the most
exciting technologies available today. One of the reasons that Admiral Grace Hopper helped to
specify COBOL back in 1959 was so that programs could run on every computer system available
at the time. COBOL didn’t quite fulfill that promise, and other languages like FORTRAN, C, C++,
and BASIC still require work in order to compile and run on every operating system with every
compiler from every vendor. But Java goes further than any other language in delivering on that
promise. You truly can write Java programs once and run them everywhere. And that includes
running them on OpenVMS.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 40

Java is a programming language, with source code that is fairly easily readable. But Java is also a
runtime environment with a lot of supporting infrastructure. The infrastructure is the key to Java’s
portability, because each operating system implements the infrastructure with exactly the same
interfaces. Java programs call those interfaces and simply don’t care what the underlying operating
system is doing.

The two components of the Java environment are the Java Development Kit (JDK) and the
Java Run-time Environment (JRE). The JDK contains all of the things that you would expect
to be able to develop, debug, and deploy applications. The JRE contains only those components
needed to deploy applications.

The combination of the two components comes in the three flavors: the Java 2 Platform Standard
Edition (J2SE), which usually runs in client machines such as workstations or PCs, the Java 2
Platform Enterprise Edition (J2EE), which runs on the servers the client machines connect to, and the
Java 2 Platform Micro Edition (J2ME), which runs on handheld devices that don’t have a hard disk
or a keyboard, such as an iPaq running PocketPC.

The J2SE, J2EE, and J2ME all contain a Java Virtual Machine (JVM), which all Java programs run
within. Different operating systems implement the exact same virtual machine, so the fact that there
are different operating systems underneath the virtual machine is hidden. OpenVMS can
implement Java compilers and the JRE with a JVM, and all of the Java programs in the world just
work.

A virtual machine is good, but you know how programmers are: they want to extend the base
functionality. The Java specification includes the ability to add new functions to the JRE by creating
“beans,” which are simply run-time modules that the Java programs can then call, just as if they
were specified in the original J2xE. Java programs simply state during the installation that they
require this or that set of Java beans, enclosed in this or that Enterprise Java Bean (EJB) library.
Anyone who wants to can write a Java bean, and can then supply it to the world, just by
publishing it and getting other developers interested in using it.

Java programs also want to access data, and there are many database formats to choose from. In
the same way that the Open Data Base Connectivity (ODBC) interface allows programs in any
language to access databases of different formats, the Java Data Base Connectivity (JDBC) APIs are
a set of Java beans that allow Java programs to access databases of different formats. Each
database vendor, and a few other companies, have supplied beans that let Java programs talk to
their specific databases, so all Java programs can access those databases without having to worry
about the details of the database formats.

There are many APIs that have been added to the base specification. To understand the APIs, the
first thing you need to know is that the developers are acronym-happy.

Here is a (very) partial list of the Java APIs:

• J2EE – Java 2 Platform Enterprise Edition. The base set of APIs and run-time utilities for
every Java program running on a server.

• JAAS – Java Authentication and Authorization Service. If you want to authenticate your
users, similar to logging in to OpenVMS and checking your password against the
username and password in the SYSUAF.DAT file, you use JAAS.

• JAR – Java Archive, similar to UNIX ‘tar’ (tape archive) format.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 41

• JCA – Java Connector Architecture, which defines the APIs to allow programs running on
the application servers to connect to the traditional, legacy production systems running the
core of the business, such as Enterprise Resource Planning (ERP) systems like SAP, or even
some of the OpenVMS systems that you develop. The point here is to connect to
information that is not in relational databases, because JDBC takes care of that problem.
We will see more about this later.

Developers couldn’t let a perfectly good acronym go to waste by only using it for one
thing, so JCA also stands for the Java Communications API, which lets Java communicate
with voice-mail, FAX, and smart card devices. When you see this acronym, you will just
have to figure out for yourself which one they mean.

• JDBC – Java Data Base Connectivity. Similar to ODBC, but callable by Java programs to
access data from a variety of databases and systems.

• JDK – Java Development Kit. Development is done with the JDK. Sun invented Java and
still sets the specifications for it, and everyone, including HP, licenses the tools from Sun.
Sun wants to encourage the use of Java, so the license terms are reasonable.

• JMS – Java Message Service. If one Java program wants to send a message to another
Java program, it uses JMS. This shows the power of Java to hide the underlying operating
system. On UNIX we might implement this with pipes. On OpenVMS we might implement
it with mailboxes. If we are communicating between systems we might use TCP/IP sockets.
JMS works either synchronously or asynchronously, using either point-to-point connections
or publish/subscribe methods. The Java program doesn’t care, it simply uses the JMS
interface and it just works.

• JNDI – Java Naming Directory Interface. This allows you to talk to Common Object Request
Broker Architecture (CORBA), Lightweight Directory Access Protocol (LDAP), X.500 or
Microsoft Active Directory directories, and register your own names and look up other
names in your enterprise name directory.

• JRE – Java 2 Platform Run-time Environment. This contains the virtual machine and the set
of APIs common to all Java implementations.

• JSP – Java Server Page. Sun observed Microsoft’s Active Server Pages, so Java has Java
Server Pages. Java Server Pages technology allows web developers and designers to
rapidly develop and easily maintain information-rich, dynamic web pages that leverage
existing business systems. JSP enables rapid development of web-based applications that
are platform independent, and separates the user interface from content generation,
enabling designers to change the overall page layout without altering the underlying
dynamic content.

• JTA – Java Transaction Architecture. Computer systems are important, and they are very
reliable: OpenVMS is extremely reliable. But sometimes they do fail (OpenVMS less so
than any other platform), and frequently transactions are distributed among several
different systems running different operating systems. People use an external transaction
monitor like Tuxedo to watch over the state of transactions inside the entire environment.
Java communicates with these and monitors the entire distributed transaction with the JTA.

• JPDA – Java Process Debug Architecture. How many people here write perfect code the
first time? For the rest of us, Java specifies a system-independent way to debug Java
applications, using the JPDA. It is not a debugger itself, but provides the tools to build
debuggers and to run full debugging consoles on remote systems, across a network.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 42

• JRMI – Java Remote Method Invocation, JRMI allows you to call programs and invoke
methods outside of the system you are running.

The intent of all of these Java APIs, and the dozens more that I didn’t list, is just like the JRE or the
JDBC specification: to have a single way of doing something across all operating systems. You call
the specific function using the right interface, and your programs that were developed on, for
example, a UNIX flavor or Linux, simply run on OpenVMS.

There are many more Java APIs. For more details, enter “Java” in your favorite search engine, or
go to http://www.java.sun.com/products. This is the definitive website for all Java work, and is
the high level page that will lead you to more information about all of these technologies and a lot
more.

How does all of this fit together? There are two major pieces: the client side and the server side,
with the server side broken down into several different components.

The client side includes the things that we are most familiar with, primarily browsers. The
applications can be written in pure HTML or in Java. Some of these are not full applications like
we understand them; they are smaller and less rich in functionality. As such, we call them applets
instead of applications. You can also write sophisticated applications, because Java is a full 3rd
generation language (3GL). You can even use devices other than PCs, such as iPAQs, web-
enabled phones, and so on, using the J2ME client.

The server is divided into the presentation layer and the business logic layer. If you have ever used
DECforms or FMS to develop applications, you understand the distinction between presentation
and business logic.

The presentation layer is written in Java and runs inside a web server, which is the JRE and includes
the JVM referenced earlier. Just like before, we can have simple pages written as Java Server
Pages (JSP) and simple applications written on the server, called servlets. All of this is written in
Java, and depends on the J2xE server environment.

The business logic can be written in any language. (We will talk later about how to integrate your
existing programs into this layer, but for the moment we will talk about business logic written in
Java.) These programs are created as enterprise Java beans, and are just like the enterprise Java
beans that come as part of many packages. Whether you write the bean or someone else does, it
is all simply part of the environment, and run in the same environment.

On the back end is the data itself, which is accessed by the JDBC interfaces discussed earlier.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 43

http://www.java.sun.com/products

How do you create these beans? In much the same way you do for other languages, but there are
a few differences.

Start with source code and run it through the compiler, the same as in any language like
FORTRAN, COBOL, or C/C++. The result of this isn’t object code, but a system-independent byte
stream, which you then send to the system that will run the Java program. This program can be an
applet, a servlet, or a full application.

Once the byte stream is on the target system, it is combined with the class libraries and fed to the
JVM. You can run the byte code directly through the interpreter, or execute the Just-In-Time (JIT)
compiler that is specific to the operating system and hardware. This compiler takes the byte code
and turns it into a real native application for that specific O/S and hardware combination.

The interpreter is slower but more flexible, while the JIT compiler makes the application run faster
but takes longer to compile, so there is a higher startup cost. One way around this is to use the
Ahead-of-Time (AOT) compiler, which pays this cost at compile time. Think of this as a standard
compiler and linker, which compiles Java instead of C/C++ or FORTRAN.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 44

Java
Compiler
Java

Compiler

Java
Source
(Java)

Java
Source
(Java)

Java
Byte
codes
(class)

Java
Byte
codes
(class)

Java byte
codes move
locally, or
through
network

Java byte
codes move
locally, or
through
network

Java
Interpreter

Just-in-Time
Platform
Compiler

Runtime System

HardwareHardware

Operating SystemOperating System

Class Loader
Byte Code
Verifier

Class Loader
Byte Code
Verifier

Java
Class

Libraries

Java
Class

Libraries

Compile-time RT

JVM
AOT*

Platform
Specific
Compiler

AOT*
Platform
Specific
Compiler

Runtime
System

Native
Code

Native
Code

Java
Compiler
Java

Compiler

Java
Source
(Java)

Java
Source
(Java)

Java
Byte
codes
(class)

Java
Byte
codes
(class)

Java byte
codes move
locally, or
through
network

Java byte
codes move
locally, or
through
network

Java
Interpreter

Just-in-Time
Platform
Compiler

Runtime System

HardwareHardware

Operating SystemOperating System

Class Loader
Byte Code
Verifier

Class Loader
Byte Code
Verifier

Java
Class

Libraries

Java
Class

Libraries

Compile-time RT

JVM
AOT*

Platform
Specific
Compiler

AOT*
Platform
Specific
Compiler

Runtime
System

Native
Code

Native
Code

AOT*
Platform
Specific
Compiler

AOT*
Platform
Specific
Compiler

Runtime
System

Native
Code

Native
Code

*Ahead Of Time

Some people want more than a compiler to build applications: they want an Integrated
Development Environment (IDE). The IDE for Java is called NetBeans. This was developed by a
group of students who needed a Java IDE, and is now distributed by Sun.

Third parties can create their own branded distributions of the NetBeans IDE including additional
modules they've written, or can simply make those modules available either commercially or for
free to plug into existing distributions of NetBeans. Sun One Studio, OptimalJ and
ObjectAssembler are three examples of extensions to the base NetBeans IDE.

There is an "update center" in the IDE that allows modules to be downloaded and installed into a
running copy of the IDE. http://netbeans.org hosts an update center server for non-commercial
modules. Sun operates an e-commerce enabled update center that allows third parties to sell and
distribute commercial modules online.

The NetBeans Update Center has an OpenVMS section for our plug-ins, which are also available
from the OpenVMS web site. The C/C++ compiler support is tailored to the OpenVMS C/C++
compilers and includes source colorization, code formatting, source code compilation (but not
linking), handling of messages that come from the compiler to update the source window, and
provides DCL command procedure execution either in the same window or a separate terminal
window.

IBM developed their own IDE framework called Eclipse (aimed at Sun). In 2002 they made it open
source, and specifically didn’t invite any NetBeans people to the party. Eclipse uses the Standard
Widget Toolkit (SWT) written in native code for each platform. IBM does not port this to OpenVMS,
so IBM’s Eclipse will not be available on OpenVMS. Don’t confuse this with HP’s Eclipse, which is
the Java back-end that HP wrote.

What does all of this mean for OpenVMS?

Everything we talked about is available on OpenVMS: Java, the development environment, J2EE,
NetBeans, JDBC -- it’s all on OpenVMS. Every time Sun releases a new version, or someone
releases a new NetBean or EJB library, we release them on OpenVMS. And I say “we” inclusively,

© Copyright 2003 Hewlett-Packard Development Company, L.P. 45

http://netbeans.org/

because a lot of this software comes from places outside of HP. We depend on our software
partners like BEA, Attunity, and Apache. They are releasing their code on OpenVMS at the same
time that they are releasing it on every other platform.

The bottom line is: Java is the same on OpenVMS as it is on every other operating system.
Anything you can do in Java on HP-UX, Windows, Linux, AIX, or even Solaris, you can do on
OpenVMS.

There are some differences between Java on UNIX and OpenVMS -- some of which you would
expect, and some of which are surprising:

• Most of the development work for Java and the beans is done on UNIX systems. This
means that the developers frequently require the use of shell scripts (what we call command
procedures) to carry out simple tasks. Because they are on UNIX and/or Windows, these
are not written in DCL. When porting a Java program to OpenVMS, you need to convert
the UNIX shell scripts to DCL.

• For classic OpenVMS people, UNIX has some bizarre requirements for file names: upper
and lower case, strange characters, really long names, lots of dots, and so on. This means
that those Java applications that use file names that aren’t supported under ODS-2 must be
installed on an ODS-5 disk. This is not a requirement for Java itself, which is installed in
SYS$COMMON. Many applications use file names that work on an ODS-2 disk, but it is
something to be aware of if you get applications from other operating environments.

• UNIX doesn’t have the concept of relative or indexed files, and everything is in what we
would call STREAM_LF format. Java programs assume that as an access method, so you
have to be careful to do an RMS CONVERT to get the data files into that format.

• UNIX has fairly loose process quotas. Sometimes this surprises people who are running
Java programs on OpenVMS for the first time, when they don’t perform as you expect them
to. Check your process quotas to see if you are artificially limiting the performance, and
observe what tuning changes you need to make. See the OpenVMS Java documentation
for more details.

• The final restriction is on the hardware. Java runs on OpenVMS Alpha today, and will run
on OpenVMS Itanium when that ships. Java will not run on OpenVMS VAX.

You can deploy Java on OpenVMS, but you can develop it anywhere. So take advantage of all of
the development being done in other parts of your company, or even on the Internet, and compile
them on the other platforms and deploy them on OpenVMS, just like any other platform.

Data Integration
Have you ever gone to a form on the web and started filling in the blank fields, and noticed that
some of your information popped up to help you fill in the information? For example, your first
name, your last name, your phone number, your FAX number, your street address, your city, your
state, your ZIP code? How did the form know to fill in the right information at the right spot? This
was probably done with eXtensible Markup Language (XML), which is a markup language
for documents containing structured information.

Structured information contains both content (words, pictures) and some indication of what role that
content plays. A markup language is a mechanism to identify structures in a document. The XML
specification defines a standard way to add markup to documents.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 46

XML is similar to HTML in that they both separate form from content. But in HTML, both the tag
semantics and the tag set are fixed. <h1> is always a first level heading, is always bold, etc.

XML specifies neither semantics nor a tag set. XML is a meta-language for describing markup
languages. In other words, XML provides a facility to define tags and the structural relationships
between them. Since there's no predefined tag set, there can't be any preconceived semantics. So
all tags are defined by the creator of the tag, and given meaning and usage by that creator.

As an example, both HTML and XML can show information that looks to us like a date.

• 5 May 2003

• <ChangeDate>5 May 2003</>

The HTML document doesn’t know anything about that information except that it should be
displayed in bold at that point on the screen. The XML document defines something more about it:
it is the change date. Elsewhere the “style sheet” has defined all sorts of attributes about this tag,
including what format it is in (so you can display dates differently in different parts of the world),
how to display it (so it will always be in bold) and what methods can be applied to it.

So it is not just text, it is actually information.

In our earlier example with the web form, at some point you filled in a form that had tags like
<FirstName>, <LastName>, and so on, and your information was associated with those tags. The
next time another web page asked you to fill in the form, the style sheet of that form used the
standard definitions for those fields, and automatically picked up the information from the first form.
It doesn’t matter that the first form was running Microsoft IIS on a Windows platform and the
second form was running BEA WebLogics on an OpenVMS platform -- XML provided the common
definitions between the two forms.

All of the semantics of an XML document are defined either by the applications that process them or
by style sheets. Style sheets define the attributes; that is, the format and the functionality of the tag.
For example <FirstName> might be defined as text, specifies that there is only one token, and that
it is a required value in this form.

You can create new definitions for data that is specific to your application as you need them. You
might also consider looking into some of the industry-standard style sheets to use their definitions of
common data. Not only is it easier on you, but your forms will integrate and cooperate with the
forms of all other forms that use the same style sheet. This again reinforces the point that
OpenVMS is just another platform as far as Internet technologies are concerned.

Now that we have common data definitions with all of the other platforms, we need to provide
access to the data that is on our OpenVMS systems. We have seen how JDBC and XML provide
the calling standards to let other systems look at RMS or Rdb or even Oracle 7/8/9i data on
OpenVMS, but a calling standard isn’t a running program. Attunity Connect provides that
running program. Attunity Connect provides a universal integration solution across a wide range
of enterprise systems consisting of varied application and data technologies on legacy platforms.
Applications on other systems can simply access the data, without noticing that the data is on an
OpenVMS system.

These systems consist of data and application resources that become available to the client
application through Attunity Connect. A single Attunity Connect installation integrates applications
as well as data sources on the same machine. Attunity Connect provides a universal integration
solution both vertically from clients to servers and also horizontally across servers.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 47

J2EE integration is made easy via J2EE Connector Architecture (JCA) and JDBC standards. XML can
be also used directly.

What this means is that any client can directly access any data on your OpenVMS system. Java
programs using JDBC, 3GL programs using ODBC, or Excel spreadsheets using XML, can just read
and write data on your OpenVMS systems, without any special programming on their part.

This frequently makes it easier on you. If you give someone access to your data in their Excel
spreadsheet, then they think it is up to them to write the fancy reporting programs and data
analysis tools that they need, and not your job to do that for them. So you have shared the data,
and they do the work. Sounds better than what is happening now, doesn’t it?

So let’s put it all together.

Client Tier J2EE Container(s) Back-End Systems

Presentation
Layer

Business Logic
Layer

DB

Legacy
Sys

CRM
ERP

EJB ContainerWeb Server

EJB

EJB

EJB

JSP1

JSP2

Java
Servlet

XML, WML,
CMTML, XHTML

•Thin Clients: HTML

•Applets

•Web Services

•JSP

•Java Servlets

•Session Beans

•Entity Beans

•Message Beans

•Enterprise Data

•Legacy Apps, EIS sys

•CRM, ERP

WAP

Desktop

RMI-IIOP

JDBC

JCA

SOAP/HTTP

HTTP(s)

XML, HTML

Fi
re

w
al

l

Business
Partner

XML

SOAP/HTTP
Web Service

Server
Consumer

Client Tier J2EE Container(s) Back-End Systems

Presentation
Layer

Business Logic
Layer

DB

Legacy
Sys

CRM
ERP

EJB ContainerWeb Server

EJB

EJB

EJB

JSP1

JSP2

Java
Servlet

XML, WML,
CMTML, XHTML

•Thin Clients: HTML

•Applets

•Web Services

•JSP

•Java Servlets

•Session Beans

•Entity Beans

•Message Beans

•Enterprise Data

•Legacy Apps, EIS sys

•CRM, ERP

WAP

Desktop

RMI-IIOP

JDBC

JCA

SOAP/HTTP

HTTP(s)

XML, HTML

Fi
re

w
al

l

Business
Partner

XML

SOAP/HTTP
Web Service

Server
Consumer

Starting from the right-hand side, the back-end systems, we find our enterprise data and many
legacy applications. We access the data via JDBC and Attunity Connect, and specify the format
and use of the data via XML. (We will talk about SOAP later.)

The new applications are written in Java so it doesn’t matter where they run, so let’s run them on
OpenVMS. We create the business logic layer inside an Enterprise Java Beans container, which
communicates to all of the EJB libraries that we imported from the Internet and other places, to give
us the rich functionality our users expect. We communicate with the presentation layer running on
a web server, again running on OpenVMS, running Java Server Pages and Java servlets. The two
components can run one the same or different systems, running the same or different operating
systems, and communicate via the Java Remote Method Invocation (JRMI) and the Internet Inter-Orb
Protocol (IIOP), which again we will talk about in a few minutes. The session, entity, and message
beans are simply data that exists for the life of that object: session beans exist while a session exists
between the client and the server, entity beans exist while the object that created them exists, and
message beans exist for the life of the message.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 48

The client side is anything we want it to be. Windows clients, Linux clients, PocketPC or Palm
clients, OpenVMS workstations, iPaqs, web phones – anything that can talk to a web server and
display information. We communicate with this level through HTML, XML, Wireless Access Protocol
(WAP), and so on.

The message to keep in mind here is that OpenVMS simply fits into each of the layers, and all of
the software needed to run each layer exists on OpenVMS.

Application Integration
For applications to begin working with each other, they have to communicate in some way. The
way applications communicate is via messaging. The generic term for this set of routines is
Message Oriented Middleware (MOM). Middleware is just a fancy name for programs and
APIs that allow one set of programs to interact with another set of programs, whether or not they
happen to be on the same system or the same operating environment. You may already be
familiar with some message oriented middleware, such as the Application Control
Management System (ACMS) or the Reliable Transaction Router (RTR).

Message Oriented Middleware is, as the name implies, middleware focused on getting messages
from here to there. But there are some difficulties with the wide varieties of “here” and “there” that
exist, including distance between systems, transmission protocols from mailboxes to shared files to
UNIX pipes to local area networks to wide area networks, and so on. In addition, networks
sometimes aren’t as reliable as we need them to be, and some computer systems count the bits in a
different order than other computer systems count them (some are big-endian and some are little-
endian).

MOM takes care of all of this, by having a set of code on each system, including OpenVMS, which
simply accepts messages from somewhere else, performs all of the right transformations on them,
and passes them to the calling program. It does the same thing in reverse when one of your
programs wants to send a message to some other system. Notice that MOM is totally uninterested
in what the messages contain.

Examples of MOM include the previously mentioned RTR, as well as BEA MessageQ, IBM
MQSeries, SpiritWave and SpiritJMQ from SpiritSoft (SpiritWave is the general purpose MOM
while SpiritJMQ is focused on Java), BEA JMS and Tibco ActiveEnterprise.

Every one of these products runs native on OpenVMS, and simply communicates to a similar
messaging system on any other platform. By adding calls to these routines to your existing
applications, you can cooperate with applications on other systems, wherever they are.

The other set of tools for application integration is a higher level function, where the
communications and messaging are taken for granted, and probably uses one of the tools we just
talked about. This is the world of objects.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 49

Objects are very similar to programming APIs, where you have a name of a function, a set of
parameters to that function, and a set of return values from the function, all with datatypes carefully
specified. The difference between objects and the programming APIs you are used to (such as
calling RMS functions or SYS$QIO), is that these objects are not linked into your program. What is
linked into your program are stubs, which act like the routine API that your program expects, but
don’t directly call code in your process address space. Stubs, when invoked by your program, use
the MOM to call the routine somewhere else in the world, dynamically at runtime. The MOM
passes the parameters, performs any transformation necessary, and then the remote object
executes. The MOM then takes care of passing any data and return value back to the calling
system, and your program never noticed that anything happened.

Your
Program

Routine
Stub

Remote
Object

Routine
Header

Your
Program

Routine
Stub

Remote
Object

Routine
Header

There are two forms of objects that currently exist in the industry. The first was created by an
industry consortium, called the Common Object Request Broker Architecture (CORBA).
They defined how to define stubs, message passing, return values, and so on, and then multiple
companies implemented CORBA-compliant code on many platforms. JRMI Internet Inter-Orb
Protocol (IIOP) is an example of CORBA-compliant code for the Java world, with IONA Orbix and
2ab Orb2 as two products that implement that specification.

The second form of object was created by Microsoft, and was known by various names including
Component Object Model (COM), COM plus (COM+) and Distributed COM (DCOM). Today
it is simply called COM. Due to the popularity of Microsoft platforms, all other platform vendors
including OpenVMS implemented code to interact with COM objects.

More recently, Microsoft announced a development environment called .NET, running on the
server platform called Windows 2003. This is an extension of the object model, and again all the
platform vendors are implementing code to interact with .NET objects. Keep in mind that “interact
with” doesn’t mean that the target code runs on OpenVMS. It specifically means that your code
running on OpenVMS communicates via COM with the code running on some other operating
system, such as Windows 2003.

One problem with the MOM tools is that they often use protocols that can be filtered out by
networking firewalls and other security devices. To get around this problem, people are using the
Simple Object Access Protocol (SOAP). SOAP is a way of sending procedure calls from one
system to another through Hyper Text Transfer Protocol (HTTP) or Simple Mail Transfer Protocol
(SMTP), which is allowed through firewalls and other security devices, so it is quite transportable. It
can be called from anywhere, including web pages and XML documents.

OpenVMS is fully compliant with all of these protocols, and objects running on OpenVMS can both
call and be called by objects running on almost any other operating environment through this
middleware. This means that you can begin using the web services that are currently running on
other systems in your enterprise and throughout the Internet. In the next section we will talk about
how to turn your existing code into objects, to make them into web services.

All of the APIs that you need to get your applications to use MOM are available on OpenVMS.
However, many application developers today insist on using GUI-based development environments.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 50

The HP Enterprise Toolkit -- OpenVMS Edition provides an interactive development
environment based on Microsoft Visual C++ V6.0 and Visual Fortran V6.1. The HP Enterprise
Toolkit -- OpenVMS Edition runs on Windows 95, Windows 98, Windows NT, and Windows
2000 systems and allows software developers to develop OpenVMS applications using an
interactive PC environment. The developer can use C, C++, Fortran, COBOL, BASIC, Pascal, and
Ada to write, compile, debug and tune applications in the familiar PC environment and run them in
an OpenVMS computing environment.

The HP Enterprise Toolkit -- OpenVMS Edition adds several components to Visual Studio to provide
additional software development functions such as: remote source file editing, remote compilation,
linking, and building, remote find in files, remote debugging, source browsing, terminal emulation,
and context-sensitive help. It also provides access to OpenVMS documentation, support for team
programming, the sharing of project files among team members, user-defined configuration names,
workspace-based source code control, support for using file shares to access remote project files,
and built-in access to source code control on OpenVMS systems.

This simplifies software development with one environment for developing on multiple platforms,
and provides a choice of tools and extends the industry-standard Microsoft development
environment to OpenVMS.

In addition, the OpenVMS NetBeans team is currently developing a NetBeans plug-in that will
allow distributed OpenVMS development to occur on any desktop that can run NetBeans, such as
Linux, HP-UX, OpenVMS or Windows. The team is also creating a plug-in to support debugging of
OpenVMS 3GL programs written in languages other than Java, such as C, C++ and FORTRAN,
using the NetBeans debugger GUI and the Java Process Debug Architecture (JPDA) API.

HP plans to use this enhanced NetBeans environment to eventually replace the HP Enterprise
Toolkit, to allow more flexibility in the development environments, and to provide a more standard
development platform.

You have a choice: use the tools that you are used to today, or use the GUI-based development
environments that are used for other platforms, either the Enterprise Toolkit from the Microsoft
world, or the Java NetBeans environment for the Java world. Either way, you can use all of the
message oriented middleware that allows you to communicate with other systems.

Legacy Application Integration
There are two ways to offer legacy OpenVMS applications to the rest of the enterprise as web
services: you can add GUI front ends to existing applications with no change to the base
application, or you can wrap the applications inside an object.

For applications written with DECforms, HP offers the DECforms Web Connector. This is a
layered software product that runs on OpenVMS systems and provides transparent Web access to
interactive applications, where DECforms was used to implement the forms-based user interface.
The DECforms Web Connector lets you preserve large investments in DECforms-based user
interfaces without requiring any programming or application changes. The DECforms Web
Connector works by specifying a logical name at run-time that specifies the type of screen to
present to the user: either the traditional DECforms screen on their current VT, or re-direct to a GUI
platform such as Microsoft Windows or a web browser.

For the Application Control and Management System (ACMS) that runs on OpenVMS, and the
cross-platform version (ACMSxp), HP offers the TP Web Connector, which web-enables business
applications running on ACMS and ACMSxp for Windows NT transaction processing (TP) systems.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 51

Using TP Web Connector, customers can create browser interfaces to any of these TP systems using
a desktop tool that supports development with Automation, C-language, or Java. TP Web
Connector can also connect Windows NT (MTS) based systems to ACMS or ACMSxp for Windows
systems. TP Web Connector supports integration of object modeling with critical business
applications, all of the popular web server environments, and provides a high performance solution
for web-enabling ACMS applications. The aim of this is not to migrate you off of ACMS, but in fact
to do exactly the opposite: allow you to keep using ACMS but still give your application access to
all of the other Internet technologies.

For a more general purpose solution, for applications that don’t use DECforms or ACMS, HP works
with Ericom to add new GUI front ends to existing “green screen” applications. The Host Publisher
can even combine multiple applications into a single screen, for real enterprise application
integration (EAI).

Here is an example of a forms-based VT-based application.

This is what the screen looks like on a VT terminal, just the way it has looked for years. Simple,
clean, easy for us to work with, but not exactly the most modern look.

© Copyright 2003 Hewlett-Packard Development Company, L.P.

And here is the way the same application looks with a new front end. Same data, same program,
no re-compile, but something that people who have grown up on Windows or Macintosh screens
are familiar with.

52

T

T
a
p
O
i
t
c

H

Y
C
m
i
e

Y
d

©

he original screen continues to work just the way it always has.

he other alternative is to encapsulate the existing applications. BridgeWorks can take existing
pplications, or pieces of applications, and turn them into components that can be used by external
rograms as Java Beans or as COM objects. The way this works is that BridgeWorks uses the
penVMS Calling Standard to encapsulate the existing code into a wrapper whose external

nterface is either an EJB, a light weight Java Bean, or a COM object. Any part of your program
hat can be called by the OpenVMS Calling Standard can then be used as a standard Web
omponent. You can even encapsulate your command procedures written in DCL!

ere is a detailed view of what HP BridgeWorks generates for the developer.

JVM
Client BWX MC

JVM RPC RPC

BWX SC

Your
Application B

W
X

M
an

ag
er

JVM
ClientClient BWX MC

JVM RPC RPC

BWX SC

Your
Application

Your
Application B

W
X

M
an

ag
er

B
W

X
M

an
ag

er

our application is encapsulated by BridgeWorks (here abbreviated BWX), hidden by the Server
omponent (SC) and managed by the BridgeWorks Manager. This is exposed to the world via a
essage oriented middleware interface called the Remote Procedure Call (RPC) interface. The RPC

nterface can be either an EJB, Java Bean, or COM object, which you specify when you set up the
ncapsulation.

our application communicates with the client side using the standard MOM technologies
escribed in the last section, using either message-based or object-based communications. On the

 Copyright 2003 Hewlett-Packard Development Company, L.P. 53

client side is the Messaging Component, which connects the standard client (browser, etc.) to the
BridgeWorks wrapper to the application.

The client can be running on top of a Java Virtual Machine, or not, as is appropriate for your
client.

In summary, you have years, even decades, worth of investment in your applications, which you
want to preserve and use. Sometimes it makes business sense to re-write the application: you have
learned better ways of doing things, it is in a language that is no longer popular, the business
requirements have changed, and so on. But sometimes the program is working so well you just
need a better front end on it, or a different way to call it. In these cases, OpenVMS has the ability
to change the front end to a modern GUI, or encapsulate the functionality of the application into
components that other systems will see as standard Java Beans or COM objects.

You can keep your investment, while still cooperating with the Web interfaces in the rest of your
company. This allows you to take your applications and offer them as web services to the
enterprise.

Systems Integration
OpenVMS has a standard web browser, called the HP Secure Web Browser (CSWB). It is
based on the Mozilla open-source project started in 1998 by Netscape Communications
Corporation. The Mozilla web browser is designed for standards compliance, performance, and
portability. This is an example of the advantages I have been talking about up to this point: there
is a perfectly good open-source program available, and it just runs on OpenVMS.

The Secure Web Browser is licensed as part of the OpenVMS operating system license and
provides a full-featured, customizable browser with integrated web-browsing and security; HTML
document creation and editing; clients for mail and news; Secure Socket Layer (SSL) for security,
and an Internet Relay Chat (IRC) client is available.

For web servers, we have the same scenario: the HP Secure Web Server (CSWS) is also
based on industry standard open-source code, this time from the Apache Software Foundation.
Apache is in use on millions of web servers around the world, on every major platform, and
OpenVMS has the full functionality of Apache. And with all of the recent fuss over Internet viruses
attacking web servers, keep in mind that Gartner Group recommends the use of Apache instead of
Microsoft’s IIS. So you get the enhanced reliability of Apache combined with the virus-proof nature
of OpenVMS, for a very reliable and secure product.

CSWS, like the rest of Apache, is completely modular. Each function can be added to the server
as you wish. Most people tend to add all of the available modules. Tomcat is the name of the
Java module, with scripting languages like PHP Hypertext Processor (PHP, and yes, the acronym is
recursive), Perl and Python modules freely available.

Web servers are all well and good, but all they do is present web pages, whether they are written
in HTML or Perl or another language. They don’t do everything we need, such as provide directory
services, messaging, caching, and so son. For this we need a full application server.

Application servers integrate and coordinate all of the functionality that we have discussed.
Your application simply assumes that all of this functionality is there, and the application server
simply does it. You as a developer certainly could take pieces from everywhere and build your
own application server, in the same way you could build your own operating system. The
maintenance would be a nightmare, and there is no need because there are excellent application
servers already available to you.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 54

Let’s take a look at the components of an application server.

Web Server

Web Servers
Plug-ins

Third-Party
Web Server

Crypto
Hardware

Load
Balancing
Hardware

Enterprise Platform Services

APPLICATIONS

JVM/Operating System
Server, Server Appliance

Server
Management

Clustering

Business
Logic

Container

Transaction
Management

Caching

Application
Security

Enterprise
Messaging

Web
Services

Database
Connection

EAI
(Connector

Architecture)

Web Server

Web Servers
Plug-ins

Third-Party
Web Server

Crypto
Hardware

Load
Balancing
Hardware

Enterprise Platform Services

APPLICATIONS

JVM/Operating System
Server, Server Appliance

Server
Management

Clustering

Business
Logic

Container

Transaction
Management

Caching

Application
Security

Enterprise
Messaging

Web
Services

Database
Connection

EAI
(Connector

Architecture)

The first component is the web server described in the last section, along with its plug-ins like Java,
Perl, and PHP. You can also plug in other components as you need them, including load balancing
and high availability with OpenVMS Clusters (that is the “load balancing hardware” component in
the lower left of the picture), as well as high security devices like cryptographic hardware and
software.

The second component is the middleware for the middleware, if you will. Enterprise beans that you
publish with common applications business logic are placed in an EJB container, available for use
by any of your applications. The cluster manager handles transactions that are spread across
multiple platforms using JTA, clustering of the application servers on different members in a cluster,
caching of information in this server and between the application servers, and security of the
transactions with JAAS.

The third component is the connection to higher level entities. The actual sending and receiving of
messages via MOM is done here through the JMS interface, as is the JDBC connections to any
databases opened by the application. Advertising the names of the web services offered by the
applications running here is done with JNDI, as well as locating the names of services offered
elsewhere and stored in the enterprise directory is done at this level. Finally, any connection to
mainframe type applications such as SAP is handled here.

Quite a lot of work is done by the application server. In effect it is a mini-operating system,
offering services to the applications that run on it. The advantage of application servers, however,
is that they are common across many operating systems, so you can develop applications that run
on one application server on one operating system, and they will just run on the same application
server on another operating system.

The primary application server that HP recommends for OpenVMS is the BEA WebLogic Server.
This is fully supported on OpenVMS, and brings the full functionality of BEA WLS to OpenVMS.
Another excellent application server, which is not quite as well known, is the Xoology Concerto
web server. Xoology has been running on OpenVMS for many years, and works very well.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 55

One of the problems of MOM is that it creates a disconnect between the calling program and the
called procedure. The called procedure is often an object, so there are various ways to invoke
them, but one thing we have been ignoring is, how do we find them? How do we look them up,
how do we tell which system they are on today, and how do we tell how they wish to be invoked?

The industry solution for this is the Lightweight Data Access Protocol (LDAP). LDAP
describes how to access a directory of objects stored in a central location called an Enterprise
Directory. In effect, the Enterprise Directory is a phone book of objects for your systems to use to
find the services they need. You can store anything in there: people, phone numbers, e-mail
addresses, other objects, a BridgeWorks wrapper around a DCL procedure, anything.

As you would expect, different vendors have different ideas on who should hold the data.
Microsoft has implemented the Windows 2000 Active Directory, Novell has the Novell Directory
Service, and there are two industry standards around this: X.500 and Kerberos. (Kerberos shipped
with OpenVMS beginning with Version 7.3.) Finally, the Universal Description, Discovery and
Integration (UDDI) protocol is a layer on top of XML and DNS, which acts as a building block to
allow systems to quickly find and transact operations between disparate applications.

No matter which of these data holders you choose, OpenVMS can access it. OpenVMS can act as
either a Directory System Agent (DSA), which holds the data and lets the Directory User Agents
(DUA) on other systems access it, or can act as a DUA and can access the DSA on some other
system.

So we can not only have your OpenVMS applications find all of the objects on the other systems,
but we can advertise the objects that you will be developing on your OpenVMS systems.

Availability
OpenVMS considers all of the software described in this article as base functionality, and is
included in OpenVMS. This software is available from the OpenVMS web site for download, or it
is available as a CD bundled with every operating system kit. Further, the support for this software
is included in the support contract for the base OpenVMS operating system license:

• The Secure Web Browser and Secure Web Server

• COM object technology

• All of Java, including the software development kit

• NetBeans

• SOAP

• The Attunity Connect JDBC drivers

• RTR

• The Enterprise Directory

• BridgeWorks

• XML for Java and C++

© Copyright 2003 Hewlett-Packard Development Company, L.P. 56

There is no additional license involved; it is all part of the base operating system. If you want to try
any of this stuff out, simply grab it off the CD, or download it from our web site at
http://h71000.www7.hp.com/ebusiness/technology.html.

I have been telling you how easy it is to bring software to OpenVMS, and how easy it is to take
existing OpenVMS software and make it work with the Internet technologies. So you might very
well ask if anyone has actually done this. Yes, many people have, and here are some examples:

• The GNU people are developing quite a lot of software that is in the UNIX style, but is
specifically and deliberately not UNIX: their very name is Gnu’s Not UNIX (which again is
a recursive acronym like PHP). They developed a package called GNV, which stands for
Gnu’s Not VMS. This is a complete implementation of a UNIX shell, which we would call
a command line interface, called BASH (the Bourne Again Shell). How many times have
you run into a UNIX script that you couldn’t run in DCL? GNV solves this problem quite
nicely. Also part of GNV is a full UNIX C run-time library. The combination of the two of
these makes it very easy to port full UNIX applications to OpenVMS without resorting to
major surgery, including the ability of the application to spawn a UNIX script to perform
some functions. UNIX system administrators and users really like this, and it is facilitating
moving a lot of UNIX applications to OpenVMS.

• Another popular set of tools are GTK+ and libIDL. GTK+ is a development environment
for creating graphical user interfaces, and libIDL is a development environment for creating
CORBA interface definitions. These are part of many UNIX applications.

• There is a lot of secure information on your OpenVMS system and on other systems. Pretty
Good Privacy (PGP) is a very popular package that encrypts information to an acceptable
level: maybe not up to the requirements of the Defense community, but pretty good privacy.
PGP is available in a package called GnuPG. The Secure Sockets Layer (SSL) is a
popular method to secure network access between your OpenVMS applications and the
outside world, or applications running on other systems that want to connect to the data on
your OpenVMS systems. sTunnel is an implementation of SSL that runs at the network
layer, so applications that currently don’t understand security (such as telnet) can have
secured communication.

• ZIP is an implementation of a very common file compression and packaging utility that
runs on every system in the world.

• Finally, OpenVMS does not offer native support for writeable CD-ROMs. CD Record is
an open source implementation of this functionality.

All of the above software is free, and available for download from
http://h71000.www7.hp.com/opensource/.

Summary
You have a lot invested in your applications, your data, and in OpenVMS. You need to find a way
to get the most return on that investment.

Every new technology goes through multiple stages:

• Phase 0 has a few small groups promoting something as the best thing since sliced bread.

• Phase 1 has a few more people adopt it as an alternative to the established standard.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 57

http://h71000.www7.hp.com/ebusiness/technology.html
http://h71000.www7.hp.com/opensource/

• Phase 2 has people really understanding it, and beginning to see through the hype.

• Phase 3 has the product come back with more modest expectations and more solid
engineering, and become a success.

Web services are somewhere between phases 1 and 2 right now, but we need to understand that
the push toward inter-operating environments, regardless of platform, will not stop. It may or may
not be Java, Windows 2003, XML or something else, but it is coming, and OpenVMS people need
to understand this.

HP is partnering with the industry leaders to make this happen. Whether any given technology
works out over the long term, these companies are going to be part of the cutting edge, and
OpenVMS will be right there with them.

Acknowledgement
A great deal of this material was borrowed from seminars written and presented by John Apps and
Mick Keyes. Without their assistance and review, this article would not have been possible. They
re the real experts in this area. a

For more information
All OpenVMS eBusiness technologies
 http://h71000.www7.hp.com/ebusiness/technology.html

OpenVMS Open Source Tools
 http://h71000.www7.hp.com/opensource/

OpenVMS Java
 http://h18012.www1.hp.com/java/download/index.html

OpenVMS CSWS (based on Apache)
 http://h71000.www7.hp.com/OpenVMS/products/ips/apache/csws.html

OpenVMS JServ
 http://h71000.www7.hp.com/OpenVMS/products/ips/apache/jserv.html

OpenVMS Perl
 http://h71000.www7.hp.com/OpenVMS/products/ips/apache/apache_perl.html

OpenVMS SOAP
 http://h71000.www7.hp.com/OpenVMS/products/ips/soap/soap.html

Apache Project
 http://www.apache.org/

Apache Java Project
 http://java.apache.org/

Apache JServ Project
 http://java.apache.org/jserv/index.html

© Copyright 2003 Hewlett-Packard Development Company, L.P. 58

http://h71000.www7.hp.com/ebusiness/technology.html
http://h71000.www7.hp.com/opensource/
http://h18012.www1.hp.com/java/download/jdk_ovms/1.2.2/j2sdk1.2.2_highlights.html
http://h71000.www7.hp.com/openvms/products/ips/apache/csws.html
http://h71000.www7.hp.com/openvms/products/ips/apache/jserv.html
http://h71000.www7.hp.com/openvms/products/ips/apache/apache_perl.html
http://h71000.www7.hp.com/openvms/products/ips/soap/soap.html
http://www.apache.org/
http://java.apache.org/
http://java.apache.org/jserv/index.html

 Java Servlets
 http://jserv.javasoft.com/

Java Productss
 http://www.java.sun.com/products

Web Services
 http://www.webservices.org
 http://www.ibm.com/developerworks/webservices/

Simple Object Access Protocol (SOAP)
 http://msdn.microsoft.com/soap
 http://www.develop.com/soap
 http://www.soapware.org/
 http://xml.apache.org/soap/faq

Books
 Java Web Services by David A. Chappell & Tyler Jewell
 Understanding Web Services by Eric Newcomer
 HTML: The Definitive Guide, Chuck Musciano and Bill Kennedy
 Apache Server Bible, Mohammed J. Kabir
 Apache Server Unleashed, Rich Bowen and Ken Coar
 Apache, The Definitive Guide, Ben Laurie and Peter Laurie
 Writing Apache Modules with Perl and C: The Apache API and mod_perl, Lincoln
 Stein and Doug MacEachern
 Professional Apache, Peter Wainwright
 SSL & TLS, Designing and Building Secure Systems, Eric Rescorla
 OpenVMS with Apache, OSU, and WASD, The Nonstop Webserver, Alan Winston

HTTP 1.1 specification, http://www.ietf.org/rfc/rfc2616.txt

HTML 4.01 specification, http://www.w3.org/TR/html4/

© Copyright 2003 Hewlett-Packard Development Company, L.P. 59

http://jserv.javasoft.com/
http://www.java.sun.com/products
http://www.webservices.org/
http://www.ibm.com/developerworks/webservices/
http://msdn.microsoft.com/soap
http://www.develop.com/soap
http://www.soapware.org/
http://xml.apache.org/soap/faq
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/html4/

Configuring TCP/IP for High Availability
Matt Muggeridge
TCP/IP for OpenVMS Engineering

Overview
High availability of the network complements other high availability features associated with
OpenVMS clustering. In the OpenVMS network, several high-availability technologies can be used
in isolation or combined to provide a high-availability solution to meet a multitude of requirements.

The key to configuring a high availability solution of any kind is careful planning with an ethos of
“keep it simple.” Understand where failures might reasonably occur, what types of failures can be
tolerated and what failures cannot be tolerated. It is wise to consider the impact of a catastrophic
failure and how taking the appropriate precautions can mitigate the impact on the system.

TCP/IP high availability solutions include:

• failSAFE IP1 – address failover to alternate interfaces

• IP Cluster Alias – superseded by failSAFE IP

• Load Broker/Metric Server – DNS alias name dynamically updated with available addresses

• LAN Failover2,3

This paper describes the key difference between these technologies and the environments that best
suit their application.

1 failSAFE IP is introduced with TCP/IP V5.4, which is in field test at the time of writing.
2 LAN Failover is introduced with OpenVMS V7.3-2, which is in field test at the time of writing.
3 LAN Failover is not discussed in detail in this paper. Refer to the OpenVMS V7.3-2 documentation.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 60

Comparing High Availability Technologies
Table 1 briefly describes each of the technologies to help the reader compare the features and
choose which solution or combination of solutions is best suited to their environment. Each of the
technologies is described in depth in subsequent sections.

Table 1 High Availability Network Technologies
 failSAFE IP IP Cluster Alias DNS Alias

(Load Broker /
Metric Server)

LAN Failover

Protects All IP addresses Single IP address
designated as the
cluster address

DNS Alias with list
of most available
IP addresses

MAC Address

Protocols IP only IP only IP only All LAN protocols

Scope Interfaces within a
node or cluster

Single interface
per node in a
cluster

DNS name lookup Interfaces within a
node

NIC Independent of
interface type

Independent of
interface type

Not applicable DE600 and
DEGXA

Load
Balancing

All interfaces
active, balance
outgoing
connections,
higher throughput

One interface in a
cluster is assigned
the cluster
address, no load
balancing

Load share
inbound
connections across
DNS alias
addresses

One interface in a
node is active
others are
standby, no load
balancing

Detects Failure and
recovery:
interface, cable,
switch, node

Node failure Most available
nodes

Failed interface,
cable, and switch

Addressing May require
additional IP
addresses per
cluster

Requires an
additional address
per cluster

Multiple addresses
listed for DNS
alias

LAN virtual
interface address
automatically
generated

Notes Monitor at least 3
interfaces on a
LAN to avoid
phantom failures

Superseded by
failSAFE IP

Does not protect
against all
interface failures
in multihomed
hosts

Availability Introduced with
TCP/IP V5.4

Long-time feature
of TCP/IP Services

Long-time feature
of TCP/IP Services

Introduced with
OpenVMS V7.3-2

© Copyright 2003 Hewlett-Packard Development Company, L.P. 61

failSAFE IP
The network interface controller (NIC) is often regarded as a single point of failure (SPOF) in a
network. Typical failures include NIC failure, disconnected or broken cable, or a dead port on the
switch. failSAFE IP removes the NIC as a SPOF. (failSAFE IP is introduced starting with Version
5.4 of HP TCP/IP Services for OpenVMS.)

Introduction to failSAFE IP
failSAFE IP provides IP address redundancy when the same IP address is configured on multiple
interfaces. Only one instance of each IP address is active at any time; the other duplicate IP
addresses are in standby mode4. Standby IP addresses may be configured on multiple interfaces
within the same node or across a cluster. The failSAFE service monitors the health of each interface
and takes appropriate action upon detecting interface failure or recovery.

When an interface fails, each active IP address on the failed interface is removed and the standby
IP address becomes active. If an address is not configured with a standby, then the address is
removed from the failed interface until it recovers. Static routes on the failed interface are also
removed and migrated to any interface where their network is reachable.

When an interface recovers, it may request the return of its IP addresses. The IP address is returned
when the recovering interface is configured as the home interface for one or more addresses.
When the home interface recovers, it requests that the current holder of the address give it up5.
(The concept of a home interface is discussed in Home Interfaces.)

The current holder of an address will not release an address if it would result in dropped
connections, nor if the current holder is also designated as a home interface for that address.
Management intervention can force the removal of an address.

failSAFE IP Configuration Requirements
Configuring failSAFE IP requires two steps:

1. Assign the same IP address to multiple interfaces. Only one instance of that
address will be active; all other instances will be in standby mode. For simple
configurations, use the TCPIP$CONFIG Core Environment menu to assign an IP address to
multiple interfaces; see the TCP/IP Services for OpenVMS Installation and Configuration
guide for more information. Alternately, use the ifconfig utility, which provides a greater
degree of management control; see Table 2 for more information.

2. Enable the failSAFE IP service, which monitors the health of interfaces and takes
appropriate action upon detecting interface failure or recovery. This service is enabled
using the TCPIP$CONFIG Optional Components menu.

failSAFE IP Service – Interface Health Monitor
The failSAFE IP service monitors the health of interfaces and upon detecting a failure or recovery
will take the appropriate action. The service is enabled using TCPIP$CONFIG and is started and
stopped with the TCP/IP Services startup and shutdown procedures. Alternately, it may be started
or stopped using:

4 The OpenVMS distributed lock manager is used to ensure only one instance of an IP address is active across a
cluster. An exception to this is any address assigned to the loopback interface ‘LO0’. For instance, the localhost
address, 127.0.0.1 must be configured on every node in a cluster. See Management Utilities for more information.
5 An IP address may be configured with multiple home interfaces. By default, the primary address is configured
with its interface marked as a home interface.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 62

SYS$STARTUP:TCPIP$FAILSAFE_STARTUP.COM

SYS$STARTUP:TCPIP$FAILSAFE_SHUTDOWN.COM

The failSAFE IP service:

• Monitors the health of interfaces by periodically reading their “Bytes received” counter.

• When required, marks an interface as failed or recovered.

• Maintains static routes to ensure they are preserved after interface failure or recovery.

• Logs all messages to TCPIP$FAILSAFE_RUN.LOG. Important events are additionally sent to
OPCOM.

• Generates traffic to help avoid phantom failures, (see Avoiding Phantom Failures).

• Invokes a customer written command procedure at the transitions marked by an asterisk in
Figure 1 below. (Refer to Site-Specific Customization of failSAFE IP for more detail on site-specific
command procedures).

The finite state machine for the failSAFE IP service is shown in Figure 1.

* Invoke site-specific
command procedure

No*

ERROR_POLL
Timeout

WARN_POLL
Timeout

INFO_POLLT
imeout

NoNo No

No*

Yes* Yes*

Retry
Limit = 0

Retry
Limit

ERROR State

Bytes
Received

Bytes
Received

Yes* Yes Yes*Bytes
Received

WARN StateINFO State

Figure 1 Finite State Machine for failSAFE IP Service – Interface Health Monitor

If the failSAFE IP service is not enabled, then configuring a failSAFE IP address across nodes
provides identical functionality to the IP Cluster Alias, described in IP Cluster Alias.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 63

Configuring failSAFE IP Service
By default, the failSAFE IP service monitors all TCP/IP interfaces on a system and periodically polls
each interface using default polling intervals. The defaults may be overridden by editing the
configuration file defined by the logical name TCPIP$FAILSAFE, which by default is:

SYS$SYSDEVICE:[TCPIP$FSAFE]TCPIP$FAILSAFE.CONF6

The configurable parameters are:

 Parameter Description

INTERFACE_LIST

[Default: ALL interfaces]

The list of interfaces that failSAFE monitors.

INFO_POLL

[Default: 3 seconds]

The polling interval used when the interface is known to be
functional. Two INFO_POLL timeouts are required to
determine that an interface is not responding, at which time
the polling frequency is set to the WARN_POLL period.

WARN_POLL

[Default: 2 seconds]

The polling interval used when the interface first stops
responding. Polling will continue for RETRY_WARN attempts
before the interface is deemed dead, at which time the polling
frequency is set to ERROR_POLL and failover occurs.

RETRY_WARN

[Default: 1 retry]

The number of warning polls before the interface is deemed
dead and the IP addresses associated with it are removed. A
value of zero will skip the WARN_POLL cycle.

ERROR_POLL

[Default: 15 seconds]

The polling interval used when the interface is considered
dead. failSAFE IP will monitor a dead interface at this
frequency until it determines the interface has recovered, at
which time the polling frequency is set back to the INFO_POLL
period.

Detectable Failures
The failSAFE IP service periodically reads the network interface card’s (NIC’s) “Bytes received”
counter to determine the health of an interface. This is the same counter that can be viewed using
LANCP. For example, to view all interfaces’ “Bytes received” counters:

$ pipe mcr lancp show device/count | search sys$pipe “Bytes received”/exact

failSAFE IP guards against any event that prevents the “Bytes received” counter from changing or
any event that results in the deletion of an IP address, such as:

• Interface hardware failure

• Physical link disconnect

• Shuttng the interface down using TCP/IP management commands

• Shutting down TCP/IP Services

6 A template file is provided when the service is configured via TCPIP$CONFIG. The template also describes the
file syntax.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 64

• Shutting down a node

Application
All environments that require high availability of IP addresses can benefit from failSAFE IP. There
are two failure scenarios to consider:

1. If the IP address migrates to an interface on the same node, existing traffic-flow continues
uninterrupted and both incoming and outgoing connections are maintained.

2. If the IP address migrates to an interface on another cluster member, existing connections are
dropped. However remote clients will be able to establish new connections immediately. In
this scenario, failSAFE IP addresses are better suited to UDP applications or those applications
that permanently cache IP addresses. It is up to the network administrator whether to configure
failSAFE IP addresses across interfaces within the same node or across cluster members.

failSAFE IP will always preferentially fail over addresses to interfaces on the same node before
failing over across clustered nodes.

Management Utilities
For many situations, failSAFE IP requires no additional management beyond the initial
configuration with TCPIP$CONFIG. This section describes new management commands that are
used by the failSAFE IP service – or by system administrators who need to manually intervene with
IP address assignment.

A failSAFE IP address may be configured using TCPIP$CONFIG, or manually using the TCPIP
management commands. For instance to create an IP address of 10.10.10.1 on interface IE0 and
a standby alias address on interface IE1 (pseudo-interface IEB0) the following commands may be
used (the ifconfig command is shown for comparison):

$ TCPIP

TCPIP> SET INTERFACE IE0/HOST=10.10.10.1 ! ifconfig ie0 10.10.10.1

TCPIP> SET INTERFACE IEB0/HOST=10.10.10.1 ! ifconfig ie1 alias 10.10.10.1

To view the standby addresses, it is necessary to use the ifconfig command. For example:

$ ifconfig -a

IE0: flags=c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

*inet 10.10.10.1 netmask ff000000 broadcast 10.255.255.255

IE1: flags=c03<UP,BROADCAST,MULTICAST,SIMPLEX>

failSAFE IP Addresses:

inet 10.10.10.1 netmask ff000000 broadcast 10.255.255.255 (on HUFFLE IE0)

Note that interface IE1 displays a failSAFE IP address, and that it is active on node HUFFLE,
interface IE0.

Greater control of failSAFE IP addresses can be achieved with the ifconfig command. The
ifconfig options that support failSAFE IP are described in Table 2.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 65

Table 2 New ifconfig Options for failSAFE IP
Option Description

[-]fail Force an interface to fail by using the fail option or to recover by using the –fail
option.

[-]home Used when creating IP addresses. By default, all primary IP addresses are
created with a home interface. To force an alias address to be created with a
home interface, the home option must be used.

[-]fs All IP addresses are created as failSAFE addresses by default, except for
addresses assigned to the loopback interface LO0, for instance, the localhost
address 127.0.0.1. To create an address that is not managed by failSAFE, use
the -fs option.

Home Interfaces
failSAFE IP addresses may be created with a designated home interface. By default, all primary
IP addresses are created with a home interface. The purpose of a home interface is to provide a
preferential failover and recovery target in an effort to always migrate IP addresses to their home
interface. This gives the network administrator greater control over how IP addresses are assigned
to interfaces. The ifconfig management utility may be used to create and display addresses
configured with home interfaces. For example to create three addresses:

$ ifconfig ie0 10.10.10.1 ! primary has home interface by default

$ ifconfig ie0 alias 10.10.10.2 ! alias does not

$ ifconfig ie0 home alias 10.10.10.3 ! create alias with home interface

Note that the TCPIP SET INTERFACE command may also be used to create primary and alias
addresses. However, it does not support creation of the home alias address. For this, ifcon ig
must be used.

f

When addresses are displayed with the ifconfig utility, those addresses with a home interface are
marked with an asterisk (*). For example, displaying the addresses created with the previous
commands reveals:

$ ifconfig ie0

IE0: flags=c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

*inet 10.10.10.1 netmask ff000000 broadcast 10.255.255.255

inet 10.10.10.2 netmask ff000000 broadcast 10.255.255.255

*inet 10.10.10.3 netmask ff000000 broadcast 10.255.255.255

The asterisk character indicates that the addresses 10.10.10.1 and 10.10.10.3 have a home
interface of IE0. Note that TCPIP SHOW INTERFACE does not identify addresses with a home
interface.

Creating IP addresses with home interfaces helps to maintain the spread of IP addresses across
multiple interfaces. This is important for load-balancing and gaining higher aggregate throughput.
In the event a home interface recovers after a failure, the addresses may return to their recovered
home interface, thus maintaining the spread of addresses across the available interfaces.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 66

Note that an address will not migrate toward a home interface if it will result in dropping TCP/IP
connections.

Site-Specific Customization of failSAFE IP
A user-defined procedure may be invoked during selected transitions of the failSAFE IP service’s
finite state machine. Refer to Figure 1 for the state transitions that invoke the site-specific command
procedure. These transitions describe one of three events:

1. When the interface first appears to have stopped responding. This is the first warning that a
problem may exist, but no action to failover IP addresses is taken yet.

2. When an attempt to generate traffic on the interface fails. After the retry limit is reached, the
interface is deemed dead, and IP addresses will be removed from the interface. Failover
occurs.

3. When the interface recovers.

The procedure is called with two string parameters:

P1 = TCP/IP Interface Name (e.g. “IE0”)
P2 = state (“INFO_STATE”, “WARN_STATE”, “ERROR_STATE”)

The site-specific procedure may be defined by the logical name TCPIP$SYFAILSAFE; otherwise the
default file is:

SYS$MANAGER:TCPIP$SYFAILSAFE.COM

Logical Names
The logical names in Table 3 may be used to customize the operating environment of failSAFE IP.
These logical names must be defined in the LNM$SYSTEM_TABLE for them to take effect.

Table 3 failSAFE IP Logical Names
Logical Name Description

TCPIP$FAILSAFE Configuration file that is read by TCPIP$FAILSAFE
during startup. If the logical is not defined then the
default configuration file is:

SYS$SYSDEVICE:[TCPIP$FSAFE]TCPIP$FAILSAFE.CONF

This logical must be defined prior to starting the
failSAFE IP service.

TCPIP$FAILSAFE_FAILED_<ifname> This logical is used to simulate a failure for the named
interface. The logical is translated each time failSAFE IP
reads the LAN counters. The <ifname> can be
determined using the TCPIP SHOW INTERFACE
command.

TCPIP$SYFAILSAFE The name of a site-specific command procedure, which
is invoked when one of three conditions occurs:

• Iinterface failure

© Copyright 2003 Hewlett-Packard Development Company, L.P. 67

• Retry failure

• Interface recovery

If the logical is not defined, then the default procedure
is:

SYS$MANAGER:TCPIP$SYFAILSAFE.COM

TCPIP$FAILSAFE_LOG_LEVEL Controls the volume of log messages sent to OPCOM
and the log file. If the logical is undefined or has a
value of zero, the default log level is assumed. Larger
values are used for debugging. This logical name is
translated each time failSAFE IP logs a message.

TCPIP$FSACP_LOG_LEVEL Controls the volume of log messages sent to OPCOM by
the ACP. This logical name should be used only when
directed by customer support.

Static and Dynamic Routing
When an interface fails, failSAFE IP removes all addresses and static routes from the failed
interface. The static routes are reestablished on every interface where the route’s network is
reachable. This may result in a static route being created on multiple interfaces and is most often
observed with the default route.

Dynamic routing may need to be restarted to ensure the dynamic routing protocol remains current
with changes in interface availability. If this is necessary, restart the routing process using the
TCPIP$SYFAILSAFE procedure, as described in Site-Specific Customization of failSAFE IP. For
example, for GATED:

$ TCPIP STOP ROUTING /GATED

$ TCPIP START ROUTING /GATED

For GATED users, the configuration supports the scaninterval option, which allows you to
periodically scan the interfaces to detect any changes. Scanning can be forced by issuing the
command:

$ TCPIP SET GATED/CHECK_INTERFACES

For more information on routing protocols refer to the appropriate section in the TCP/IP Services for
OpenVMS Management Guide.

Best Practices
These best practices are a guide to assist the network administrator to quickly come up to speed
with the various aspects of failSAFE IP by avoiding common pitfalls.

Validating failSAFE IP
Most contemporary networks are highly stable and rarely suffer from the problems that require
failSAFE IP. Consequently, for the small number of occasions where failSAFE IP is required, it is

© Copyright 2003 Hewlett-Packard Development Company, L.P. 68

critical that it has been previously validated in the environment where it is being deployed. Failure
to do this may result in unexpected problems at the critical moment.

Since real failures are rare and sometimes difficult to simulate, the logical name
TCPIP$FAILSAFE_FAILED_<ifname> has been provided. After configuring failSAFE IP addresses
and starting the failSAFE IP service, the validation procedure is as follows:

1. Establish connections and generate IP traffic

Using TELNET or FTP, create incoming and outgoing TCP connections to the multihomed host
from inside and outside the subnet. Verify that these connections are established, using the
following commands:

$ @sys$manager:tcpip$define_commands

$ ifconfig -a ! Check the interface addresses

$ netstat -nr ! Check the routing table

$ netstat -n ! identify which interface(s) are being used

2. Simulate a failure and observe

Simulate a failure and observe OPCOM and log file messages. The failure may be simulated
with:

$ define/system tcpip$failsafe_failed_<ifname> 1 ! or disconnect the cable

Wait long enough for failover to occur, which will be signaled by OPCOM messages.
Now observe the effects of failover and verify TCP connections are still established and can
transfer data. For example, TELNET sessions should respond to keyboard input.

$ ifconfig -a ! Observe how the addresses have migrated

$ netstat -nr ! Observe how the routing table has changed

3. Recover and observe
Recover from the simulated failure and observe the OPCOM messages.

$ deassign/system tcpip$failsafe_failed_<ifname> ! or reconnect the cable

$ ifconfig –a ! Observe how the addresses have migrated

$ netstat –nr ! Observe how the routing table has changed

Once again, ensure TCP connections are still established and can transfer data

Be aware that simulating a failure with the logical TCPIP$FAILSAFE_FAILED_<ifname> does not
disrupt physical connections to the machine, and as such is not a true indicator of whether the
services will survive a real failover situation. Consequently, this procedure should be repeated by
physically removing a network cable from one or more of the interfaces. Since this may potentially
be disruptive to network services, this operation should be scheduled into a maintenance period
where a disruption may be tolerated.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 69

Configuring failSAFE IP Service
The key concern for configuring the failSAFE IP service is the time it takes to detect a failure and for
the standby IP address to become active. One goal of a failSAFE IP configuration is to avoid
disrupting existing connections, so the failover time must be within the connection timeout.

The failover time is calculated as:

INFO_POLL + (WARN_POLL * RETRY) < failover time < (2 * INFO_POLL) + (WARN_POLL * RETRY)

Refer to Figure 1 for an explanation of the variables. The default values (INFO_POLL=3,
WARN_POLL=2, RETRY=1) result in a failover interval range of between 5 and 8 seconds. Note
that this does not take into account the system load.

The recovery time will be less than the ERROR_POLL period, which has a default of 30 seconds.
See Configuring failSAFE IP for more information about the failSAFE IP configuration parameters.

Avoiding Phantom Failures
The health of a NIC is determined by monitoring the NIC’s “Bytes received” counter. This provides
a protocol-independent view of the NIC counters. However, in a quiet network, there may be
insufficient traffic to keep the “Bytes received” counter changing within the failover detection time,
thus causing a phantom failure. To counteract this, the failSAFE service attempts to generate MAC-
layer broadcast messages, which are received on every interface on the LAN except for the
sending interface.

Consequently, in a quiet network with just two interfaces being monitored by the failSAFE service, a
single NIC failure may also result in a phantom failure of the other NIC, since the surviving NIC is
not able to increase its own “Bytes received” counter.

You can reduce phantom failures in a quiet network by configuring the failSAFE IP service for at
least three interfaces on the LAN. In the event that one interface fails, the surviving interfaces will
continue to maintain each others “Bytes received” counter.

Creating IP Addresses with Home Interfaces
By default, the interface on which a primary IP address is created is its home interface, while an IP
alias address is created without a home interface. To create an alias address with a home
interface, use the ifconfig command, which should be added to the
SYS$STARTUP:TCPIP$SYSTARTUP.COM procedure. For example to create an alias address of
10.10.10.3 on interface IE0 and designate IE0 as its home interface, the following command
could be used:

$ ifconfig ie0 home alias 10.10.10.3/24

Private Addresses Should Not Have Clusterwide Standbys
For the purpose of this discussion, private addresses are those used for network administration and
not published as well-known addresses for well-known services. A standby interface for a private
address should be configured on the same node as the home interface. This avoids the situation
where a node cannot assign any addresses to its interfaces if they have active connections on
another node in the cluster. This is further illustrated in Example 2.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 70

If it is desirable to associate the list of private addresses with a public DNS alias name, then it is
recommended that the Load Broker be used to provide high availability of the DNS Alias. The
Load Broker is described in DNS Alias with Load Broker and Metric Server.

Examples

Example 1 – Single node configured with two interfaces
Consider a node named HUFFLE with two interfaces IE0 and IE1. Each interface is configured
with a unique primary IP address and each interface is also configured as a standby for each
other. The addresses are 10.10.10 1/24 and 10.10 10.2/24. These addresses and the
failSAFE IP standby aliases are easily created using the TCPIP$CONFIG Core Environment menu.

. .

For the purpose of clarification, the commands that TCPIP$CONFIG uses are shown in the table
below. The identical ifconfig commands are shown for comparison.

Configure IP addresses:

Action TCP/IP Command ifconfig command

Create Primary
Addresses $ tcpip set interface ie0 –

/host=10.10.10.1 -

/net=255.255.255.0 -

/broad=10.10.10.255

$ tcpip set interface ie1 -

/host=10.10.10.2 -

/net=255.255.255.0 -

/broad=10.10.10.255

$ ifconfig ie0 10.10.10.1/24

$ ifconfig ie1 10.10.10.2/24

$ tcpip set interface iea0 –

/host=10.10.10.1 -

/net=255.255.255.0 -

/broad=10.10.10.255

$ tcpip set interface ieb0 -

/host=10.10.10.2 -

/net=255.255.255.0 -

/broad=10.10.10.255

$ ifconfig ie0 alias

10.10.10.2/24

$ ifconfig ie1 alias

10.10.10.1/24

© Copyright 2003 Hewlett-Packard Development Company, L.P. 71

At this point, the node will be configured as shown in Figure 2.

.1*

Standby IP
addresses

Active IP
addresses .2*

.1.2

Network: 10.10.10/24

IE1IE0

HUFFLE

Figure 2 Simple failSAFE IP Configuration

Examining the configuration with ifconfig reveals how each interface is configured with an active
primary address as well as a standby failSAFE IP address. The asterisk beside the address denotes
that address’s home interface. In the sample output below, note that the standby failSAFE IP
addresses also describe where the IP address is active. For example, for interface IE0, the standby
address 10.10.10.2 is active on node HUFFLE, interface IE1. The asterisk before the address
indicates that the respective interface is its home interface. Home interfaces are described in more
detail in Home Interfaces.

$ ifconfig ie0

IE0: flags=8000c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

failSAFE IP Addresses:

inet 10.10.10.2 netmask ffffff00 broadcast 10.10.10.255 (on HUFFLE IE1)

*inet 10.10.10.1 netmask ffffff00 broadcast 10.10.10.255

$ ifconfig ie1

IE1: flags=c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

failSAFE IP Addresses:

inet 10.10.10.1 netmask ffffff00 broadcast 10.10.10.255 (on HUFFLE IE0)

*inet 10.10.10.2 netmask ffffff00 broadcast 10.10.10.255

In the event of an interface failure (for example, IE0 fails), the failSAFE IP service marks the
interface as failed, using the following command:

$ ifconfig ie0 fail

Figure 3 shows the state of the node after IE0 has failed. The ifconfig commands are also shown
below. Note that interface IE1 is now configured with both addresses and the output from ifconfig
ie0 shows that the interface is in a failed state.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 72

Standby IP
addresses

Active IP
addresses

.1*

.2

Network: 10.10.10/24

IE1
.1
.2*

IE0

HUFFLE

Figure 3 Interface IE0 has failed

$ ifconfig ie0

IE0: flags=8000c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

*failSAFE IP - interface is in a failed state.

failSAFE IP Addresses:

inet 10.10.10.2 netmask ffffff00 broadcast 10.10.10.255 (on HUFFLE IE1)

*inet 10.10.10.1 netmask ffffff00 broadcast 10.10.10.255 (on HUFFLE IE1)

$ ifconfig ie1

IE1: flags=c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

inet 10.10.10.1 netmask ffffff00 broadcast 10.10.10.255

*inet 10.10.10.2 netmask ffffff00 broadcast 10.10.10.255

Example 2 – Clustered Nodes configured with Two Interfaces
Extending the previous example to two similarly configured nodes in an OpenVMS cluster:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 73

.1

.2

.3

.1

.2

.4

.1

.3

.4

.3* .4*

IE1IE0

RAVENC

.1*

Standby IP
addresses

Active IP
addresses .2*

.2

.3

.4

Network: 10.10.10/24

IE1IE0

HUFFLE

Executing an ifconfig command on node HUFFLE reveals information about all failSAFE IP
addresses that are configured on HUFFLE. Note that IE0 is the home interface for address
10.10.10.1, as indicated by the asterisk in the diagram and the asterisk in the output below.

$ ifconfig ie0

IE0: flags=8000c43<UP,BROADCAST,RUNNING,MULTICAST,SIMPLEX>

failSAFE IP Addresses:

inet 10.10.10.2 netmask ffffff00 broadcast 10.10.10.255 (on HUFFLE IE1)

inet 10.10.10.3 netmask ffffff00 broadcast 10.10.10.255 (on SLYTHE IE0)

inet 10.10.10.4 netmask ffffff00 broadcast 10.10.10.255 (on SLYTHE IE1)

*inet 10.10.10.1 netmask ffffff00 broadcast 10.10.10.255

Consider the situation where RAVENC is booted after HUFFLE starts TCP/IP Services. Before
TCP/IP Services is started on RAVENC, all addresses are active on node HUFFLE. For instance, the
figure above may become:

TCP/IP not
started

.1

.3

IE1IE0

RAVENC

Standby IP
addresses

Active IP
addresses

.2

.4

Network: 10.10.10/24

IE1

.2*
.4

IE0

.1*
.3

HUFFLE

© Copyright 2003 Hewlett-Packard Development Company, L.P. 74

ote that this figure shows the .3 and .4 addresses being distributed among the interfaces on

AVENC, it requests that its home addresses be returned.

d without

N
HUFFLE. In practice, this is indeterminate.

When TCP/IP Services is started on node R
In this example, the .3 and .4 addresses have their home interface on RAVENC, so RAVENC
requests that HUFFLE release the .3 and .4 addresses so that RAVENC can assign them.

However, node HUFFLE will only release these addresses provided it does not have any
outstanding connections to them. This situation could result in node RAVENC being starte
any IP addresses being configured. To avoid this, only configure primary addresses with standby
interfaces on the same node. See Example 3 for an alternate configuration that avoids this
problem.

Example 3 – Preferred failSAFE IP Configuration – Putting it all together
ses are

and

ce, to build upon the previous example, private maintenance addresses could be
here

N node
re

Greater demands in availability of IP addresses require reconsideration of how addres
assigned. One possibility is to create private maintenance IP addresses as primary addresses,
public IP address as aliases7. The disadvantage of this is that more IP addresses are required for
the dedicated maintenance addresses. The advantage is that there is greater control and flexibility
over address assignment. The concept of tying an address to a specific interface becomes less of a
concern.

For instan
assigned as primary addresses, and the public addresses would be configured as aliases, w
each alias has at most one home interface. Consider the private primary addresses to be .11,
.12, .13, and .14, and the public aliases to be .1, .2, .3, and .4, as shown below.

ote that the private primary addresses have standby addresses configured on the same
only. For example, on node HUFFLE, .11 and .12 are configured on both interfaces, but they a
not configured on node RAVENC. The public alias addresses (.1, .2, .3, and .4) have addresses
configured on each interface across both nodes. The asterisk beside these denotes the address’s
home interface. Thus, IE0 on node HUFFLE is the home interface for the alias 10.10.10.1.

HUFFLE

E0 E1

Network: 10.10.10/2

.2

.3

.2*
.

Active IP
addresses

Standby IP
addresses

.1*
.

RAVENC

E0 E1
.4*

.
.3*

.

.1

.2
31

13* 14*

I

.3

.1

.2
.1.14

I

.4

12*

4

11*

I

.4

.1

.3
.1.12

I

.4

© Copyright 2003 Hewlett-Packard Development Company, L.P. 75

7 For the purpose of this example, consider the private maintenance addresses to be known only to the network
administrator, whereas the public addresses are well-known and provide connectivity to well-known services.

To configure this, create the primary IP addresses using the TCPIP$CONFIG procedure, and create
the alias addresses using ifconfig. For example, add the following lines to the
TCPIP$SYSTARTUP.COM procedure:

On node HUFFLE:

$! Configure home aliases

$ ifconfig ie0 home alias 10.10.10.1/24

$ ifconfig ie1 home alias 10.10.10.2/24

$! Configure IE0 aliases (presumes .12 primary

$! Configure IE1 aliases (presumes .11 primary was

was created via TCPIP$CONFIG)

$ ifconfig ie0 alias aliaslist 10.10.10.2-4,12/24

created via TCPIP$CONFIG)

$ ifconfig ie1 alias aliaslist 10.10.10.1,3,4,11/24

On node RAVENC:

$! Configure home aliases

$ ifconfig ie0 home alias 10.10.10.3/24

$ ifconfig ie1 home alias 10.10.10.4/24

$! Configure IE0 aliases (presumes .14 primary

$! Configure IE1 aliases (presumes .13 primary was c

was created via TCPIP$CONFIG)

$ ifconfig ie0 alias aliaslist 10.10.10.1,2,4,14/24

reated via TCPIP$CONFIG)

$ ifconfig ie1 alias aliaslist 10.10.10.1-3,13/24

 Cluster Alias
ovides a subset of the functionality provided by failSAFE IP (see failSAFE IP

IP
The IP Cluster Alias pr),

Introduction to IP Cluster Alias
 a single IP address designated to represent selected cluster

and as such has been superseded by failSAFE IP. However, failSAFE IP is introduced in TCP/IP
Services Version 5.4, whereas the IP Cluster Alias was introduced in UCX Version1.0. It is
recommended that existing users of the IP Cluster Alias update their configuration to use failSAFE
IP.

In an OpenVMS cluster, there may be
members. This address is known as the IP Cluster Alias address. Each interface still has its own
unique IP address while the IP Cluster Alias is an additional address that can be active on only one
interface in the cluster at a time. The node holding the address is designated as the Cluster
Impersonator and as such will field all connections to the Alias address. In the event of a failure,
the IP Cluster Alias address will be reassigned to one of the remaining cluster members interfaces.

Note that the functionality provided by the IP Cluster Alias is a subset of that provided by failSAFE
IP. IP Cluster Alias is supported for compatibility.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 76

IP Cluster Alias Configuration Requirements
Configuring the IP Cluster Alias requires that the node be an active member of an OpenVMS cluster
at the time TCP/IP Services is configured using the TCPIP$CONFIG procedure. The configuration
procedure will detect this scenario and when configuring the interfaces, will ask if a cluster address
should be assigned.

Only one interface in the cluster can hold the cluster alias address at any time. It is recommended
that the cluster alias address be configured in the same subnet as the unique interface addresses.
This ensures broadcast traffic to the subnet containing the interfaces will also appear on the IP
Cluster Alias address.

Detectable Failures
 The types of failures that are detected include:

• Shutting the interface down using TCP/IP management commands

• Shutting down TCP/IP Services

• Shutting down the node

Application
This form of failover provides high availability for incoming connections. In the event of a failure
the IP Cluster Alias migrates across nodes. Existing TCP connections will abort and need to be
reestablished. Connectionless protocols, such as UDP, will be unaffected.

There is no load-balancing across nodes with this mechanism. The cluster impersonator fields all
incoming connections. Outgoing connections do not make use of the IP Cluster Alias. It is best
suited to UDP applications like NFS, or for maintaining a high availability IP address where load-
balancing of incoming connections is not a priority.

Management Utilities
To identify the node currently acting as the impersonator, enter the following command:

$ TCPIP SHOW INTERFACE/CLUSTER

The node acting as the impersonator will be labeled as “Cluster Impersonator”. This needs to be
performed on each node in the cluster. An easy way to do this is with the SYSMAN utility:

$ MCR SYSMAN

SYSMAN> SET ENVIRONMENT/CLUSTER

SYSMAN> DO PIPE TCPIP SHOW INTERFACE/CLUSTER | SEARCH SYS$PIPE IMPERSONATOR

Example
In Figure 3, the IP Cluster Alias address is designated as, 10.10.10.100. Node HUFFLE is
currently the impersonator, and RAVENC is the standby node. In the event HUFFLE is shut down,
then RAVENC will assume the IP Cluster Alias address and become known as the impersonator.
New traffic to the IP Cluster Alias will go through RAVENC. Note that each node still has its own
unique interface address, 10.10.10.1 and 10.10.10.3. The alias address 10.10.10.100 can be
active on only one of the nodes at any time.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 77

.100
IE0

.3

RAVENC

Standby IP
address

Active IP
addresses

Network: 10.10.10/24

IE0
.1

.100

HUFFLE

Figure 3 - IP Cluster Alias Configuration

Replacing the IP Cluster Alias with the failSAFE IP mechanism requires that the IP Cluster Alias first
be deleted and the failSAFE IP address created. For instance, executing the following command on
each node would delete the IP Cluster Alias:

$ tcpip set configuration interface ie0/nocluster ! remove from config file

$ tcpip set interface ie0/nocluster ! remove from active system

Now configure the 10.10.10.100 address on each node with a command similar to:

$ tcpip set configuration interface iea0 /host=10.10.10.100 /net=255.255.255.0

$ tcpip set interface iea0 /host=10.10.10.100 /net=255.255.255.0

DNS Alias with Load Broker and Metric Server
This solution provides high availability of the DNS alias by dynamically updating the alias name
with the list of most-available IP addresses associated with that alias name. It requires a name
server that supports dynamic updates, and the cooperation of DNS administrators to allow your
Load Broker to dynamically update their databases8.

Introduction to DNS Alias
The Load Broker polls nodes for their metric values and dynamically updates the DNS alias with the
list of least loaded IP addresses. In this way, whenever a remote host requests a DNS name
lookup, it will be presented with the list of IP addresses associated with the least loaded addresses.
If a node does not respond with a metric value after 3 attempts, the Load Broker will remove that
node’s IP addresses from the DNS alias.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 78

8 Rather than convincing your central DNS administrators to allow you to dynamically update their DNS repository,
it may be easier to have them delegate a sub-domain that you administer.

DNS Alias Configuration Requirements
The DNS Alias configuration requires a DNS server that supports dynamic updates and the
cooperation of DNS administrators to allow your Load Broker to send dynamic updates to their
database. The Load Broker is typically configured on a separate host and located in the network
path used by the clients. The DNS Alias is comprised of a list of IP addresses. There is no
requirement for these addresses to appear on OpenVMS clustered nodes.

The DNS Alias with the Load Broker and Metric Server are described in detail in the following
subsections.

DNS Alias
The DNS Alias, by itself, does not provide high availability. This section provides an overview of
the DNS alias and how it is updated by the Load Broker.

The Domain Name System provides a distributed repository for mapping between DNS alias
names and IP addresses. In the repository, a single DNS Alias name may be associated with
multiple IP addresses. Each time the DNS server is queried for an alias name, the list of IP
addresses associated with that name is returned. That list is rotated in a round-robin fashion for
each request, so that subsequent requests will return the list with a different IP address at the top of
the list. Since applications typically choose the first IP address in the list, the round-robin feature
provides load sharing, but not load balancing, across the list of IP addresses.

For example, consider the DNS Alias name “hogwarts” with four IP addresses associated with
it. The IP addresses may all be associated with the same node, or the addresses may be spread
across multiple nodes. The DNS entry in the forward lookup database may be:

hogwarts IN A 10.10.10.1

IN A 10.10.10.2

IN A 10.10.10.3

IN A 10.10.10.4

The first time a client queries the DNS server for the name “hogwarts”, the address list returned
will be ordered as (10.10.10.1, 10.10.10.2, 10.10.10.3, 10.10.10.4). The client will use the
first address in the list, and so connect to the 10.10.10.1 address. The next DNS query for
“hogwarts” will result in the list being returned to the client as (10.10.10.2, 10.10.10.3,
10.10.10.4, 10.10.10.1). This client will once again use the first address in the list and so
connect to the 10.10.10.2 address. The pattern will continue for subsequent DNS requests. This
round-robin effect can be observed with repeated queries using the nslookup utility. For
example, notice the IP address list is rotated in the second query:

© Copyright 2003 Hewlett-Packard Development Company, L.P. 79

$ nslookup hogwarts

Server: ns1.wizardry.edu

Address: 10.10.10.200

Name: hogwarts.wizardry.edu

Addresses: 10.10.10.1, 10.10.10.2, 10.10.10.3, 10.10.10.4

$ nslookup hogwarts

Server: ns1.wizardry.edu

Address: 10.10.10.200

Name: hogwarts.wizardry.edu

Addresses: 10.10.10.2, 10.10.10.3, 10.10.10.4, 10.10.10.1

In the event of a failure where an IP address becomes unavailable, DNS will continue to dutifully
answer queries and rotate the list of IP addresses. Each time the failed IP address is at the top of
the list, a client application will not be able to connect, and as a result there will appear to be
intermittent connection failures. To guard against this type of failure, the Load Broker and Metric
Server may be used9. The Load Broker will remove any unresponsive IP addresses from the DNS
repository and so provide high availability of the DNS alias name. The round-robin function will
continue to share the load across each of the available IP addresses. The Load Broker may be
further configured to maintain a maximum number of IP addresses in the DNS alias and it will
update DNS with the IP addresses that return the more favorable metric.

The Load Broker and Metric server are discussed in the next section.

Load Broker and Metric Server
The Load Broker is configured to monitor selected IP addresses on hosts where the Metric Server is
enabled. The Metric Server responds with a metric value, indicating the load of that machine. If
there is no response from a Metric Server after 3 attempts, then the Load Broker will dynamically
update the DNS repository excluding the unresponsive IP address. In addition, when a node
becomes heavily loaded, it may be replaced in the list by a node with a more favorable metric.

Detectable Failures
The types of failures that are detected include:

• Shutting the interface down using TCP/IP management commands

• Shutting down TCP/IP Services

• Shutting down the node

• Path lost between Load Broker and Metric Server

Application
The Load Broker benefits incoming connections only. It has the additional benefit that the IP
addresses with the more favorable metric will be associated with the DNS Alias. This configuration
is suited to maintaining high availability and optimum performance for a well-known service that is

9 failSAFE IP may also be used to provide high availability of IP addresses across clustered nodes. Use the Load
Broker in situations where it is not desirable for an IP address to failover across clustered nodes. Load Broker
does not require IP addresses to be within an OpenVMS cluster.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 80

distributed across multiple nodes. There is no requirement for the nodes to be part of an OpenVMS
Cluster. In order to be effective, the client application must retranslate the host name of the server
following a failure. Applications that do not repeat the DNS query (such as many NFS clients) will
never see the updated list of alias addresses.

Management Utilities
The metric value for any host on a LAN can be displayed with the me ricview utility. For
example:

t

$ @tcpip$define_commands

$ metricview

Host Rating

---- ------

10.10.10.1 huffle-e0 136

10.10.10.3 ravenc-e0 51

The more favorable node is represented by a larger metric value.

Example
Placement of the Load Broker node is important when configuring the network. Since it can detect
connectivity between the Load Broker and Metric Server, it is best placed in the same network path
used by the clients that access the services. Similarly, the Load Broker should not be configured on
a machine running the Metric Server, since it will always report full connectivity to that Metric
Server, regardless of the state of the network paths to the clients. An example Load Broker
configuration file for is shown below:

cluster “hogwarts.wizardy.edu”

{

dns-ttl 45;

dns-refresh 31;

masters { 10.10.10.200; };

polling-interval 10;

max-members 3;

members { 10.10.10.1; 10.10.10.2; 10.10.10.3; 10.10.10.4; };

failover 10.10.0.150;

};

This configuration file indicates that four IP addresses participate in the load-balancing, but only
three of these addresses, (max-members), will participate in the DNS alias, thus excluding the node
with the least favored metric from the DNS alias. Note that Load Broker will only dynamically
update the DNS alias if the alias must be modified with a different set of addresses. Load Broker
does not compare the order of the DNS alias list with its current metric order because DNS will
continue to adjust the order, providing load sharing amongst the DNS alias members.

The Load Broker will poll each Metric Server every 10 seconds (polling-interval). If a Metric Server
does not respond after 3 polling intervals (30 seconds), then on the next dns-refresh timeout (31
seconds) the bad IP address will be excluded from the next dynamic update. The dns-ttl will force
intermediate name-servers that cache the results of a DNS-query to time out this entry every 45

© Copyright 2003 Hewlett-Packard Development Company, L.P. 81

seconds. In this way, if a failure occurs, a client will take 45 seconds at most to retry a connection
before DNS queries the primary server for the new DNS alias list.

This form of high availability is applicable to new incoming connections to a well-known service
distributed amongst participating nodes. If a failure occurs during a connection, that connection
will need to close and a new connection be established.

Summary
High availability of the network requires careful consideration of the network environment and
understanding of the failures that must be protected against. As a result, one or more high
availability solutions may be required. failSAFE IP provides high availability of IP addresses for
both incoming and outgoing new connections as well as existing traffic flow. The DNS Alias with
Load Broker and Metric Server provides high availability of a DNS Alias name and so benefits
incoming connections only. The IP Cluster Alias has been superseded by failSAFE IP. LAN Failover
provides high availability of a hardware MAC address and benefits all LAN protocols. LAN
Failover is required for LAN protocols that do not provide a failover solution, such as LAT.
Protocols such as DECnet-Plus, SCS, and IP implement a failover solution.

The various high availability solutions described in this paper require minimal configuration and
management. However, since they are protecting vital parts of the network, any solution must be
validated prior to being relied upon in a production environment.

For more information
For more information, contact HP OpenVMS products at http://www.hp.com/go/openvms.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 82

http://www.hp.com/go/openvms

DCPI for OpenVMS
a Technical Introduction to a “System Microscope ”

By Anders Johansson

Anders is a principal software engineer in the kernel tools team of the OpenVMS development
engineering group and the project leader for DCPI on OpenVMS. Other projects currently include
development work for OpenVMS I64 in the areas of LIBRTL and SDA. Anders, who has been with the
company for 16 years and is based in Stockholm, Sweden, is also an OpenVMS Ambassador for
Sweden.

Introduction
How many times have you wondered how your application executes, which parts of the system are used
most often, or where you might have bottlenecks in the code? Several products are available to measure
performance on OpenVMS systems. Most of these products use software performance counters, which
have certain limitations.

HP (Digital) Continuous Profiling Infrastructure, DCPI for OpenVMS, uses the hardware performance
counters of the Alpha chip to overcome these limitations. DCPI provides a “fine-grained” view of the
system. During the analysis of data, DCPI produces information ranging from the time spent in
individual executable images to which instructions are executed within an executable image. It also
provides insight into where stalls and instruction or data cache misses occur, and so on. A normal
sampling frequency for DCPI on a 600MHz Alpha is 10000 samples per second on every CPU in the
system. DCPI does this with a minimum CPU overhead -- usually below 5% of the total available CPU
time.

DCPI for OpenVMS, Some Background Information
DCPI began as a research project to find out how programs could be optimized to run faster on the
Alpha processor. This project, called “Where have all the cycles gone?” resulted in the first version
of DCPI (available on Tru64 Unix), and “SRC Technical Note 1997-016A,” which is available at
the following web site:

http://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/SRC-1997-016a-html/

An investigation into the feasibility of porting DCPI to OpenVMS started in late 1999; most of the
porting work was completed during 2000 and early 2001. DCPI was then used within OpenVMS
engineering to pinpoint performance problems. Early in 2002, a version of DCPI for OpenVMS
became available externally; it is downloadable from the following OpenVMS web site as an
“advanced development kit” under field test license terms:

http://h71000.www7.hp.com/openvms/products/dcpi/

DCPI provides the fundamentals for instruction-level system profiling. In general, DCPI does not
require any modifications to the code being profiled, because it is driven by the hardware
performance counters on the Alpha chip itself. Data is collected on the entire system, including user
and third-party applications, runtime libraries, device drivers, the VMS executive itself, and so on.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 83

http://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/SRC-1997-016a-html/
http://h71000.www7.hp.com/openvms/products/dcpi/

The collected data can then be used for program, routine, and instruction-level profiling of the
environment.

DCPI for OpenVMS. How Does It Work?
DCPI consists of the following major components:

1. A data collection subsystem, which includes a device driver, a “daemon program,” and a
daemon control program (dcpictl) for user intervention with the DCPI daemon.

2. Data analysis tools that are used to break down the collected data into image/routine/code-
line/instruction profiles.

3. A special version of the OpenVMS debugger shareable image.

4. A shareable image containing the API for data collection of dynamic code.

The role of the DCPI device driver (DCPI$DRIVER) is to interface with the Alpha chip registers that
control the hardware performance monitoring of the chip and to handle the performance monitor
interrupts generated when the Alpha chip performance counters overflow. The interrupt handler
stores the data acquired at each interrupt into resident memory. The data stored by the driver
consists of type of event, PC, and PID.

The DCPI Daemon, which runs as an interactive process on OpenVMS, controls the kind of
monitoring that is performed and also starts and stops the data collection. However, the main task
of the DCPI daemon during the data collection is to:

• Read the data out of the driver buffers
• Map the event/PC/PID into an Imagename/Image-offset pair
• Store it into on-disk profiles for later analysis

To do this mapping, the DCPI daemon must have an in-memory map of the activated images within
every process on the system and also a map of the exec loaded image list. The DCPI daemon
builds a “loadmap” during its initialization, including the exec loaded image list and the activated
images in all the processes currently running on the system. Furthermore, to do the mapping on a
running system correctly, the DCPI daemon must track all the subsequent image activations in all the
active processes on the system. This image activation tracking is done using “image activator
hooks” that are available in the OpenVMS operating system starting with OpenVMS V7.3. This
tracking is implemented by means of a mailbox interface between the OpenVMS image activator
and the DCPI daemon. In this interface, the image activator provides detailed information to the
DCPI daemon about all image activations on the system.

The data analysis tools provide various views of the collected data. For these tools to provide
routine names and source code correlations to the profile data, DCPI uses its own version of the
OpenVMS debugger shareable image (DCPI$DBGSHR.EXE). To perform routine/source
correlations, DCPI also needs images with debug information (LINK/DEBUG) or debug symbol files
(.DSF files) for the running images (LINK/DSF). Therefore, while the data collection subsystem

© Copyright 2003 Hewlett-Packard Development Company, L.P. 84

collects data on ALL images running on the system, the analysis tools require debug symbol
information to perform in-depth analysis of the collected data.

The following figure illustrates DCPI data collection principles.

 DCPI Data Collection Principles

DCPI Driver

Exec Image
Information

On-Disk
Profile

Database

CPU n

CPU 1

CPU 0

Per-CPU Data

Overflow
Buffers

Hash Table

Buffered
Samples

Loadmap Info

DCPI Daemon

Kernel Mode

User Mode

Image
Activator

Activated Image

 DCPI Data Collection Principles

© Copyright 2003 Hewlett-Packard Development Company, L.P. 85

Alpha Chip Performance Monitoring

Two different methods exist for collecting performance data using the hardware performance counters of
the Alpha chip:

• Aggregate events

This method is available to a varying degree on all existing Alpha chips. Using
this method, DCPI sets a value (sampling period) in the performance monitor
control register on the Alpha processor and also specifies which event to sample.
Then, each time the event occurs, for example, a “CPU cycle has executed,” this
event will be counted. When the number of events has reached the specified
sampling period, an interrupt is generated, and DCPI stores the PC, PID and event
type. For example: If DCPI is sampling the CPU cycles event with a period of
63488, the Alpha chip generates an interrupt every 63488 cycles.

Although collecting aggregate events is generally a far better method for obtaining reliable
profiling data than collecting software performance counters, collecting aggregate events
has certain disadvantages This method relies on the instruction that is active at the time of
the interrupt being, in fact, the instruction that generated it -- in other words, it counts on the
performance monitor interrupts being precise. This is, however, not always the case. Only
a few of the performance monitor events produce a precise interrupt. Also, on recent
processors -- EV6 and later -- none of these interrupts are precise. This might appear to be
an important problem. However, even though the interrupts are imprecise, they are fairly
predictable, which DCPI takes into account.

Another problem with this method is that it allows for “blind spots” -- for example, any
code executing at or above IPL29 will not be profiled, because the performance monitor
interrupts are at IPL29. Such blind spots also include all the PAL code on Alpha, since the
PAL code runs with interrupts turned off. In those cases, the performance monitor interrupt
takes place on the first instruction after the PAL call, or when IPL drops below 29.

• ProfileMe
This method, which is available on EV67 and upward, is in many ways superior to
“aggregate events” ProfileMe uses some specific ProfileMe registers on the Alpha chip.
When DCPI sets the period for ProfileMe, the CPU counts instruction fetches. When the
period has passed (that is, when the instruction fetch counter overflows), the fetched
instruction is tagged as an instruction to profile. Information about this instruction is then
recorded into the ProfileMe registers throughout the execution phases of the instruction.
When the instruction retires, the interrupt is generated. At this point, DCPI reads all the
information out of the on-chip ProfileMe registers. This method of collecting performance
data is much more reliable, and also provides a much more complete picture of how the
different instructions perform.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 86

The following figure shows the flow of events during ProfileMe sampling.

captured!
tagged?

Interrupt!

done?

miss? Addr stage latencies History mp? retired? miss? pc

Dcache

Arith

Icache

Branch
predict

ProfileMe tag!

Fetch
Counter

overflow?

Retire
Exec

IssueMap
Fetch

Internal processor registers

Data Analysis Tools on DCPI for OpenVMS

For the analysis tools to work, they require access to the exact images that were used when the
data was collected. The reason is that the tools read the instructions directly from the image files,
and the analysis becomes meaningless if the instructions read are not the instructions that were
executed. A test is performed that verifies that the image analyzed is the same image as the one
being profiled. This verification is performed by checking various fields in the image header and
comparing them to what was stored in the DCPI profile database (dcpidb) during the data
collection.

The analysis tools can perform breakdown analysis by image or by routine name. To do this
successfully, the analysis tools require debug symbol information for the image analyzed. This
requirement can be met in two ways:

• The image is linked /DEBUG, which might not be practical, because the image might be
INSTALLed on the running system, which requires the image to be linked /NODEBUG

• The image is linked /NODEBUG/DSF, which creates a separate file (imagename.DSF) that

contains all the debug symbol information for the image. Place this debug symbol file in the
same directory as the image file itself. Another alternative is to place all debug symbol files
in a separate location and define the logical name DBG$IMAGE_DSF_PATH to point to
that directory.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 87

The analysis tools provide slightly different views of the collected data. To perform
complete profiling, you must use several of the analysis tools, which are described in the
following table:

Tool Description
DCPIPROF The top-level analysis tool. It provides either a system-to-image breakdown of the

collected samples, or an image-to-procedure breakdown of the collected samples.
DCPIPROF is usually the first tool used to obtain an initial idea of the images in
which the system is spending time. DCPIPROF is then used to obtain an initial idea
of which routines within an image are spending the most time. DCPIPROF analysis
works on data collected via the ProfileMe method and via aggregate events.

DCPILIST The tool to use for detailed analysis within a procedure in a specified image.

DCPILIST can correlate the collected samples to either source lines in the code,
executed Alpha instructions or both. To do source code correlation, it also
needs the actual source file of the analyzed routine. DCPILIST analysis works
on data collected via the ProfileMe method and via aggregate events.

DCPICALC Generates a control flow graph of the procedure or procedures specified for a
given image. DCPICALC augments the graph with estimated execution
frequencies of the basic blocks, cycle-per-instruction counts, and so on.
DCPICALC works only on data collected via aggregate events.

DCPITOPSTALLS Can be used to identify the instructions within the specified image or images
that account for the most stalls. DCPITOPSTALLS only works on data collected
via aggregate events

DCPIWHATCG Generates the same type of control flow graph as DCPICALC, but instead of
producing at the procedure level, it looks at different images. DCPIWHATCG
works only on data collected via aggregate events.

DCPITOPS Takes the output from a DCPICALC run and generates a PostScript™
representation of the execution of the image, for example using different font
sizes to visualize the execution frequencies of the basic blocks. DCPITOPS
only works on data collected via aggregate events.

DCPICAT Presents the raw profile data in a human readable format. It is normally only
used by the DCPI developer, but is included in the DCPI for OpenVMS kit for
convenience. DCPICAT can handle all types of DCPI events.

DCPIDIFF Compares a set of profiles and lists the differences between them. This can be
very useful when looking at different test cases.

As indicated in the preceding table, several tools operate only on data that is sampled using
aggregate events This somewhat limits the ease of analysis for ProfileMe data, but the richness of
the ProfileMe data is sufficient to find all the causes without those tools. DCPICALC, DCPIWHATCG
and DCPITOPSTALLS all use intimate knowledge of the Alpha CPU execution characteristics to
apply qualified guesswork to find out where problems such as stalls occur. With ProfileMe, all data

© Copyright 2003 Hewlett-Packard Development Company, L.P. 88

is collected on each profiled instruction; therefore, the rationale behind not supporting the tools on
ProfileMe is that because the data is collected by the hardware itself, it is much more reliable.

Also note that all the DCPI tools use a UNIX-style command syntax. Because adding DCL syntax to
the tools would not add anything to the functionality of DCPI, the decision was made to omit the
time-consuming effort of providing a DCL interface to the tools.

Profiling of Code Generated “on the Fly”

Some applications such as Java™ generate code on the fly and then execute it. Standard DCPI needs a
persistent on-disk image for the analysis because it reads the instructions from that image during the
analysis. When building its profile during the data collection, DCPI must also build a loaded image map
to calculate image offsets, and so on. None of these exist for dynamically generated code.

DCPI for OpenVMS includes an API for informing the DCPI daemon about the generated code. This
API also provides a way to generate Debug Symbol Table (DST) entries for the generated code. The
generated code and its associated DSTs are then written to a persistent on-disk “pseudo image,”
which is used during the analysis. This is an area where DCPI for OpenVMS has evolved beyond
the DCPI version available on Tru64 UNIX.

DCPI Usage
A typical sequence of commands to run DCPI data collection is the following:

dcpid, one or more dcpictl commands, and finally dcpictl quit to stop the data collection.

By using the DCPI daemon in conjunction with the DCPI driver, you first collect data into on-disk profiles,
which are stored into epochs on disk. The epochs are the only means of applying a time-line to the DCPI
data. This is very important because it is absolutely impossible to see which data in an epoch were
collected during, for example, a peak period of the load. The typical recommendation of a way to obtain
good results when using DCPI is to keep the load stable within an epoch, because this is the only way to
know what is being profiled. Divide any run that includes ramp-up, ramp-down, peak, and low activity
on the system into epochs to correctly determine which profiles came from which test case. The names of
the profiles come from the GMT time when they were created.

Commands to manipulate epochs during the data collection are:

• Dcpid by default creates a new epoch in the current DCPI database. Using the switch –epoch
on the command line while starting dcpid does not create a new epoch, but rather uses the most
recent one in the DCPI database.

• Dcpic l is an interface to the DCPI daemon during the data collection. Ways to manipulate
epochs include the following:

t

o Dcpictl flush, which performs a user-initiated flush of the in-memory profile data of the
DCPI daemon and DCPI driver, into the current epoch in the DCPI database (the logical

© Copyright 2003 Hewlett-Packard Development Company, L.P. 89

name DCPIDB points to the DCPI database). Flushing also occurs automatically
throughout the data collection and into the current epoch.

o Dcpictl epoch, which flushes the in-memory profile data of the DCPI daemon and the
DCPI driver into the current epoch, and then starts a new epoch.

Running the Data Collection
A typical way of starting the data collection is:

$ dcpid cmoveq$dka100:[dcpi.test]
dcpid: monitoring cycles
dcpid: monitoring imiss
dcpid: logging to comveq$dka100:[dcpi.test]dcpid-COMVEQ.log

Because the DCPI daemon runs as an interactive process on OpenVMS, you might want to use the
following command to avoid locking up the terminal where dcpid is run:

$ spawn/nowait/input=nl: dcpid cmoveq$dka100:[dcpi.test]
%DCL-S-SPAWNED, process SYSTEM_187 spawned
dcpid: monitoring cycles
dcpid: monitoring imiss
dcpid: logging to comveq$dka100:[dcpi.test]dcpid-COMVEQ.log

On pre-EV67 processors, the default events to collect are cycles and imis. On EV67 and newer
processors, the default events are pm (ProfileMe) and cycles.

To end the data collection, type the following command:

$ dcpictl quit

Analyzing the Data

After the data collection is completed (or during the data collection, if data has been flushed) you
can then use dcpiprof to take an initial look at the collected profile data:

$ dcpiprof
dcpiprof: no images specified. Printing totals for all images.
Column Total Period (for events)
------ ----- ------
cycles 1755906 65536
imiss 41991 4096

The numbers given below are the number of samples for each
listed event type or, for the ratio of two event types,
the ratio of the number of samples for the two event types.
===
cycles % cum% imiss % image

1349002 76.83% 76.83% 8154 19.42% DISK$CMOVEQ_SYS:[VMS$COMMON.SYSLIB]DECC$SHR.EXE
176821 10.07% 86.90% 919 2.19% DISK$CMOVEQ_SYS:[VMS$COMMON.SYSLIB]LIBRTL.EXE
65432 3.73% 90.62% 426 1.01%

DISK$ALPHADEBUG1:[DEBUG.EVMSDEV.TST.TST]LOOPER.EXE;1
45788 2.61% 93.23% 8651 20.60% SYS$SYSROOT:[SYS$LDR]SYSTEM_SYNCHRONIZATI
27039 1.54% 94.77% 4598 10.95% SYS$SYSROOT:[SYS$LDR]SYSTEM_PRIMITIVES.EX
16045 0.91% 95.68% 844 2.01%

DISK$CMOVEQ_SYS:[VMS$COMMON.SYSEXE]DCPI$DAEMON.EXE;2
7727 0.44% 96.12% 1969 4.69% SYS$SYSROOT:[SYS$LDR]RMS.EXE;
6993 0.40% 96.52% 2102 5.01% SYS$SYSROOT:[SYS$LDR]SYS$PEDRIVER.EXE;
6741 0.38% 96.91% 1762 4.20% SYS$SYSROOT:[SYS$LDR]PROCESS_MANAGEMENT_M
6587 0.38% 97.28% 1215 2.89% SYS$SYSROOT:[SYS$LDR]F11BXQP.EXE;
5742 0.33% 97.61% 1079 2.57% SYS$SYSROOT:[SYS$LDR]SYS$BASE_IMAGE.EXE;
5385 0.31% 97.92% 1434 3.42% SYS$SYSROOT:[SYS$LDR]SYS$EWDRIVER.EXE;
5344 0.30% 98.22% 1371 3.26% SYS$SYSROOT:[SYS$LDR]IO_ROUTINES_MON.EXE;

© Copyright 2003 Hewlett-Packard Development Company, L.P. 90

5015 0.29% 98.51% 1024 2.44% unknown$MYNODE

This first example shows the output of the top-level dcpiprof run. The next step is to decide which
image is interesting, and use dcpiprof to look into that image.

$ dcpiprof DISK$ALPHADEBUG1:[DEBUG.EVMSDEV.TST.TST]LOOPER.EXE;1
Column Total Period (for events)
------ ----- ------
cycles 84210 65536
imiss 540 4096

The numbers shown below are the number of samples for each
listed event type or, for the ratio of two event types, the
ratio of the number of samples for the two event types.
===
cycles % cum% imiss % procedure image
65774 78.11% 78.11% 334 61.85% get_next_random disk$alphadebug1..
16892 20.06% 98.17% 93 17.22% analyze_samples disk$alphadebug1..
1543 1.83% 100.00% 112 20.74% collect_samples disk$alphadebug1..

1 0.00% 100.00% 1 0.19% main disk$alphadebug1.

Usually, you perform the next level of analysis by using dcpilist to look at the actual code
lines/Alpha instructions that the samples are attributed to:

$ dcpilist –both -f dbg$tstevmsdev:[tst]looper.c get_next_random -
disk$alphadebug1:[debug.evmsdev.tst.tst]looper.exe
cycles imiss

0 0 static int get_next_random (void)
0 0 /*
0 0 ** We want to get the next random number sample.
0 0 ** The samples are SAMPLE_ITERATIONS calls apart.
0 0 */
0 0 {
0 0 long int i;
0 0 int sample;

21 0
21 0 0x2045c STL R31,#X000C(FP)

42355 174 i = 0;
3875 27 0x20460 LDL R1,#X000C(FP)

11536 31 0x20464 LDA R1,#XFF9C(R1)
3923 19 0x20468 LDL R0,#X000C(FP)

12001 50 0x2046c ADDL R0,#X01,R0
3764 13 0x20470 STL R0,#X000C(FP)
3772 21 0x20474 BGE R1,#X000006

. . . .
3484 13 0x2048c BR R31,#XFFFFF4

22013 while (i++ < SAMPLE_ITERATIONS)
4248 19 0x20478 BIS R31,R31,R25

37 0 0x2047c LDQ R26,#X0028(R2)
3689 17 0x20480 LDQ R27,#X0030(R2)
7325 28 0x20484 JSR R26,(R26)
6714 38 0x20488 STL R0,#X0008(FP)

0 0 sample = rand ();
195 2 0x20490 LDL R0,#X0008(FP)

0 0 0x20494 BIS R31,FP,SP
40 0 0x20498 LDQ R26,#X0010(FP)
44 1 0x2049c LDQ R2,#X0018(FP)
85 37 0x204a0 LDQ FP,#X0020(FP)
0 0 0x204a4 LDA SP,#X0030(SP)
0 0 return (sample);

$

The real challenge with this detailed information is to understand why the system executes as it
does, and why certain routines are used as often as they are. Then you need to look into the
routines that need to be used frequently if they appear to have performance problems.

In the preceding examples, the top image is not LOOPER.EXE -- which might be the obvious guess,
because a monitor system would show that the process running LOOPER.EXE is the top CPU
consumer. The top image is, rather, the DECC runtime library. The rand() call in the
get_next_random() routine calls into the DECC runtime library, which most likely also uses one or
more routines in LIBRTL, thus having those two as top images. This example shows, in a fairly

© Copyright 2003 Hewlett-Packard Development Company, L.P. 91

simple way, one reason why getting to the root cause of a problem might be a challenge. The
cause of the “problems” seen here is LOOPER.EXE, because it makes excessive calls into the DECC
runtime library. From the initial dcpiprof, believing that the DECC runtime library has problems is
easy. Although this example is simplistic, it demonstrates that further analysis is often needed to find
the root cause of the system behavior.

Some Basic Hints for DCPI Analysis

 A few hints for DCPI analysis follow. To perform a full analysis of an application requires a very
good understanding of the application itself.

• As indicated above, the DCPI notion of a time-line is called an epoch. No way of “time-
stamping” the individual samples exists, other than creating a new epoch. To obtain
predictable results when using DCPI, you must have as a goal a stable load throughout an
epoch. No way exists to analyze less than an epoch afterwards. Creation of epochs is
done during data collection.

• DCPI samples the whole OpenVMS system, not just the “interesting” program. Calls that

are made into shareable images reflect the sum of all the calls made by ALL programs
currently running on the system. A way to break this up into images run within different
processes is to start the data collection with $dcpid –bypid ‘imagename’.

• Be careful when drawing conclusions. As the above example illustrates, drawing incorrect

conclusions is quite easy. Also, a high number of samples in an image/routine might not
mean that this image/routine has any performance problems. A high number of samples
means only that the image/routine was used frequently. You need to analyze further to find
the root cause of the sample count.

• The DCPI daemon, which is a central piece of the DCPI data collector, is a normal user

process. On a heavily loaded system, the DCPI daemon could be starved for CPU time,
which might be seen as “dropped samples” in the DCPI daemon log file (dcpid-
nodename.log) in the DCPI database. The DCPI database is defined by the logical name
dcpidb. In some cases, it is important to start the data collection with a dcpid –nice
‘priority’ to increase the priority of the DCPI daemon process.

• The DCPI daemon scans all available processes during its initialization, to build an image

map for the images in each process. On a system with many processes and a high load,
this initial scan can take a considerable amount of time. If the system is running OpenVMS
V7.3 or higher, starting the DCPI daemon ahead of time, when the system is relatively idle
greatly reduces the time of the DCPI daemon initialization.

• All activity on the system, or lack of activity, is reflected in the collected data. If the system

is idle, nearly 100% of the time will be attributed to SCH$IDLE() in
PROCESS_MANAGEMENT.EXE. This exec loaded image contains other important code;
therefore, a high number of samples might indicate something else. If the percentage of
samples in PROCESS_MANAGEMENT.EXE is similar to the percentage of idle time, it is
fairly safe to make this assumption.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 92

• Try to minimize the noise level during the data collection by stopping unused CPUs or

unneeded software, or both. Do this only during a second-level data collection, when you
are narrowing down the causes of a problem.

A high number of cycles might be normal for the images or routines seen during analysis. When
using ProfileMe, to find images or routines with possible problems, look at the RETIRED/CYCLES
ratio of the routine. Ideally, the Alpha chip is capable of sustaining 4 instructions per cycle. Any
routine with a ratio of 3 is probably impossible to improve, while a routine with a ratio below 1 is
a good suspect for a routine with performance problems.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 93

RMS Performance: Duplicate key chains
Hein van den Heuvel
Overview

Does your application use RMS Indexed files? Do you know what a SIDR is? Do you know what a
duplicate key chain is? You probably should, since SIDRs and duplicate key chains can cause
thousands of read I/Os as the result of a single record insert. With that, they can have a
tremendous impact not just on the application doing the insert, but also on total system
performance. Application managers, of course, notice a slowdown over time, and all too often they
solve that by throwing more hardware at the problem. But what if you already have the biggest
box on the market? Modest file tuning and a convert can help avoid all those read I/Os and
restore performance. I have yet to investigate an RMS application that did not have this duplicate
key chain problem. Maybe this is because I get called in only for bad cases, or because indeed so
many applications have this problem, at least to some degree.

Problem statement
In recent years, HP systems engineers have investigated and improved several applications in large
commercial systems where more than half of the resources for an entire system were wasted by
updating duplicate key chains. In one case, a simple CONVERT of a single indexed file changed
application end-user response time from several minutes to subseconds. In another case, the total
system I/O rate was reduced from 1500 I/Os per second to 200 I/Os per second, all without
changing application functionality. Why did this happen? Because of duplicate key chains.

Duplicate key chains are a (long) series of (single) linked RMS data buckets containing records all
with the same key value and identified only by a single index entry. (The next section clarifies this
definition.) Although the problems described in this paper can occur with primary keys, in real-life
applications they typically occur with secondary keys. Therefore, the illustrations in this paper show
duplicate key chains in secondary keys. It may be that application designers tend to pick unique or
nearly unique keys for the primary key.

To establish a frame of reference, the following section describes the internals of an RMS indexed
file. Subsequent sections describe how to identify the problem and suggest a number of possible
solutions. You will see that some solutions are very easy to implement and can be very rewarding.

For additional information about indexed files and tuning, refer to the Guide to OpenVMS File
Applications in the OpenVMS documentation set.

Overview of RMS Indexed File Internals
RMS stores user data records (UDRs) in primary-key order in buckets. Buckets are the unit of
I/O to and from the file. Typically, a bucket contains 5 to 50 records. Records cannot cross bucket
boundaries. If an entire record does not fit in a bucket, then a new bucket is added to hold the
record. This process is called bucket split. You can identify records both by their key and by a
record file address (RFA). The latter consists of the starting virtual block number (4-byte
VBN) of the bucket in which the record is stored and the record’s ID (2 bytes). The index structure is
a balanced b-tree with pairs of key values and VBN addresses.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 94

http://h71000.www7.hp.com/doc/731FINAL/4506/4506PRO.HTML
http://h71000.www7.hp.com/doc/731FINAL/4506/4506PRO.HTML

For secondary keys (referred to in this article as alternate keys), the data records pointed to by their
key structure are called secondary index data records (SIDRs). A SIDR consists of a key value
(optionally compressed) and an array of one or more record retrieval vectors (RRVs). If your
application allows duplicates for the key in question, then there will be one RRV for each duplicate
value that a key has. Each RRV is 7 bytes in size and consists of a flag byte plus an RFA pointing to
the UDR.

The following figure illustrates an indexed file, a number as primary key, and a name as first
alternate key.

Here’s where the trouble starts
In addition to the file internals described here, RMS follows three rules that work very well in
general but that can add up to serious performance problems in certain situations.

• Duplicate key values are to be added in order of arrival.
• There is only one index entry for a given key value that points to the first bucket that

contains a record with that key value.
• If a new, duplicate value does not fit in the target bucket, then a new record is created in a

new bucket. That bucket is pointed to by the old target bucket by using the next VBN field
in the old bucket header.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 95

What are the implications? Suppose you have an alternate key on an item file to indicate a status.
That status can be ‘Request’, ‘Active’, or ‘Done’. Every new item is inserted into the file with a status
of ‘Request’. Appropriately, according to rule 1, the item is added to the end of the array of
‘Request’ item. Next, the item gets processed, and the status key is updated to ‘Active’. Eventually,
all items are updated to the status ‘Done’. Still, according to rule 1, as an item status is updated to
‘Done’, it is placed at the end of the ‘Done’ array, keeping the first item that was ever ‘Done’ as the
first RRV in the SIDR.
Now, for the sake of the illustration, assume a SIDR can hold up to 100 RRVs. (In actual files, this is
likely to be in the 150 – 1500 range.) The SIDR with the RRVs for the first few ‘Done records fits in
the same bucket as the SIDR for the ‘Active’ key. When the number of RRVs reaches more than a
few hundred, multiple buckets are needed. When the status for item 200 is updated to ‘Done’,
RMS walks down the index to find the first ‘Done’ record. RMS determines that this is the first, but
not the last, SIDR record for the target key, and it reads the next bucket. RMS continues to read
buckets until it reaches the final bucket. It then adds the RRV for item 200 to that SIDR and writes
that bucket out to the file. This is the crux of the problem. The series of linked buckets, all with SIDRs
for the same key value, is called a duplicate key chain. The system will need lots of read I/Os to
perform the single write that it sets out to do. The following figure summarizes this layout.

As long as RMS needs to read just a few more buckets to find the last SIDR for a key, any
additional I/Os don’t cause a problem. However, when there are millions of Done records with
thousands of continuation buckets to store their pointers, it starts to hurt. These thousands of I/Os
will bring any system to its knees, no matter how big the box.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 96

Detecting a duplicate key chain problem

Monitor I/O rates
The biggest indicator that an application may have a problem with duplicate key chains is
excessive I/O rates for seemingly basic functions. For a multiple-key indexed file insert, you can
expect 2 – 4 reads per key and 1 or 2 writes per key, for a total of 10 – 20 I/Os for a typical file.
If you observe an average of 100 I/Os or more per insert, then you need an explanation and a fix,
preferably an easy fix.

A hot-file tool, combined with the SET FILE /STAT command and the standard MONITOR RMS
command can help identify the files to analyze. You should also check out the rms_stats freeware in
the RMS tools directory with the OpenVMS Freeware. The rms_stats software reports I/Os per
record operation for files with RMS statistics enabled.

Analyze files

A tell-tale sign for the duplicate key chain performance problem is the presence of very short
alternate keys (1- 5 bytes) in files with large numbers of records. For example, for a 1-byte field,
there can be 256 distinct values in a single byte (0 – 255). Practically speaking, a single-byte key
has just two key values; for example: M(ale)/F(emale) or Y(es)/N(o). If a file has a million records
and just two key values for a specific index, then there will be at least a half million duplicates on
one of those values. Even a 5-byte key (such as a zip code, an item code, or a date) often has but
a few hundred frequently used values; again, with a million records, several values will have tens
of thousands of duplicates.

The standard tool ANALYZE/RMS/FDL can help identify the problem, but it can also be
misleading. Its DUPLICATES_PER_SIDR counter is reset for every new bucket, treating a continuation
SIDR just like a new SIDR. When ANALYZE reports DUPLICATES_PER_SIDR=500, this is an average
that, to the casual observer, suggests a flat distribution. In reality, though, a single chain of 1000
buckets each with 1000 duplicates each for each single value, and 1000 more SIDRs with a single
entry, averages out to 500 but is more accurately represented by a duplicate count of 1,000,000.

A better indication within the ANALYZE stats is a large difference between the number of level 1
index records and the number of SIDR buckets. The difference indicates the number of buckets
without an index, that is, those in use by duplicate key chains. The following example shows part of
the analysis output for a file with a bucket size of 12:

ANALYSIS_OF_KEY 1
:
DATA_SPACE_OCCUPIED 1968
DUPLICATES_PER_SIDR 969
LEVEL1_RECORD_COUNT 9

For 1968/12 = 143 SIDR buckets, there are just 9 index pointers. This difference suggests an
average of 13 continuation buckets, or an average duplicate key chain of 12000 records. More
likely, there was a single duplicate key chain of 100,000 records spanning 100 or more bucket.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 97

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

RMS Tune Check Tool
A powerful alternative to the standard ANALYZE is the rms_tune_check tool. This tool is available
on the recent RMS tools directory with the OpenVMS Freeware. (An older tool called SIDR, which is
similar to rms_tune_check, is available on earlier Freeware CD-ROMs.)

The rms_tune_check tool scans specifically for duplicate key chains larger then a specified
threshold. The help text for the tool shows an example script that will help analyze all large
indexed files.

The following is sample output from a single real file:

1DGA3014:[xxxxxxxxx.DATA]xxxxxx.IDX;2
- SIDR: Key 2, 203801 Dups in 704 Buckets for value "11"
- SIDR: Key 3, 99252 Dups in 332 Buckets for value "902 "
- SIDR: Key 4, 24648 Dups in 88 Buckets for value " "
- SIDR: Key 5, 462729 Dups in 1580 Buckets for value "01"

The same program can also report a “top ten” list of duplicate values.

That SIDR data, together with a minimal understanding of the application, makes fixing the
performance relatively easy. The following two examples demonstrate a problem situation as found
in a real file earlier this year. Once you have read the next section I believe the solution for both
cases will become obvious. (Hint for later: think null keys and adding segments.)

Duplicate count, Buckets, Key value
--

1759748 4045 000000000
46 1 292164044
27 1 211941745
25 1 211147595
22 1 220995050

Duplicate count, Buckets, Key value
--

220461 189 CA
182738 156 NY
167123 143 TX
104023 89 FL
86792 73 PA
85524 72 MA

How to Solve a Duplicate Key Chain Problem
It is not always possible to solve this performance problem entirely in all cases but more often than
not we can optimize the performance to a large extent. Here are a few techniques to consider.

Drop the Key
The easiest and most effective solution for this duplicate key chain problem is to drop the key
altogether. You laugh; but it might just work for you.

Maybe you have a key on a stray field in a file where some data (perhaps a back reference or
additional date stamp) was going to be stored. However, that functionality in your application

•

© Copyright 2003 Hewlett-Packard Development Company, L.P. 98

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

was not implemented and the field was left filled with blanks all along. The blank key never
seemed to cause problems when the application was tested with a few thousand records, but
now that the file has grown over time to contain millions of record, it is slowing the system down.

How about that key in the Country or State field of an address? Already the set of values to
choose from is limited, and maybe not all are used yet. For example, a company in the United
States might do business with 30 out of 50 states, but in reality the bulk of the records are from
only a handful of states. Perhaps this key is used only by a weekly batch job that reports business
across the states or for a particular state. Consider changing that job to read the whole file by
primary key and to filter for the selected state. Alternatively, you could have it to pass records to
(callable) sort. Consider putting a process in place to convert the file to add a key with the state
field just before it is needed, instead of maintaining it for each record inserted. In all likelihood,
there is very little business value in an online lookup (such as, “Find the first customer in
California.”)

•

Use a NULL KEY value
The null key is a mechanism RMS has always provided specifically to avoid duplicate key chain
problems. Although it is restrictive, it is frequently useful.

The null key value is a double-barreled key attribute you can define with FDL (or XABs for the
diehard programmers). First specify NULL_KEY yes, then specify a single null key byte. For
example, use NULL_VALUE ‘ ‘ for a single space. ANAL/RMS/FDL will report this as follows:

KEY X
CHANGES yes
DUPLICATES yes
:
NULL_KEY yes
NULL_VALUE 32
:
SEG0_LENGTH LL
SEG0_POSITION PP

What’s the consequence for RMS? If a new record is inserted into the file (via the RMS $PUT
operation) and all bytes of this key’s value are identical, and this byte value is that of the one
defined as the NULL KEY value (=SPACE=32 decimal), then no alternate index entry is made for
that record. This solution works immediately for cases with a single-byte key. It also works for the
unimplemented field (as in the stray field example), since such fields often contain a string of space
(or null) characters. This solution does not work directly for the Status=Done example or for the
State=CA scenario, described earlier. For those cases, you need to adapt the application to
replace a single, frequently recurring word by a special, reserved series of repeating characters;
for example, DDDDDD instead of Done or XX for a state. This works around the single-byte
restriction.

For more information, refer to the EDIT/FDL section on null values in the OpenVMS Record
Management Utilities Reference manual.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 99

http://h71000.www7.hp.com/doc/73final/6027/6027pro_008.html

Increase the Bucket Size
Strictly speaking, increasing the bucket size is not a good solution. Rather, it is only an effective
workaround that hides the underlying problem. However, it might provide enough time for you to
implement a real solution. By making the buckets larger, RMS needs far fewer I/Os to find where
to insert a new RRV. There are just as many kilobytes of SIDR data to wade through, but it can be
done with much less overhead. A small alternate-key bucket size of just 2 blocks (found in some
legacy applications) holds fewer than150 RRVs in a SIDR. A typical (and more appropriate) bucket
size of 12 blocks holds almost 900 RRVs. Remember that the maximum bucket size is 63 blocks.
Each such bucket can hold about 4600 pointers.

Note that this should be only a temporary solution, since the system is still doing excess work.

Deduplicate the Key Values
First, let’s remember that a duplicate key value is not a bad thing in itself. Duplicate keys are, in
fact, relatively efficient storage. They tend to be shorter than unique keys and, since all key values
are identical, they allow for 100% key compression. As long as all duplicate pointers fit in a single
bucket, there is no problem using them. Also, many applications can easily tolerate a chain that
spans a few buckets. Only when an application frequently adds duplicate values to an already
long list that spans dozens or hundreds of buckets will duplicates cost too much to update.

Key values are deduplicated by adding additional, changing, bytes to a key field. Sometimes this
is done simply by increasing the key length. For example, suppose a State field is followed by an
adjacent zip code field. By adding a 5-character (or 9-character) zip code to the 2-byte state field
key, the combined key clearly does not become unique. And our goal is not to make them unique.
The millions of duplicates for California will be reduced to a few thousand and will become
manageable.

If no useful adjacent field is available, a key segment can be added. (See the description of
xab$w_pos in the OpenVMS Record Management Services Reference Manual). In the Status
example, you might want to add a Done date or an MMDD from a date field to the Status key,
thereby reducing the number of duplicates from 99% of the file to the number of records processed
every day. (This example assumes that records are purged yearly. If not, a year indicator also
might be needed.)

Please note that no data is added to the record; the Status field in the application is not extended.
Only the definition of the key that used to map directly, and only onto the state field, changes to
point to more data. No change in application code is required.

For other applications, you might be able to add a frequently changing single byte from an
unrelated binary field. With a perfect distribution, this divides the number of duplicates by a factor
of 256. Even with a skewed distribution, you can still expect an improvement of two orders of
magnitude. If only ASCII/decimal bytes are added, then each byte will give only a factor of 10,
and you will need 3 or 4 bytes to sufficiently reduce duplicates. Again, in the Status example, you
can add all or part of an item code (or similar) field as an additional segment.

Adding a segment can be entirely transparent to the application accessing the file by that key as
RMS allows for partial or generic key lookup. The specified key length does not have to match the
full key size; rather, it can be equal to the original key size. (See the description of rab$b_ksz in
the OpenVMS Record Management Services Reference Manual.)

Possible snags associated with adding key segments:

RMS now honors the order of arrival within the new key definition. It takes both the original field
as well as the added segments into account, which can result in a new sort order. This may or
may not be relevant for the application.

•

© Copyright 2003 Hewlett-Packard Development Company, L.P. 100

http://h71000.www7.hp.com/doc/731FINAL/4523/4523pro_019.html
http://h71000.www7.hp.com/doc/731FINAL/4523/4523pro_010.html

Some languages verify that the key specification in the program exactly matches the definition in
the file itself when opening an existing file. This verification creates no problem in MACRO, C,
or BASIC. Programs written in other languages might need to be adjusted and recompiled.

•

• Some languages do not support segmented keys.

Reminder: The goal is not to make unique keys. To have some duplicates, even hundreds, is fine.

Why Me, Why Now?
Because it’s your turn to be a hero!

There are three main reasons for the occurrence of the duplicate key problem: Neglect, Time, and
Fear of All Things New.

As time passes, applications scale to unimagined sizes, and they run with millions of records
although they were designed and tested only for thousands. Brute-force hardware solutions can
ease the pain, but at a price, and eventually hard limits will be reached. Perhaps it will be an
IOLOCK8 VMS internal bottleneck after doing too many I/Os per second. Perhaps the duplicate
key chain used to fit completely in the disk controller cache and now no longer fits. You can buy
still more cache, which would be the “trusted” solution. However, it is far more advisable and
rewarding to change the application so that RMS no longer does all those read I/Os.

Many believe that RMS tuning is “black magic,” but it is not. In a few days of effort, most of us can
pick up the essentials. If you don’t make this effort, then tuning is done only once, shortly after
implementation. Others believe that all that’s required for RMS tuning is a modest automated
procedure with ANAL/RMS … EDIT/FDL/NOINTERACTIVE … CONVERT. Such procedures are
great, but they are not sufficient over years of change.

You will have to make changes to get changes, there is always risk involved with that. You will
also need buy-in from operations, development, and management. But if you find that missing null-
key bit, you could save your company millions of dollars. So use the tools, analyze the data, and
make the change. What a nice change it will be!

Notes
1. The RMS tools directory with the OpenVMS Freeware contains several tools that may be

useful for RMS work, as well as a PowerPoint presentation about RMS tuning and an Excel
spreadsheet to review file design.

2. When dropping an unselective key, forcing an application to read all records by primary
key can help avoid I/Os. Unless there is an associated primary-key order to the alternate
key, you get 1 I/O per record read by an alternate key. Reading a file by primary key,
each single I/O will return a bucket full of records, 5 – 50 records depending on the
bucket and record sizes. Thus, even if an alternate key selects only10% of all records, it
may still be faster to read all records, since more than 10 records fit in a bucket.

3. Duplicate key chains tend not to be cached by global buffers. The subtle reason for this is
that RMS targets buckets to the local cache, if they are not in the global buffer cache yet,
and are requested with write intent. When the duplicate key problem occurs, there is write
intent. On one hand, this is unfortunate, since it would provide a seemingly easy
workaround. On the other hand, it would only hide a problem that ultimately needs to be
fixed. Furthermore, adding thousands of duplicate key buckets to the global buffer cache
can easily exceed the capacity of that cache and make matters much worse for other users
of that cache (that is, thrashing can occur).

© Copyright 2003 Hewlett-Packard Development Company, L.P. 101

http://h71000.www7.hp.com/freeware/freeware50/rms_tools/

4. Duplicate key chains are not restricted to alternate keys; they can also happen with the
primary key. But they don’t, because application designers tend to pick unique or near-
unique primary keys.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 102

A Customer Case Study of Oracle Rdb Database Consolidation

Authors:
Vivi Maurizio, SIAER, System & Development Technical Director
Turrini Giorgio, SIAER, Software Solution Architect, R&D Senior Consultant
Ghedini Vanna, SIAER, Data Base Administrator
Lotti Ermanno, SIAER, System Manager Supervisor
Guerri Stefano, SIAER, System Manager
Rosani Ornella, SIAER, Networking & Database Manager
Revisited by:
Vischio Giovanni, HP, OpenVMS Ambassador, Pre-Sales Technology &
Solution Consultant

Overview
Early last year, SIAER, a long-time Italian OpenVMS customer, began investigating the feasibility of
a project to consolidate server, storage, software applications, and Rdb databases along with the
renewal of its network IT infrastructure. In order to provide the customer with the proof of concept
that the global consolidation was possible with the technology architecture we proposed, HP
invited SIAER to the OpenVMS Solution Center in Nashua, NH, to test its applications and
database in a new environment, representing a significant subset of the global consolidation.

After the visit, SIAER reported success from its tests and great benefits from Oracle Rdb’s Row
Cache technology. SIAER provided us with an exhaustive report of the trials and tests performed.
This article details the experiences of this customer in making use of an OpenVMS cluster and
Rdb's Row Cache feature to achieve great improvements in performance after the consolidation
process. This article is another positive result of the HP and SIAER partnership.

Company Overview

S.I.A.E.R — Sistema Informativo Aziende Emilia Romagna (Information System of Emilia Romagna
Companies) — is a company founded in 1981 (SIAER scarl, Via Malavolti, 5, 41100 Modena,
Italy www.siaer.it). It has 60 employees and approximately 20 independent consultants. It plans
and develops software applications for financial and administrative functions of companies
(payroll, financial accounting, management control, business relations with local and public
government, bank, commercial institution, and others) in an integrated environment of services,
which provides a high level of efficiency and achieves a solid and wide database of craftsmanship
and small-medium business companies. SIAER works in a B2B environment and currently serves 15
associations (provinces), mostly based in north central Italy; those associations belong to CNA, a
primary trade association agency (www.cna.it - www.er.cna.it).

SIAER customers, in turn, provide services to approximately 80,000 firms and employ more than
3,000 operators at local agencies (provinces). Furthermore, SIAER recently implemented SIR,
Sportello Istruttore di Rete, which allows users to interact within local and central administrations;

© Copyright 2003 Hewlett-Packard Development Company, L.P. 103

http://www.siaer.it/
http://www.cna.it/
http://www.er.cna.it/

moreover, it put “On-line Services” in place for its customers that allow companies to access web-
based applications of the current integrated environment of services. SIAER developed a software
application for benchmarking services for Ecipar Emilia Romagna and started the implementation
of EKO (Ecipar Knowledge Organization), an ERP system for global management of educational
services.

In 2001, SIAER, with the contribution of a major Italian telecommunication carrier, built one of the
wider broadband networks in Italy. In January 2003, with the HP and TelecomItalia partnership,
SIAER started the implementation of the IT infrastructure renewal project: near its main office in
Modena, SIAER built the Data Center where all hardware infrastructure and software applications
were brought together through a process of server, storage, database and application
consolidation. During 2003, SIAER will provide its customers with desktop management service
and will assume the shape of one of the most important ASP (Application Service Provider) in Italy.

SIAER’s President is Mr. Giorgio Allari; SIAER CEO is Mr. Lauro Venturi.

Acknowledgements
We would like to thank the following people who spent time and effort to make this document
possible:

Aldo Priora, HP Italy: global organization
Vittorio Mezzano, HP Corp.: global organization
Giovanni Vischio, HP Italy: technical and logistic support
Craig Showers & OpenVMS Solutions Center Team in Nashua, HP Corp.: systems configuration
and support
Bill Gettys, Oracle Corp.: Rdb support
Carlton Davis, HP Corp.: Rdb support

© Copyright 2003 Hewlett-Packard Development Company, L.P. 104

The Server Consolidation Project: “Golem” — The Middleware to
Support Applications

From the functional point of view, all services supplied by SIAER work together; SiDist, a
middleware component developed in-house, provides the overall integration. SiDist, based on a
semantic model, maps object representation, consistency rules, and logic of the distributed model
on a wide number of approximately 200 Rdb/Oracle databases: SiDist manages the distributed
model based on a partial data replication. The project to consolidate hardware infrastructure and
software applications required changing the SiDist distributed model to a centralized model: the
Golem.

Introduction

To evaluate the feasibility of the server consolidation project, we conducted performance and
workload benchmark tests on an OpenVMS AlphaServer cluster (2 x ES45) at the OpenVMS
Solution Center in Nashua, NH (USA).

This testing was part of a wider collaboration with OpenVMS Engineering started in March
2002 when the SIAER CEO visited Nashua. Italian sales and technical account managers
later provided a preliminary global outsourcing proposal in response to SIAER’s request.
This document and the related results of the benchmark testing were prerequisites for a
successful server consolidation.

The scope of the benchmark testing was to:

o Validate configuration and structural changes to the main application program (SiDist)
and to the Rdb database

o Check and validate the new environment (Golem) with an up-to-date hardware and
software system architecture

o Verify concurrent access to the unique Rdb consolidated database by a large number of
users.

Systems and storage were available between July 8th and August 16th. Prior to July 28 we used
systems for experiments, unofficial tests, and preparing scripts and test data. We performed
official tests between July 29th and August 16th when SIAER personnel were available.

This document contains two sections and an Appendix:

o The first section describes the benchmark setup, preparation, and results
o The second section describes the tests performed, system tools, system architecture, data

collections, and results. The contents of this section are fundamental to planning the future
Golem implementation.

o The Appendix gives details of each test.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 105

Benchmark Setup and Preparation
The Environment
The driving force behind this test was the server consolidation project that SIAER planned for 2003.
The current configuration is as follows:

PROVINCE
(Modena) 15 provinces !!!

OFFICE
001

OFFICE
042

!!!

Currently, each location has a system and a database running locally; the software application,
SiDist, manages data replication and coherence. The future configuration will be located in the
“Datacenter,” where a single system will handle the workload of all the offices and the main
province office; the consolidation project foresees a single database instance called “Golem”.

In the current configuration, we have multiple databases with three kinds of data:

! GLOBAL: shared between province and office and between offices (the percentage of sharing

between offices is around 10% — 336 tables)
! LOCAL: each record in these tables is exclusively owned by one office; local data exists also in

the province office (228 tables)
! BROADCAST: the same data is everywhere (147 tables)

Golem will consolidate all the data on a single database. This change leads to the “Visibility
problem”! Golem solves the problem by introducing a table, called the “Visibility table”, which
correlates the user with the data that can be viewed; this table allows more than one user to view
the same data. In the actual design, a single visibility table is used to manage the visibility for a set
of related tables; currently 17 tables are used to manage visibility for 336 global tables.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 106

Test Structure
A general overview of the benchmark shows two kind of process to be run:

o Main interactive processes (one or two processes called A or Osservato) monitored by
SIAER personnel using general system and Rdb-specific tools.

o Many (0 to 500) workload processes (called B or Disturb) in order to simulate an effective
workload against the systems.

We ran both A Osservato processes and B Disturb processes and collected data about system
parameters and elapsed time; that data has been compared to results from a test system (a DS20E)
located in Italy at SIAER.
The target of the test plan is to analyze the A Osservato process when we increase the number of B
Disturb processes.

Golem/Rdb

ES45 0-500 X
A B Osservat

A: Osservato process: an interactive process simulating user
activities at the office.
B: Disturb processes: workload processes simulating overall
activities in a typical office (usually batch processes about report
and printing).
We collected system data and analyzed log files for each A
Osservato process running different workload conditions.

B Disturb process, coded with specific SIAER language (SIC), the implementation language of the
SiDist main SAIER application, simulates back-office activities typical at either local or main offices:
read, modify, add, and delete of records in the Golem database. To accurately simulate back-
office tasks, we also introduced “idle time” that emulates human activities (average idle time was
calculated from DTM (DEC Test Manager) sessions recorded at typical local and main offices in
Italy).

Back-office tasks run against the Golem database to a limited extent (local office data), but batch
tasks (report, printing, and so forth) usually run against the whole Golem database.

The A Osservato process runs at the same time with different workloads (0 to 500 Disturb
processes): we collected elapsed time from all sessions.

From the system log, we estimated transactions of the systems, and from Rdb monitor and log files
we estimated transactions of the database. In both cases we determined an average number of
transactions per second calculated on a timeframe of 90 seconds while A Osservato process and B
Disturb processes were running.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 107

History Reports

July 15th to 26th
During these two weeks we gained access to systems in Nashua and refined systems and
executables as follows:

• Built up and adjusted batch procedures and control statements.
• Made changes to the main program (SiDist) to remove a record update used specifically

by the distributed model of SiDist.
• Improved the algorithm for report generation.
• Developed a detailed plan and schedule for the next two weeks, officially allocated for

test.

July 29th to August 2nd
Monday, Tuesday, Wednesday:
A first step was performed with strange results: we experienced several problems that badly altered
results and the assessment between simulated and real environment: priority, idle time, high
collision rate of database access. We made adjustments and procedure changes and planned a
new series of tests.
Thursday:
Due to network problems, the system was inaccessible from Italy. Support teams in Nashua and HP
and SIAER personnel worked together on the problems. The problems were fixed Thursday evening,
and we planned new tests and batch sessions for that night.
Friday:
The DTM recorded session did not work properly. A new session was recorded and we ran tests
TP1, TP2, TP3, TP4, TP5 Rdb: 80000 global buffers, no global buffers in VLM. (See the appendix
for all references to tests named TPx, TZx, T…)

Summary after the first week:

Many problems have been discovered: DTM recorded sessions are not reliable due to many
failures during execution.

A new strategy has been implemented.

We created two new processes, OSSERVATO and OSSERVATO_L, which simulate human
behavior; in detail:

• OSSERVATO: user session on global data (company and related database structures)
• OSSERVATO_L: user session on local data (local financial accounting)

Both processes execute standard operations on specific database instances (updates, insert, delete)
with idle time between operations in order to simulate human activities.

Those changes do not alter the tests: we still have A Osservato processes and B Disturb processes,
and we still consider it to be a new session when we increase B Disturb processes. The main
change is the Osservato processes: they are now executable and not recorded sessions.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 108

August 5th to 9th
Monday:
Hardware and software were both reconfigured for further test sessions (database and application
server, cluster configuration, and so forth); changes were made to batch procedures to have a
heavier workload (from 230 to 500 users — disturb processes).

Tuesday:
Ran tests TZ2, TZ3, TZ4, TZ5. Rdb: global buffers in VLM 524000, 700 per user

Wednesday:
Ran tests TZ1 and TZ6.
Ran tests TDB1, TDB5, TDB7 with database machine + global buffers in VLM 524000, 700 per
user

Thursday:
Used a new software configuration with row cache; made changes to restore database procedures.
Ran tests TRC5, TRC7 database machine + row cache + global buffers in VLM 524000, 700 per
user

Friday:
Ran a new software configuration with row cache.
Ran test TRC7N: database machine + row cache + global buffers in VLM 524000, 700 per user

Summary after second week:

The changes made the system more robust, reliable, and stable; performance has been increased.
Tests ran as planned without problems in all configurations.

We achieved our planned goals. Due to high loads of work for the systems, and for SIAER and HP
people, we closed all sessions and the week after we conducted manual tests and reorganized the
data and database, collected log files and results, etc.

As agreed early in July, systems and storage were released to HP on August 18th.

August 19th to 27th
To compare test results with the current production environment, we organized a test session with
an internal system (code name: Foa001). We used the same database and scripts with minor
changes due to different hardware (DS20). On August 27th, we ran Osservato processes with a
workload of disturb processes that simulated 25 and 35 users.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 109

Comments About Tests

The Technical Analysis of Benchmark (the second section of this document) details processes and
results. A more in-depth analysis needs more time and work, but we have comments and
information that could be made public, as follows:

The previous figure shows Osservato process elapsed time (this process run against global data) in
different configurations. It may be interesting to look at the left side of the picture where the results
of the DS20 used locally in SIAER can be seen (it simulates offices called Foa001).

The less favorable configuration is database machine; there is no row cache and the result shows a
breakpoint when we have 350 users (or disturb processes).

The other two configurations are better.

Note that the Osservato process is a heavy workload for the system because it runs on global data.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 110

The previous figure shows Osservato_l process elapsed time (this process run against local data) in
different configurations. Look at left side of the picture where the results of the DS20 used locally in
SIAER can be seen (it simulate offices called Foa001).

All configurations are better than today.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 111

Final Results

Let’s review the target and results of our benchmark:

Validate configuration and structural changes to the main application program (SiDist) and to the
Rdb database: this should enable us to implement a unique Rdb database for each single area
(province in Italy).

Functional tests were run before this benchmark, but in our recent tests with new
AlphaServer ES45 systems and MA8000 FC storage, the main program (SiDist) was
stressed as never before: a heavy workload of more than 500 users was simulated; note
that 500 users are 70% of the theoretic overall users of the Modena area. We did not find
a single fault or problem in either system architecture or database.

Check and validate the new environment (Golem) with an up-to-date hardware and software system
architecture as included in the HP proposal, with the goal of offering performance at least as good
as users have today in the distributed environment.

The Technical Analysis of Benchmark (the second section of this document) fully details this
target. Looking ahead, we found that in all configurations we tested, Osservato processes
ran faster than on DS20’s. We cannot say at this point which is the best system
architecture and configuration; it is possible that changes to the database and SiDist code
caused the performance improvements.

Verify concurrent access to the unique Rdb consolidated database by a large number of users.

This was the main concern we had before the benchmark. The tests show that Rdb
manages concurrent access in an excellent way, and database-served queues contained
few entries (20-30) at the worst workload (>500 users simulated). The database table
containing local financial accounting was critical: tests on Osservato_l process do not show
any problems on concurrent access.

Summary

Here are some final comments:

o The code and performance of the SiDist main application can be improved.

o The performance of the Rdb database can be improved through reorganization. Mr. Bill
Gettys from Oracle Corp. in Nashua, after a quick review of our architecture, said the
Golem database could be considered a “very large database”; for those databases, a
correct architecture and organization is absolutely necessary in order to gain better
performance.

o The Golem database has been robust and reliable in all workloads and conditions. Golem

crashed rarely, and the causes were immediately identified.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 112

o The benchmark shows that the application SiDist can be implemented in a consolidated
environment and that the HP proposal well matches application requirements. Now that we
have proven that the server and Rdb consolidation can be implemented on HP architecture,
we have to refine and complete all applications.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 113

Technical Analysis of Benchmark

Methodology
This section describes how we implemented the test strategy. We developed a set of scripts using
SiDist (file extension is .SIC) language; those scripts emulate back-office activities inside local and
main area CNA facilities based on a set of data significant enough for testing. All test procedures
and reports run in batch mode on a specific queue with base priority 4 (the base priority
OpenVMS reserves for interactive processes).
Scripts execute typical activities like record modify, add, delete on local data concerning the local
office itself. On the other side, we also have scripts and reports running on global data and
emulating the main area (province) offices. That is, the first set of scripts run local data against the
local database; the second set of scripts and reports run global data against the “whole database”;
they run in different configurations in order to generate a workload of from 1 to 500 users.

At the same time, two specific procedures, both named ‘osservati’, ran on the system and we
monitored them with different workloads (users) and collected the corresponding elapsed times.
From log files we extracted interesting details concerning overall activities that the system/cluster
can perform; also, using Rdb monitor tools, we collected from the whole database an average
transactions per second measured on a timeframe of 90 minutes during the execution of the
‘osservati’ processes.

As a first step, we executed two DTM interactive procedures to test the system and collect details on
transactions; unfortunately, the DTM recorded interactive sessions were not reliable due to problems
in events synchronization. Therefore, we decided to change our strategy as previously described.

Hardware Configuration
The cluster configuration contained the following hardware:

1. ES45 (sia047), 16 GB memory, 4 CPU 1001MHz
2. ES45 (sia048), 12 GB memory, 4 CPU 1001MHz
3. MA8000 storage array with 5 volumes:

• 1DGA200: 36 GB (2 x 18 GB disks stripe set)
• 1DGA300: 36 GB (2 x 18 GB disks stripe set)
• 1DGA400: 144 GB (8 x 18 GB disks stripe set)
• 1DGA500: 72 GB (4 x 18 GB disks stripe set)
• 1DGA800: 36 GB (2 x 18 GB disks stripe set)

We also used the following equipment for communication and services purposes:

1. DS20 (sia049); it operated as a DTM server and to launch interactive sessions
2. XP1000 (isvlab); it ran as a gateway between lab and external internet access
3. CISCO Firewall

From SIAER facilities in Modena, Italy and Nashua Labs we had access via telnet with triple
authentication: Cisco, isvlab AlphaServer and ES45’s cluster.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 114

Software Configuration
The software configuration was as follows:

1. OpenVMS 7.3 with XFC cache enable
2. Oracle Rdb v 7.1-02
3. Data monitor and collector PSDC
4. SiDist application with Golem support (global database):

• Local and global data access
• Query optimization (for report generation only)

5. DCL procedures to start test execution
6. SiDist procedures, as described in Table 1.

− Table 1: Procedure Descr ptions i

Name Description
Gol_ente_rag.sic Add and update of ENTE (company) record and related structures
Gol_ente_rag_nonew.sic Update of ENTE (company) record and related structures
Gol_pers_cognomi.sic Add and update of PERSONA (person) record and related

structures
Gol_pers_nonew.sic update of PERSONA (person) record and related structures
Gol_genmov1.sic,
gol_genmov2.sic,
gol_genmova.sic,
gol_genmovb.sic,
gol_genmovc.sic

Different procedures to read and manage financial accounting
record and data structure

Gol_crediti.sic Read CLIENTE_CNA record and add / update credits
Gol_f24.sic Mining of ‘pkey’ details for proxy payment
Gol_dett.sic Add and create invoices
Gol_righe.sic Reading and updating all financial accounting record for selected

ENTE
Report gol_tess.sic Complex report (iscritto, casind, impresa,

albo_costruttore, auto_trasportatore,
operatore_estero, esercente_commercio,
tessera,artigiana, separata_sezione, commerciale,
piccola_impresa)

Report gol_repcon.sic Simple report
Report gol_reppag.sic Simple report
Report gol_prato.sic Complex report (iscritto, cliente_cna, impresa,sede,

comuni, casind, contabilità, mia, consulenza, cose,
coge, coge_attivita, pa_mensile, paghe, istanza,
artigiana, separata_sezione, piccola_impresa,
commerciale)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 115

We used the set of scripts, procedures, and records as shown in Table 2.

− Table 2: Sets of Procedures

Workload Set of Scripts

Set ONE (< 350 users, test 1,2,3,4 e 5)

• Ufficio (7 procedures)

o 1 x Gol_ente_rag.sic
o 2 x Gol_ente_rag_nonew.sic
o 1 x Gol_pers_cognomi.sic
o 1 x Gol_pers_nonew.sic
o 2 x Gol_genmov[1|2].sic

• Provincia (7 procedures)
o 1 x Gol_ente_rag_nonew.sic
o 2 x Gol_repcon.sic
o 2 x Gol_reppag.sic
o 2 x Gol_crediti.sic

• Unici (5 reports and procedures)
o 1 x Gol_f24.sic
o 1 x Gol_righe.sic
o 1 x Gol_dett.sic
o 1 x Gol_prato.sic
o 1 x Gol_tess.sic

• Osservati (2 procedures)
o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

© Copyright 2003 Hewlett-Packard Development Company, L.P. 116

Set TWO (~ 350 users, test 6)

• Ufficio (9 procedures)

o 1 x Gol_ente_rag.sic
o 3 x Gol_ente_rag_nonew.sic
o 1 x Gol_pers_cognomi.sic
o 2 x Gol_pers_nonew.sic
o 1 x Gol_genmov[1|2].sic

• Provincia (7 procedures)
o 1 x Gol_ente_rag_nonew.sic
o 2 x Gol_repcon.sic
o 2 x Gol_reppag.sic
o 2 x Gol_crediti.sic

• Unici (5 reports and procedures)
o 1 x Gol_f24.sic
o 1 x Gol_righe.sic
o 1 x Gol_dett.sic
o 1 x Gol_prato.sic
o 1 x Gol_tess.sic

• Osservati (2 procedures)
o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

© Copyright 2003 Hewlett-Packard Development Company, L.P. 117

Set THREE (~ 500 users, test 7)

• Ufficio (13 procedures)

o 1 x Gol_ente_rag.sic
o 4 x Gol_ente_rag_nonew.sic
o 1 x Gol_pers_cognomi.sic
o 3 x Gol_pers_nonew.sic
o 3 x Gol_genmov[a|b|c].sic
o 1 x Gol_crediti.sic

• Provincia (7 procedures)
o 1 x Gol_ente_rag_nonew.sic
o 2 x Gol_repcon.sic
o 2 x Gol_reppag.sic
o 2 x Gol_crediti.sic

• Unici (5 reports and procedures)
o 1 x Gol_f24.sic
o 1 x Gol_righe.sic
o 1 x Gol_dett.sic
o 1 x Gol_prato.sic
o 1 x Gol_tess.sic

• Osservati (2 procedures)
o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

© Copyright 2003 Hewlett-Packard Development Company, L.P. 118

To generate a correct workload, the amount of “set of scripts” was increased. Table 3 shows the
different workload types we used to test the whole architecture.

− Table 3: Workload Types

Workload Type Procedures Processes
1 No workload

2 osservati
2 osservati
Total 2

2 7 local offices x 7 procedures Ufficio (49)
1 main offices x 7 procedures Provincia (7)
5 Unici (5)
2 osservati

61 disturb processes
2 osservati
Total 63

3 14 local offices x 7 procedures Ufficio (98)
2 main offices x 7 procedures Provincia (14)
5 unici (5)
2 osservati

117 disturb processes
2 osservati
Total 119

4 21 local offices x 7 procedures Ufficio (147)
3 main offices x 7 procedures Provincia (21)
5 Unici (5)
2 osservati

173 disturb processes
2 osservati
Total 175

5 28 local offices x 7 procedures Ufficio (196)
4 main offices x 7 procedures Provincia (28)
5 Unici (5)
2 osservati

229 disturb processes
2 osservati
Total 231

6 38 local offices x 9 procedures Ufficio (342)
1 main offices x 7 procedures Provincia (7)
5 Unici (5)
2 osservati

354 disturb processes
2 osservati
Total 356

7 38 local offices x 13 procedures Ufficio
(494)
1 main offices x 7 procedures Provincia (7)
5 Unici (5)
2 osservati

506 disturb processes
2 osservati
Total 508

© Copyright 2003 Hewlett-Packard Development Company, L.P. 119

Table 4 shows the architecture and system configuration models we used to run workload
procedures. The last digit in Test Name indicates the corresponding workload as shown in Table
3; for example, TZ4 means we used workload number 4 from Table 3, which is 175 processes.

− Table 4: Con iguration Models f

Configurations Description Test Name

P Single ES45 and Global Buffer in 32 bit memory (max. 81550

buffers)

Test TP1, TP2,
TP3, TP4 e TP5

Z Single ES45 and Global Buffers in VLM (max. 524000 buffers)

Test TZ2, TZ3,
TZ4, TZ5 e TZ6

DB Application server ES45 and database server ES45 with Global
Buffers in VLM (max. 524000 buffers)

Test TDB5 e TDB7

RC Application server ES45 and database server ES45 with Global
Buffers in VLM (max. 524000 buffers) and row cache configuration
type 1

Test TRC5 e TRC7

RCN Application server ES45 and database server ES45 with Global
Buffers in VLM (max. 524000 buffers) and row cache configuration
type 2

Test TRC7N

© Copyright 2003 Hewlett-Packard Development Company, L.P. 120

The row cache configurations are shown in Table 5.

− Table 5: Row Cache Configurations

Configuration type 1: (326,707,172 byte RAM used)

Users = 700 SLOTS LENGTH
WSSIZ
E Tot.Mem Phy.Mem

SIB003EE70001D04AA_VIS_IDX 13,000 430 10 6,417,828 6,416,416
SIB003EE7001E904AA_VIS_IDX 35,000 430 10 17,173,924 17,172,512
SIB003EE70001D04AA_PK_ENTITA 33,000 120 10 5,918,116 5,916,704
SIB003EE7001E904AA_PK_ENTITA 88,000 120 10 15,420,836 15,419,424
RDB$SYSTEM_AREA_CACHE 200,000 512 10 113,175,972 113,174,560
SIB003459000B404AC_IDX 19,000 450 10 9,743,780 9,742,368
SIB003459000BC04AC_IDX 13,000 450 10 6,679,972 6,678,560
SIB003EE70001D04AA 58,000 600 10 37,957,028 37,955,616
SIB003EE7000DC04AA 30,000 260 10 9,489,828 9,488,416
SIB003EE7001E904AA 130,000 360 10 53,685,668 53,684,256
SIB003EE7002E204AA 57,000 134 10 10,866,084 10,864,672
SIB003EE7002F404AA 50,000 232 10 14,372,260 14,370,848
SIB013A1E0B8E30A4A 14,000 200 10 3,640,740 3,639,328
SIB003EE7000DC04AA_PK_ENTITA 22,000 120 10 3,935,652 3,934,240
SIB003EE7002E204AA_PK_ENTITA 48,000 120 10 8,441,252 8,439,840
SIB003EE7002F404AA_PK_ENTITA 43,000 120 10 7,597,476 7,596,064
S IB013A1E0B8E30A4A_PK_ENTITA 12,000 120 10 2,190,756 2,189,344

Configuration type 2: (396,374,224 byte RAM used)

Users = 700 SLOTS LENGTH
WSSIZ
E Tot.Mem Phy.Mem

SIB003EE70001D04AA_VIS_IDX 13,000 430 10 6,417,828 6,416,416
SIB003EE7001E904AA_VIS_IDX 35,000 430 10 17,173,924 17,172,512
SIB003EE70001D04AA_PK_ENTITA 33,000 120 10 5,918,116 5,916,704
SIB003EE7001E904AA_PK_ENTITA 88,000 120 10 15,420,836 15,419,424
RDB$SYSTEM_AREA_CACHE 200,000 512 10 113,175,972 113,174,560
SIB003459000B404AC_IDX 19,000 450 10 9,743,780 9,742,368
SIB003459000BC04AC_IDX 13,000 450 10 6,679,972 6,678,560
SIB003EE70001D04AA 58,000 600 10 37,957,028 37,955,616
SIB003EE7000DC04AA 30,000 260 10 9,489,828 9,488,416
SIB003EE7001E904AA 130,000 360 10 53,685,668 53,684,256
SIB003EE7002E204AA 57,000 134 10 10,866,084 10,864,672
SIB003EE7002F404AA 50,000 232 10 14,372,260 14,370,848
SIB013A1E0B8E30A4A 14,000 200 10 3,640,740 3,639,328
SIB003EE7000DC04AA_PK_ENTITA 22,000 120 10 3,935,652 3,934,240
SIB003EE7002E204AA_PK_ENTITA 48,000 120 10 8,441,252 8,439,840
SIB003EE7002F404AA_PK_ENTITA 43,000 120 10 7,597,476 7,596,064
SIB013A1E0B8E30A4A_PK_ENTITA 12,000 120 10 2,190,756 2,189,344

© Copyright 2003 Hewlett-Packard Development Company, L.P. 121

SIDIST_HASH_BIS_CACHE 100,000 120 10 17,444,260 17,442,848
SIDIST_HASH_CACHE 200,000 120 10 34,778,532 34,777,120
SIDIST_HASH_LOCALI_CACHE 100,000 120 10 17,444,260 17,442,848

© Copyright 2003 Hewlett-Packard Development Company, L.P. 122

The following list provides the cache names and related descriptions:

• Physical caches in Table 6 (they include data corresponding to all record types in the
database)

− Table 6: Physical Caches

RDB$SYSTEM_AREA_CACHE Physical Rdb system area
SIDIST_HASH_BIS_CACHE Physical area with HASH indexes
SIDIST_HASH_CACHE Physical area with HASH indexes
SIDIST_HASH_LOCALI_CACHE Physical area with HASH indexes

• Logical caches in Table 7 (they include data corresponding to specific record type in the
database)

− Table 7: Table and Index Caches

SIB003EE70001D04AA Table ENTE
SIB003459000B404AC_IDX Index on RAGIONE_SOCIALE of ENTE
SIB003EE70001D04AA_PK_ENTITA Index PK_ENTITA for ENTE
SIB003EE70001D04AA_VIS_IDX Visibility index of hierarchy ENTE
SIB003EE7000DC04AA Table CLIENTE_CNA
SIB003EE7000DC04AA_PK_ENTITA Index PK_ENTITA of CLIENTE_CNA
SIB003EE7001E904AA Table PERSONA
SIB003459000BC04AC_IDX Index on COGNOME of PERSONA
SIB003EE7001E904AA_PK_ENTITA Index PK_ENTITA for PERSONA
SIB003EE7001E904AA_VIS_IDX Visibility index of hierarchy PERSONA
SIB003EE7002E204AA Table CLIENTE_P
SIB003EE7002E204AA_PK_ENTITA Index PK_ENTITA of CLIENTE_P
SIB003EE7002F404AA Table DR_PERSONA
SIB003EE7002F404AA_PK_ENTITA Index PK_ENTITA of DR_PERSONA
SIB013A1E0B8E30A4A Table CONTABILITA
SIB013A1E0B8E30A4A_PK_ENTITA Index PK_ENTITA of CONTABILITA

© Copyright 2003 Hewlett-Packard Development Company, L.P. 123

Analysis of Results
The following figures and tables show all the results we gathered from tests. For detailed
information on the tests, see the Appendix.

Figures 1, 2, 3, and 4 show the details collected from the tests.

Figure 1 shows transaction per second, as Oracle Rdb monitor tool reports, for different workloads.
Configurations are shown in colors, see legend aside. We reported also the comparison system we
used locally: (TC: comparison test).

Note that only the configuration with a global buffer in VLM @ 524000 and single ES45 (TZ) runs
tests 2, 3, 4, and 6 (corresponding to 63, 119, 175 e 356 disturb processes); configurations with
database server, with or without row cache (TDB e TRC), run tests 5 and 7 (231 and 508 disturb
processes). Test 5 (231 disturb processes) has been used against configurations TZ, TDB e TRC.
The configurations with database server, with row cache type 2, run test 7 only (508 processes).
We’ll use TPSS name in order to show TPS (Transactions per second) for workload on SiDist main
application.

− Figure 1: Transaction per Second at a Different Workload (Disturb Processes)

Transactions per second for workload SiDist (TPSS)

0,8

12,5

25,5

37,0

45,1

61,2

48,8

79,8

93,1
97,8

6,0

49,0

5,1
0

20

40

60

80

100

120

0 100 200 300 400 500 600

Disturb Processes

T
P
S
S

TZ
TDB
TRC
TRCN
TC

In Figure 1, note that TPSS has a linear increase on TZ configuration up to test 4 (178 processes);
then, it shows a nonlinear curve, meaning that this configuration cannot support a heavier
workload. If we highlight the configuration with row cache, it shows a linear growth, like a straight
line; if we take only the line portions of tests 1, 2, 3, and 4 for TZ, test 5 for TRCm, and test 7 for
TRCN, we will obtain the results in Figure 2.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 124

Figure 2: Trend of Better Results at a Different Workload (Disturb Processes)

TPSS Trend of better result of different configuration

Function Trend
y = -6E-05x2 + 0.2256x - 0.3919

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Disturb Processes

T
P
S
S I Migliori

Poly. (I Migliori)

Figure 2 shows a linear curve of TPSS; the configuration with database machine and row cache is
the best configuration because it keeps a linear growth at different workload, higher included (508
disturb processes). Also note in this figure that Migliori in the key means "Top of Series."

Figure 3 shows the amount of TPSS per single process (average). We have a very low
decline of performances.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 125

Figure 3: TPSS per Process at a Different Workload

Normalized Transactions

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 100 200 300 400 500 600

Disturb Processes

T
ra

n
sa

ct
io

n
s

/
se

c
@

 s
in

g
le

 p
ro

ce
ss

TZ

TDB

TRC

TRCN

TC

Figure 4: Elapsed time of OSSERVATO_L Process at a Different Workload

Elapsed OSSERVATO_L (financial local accounting)

05.29,37

06.02,07

07.05,34
07.36,00

08.06,74

05.33,26

07.38,68
07.23,89

05.59,38

04.44,98
04.54,22

05.33,40

09.08,86

09.18,77

00.00,00

01.26,40

02.52,80

04.19,20

05.45,60

07.12,00

08.38,40

10.04,80

0 100 200 300 400 500 600

Disturb Processes

E
la

p
se

d TZ

TDB

TRC

TRCN

TC

© Copyright 2003 Hewlett-Packard Development Company, L.P. 126

Figure 4 and Figure 5 show the elapsed time for “OSSERVATI” processes on different workloads.
Note the elapsed time of “OSSERVATI” processes on the configuration named RCN (the database
machine with row cache type 2) and 508 disturb processes. It is clearly less than the elapsed time
on the comparison test system (DS20E) with fewer disturb processes (only 25).

OSSERVATO_L: 07:23:89 versus 09:18:77
OSSERVATO: 06:36:91 versus 07:22:06

We may confirm the configuration used for benchmark is better than one we used on our offices; it
reacts fine even with higher workload on global data.

−

Figure 5: Elapsed time of the OSSERVATO Process on a Different Workload

Elapsed OSSERVATO (user session on global data)

05.23,03

07.22,45

09.33,15

05.20,50

04.57,50

06.31,24

07.07,86

04.51,79

05.01,13 05.21,15

05.18,36

06.42,54
06.36,91

07.22,06

07.31,72

00.00,00

01.26,40

02.52,80

04.19,20

05.45,60

07.12,00

08.38,40

10.04,80

0 100 200 300 400 500 600

Disturb Processes

E
la

p
se

d

TZ

TDB

TRC

TRCN

TC

We also collected a number of transactions on different workloads. The data collected were: ENTE
creation, update of ENTE and related data structure, PERSONE creation and update, and
ACTIVITIES creation.

We normalized transaction data to a one-hour period in order to compare data collected from the
benchmark system and comparison test system.

Tests loading and running really penalize the normalization of test results. In fact, tests with a large
number of disturb processes have been activated in more than one shot because the server, which
handles the generation of disturb processes, did not allow more than 200 disturb processes to start
at a time. Therefore, tests with 231 and 356 processes were loaded in two steps and tests with
508 processes were loaded in three steps. In Table 8, start time is related to start time of the last
step. We also had difficulties in killing all disturb processes not stopping by themselves as the
procedures should do; this may generate some very limited uncertainty in collected results.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 127

Table 8: Transaction Data: Elapsed Time on Different Tests

 ENTE PERSONE ACTIVITIES
Test Processes Start End Elapsed Creation Update Creation Update Creation
TP2 61 08:09:43 09:15:43 01:06:00 29 827 26 1319 5704
TP3 117 09:26:18 10:02:31 00:36:13 44 984 34 1454 5874
TP4 173 10:50:20 11:30:38 00:40:18 18 980 32 1602 6150
TP5 229 11:32:10 12:30:00 00:57:50 0 1907 62 3327 13901

TZ2 63 11:06:01 11:41:46 00:35:45 28 501 14 737 3056
TZ3 119 11:45:19 12:22:45 00:37:26 52 1011 33 1484 5982
TZ4 172 08:29:13 09:06:50 00:37:37 70 1377 44 1987 7784
TZ5 233 10:16:43 11:01:35 00:44:52 111 2105 72 2951 11708
TZ6 353 04:17:25 05:06:00 00:48:35 141 3997 92 6475 13834

TDB5 233 07:52:00 08:36:00 00:44:00 95 2224 72 3199 13298
TDB7 501 10:40:00 11:33:00 00:53:00 274 4497 81 7238 19392

TRC5 231 09:27:02 10:07:06 00:40:04 97 2387 71 3574 14514
TRC7 501 11:19:52 12:01:20 00:41:28 136 4866 94 8690 20840
TRC7N 504 08:12:01 08:54:04 00:42:59 150 4826 109 8899 21433

TC2 25 13:41:28 14:30:15 00:48:47 4 166 2 402 1082
TC3 35 16:22:00 17:16:18 00:54:18 4 318 3 741 1092

© Copyright 2003 Hewlett-Packard Development Company, L.P. 128

Table 9: Transaction Data: Elapsed @ different tests and normalized @ 1 hour

 ENTE PERSONE ACTIVITIES
Test ProcessesCreation Update Creation Update Creation
TP2 61 26.4 751.8 23.6 1,199.1 5,185.5
TP3 117 72.9 1,630.2 56.3 2,408.8 9,731.4
TP4 173 26.8 1,459.1 47.6 2,385.1 9,156.3
TP5 229 0.0 1,978.4 64.3 3,451.6 14,421.8

TZ2 63 47.0 840.8 23.5 1,236.9 5,129.0
TZ3 119 83.3 1,620.5 52.9 2,378.6 9,588.2
TZ4 172 111.7 2,196.4 70.2 3,169.3 12,415.8
TZ5 233 148.4 2,815.0 96.3 3,946.4 15,657.1
TZ6 353 174.1 4,936.3 113.6 7,996.6 17,084.9

TDB5 233 129.5 3,032.7 98.2 4,362.3 18,133.6
TDB7 501 310.2 5,090.9 91.7 8,194.0 21,953.2

TRC5 231 145.3 3,574.5 106.3 5,352.1 21,734.8
TRC7 501 196.8 7,040.8 136.0 12,574.0 30,154.3
TRC7N 504 214.0 6,886.1 155.5 12,697.7 30,582.2

TC2 25 4.9 204.2 2.5 494.4 1,330.8
TC3 35 4.4 351.4 3.3 818.8 1,206.6

To compare the results between the benchmark and the comparison test (TC2, TC3), we projected
the number of processes to 500, as shown in Table 10.

Table 10: 500 Processes Projection

 ENTE PERSONE ACTIVITIES
Test Processes Creation Update Creation Update Creation
TC2 500 98.4 4,083.4 49.2 9,888.6 26,615.6
TC3 500 63.1 5,019.7 47.4 11,696.9 17,237.6

Note that the configuration we tested in Nashua shows better performance at all times with any
kind of workload than the comparison test system at the office.

Database Activity

The Rdb database created on-site at SIAER before our visit to Nashua is the full Modena database;
Modena (a province inside the Emilia-Romagna region) has the largest and most populated
database of the region. We reorganized the database because after the first tests we discovered a

© Copyright 2003 Hewlett-Packard Development Company, L.P. 129

bad organization of the data: excessive fragmented record rate, and a slowness in inserting record
operation due to excessive check on database pages. After the reorganization, we experienced
better performance. To test different configurations, the Modena database was modified. We
changed the parameter related to global buffer allocation (total number of global buffers, global
buffers per process, memory location, and so on) and created Row Caches. Row Caches were
allocated taking care of two topics:

The database analysis told us the record sizing and allocation •
• The knowledge of applications helped us identify where and how Row Caches have to be

applied.

We did not perform any optimization on indexes; we used the original ones at database creation
before visiting Nashua.

The entire database was loaded on a single volume of storage array MA8000; it performed fine in
any test. The I/O rate of the database has been always lower than the I/O rate of the disks where
application data (called KB inside SIAER applications) are stored: the I/O rate was between 800
and 900 I/O per second on the database disk for the test with largest number of disturb processes.

Final Considerations
All tests validated the proposed configuration. This architecture can carry the workload of the
biggest province (see database), Modena, performing better than the current smaller databases at
local offices.
If we look at the results, the better configuration is to have separate database and application
systems – a database machine and an application machine – with row cache: this configuration
provided significant performance increases.

The presence of the “visibility table,” a new table we included specifically for the database
consolidation, adds one more join level for each record (ENTE, PERSONA, ACTIVITIES); that makes
the search operations across the overall database more expensive in contrast to performing current
search operations on single and smaller databases located at each local offices.

The use of row cache on the “visibility table” makes the difference, because we do not perform any
I/O. The usage of PK_ENTITA, as a sorted index, for search operations (RAGIONE_SOCIALE,
COGNOME) in the database, is performed without accessing the records and avoids heavy I/O.
Otherwise, any search operation could involve a huge number of tables. In those cases, splitting
the query into two or more queries and using fewer tables for each query provides better
performance.

A simple consideration we did after the benchmark, and one we are investigating now, is to
consolidate the 180 single/local databases into 15 databases. The number of provinces (Modena
is one of them and has the biggest database after consolidation) requires more attention on how
queries are performed because a “not optimized” query may create bad performances. As stated
earlier, the consolidated database of the test province of Modena is approximately 100 GB. A
specific guideline will be provided to SIAER programmers in order to optimize the code of
applications due to huge dimension of many tables inside the consolidated database (Golem).

© Copyright 2003 Hewlett-Packard Development Company, L.P. 130

Looking Forward
We are reviewing the following recommendations to revise the final SiDist application in the new
consolidated environment:

• Database configuration and management: In creating a single consolidated database
from 15 databases, some of them approximately 80-100 GB, it is extremely important to
have the correct configuration of the database as well as to test and validate all
applications involved. Our experience showed that an application that runs fine in a
distributed environment with many smaller databases may have performance problems
running in a single consolidated database.

• Security: Security is more critical for a consolidated database. A security problem on a

local database can generate a corruption or loss of data only in a single office; for a
consolidated database the consequences can be much greater. We are planning a
“security project” in the near future because of this issue and, because we are also
developing external Web-based applications running together with existing applications
and databases. All the data we manage is sensitive data, confidential and classified, and
requires the implementation of a secure environment.

• Applications: We will review the current set of applications in relation to the following

criteria when they run with the single large database:
o Query optimization: prudent and cautious usage of the “visibility table”, key

factors for faster and wider queries, and security of data management
o Re-use of compiled queries, dynamic query optimization
o Assure security on data access and on qualification of database operation.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 131

Appendix

Test Summary
In this appendix you will find details of the tests we performed and discussed in this document.
Note that in the beginning tests were performed by some recorded (using DTM) interactive session,
but we discontinued these later due to the instability of the DTM recorded operation.

We used the terminology TPSS to mean transactions per second as reported by the database
monitor process. The database monitor collects data for a 90-second time frame when “osservati”
processes run.

“Launch end” means times when all batch disturb processes are up and running (each batch log
reports start-time of processes).

“Test end” means when all disturb processes completed or, for some processes, when they have
been killed.

Global Buffer in Standard Memory (32-Bit)
With the single system, named Sia047 (16 GB, 4 CPU), and the database configured with 81550
global buffer in 32-bit system memory, we ran tests with configurations 2, 3, 4 and 5 of Table 3.
For each configuration, user buffers were allocated when the database was opened in order to
allow connections to “disturb” processes. The results are as follows:
TP2

Date: August 2, 2002
Configuration: 2 (Table 3), P (Table 4)
User DTM1: PPROD01
User DTM2: PPROD50
User “osservati”: PPROD04
Launch start: 08:09:43
Launch end: 08:12:05
Launch DTM: 08:13:23
Launch Osservati: 08:13:57
Test end: 09:15:43
TPSS: 14.2 (with 63 active processes)

TP3

Date: August 2, 2002
Configuration: 3 (Table 3), P (Table 4)
User DTM1: PPROD01
User DTM2: PPROD50
User “osservati”: PPROD04
Launch start: 09:26:18
Launch end: 09:29:31
Launch DTM: 09:29:44
Launch Osservati: 09:52:33
Test end: 10:02:31

© Copyright 2003 Hewlett-Packard Development Company, L.P. 132

TPSS: 24.1 (with 119 active processes)

TP4

Date: August 2, 2002
Configuration: 4 (Table 3), P (Table 4)
User DTM1: PPROD01
User DTM2: PPROD50
User “osservati”: PPROD04
Launch start: 10:50:20
Launch end: 10:55:17
Launch DTM: 10:55:20
Launch osservati: 10:55:20
Fine DTM: 11:18:02
Test end: 11:30:38
TPSS: 32.2 (with 175 active processes)

TP5

Date: August 2, 2002
Configuration: 5 (Table 3), P (Table 4)
User DTM1: PPROD01
User DTM2: PPROD50
User “osservati”: PPROD04
Launch start: 11:32:10
Launch end: 11:44:24
Launch DTM: 11:44:44
Launch osservati: 11:44:44
Test end: 12:30:00
TPSS: 39.5 (with 231 active processes)

Global Buffer in VLM (64-Bit)
With the single system Sia047 (16 GB, 4 CPU) and the database configured with 524000 global
buffer in 64bit system memory (VLM: Very Large Memory), we ran tests with configuration 1, 2, 3,
4, 5, and 6 of Table 3. For each configuration, we allocated 700 buffers per user. The results are
as follows:
TZ1

Date: August 7, 2002
Configuration: 1 (Table 3), Z (Table 4)
Partial collection on “Osservati processes”
Test start: 03:43:01
Test end: 03:47:52

TZ2 (version TZ2B)

Date: August 6, 2002

© Copyright 2003 Hewlett-Packard Development Company, L.P. 133

Configuration: 2 (Table 3), Z (Table 4)
User “osservati”: PPROD04
Launch start: 11:06:01
Launch end: 11:07:35
Launch osservati: 11:09:14
Test closing: 11:39:45
Test end: 11:41:46
TPSS: 12.5 (with 63 active processes)

TZ3 (version TZ3B)

Date: August 6, 2002
Configuration: 3 (Table 3), Z (Table 4)
User “osservati”: PPROD04
Launch start: 11:45:19
Launch end: 11:46:34
Launch osservati: 11:49:55
Test closing: 12:20:39
Test end: 12:22:45
TPSS: 25.5 (with 119 active processes)

TZ4 (version TZ4B)

Date: August 6, 2002
Configuration: 4 (Table 3), Z (Table 4)
User “osservati”: PPROD04
Launch start: 08:29:13
Launch end: 08:31:20
Launch osservati: 08:41:13
Test closing: 09:02:39
Test end: 09:06:47
TPSS: 37.0 (with 175 active processes)

TZ5

Date: August 6, 2002
Configuration: 5 (Table 3), Z (Table 4)
User “osservati”: PPROD04
Launch start part 1: 10:16:43
Launch end part 1: 10:20:00
Launch start part 2: 10:24:04
Launch end part 2: 10:24:54
Launch osservati: 10:27:40
Test closing: 10:56:06
Test end: 11:01:40
TPSS: 45.1 (with 231 active processes)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 134

TZ6

Date: August 7, 2002
Configuration: 6 (Table 3), Z (Table 4)
User “osservati”: PPROD04
Launch start part 1: 04:11:15
Launch end part 1: 04:13:05
Part 1 processes active at: 04:16:05
Launch start part 2: 04:17:25
Launch end part 2: 04:19:10
Part 2 processes active at: 04:25:27
Launch osservati: 04:26:39
Osservati processes active at: 04:27:55
Test closing: 05:00:00
Test end: 05:06:00
TPSS: 61.2 (with 356 active processes)

Database Machine, Global Buffer in VLM
With the system Sia047 (16 GB, 4 CPU) configured as the application server and the second
system, named Sia048 (12 GB, 4 CPU) configured as the database server, and the database
configured with 524000 global buffer in 64-bit system memory (VLM: Very Large Memory), we ran
tests with configuration 1, 5, and 7 of Table 3. For each configuration, we allocated 700 buffers
per user.
TDB1

Date: August 7, 2002
Configuration: 1 (Table 3), Z (Table 4)
Partial collection on “Osservati processes”
Test start: 07:36:48
Test end: 07:41:49

TDB5

Date: August 7, 2002
Configuration: 5 (Table 3), DB (Table 4)
User “osservati”: PPROD04
Launch start part 1: 07:52:00
Launch end part 1: 07:54:33
Part 1 processes active at: 07:55:33
Launch start part 2: 07:56:32
Launch end part 2: 07:57:34
Part 2 processes active at: 07:58:40
Launch osservati: 07:59:43
Osservati processes active at: 08:00:58
Test closing: 08:30:50
Test end: 08:35:38
TPSS: 48.8 (with 231 active processes)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 135

TDB7

Date: August 7, 2002
Configuration: 7 (Table 3), DB (Table 4)
User “osservati”: PPROD04
Launch start part 1: 10:40:05
Launch end part 1: 10:41:44
Part 1 processes active at: 10:42:56
Launch start part 2: 10:44:18
Launch end part 2: 10:45:47
Part 2 processes active at: 10:47:50
Launch start part 3: 10:49:06
Launch end part 3: 10:51:07
Part 3 processes active at: 10:55:23
Launch osservati: 10:55:27
Osservati processes active at: 10:56:34
Test closing: 11:29:49
Test end: 11:33:53
TPSS: 79.8 (with 508 active processes)

Database Machine, Global Buffer and Row Cache in VLM
With the system Sia047 (16 GB, 4 CPU) configured as the application server and the second
system Sia048 (12GB, 4CPU) configured as the database server, and the database configured
with 524000 global buffers in 64-bit system memory (VLM: Very Large Memory) and two specific
row cache configurations in VLM (see Table 5), we ran tests with configurations 5 and 7 of Table
3. For each configuration, we allocated 700 buffers per user.
TRC5

Date: August 8, 2002
Configuration: 5 (Table 3), RC (Table 4)
User “osservati”: PPROD04
Launch start part 1: 09:21:36
Launch end part 1: 09:24:09
Part 1 processes active at: 09:25:56
Launch start part 2: 09:27:02
Launch end part 2: 09:30:04
Part 2 processes active at: 09:30:58
Launch osservati: 09:32:30
Osservati processes active at: 09:33:44
Test closing: 10:04:10
Test end: 10:07:06
TPSS: 49.0 (with 231 active processes)

TRC7

Date: August 8, 2002
Configuration: 7 (Table 3), RC (Table 4)
User “osservati”: PPROD04

© Copyright 2003 Hewlett-Packard Development Company, L.P. 136

Launch start part 1: 11:10:00
Launch end part 1: 11:11:38
Part 1 processes active at: 11:14:11
Launch start part 2: 11:15:22
Launch end part 2: 11:16:55
Part 2 processes active at: 11:19:00
Launch start part 3: 11:19:52
Launch end part 3: 11:22:03
Part 3 processes active at: 11:26:46
Launch osservati: 11:27:58
Osservati processes active at: 11:29:33
Test closing: 11:58:25
Test end: 12:01:20
TPSS: 93.1 (with 508 active processes)

TRC7N

Date: August 9, 2002
Configuration: 7 (Table 3), RCN (Table 4)
User “osservati”: PPROD04
Launch start part 1: 08:02:31
Launch end part 1: 08:04:16
Part 1 processes active at: 08:06:07
Launch start part 2: 08:07:14
Launch end part 2: 08:08:48
Part 2 processes active at: 08:10:07
Launch start part 3: 08:12:01
Launch end part 3: 08:14:05
Part 3 processes active at: 08:18:58
Launch osservati: 08:20:04
Osservati processes active at: 08:21:16
Test closing: 08:50:59
Test end: 08:54:04
TPSS: 97.8 (with 508 active processes)

Comparison Test
To better evaluate results, we got ready a comparison system that looks like a typical system at
local offices (Foa001); it’s a DS20 single CPU@500MHz processor and 1GB memory; disks are as
follows:

• DKA0 (9GB) OpenVMS operating system and layered products
• DKA100 (9GB) database: user data
• DKA200 (36GB) application: user space - database: root file
• DKA300 (36GB) not used
• DKC0 (18GB) database: rdb$system space, user space
• DKC100 (36GB) database: RUJ
• DKC200 (36GB) database: user space
•

© Copyright 2003 Hewlett-Packard Development Company, L.P. 137

mailto:CPU@500MHz

The comparison system refers to a local office with a number of users between 25 and 35; we
adjusted the scripts launching “disturb” processes in order to emulate a typical office workload and
related number of users. Osservati processes remains as before.

Table 11: Comparison Test Configuration

Configuration TC1 (2 users) • Only Osservati Processes (2 procedures)

o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

Configuration TC2 (25 users) • Disturb Processes Ufficio (23 procedures)
o 1 x Gol_ente_rag.sic
o 5 x Gol_ente_rag_nonew.sic
o 1 x Gol_pers_cognomi.sic
o 5 x Gol_pers_nonew.sic
o 5 x Gol_genmovu[1|2|3|4|5].sic
o 1 x Gol_repcon.sic
o 1 x Gol_reppag.sic
o 4 x Gol_crediti.sic

• Osservati Processes (2 procedures)
o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

Configuration TC3 (35 users) • Disturb Processes Ufficio (33 procedures)
o 1 x Gol_ente_rag.sic
o 10 x Gol_ente_rag_nonew.sic
o 1 x Gol_pers_cognomi.sic
o 10 x Gol_pers_nonew.sic
o 5 x Gol_genmovu[1|2|3|4|5].sic
o 1 x Gol_repcon.sic
o 1 x Gol_reppag.sic
o 4 x Gol_crediti.sic

• Osservati Processes (2 procedures)
o 1 x Gol_osservato.sic
o 1 x Gol_osservato_l.sic

Comparison tests provided the following results:

ENTE PERSONE
ACTIVITIE
S

OSSERVATO OSSERVATO_L

test date start end creation update creation update creation elapsed CPU elapsed CPU
Tc1 27/08 05:20.5

0
03.90 05:59.3

8
09.53

Tc2 27/08 13:41:2
8

14:30:1
5

4 166 2 402 1082 07:22.0
6

04.55 09:08.8
6

10.96

Tc3 27/08 16:22:0
0

17:16:1
8

4 318 3 741 1092 07:31.7
2

04.71 09:18.7
7

11.45

© Copyright 2003 Hewlett-Packard Development Company, L.P. 138

Test Summary for Comparison
Tests run on local DS20 single CPU processor running at 500 Mhz and 1 GB memory.
TC1

Partial collection on “Osservati processes”
TC2

Date: August 27, 2002
Configuration: 2 (Table 8)
User “osservati”: PPROD04
Launch start: 13:41:28
Launch end: 13:41:37
Processes active at: 13:48:39
Launch osservati: 13:48:42
Osservati processes active at: 13:51:02
Test closing: 14:29:13
Test end: 14:30:15
TPSS: 5.1 (with 25 active processes)
TC3

Date: August 27, 2002
Configuration: 3 (Table 8)
User “osservati”: PPROD04
Launch start: 16:22:00
Launch end: 16:22:04
Processes active at: 16:32:08
Launch osservati: 16:32:25
Osservati processes active at: 16:35:28
Test closing: 17:14:40
Test end: 17:16:18
TPSS: 6.0 (with 35 active processes)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 139

Best of the HP Customer Support Center
Mark ‘Jilly’ Jilson
Service/Support Consultant
Customer Solutions & Support Center
OpenVMS Internals, Drivers & Performance

Overview
One of the most frequent problem statements that the CSC receives is one asking help in finding
out why some system behavior changed. These might be questions like “why is a job taking
longer to run?” or “why is a system running slower?” or “why is that backup job using more tape?”
etc. One of the basic steps in responding to and analyzing such problems is to compare before
and after profiles of the involved areas, but the CSC very often finds that there are no profiles to
compare. This article describes some of these profiles and methods for collecting them. These
profiles should be stored in at least two places outside of the system/cluster they cover and I
advocate at least one paper copy so that when you really need them they can be accessed.
With before and after profiles, it becomes a lot easier to pinpoint what area has changed and
often directly answers the "What Changed?" question.

What Changed?

What devices are there on the system? What are their hardware revision levels and what are
their firmware versions? How do the system devices look from the utilities that can see them?

Configuration Profile
Start with the device listing that the console can provide. With the OpenVMS system shut down
(in a cluster, preferably have all nodes shut down), capture the output from the available console
SHOW commands. Available items will vary from system to system but the following commands
should work for most systems. If any of these commands don't work, then check the system's
hardware User's Guide or consult with your hardware services representative or the CSC. To
capture this information without transcribing it requires the use of a hardcopy console or a
console management setup.

For Alpha systems use:

>>> SHOW CONFIG
>>> SHOW DEVICE
>>> SHOW MEMORY
>>> WWIDMGR -SHOW WWID -FULL

For VAX systems use:

>>> SHOW CONFIG
>>> SHOW DEVICE
>>> SHOW MEMORY
>>> SHOW SCSI
>>> SHOW DSSI
>>> SHOW VERSION

© Copyright 2003 Hewlett-Packard Development Company, L.P. 140

With OpenVMS booted on all cluster nodes, use the following command to capture configuration
information:

$ SHOW DEVICE/FULL/OUTPUT={file.ext}

Editing this output to remove template devices and transient devices,
like LTA or TNA, is recommended. But leave in any devices that are
specifically created at startup like printer ports.

On OpenVMS Alpha, use the following commands to capture configuration information:

$ ANALYZE/SYSTEM
SET OUTPUT {file.ext}
CLUE CONFIG
CLUE SCSI/SUMMARY
EXIT

With the help of your hardware services representative and the CSC, annotate these displays
with what the devices are, where they live in the system enclosure, card cage, etc., what external
port they connect to on the system enclosure, what hardware settings they have (SCSI ID, CI
node number, etc.), what hardware revision they are at (if any) and what firmware they are
running (if any). If you make use of the Golden Eggs diagrams, available at
http://h18000.www1.hp.com/info/golden-eggs/ , then you can annotate these with references to
this collected output. If any of the devices have logical names or are used by print queues or
execution queues, or you have specific names for a device, note this information also.

For storage subsystems, collect the same type of information. Consult the User's Guide for the
storage subsystem to determine what information is available and how to acquire it.

Hardware Setup Profile

This information is stored in the system console that selects boot options, device operating
options, reboot options, etc.

For Alpha systems, use the following command at the console to collect this information:

>>> SHOW *

For VAX systems, use the following commands at the console to collect this information:

>>> SHOW BFLG
>>> SHOW BOOT
>>> SHOW ETHERNET
>>> SHOW HALT
>>> SHOW SCSI_ID

Annotate these displays with descriptions for what disk device and root the system is booting
from, operating options for network cards, operating options for SCSI cards, etc.

System Setup Configuration
This is the information that is used at boot time to configure the devices on the system and to set
operating parameters.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 141

For OpenVMS Alpha, collect output from the following commands:

$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:ALPHAVMSSYS.PAR
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:ALPHAVMSSYS.OLD
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:AUTOGEN.PAR
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:SETPARAMS.DAT
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:PARAMS.DAT
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:MODPARAMS.DAT

For OpenVMS VAX, collect output from the following commands:

$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:VAXVMSSYS.PAR
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:VAXVMSSYS.OLD
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:AUTOGEN.PAR
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:SETPARAMS.DAT
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:PARAMS.DAT
$ DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$SYSTEM:MODPARAMS.DAT

The dates and ids of these files will show when AUTOGEN was last executed, when parameters
might have been changed with SYSBOOT or SYSGEN without an AUTOGEN, or if a parameter
change was contemplated but not actually implemented.

Execute the following commands to capture system parameter information in a file:

$ MCR SYSGEN
USE CURRENT
SET/OUTPUT {file.ext}
SHOW/ALL
SHOW/SPECIAL
EXIT

The output file will now contain the settings of all the system parameters in the on-disk system
parameter file.

Save a copy of the system files SYS$SYSTEM:MODPARAMS.DAT,
SYS$SYSTEM:SYCONFIG.COM, and SYS$SYSTEM:SYS$DEVICES.DAT and add any other
device creation commands that are executed at system startup time like LTA or TNA devices
used for printing. With this information it will be very easy to determine if anything in the system
setup might have been altered.

System Boot Profile

Save the console output from a normal system startup. If startup logs via STARTUP_P2 are
implemented, then also save a copy of a log from a normal system boot. If possible, boot an
OpenVMS Alpha system with full verbose boot options at the console by setting the boot flags to
30000 and save the console output from this. If possible boot the system with STARTUP_P2 set
to TRUE and save the console output. Annotate these outputs with what portions of startup are
executing.

Save the output from the following command:

DIRECTORY/DATE=(CREATED,MODIFIED)/FILE_ID SYS$STARTUP:*.COM,
SYS$SYSTEM:*.COM

Additionally gather this file information from any other system startup procedure that is executed.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 142

After the system has booted normally, log in and save the output from the following commands:

$ ANALYZE/SYSTEM
SET OUTPUT {file.ext}
SHOW SUMMARY/IMAGE
EXIT

Annotate this output with descriptions of any application processes.

Performance Profile

A system performance profile, at minimum, should represent significant time periods in the
system operation cycle and should cover a maximum 30 minutes of elapsed time. Save both the
raw performance data and the performance reports for these time periods. OpenVMS provides
the MONITOR utility and the ECP Data Collector and Performance Analyzer is freely available at
http://h71000.www7.hp.com/openvms/products/ecp/index.html; either or both of these can be
used.

OpenVMS provides examples of using MONITOR to gather performance data and generate a
performance report in the following files: SYS$EXAMPLES, SUBMON.COM, MONITOR.COM &
MONSUM.COM . These files need very little editing to be usable. The following are the
minimum MONITOR commands needed to gather a performance profile that covers 30 minutes
of elapsed time; these commands can be submitted via batch.

$ MONITOR
ALL_CLASSES/RECORD={recfil.ext}/NODISPLAY/INTERVAL=120/END="+0:30:0.0"
$ MONITOR ALL_CLASSES,DISK/ITEM=ALL,SCS/ITEM=ALL/NODISPLAY -
 /INPUT={recfil.ext}/SUMMARY={file.ext}

Both the recording file and the summary file are saved.

If MONITOR data is already being saved, then here is an example of a command for creating a
report if the period from 9am to 9:30am is a peak operational time.

$ MONITOR
ALL_CLASSES,DISK/ITEM=ALL,SCS/ITEM=ALL/NODISPLAY/SUMMARY={file.ext} -
 /INPUT={recording file that covers the date}/BEGIN=12-MAY-2003:09:00:00.00 -
 /END=12-MAY-2003:09:30:00.00

Both the recording file and the summary file are saved.

If ECP is collecting data, then the following command is an example of creating a report if the
peak time period of interest was 13:30 to 14:00.

$ PLAN ANALYZE/CPC_VMS_FILE=ECP$PERF_DATA:NODE_2003MAY12_1.CPC -
 /BEGIN=12-MAY-2003:13:30:00.00/END=12-MAY-2003:14:00:00.00 -
 /ANALYZE_REPORT_FILE={file.ext}

Both the report and the .CPC file are saved.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 143

In addition to overall system performance reports that cover significant operation cycles, collect
accounting information from significant jobs that execute on the system. These are jobs that you
expect to complete in a certain elapsed time or are usually finished before a certain time. Also
the accounting logs from backup jobs should be recorded. If any of these jobs have multiple
parts to them, then adding SHOW PROCESS/ACCOUNTING commands to the job's command
procedure(s) are beneficial. Then, when needed, different portions of a job can be compared
before and after. If you have any application benchmark jobs or can create some simple
benchmark jobs, save the accounting information from these. Finally, if you have application-
provided performance data (for example, number of queries per minute or number of orders per
hour, etc.) save this also.

Managing and Using the Profiles

Profiles should be refreshed periodically and after any changes are made to the system or the
system's application load. Integrating these profiles into your system management structure will
ensure that when the time comes to answer the question "What Changed?", you will be well
prepared to quickly zero in on the area responsible for the change.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 144

Best of Ask the Wizard
Steve Hoffman “Hoff”
HP OpenVMS Consulting Engineer

HP OpenVMS Support Resources and How to Use Them
HP provides a variety of support resources including web sites and customer support
centers. In addition, contract support customers have access to associated databases and
services. To aid its customers, HP workers also have access to a problem escalation
process and problem tracking, discussion forums, and research tools.

Many of the available OpenVMS support resources are accessible to all OpenVMS
customers. Among these, the OpenVMS Frequently Asked Questions (FAQ) and the
OpenVMS Ask The Wizard area contain answers to many common questions, such as:

o How to reset a forgotten password on the SYSTEM username.
o How to set up or troubleshoot an IP printer.
o How to get support for OpenVMS questions.

The FAQ and the Ask The Wizard areas are both available at the following web site:

http://www.hp.com/products/openvms/

The HP Natural Language Search Assistant (AskQ) area provides direct access into the
HP support databases; access to a subset of the source code examples and the support
articles that are available to contract support customers. A natural-language search
engine is provided at the AskQ web site:

 http://www.itrc.hp.com/service/james/CPQhome.do

Major and active OpenVMS discussion forums include the Usenet newsgroup
comp.os.vms and the DECUServe notes conferences:

news://comp.os.vms/
telnet://eisner.decus.org/

Search engines are also available for these forums.

Other newsgroups, web sites and discussion forums are available as well. The OpenVMS
FAQ has a complete list of these support resources and pointers to common applications
and to many of the available Freeware packages. If searching for commercial
applications and options, the HP DSPP web site and its search engine are available for
locating commercial applications for OpenVMS. The FAQ also has pointers to AskQ
and to the online OpenVMS documentation web site. Pointers to example source code
are also available within the FAQ.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 145

http://www.hp.com/products/openvms/
http://www.itrc.hp.com/service/james/CPQhome.do
telnet://eisner.decus.org/

ECO Kits
Information on the OpenVMS ECO (patch) kits is available by FTP file server and by
search engines. The following ECO search engine can acquire lists of ECO kits by
installation rating, making it easier for you to keep the current mandatory ECO kits
installed for your particular OpenVMS release:

http://ftp.support.compaq.com.au/pub/ecoinfo/ecoinfo/top.htm

Email notifications of new ECO kits are also available. The ECO notification
subscription web site is:

http://www.support.compaq.com/patches/mailing-list.shtml

Direct and Formal HP Assistance
For customers wishing to request direct and formal HP assistance, the customer support
centers are the best initial contacts. When your request for support is received at the local
or regional support center for your geography, the information you need to provide
includes an initial description of the particular problem. Specific information on logging
calls and on your support center telephone number are all available within your hardware
or software support contract documentation.

To speed the resolution of your support call, please follow these tips:

o Be very specific in your problem description. Generic problem statements such
as, "It doesn't work" or "It crashed", can and often do cover huge numbers of
potential problems and even larger numbers of potential causes.

o Provide the product version and OpenVMS platform information, as many
problems can be version- or platform-specific.

o Reference the specific commands or utilities that might provoke the problem, the

full text of any error messages displayed, and the expected outcome.
o Provide information on any installed ECO kits.

The more general the problem statement, the longer it often takes to determine the details
of the problem and to then provide you with the resolution.

Regardless of the nature of the particular problem, providing HP with a method to easily
reproduce the reported problem can be invaluable in providing you with the quickest
response. Accordingly, HP will often request a reproducer, a way to trigger and to
localize the problem and to subsequently verify the correctness of the resolution. Note
that the smaller, simpler, and more targeted the reproducer; the faster HP can obtain a
resolution.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 146

http://www.support.compaq.com/patches/mailing-list.shtml

Software Code Reproducer
An example of a concise software source code reproducer follows:

$ set noon
$ if f$search("sys$share:zzzshr.exe") .nes. ""
$ then
$ known = f$file_att("sys$share:zzzshr.exe","known")
$ if known
$ then
$ install delete sys$share:zzzshr.exe
$ endif
$ delete sys$share:zzzshr.exe;*
$ endif
$ if f$search("sys$scratch:zzz.exe") .nes. ""
$ then
$ known = f$file_att("sys$scratch:zzz.exe","known")
$ if known
$ then
$ install delete sys$scratch:zzz.exe
$ endif
$ delete sys$scratch:zzz.exe;*
$ endif
$ cc zzz/def=ZZZ/obj=sys$scratch:zzz.obj
$ cc zzz/def=ZZZSHR/obj=sys$scratch:zzzshr.obj
$ goto 'f$getsyi("ARCH_NAME")'
$Alpha:
$ link/notrace/nodebug -
sys$scratch:zzzshr/share=sys$share:zzzshr.exe,sys$input/opt
symbol_vector=(ChkPrv=procedure)
gsmatch=lequal,1,0
identification="zzzshr v1.0"
$ goto common
$VAX:
$ macro sys$input/object=sys$scratch:zzzxfr.obj
 .title $$$xfrvec transfer vector(s)
 .ident /zzzxfr v1.0/
 .psect $$$xfrvec,exe,shr,nowrt,rd,pic,quad
 .macro xfrvec entrypoint
 .align quad
 .transfer entrypoint
 .external entrypoint
 .mask entrypoint
 jmp l^entrypoint+2
 .endm
 xfrvec ChkPrv
 .end

© Copyright 2003 Hewlett-Packard Development Company, L.P. 147

$ link/notrace/nodebug -
sys$scratch:zzzshr,sys$scratch:zzzxfr/share=sys$share:zzzshr.exe,sys$input/opt
cluster=$$$xfrvec
collect=$$$xfrvec,$$$xfrvec
gsmatch=lequal,1,0
identification="zzzshr v1.0"
$ goto common
$Common:
$ link/notrace/nodebug -
/execu=sys$scratch:zzz.exe sys$scratch:zzz,sys$input/opt
sys$share:zzzshr/share
$
$
$! SYSLCK disabled, not installed, not installed with SYSLCK privilege
$
$ set process/privilege=nosyslck
$ run sys$scratch:zzz
$
$! SYSLCK enabled, not installed, not installed with SYSLCK privilege
$
$ set process/privilege=syslck
$ run sys$scratch:zzz
$ set process/privilege=nosyslck
$ install create sys$share:zzzshr
$
$! SYSLCK disabled, installed, not installed with SYSLCK privilege
$
$ run sys$scratch:zzz
$ install create sys$scratch:zzz
$ run sys$scratch:zzz
$
$! SYSLCK disabled, installed, installed with SYSLCK privilege
$
$ install replace sys$scratch:zzz/priv=syslck
$ run sys$scratch:zzz
$
$! clean up...
$
$ install delete sys$scratch:zzz
$ install delete sys$share:zzzshr
$ delete sys$scratch:zzz.exe;*
$ delete sys$share:zzzshr.exe;*
$
$ exit

 --

© Copyright 2003 Hewlett-Packard Development Company, L.P. 148

#include <prvdef.h>
#include <ssdef.h>
#include <starlet.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef ZZZ
main()
 {
 int RetStat, ChkPrv();
 RetStat = ChkPrv();
 return 1;
 }
#endif
#ifdef ZZZSHR
int ChkPrv()
 {
 int RetStat;
 int PrvQWIn[2] = {0,0}, PrvQWOut[2]= {0,0};
 RetStat = sys$setprv(0, PrvQWIn, 0, PrvQWOut);
 if (PrvQWOut[0] & PRV$M_SYSLCK)
 printf("SYSLCK enabled\n");
 else
 printf("SYSLCK disabled\n");
 return RetStat;
 }
#endif

This example shows a complete and concise problem reproducer that was constructed by
HP in response to a problem report reputing errors within the OpenVMS handling of the
SYSLCK privilege and installed images. Based on this reproducer, the problem report
was shown to be incorrect or incomplete, and there were additional factors involved in
the problem trigger.

System Bugchecks
The most serious OpenVMS problems can involve a system bugcheck. When an
unrecoverable error is detected within OpenVMS, a bugcheck system crash is triggered.
By default, OpenVMS is configured to write the system state to the system dumpfile or
potentially to the system pagefile during the bugcheck processing. The contents of this
system dump file can be central to the resolution of fatal system failures. Your own
applications can utilize similar process-state, logging mechanisms; process-level dumps
can be generated upon application failures. For details on configuring and utilizing the
process dump mechanism, please see the debugger documentation and the details of the
ANALYZE/PROCESS_DUMP command.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 149

If OpenVMS generates a bugcheck, you will want to acquire a synopsis of the crash. The
ANALYZE/CRASH system Dump Analyzer (SDA) CLUE CRASH callout easily
provides this synopsis of the system dumpfile, and -- when the CLUE CRASH output is
written out to a file -- the synopsis can be provided to and examined by HP using HP-
internal automated scanning tools. When compared against known crashes, this synopsis
can speed the resolution of known problems. Whether the bugcheck is known and an
answer is available, or if the bugcheck is a previously-unknown problem, the synopsis
typically helps quickly isolate the particular cause and correlate this report with any other
similar reports.

Summary
HP offers services that can help you to avoid, or to even weather, the occurrences of
many problems, either by the preemptive application of critical ECO fixes, or by
correctly configuring your OpenVMS systems and clusters for best reliability. Service
offerings ranging from installation assistance, system healthcheck offerings, system
management outsourcing, and consulting services such as custom programming and
disaster-tolerant cluster configurations are all available.

In addition to the resources and services already mentioned here, additional OpenVMS
support information and services are available to you. Further, if you are unsure of where
to find the information you need or potentially how to best utilize the resources available
to you, please see the OpenVMS Frequently Asked Questions (FAQ) and the HP services
web site. If you do decide to utilize formal HP assistance, you can help expedite the
response by providing HP with critical information. With access to the appropriate
information and to the available HP services, you can speed the resolution and speed your
OpenVMS systems back into the business of serving your own customers.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 150

Server-Agnostic Perl/DCL
CGI Programming with WASD and OSU
Dick Munroe
Cottage Software Works, Inc

Overview

In January of 2003, a client of mine decided to switch from Purveyor, on which they were running
their secure commerce web site, to the WASD web server. The OSU server was also in use at the
site, but my clients decided that the features provided by WASD were better than those available in
OSU. I was asked to install the WASD server and move the secure portion of their applications
from Purveyor to WASD. During this job I suggested that my clients stop using the OSU server as
well, purely for support reasons. After all, one web server is less work to support than two. To
avoid a “flag day”, where we would have to switch an entire application from one web server to
another, I designed a general framework that allowed them to use their current DCL/Basic CGIs in
either environment. Since the clients followed a consistent pattern for implementing their CGIs, it
was also possible to write tools that prepared their applications for execution under either WASD
or OSU. In turn, this made the switch from the Purveyor/OSU environment to the WASD/OSU
environment quick and simple, while leaving the elimination of OSU a decision that could be made
on a case-by-case basis.

I was so impressed with the quality of the WASD server10, its documentation, the provided
debugging tools, and the commitment of the WASD development group that I decided to switch
from OSU to WASD at my site.

Hedging My Bets
Having made the decision to switch from OSU to WASD, I wanted to hedge my bets. A fair
portion of my site has functionality implemented by CGIs. I didn’t want to lock myself irretrievably
into WASD (or into any specific server if possible). So I had to look into the same issues that my
clients had, i.e., how to build CGIs that run under all servers.

While I do occasionally write CGIs in a compiled language like C, the job can generally be done
quite easily with DCL, Perl, or some combination of both. The net result is that most of the CGIs at
my site are written in one of these languages.

So, what execution environments does each server offer for DCL and Perl?

•

OSU
DCL can execute only under the “script server,” which uses DECnet to create an execution
environment and communicate with the CGI.

Perl also executes through the “script server” environment with some special case code in
WWWEXEC.COM to ensure that Perl CGIs have an appropriate execution environment. OSU
also provides an execution environment using the FastCGI interface specification.

10 I believe the WASD and OSU servers to be, more or less, equivalent in terms of performance and
overall capabilities. The WASD web server and environment is much better documented than the OSU
distribution and is therefore much easier to use and manage, giving WASD the edge.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 151

WASD •

1.
2.

DCL can execute in one of three environments. The first environment is an OSU emulation. In
practice I saw no differences between the OSU server and the WASD OSU emulation. The
second environment involves execution of the CGI as a sub-process of the server. The third,
CGIplus (analogous to FastCGI), dedicates a process to running a DCL CGI.

As with DCL, Perl can also execute under the OSU emulation environment, directly as a sub-
process, or with a dedicated process. WASD provides one additional execution environment,
PerlRTE. PerlRTE is a persistent Perl interpreter, analogous to mod_perl. CGIplus is a persistent
Perl “server”, analogous to FastCGI: a process dedicated to the repetitive execution of a single
Perl script.

PerlRTE and CGIplus are performance optimizations. They address the two principal overhead
components in execution of any Perl CGI or program:

Creation of the process running Perl and loading of the Perl interpreter (PerlRTE)
Loading of the Perl modules necessary for execution of the CGI or program (CGIplus)

PerlRTE creates a process and loads the interpreter but can execute any Perl.CGI. The cost of
creating the process and loading the Perl interpreter is amortized across all CGIs using PerlRTE.

CGIplus creates a process and loads the Perl interpreter (when executing a Perl CGI) but then goes
on to load and execute the CGI. The Perl CGI is wrapped in a loop and is available for “instant”
execution the next time that CGI is invoked. The cost of creating the process, loading the Perl
interpreter, and loading all the necessary Perl modules required by the CGI is amortized across the
number of invocations of a specific CGI. Each CGIplus-enabled CGI requires a dedicated
process for execution. Unfortunately, each of these environments differs in small ways that must be
accounted for in a server-agnostic CGI.

Perl CGI Programming in the Different Environments
This document is not a tutorial on how to program CGIs or how to program in Perl. Both of those
topics have been covered in the literature more thoroughly and far better than I can do. However,
a quick discussion of the basics is in order.

Outside of mod_perl, the most commonly used CGI programming interface is the venerable
CGI.pm. It provides access to the CGI environment variables, access to query, form, and multipart
form data. CGI.pm can also generate http protocol headers and many of the standard HTML tags,
making creation of dynamic content much easier.

Listing 1 shows the basic structure of a simple Perl CGI using CGI.pm.

use strict;

use 5.6.1 ;

use CGI ;

my $theCGI = new CGI ;

print $theCGI->header('text/plain') ;

my @theParameterNames = $theCGI->param() ;

print "The Parameter/Value pairs:\n" ;

print "--------------------------\n\n" ;

foreach (sort @theParameterNames)

{

my @theValue = $theCGI->param($_) ;

if ($#theValue)

{

for (my $i = 0; $i <= $#theValue; $i++)

© Copyright 2003 Hewlett-Packard Development Company, L.P. 152

{

print $_,"[$i] = ",$theValue[$i],"\n" ;

}

}

else

{

print $_," = ",$theValue[0],"\n" ;

}

}

print "\n--------------------------\n" ;

Listing 1
CGI to list the names/values of query/form parameters.

As can be seen, the CGI is pretty straightforward. The CGI is invoked, goes through the hash of
parameter names in alphabetical order and prints the values.

You can see the CGI in action at http://www.csworks.com/cgi-bin/vtj/listing1.pl?foo=1. If you
download the source for this article and put the listing1.pl CGI in CGI-BIN:[000000] so your
WASD server can find it, fire up a browser and try http://your.server.name/cgi-
bin/listing1.pl?foo=1 you will, likely, see something like Figure 1. What happened to the value of
foo? Why didn’t it print?

Figure 1
What happened to the Parameters?

© Copyright 2003 Hewlett-Packard Development Company, L.P. 153

http://www.csworks.com/cgi-bin/vtj/listing1.pl?foo=1

If you didn’t get a display at all or got an error message, you probably have a simple configuration
issue. You need to tell WASD how to execute Perl code. Full details are available in the WASD
documentation, but you need to make sure that there is a mapping from the .pl suffix to a bit of
DCL that executes the Perl procedure in the right environment. The mapping is kept in
HT_AUTH:HTTPD$CONFIG.CONF and at my site looks like this:

[DclScriptRunTime]

.pl @cgi-bin:[000000]perl.com

CGI-BIN:[000000]PERL.COM is:

$ define /user perl_env_tables clisym_global,lnm$process

$ perl "''p1'"

$ exit

and is provided with the WASD distribution in the right place for use. Once the linkage between
file type (.pl) and execution environment (CGI-BIN:[000000]PERL.COM) is properly set up, you can
move on.

The second possibility is the first lesson in server agnosticism. Both WASD and OSU prefix their
CGI environment variables (those defined by the CGI Interface Specification) with “WWW_”. This
is intended to do two things:

1. Identify the CGI variables as belonging to the World Wide Web environment and
2. Prevent the standard CGI variable names from “masking” the equivalent DCL symbols or

OpenVMS logical names, both of which are provided to Perl programs as part of the general
environment available via the %ENV hash.

Unfortunately, we are dealing with Perl and CGI.pm whose roots are deep in the Unix world. The
Unix CGI environment doesn’t prefix its CGI environment variables with “WWW_”. Rather the
CGI environment variables are provided unmodified as per the CGI Interface Specification. Since
WASD is prefixing the CGI environment variables with “WWW_”, CGI.pm and any other Perl
code following the CGI Interface Specification won’t see the CGI environment variables.

In order to bolt Perl CGIs using CGI.pm to WASD you must add to your mapping files something
like the following:

set /cgi-bin/vtj/* cgiprefix=

before the mapping of the CGI via the exec occurs. Once these lines have been added, WASD
will apply the specified prefix (none at all) to all CGIs in the cgi-bin/vtj directory. Of course you
can make this as specific as you want, e.g.:

set /cgi-bin/vtj/listing1.pl cgiprefix=

provides an empty (zero length) CGI prefix for only listing1.pl.

Once you’ve done this, reloaded the WASD server’s mappings11, and executed listing1.pl again
on your server, you should see something like Figure 2.

3 For the WASD server, HTTPD/DO=MAP reloads the mapping files, HTTPD/DO=RESTART restarts the
server reloading the entire configuration. Both have the same effect on mappings, but the RESTART
may be visible by your users.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 154

Figure 2
Parameters with cgiprefix set appropriately.

The OSU server has functionally equivalent magic to avoid breaking CGI.pm and other U*x
oriented CGI code. It’s built into WWWEXEC.COM and is not configurable short of modifying
WWWEXEC.COM. However, WWWEXEC.COM makes reasonable assumptions about the Perl
CGI execution environment.

If you run listing1.pl under OSU or under WASD’s OSU emulation, you’ll find that the same code
runs identically under OSU, WASD with OSU emulation and WASD sub-processes.

The next CGI execution environment provided by WASD is CGIplus. The WASD kit includes a Perl
module, CGIplus.pm, which provides CGIplus support. CGIplus.pm provides a number of useful
interfaces, including a test to see if CGIplus mode is active, a usage counter, writing to the
standard output stream in binary mode, access to CGI environment variables, etc. Unfortunately,
the interfaces are provided without formal documentation12. You have to figure out what’s there by
inspection of the various examples provided in the WASD distribution or the CGIplus.pm code
itself.

12 One of the things that attracted me to the WASD web server was the thoroughness and high quality
of the user documentation produced by the author. Finding a spot where the documentation was less
than thorough was quite a shock.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 155

The basic mechanisms for using CGIplus are simple. First, wrap what used to be your CGI in a
subroutine, load CGIplus13, and call the subroutine using the CGIplus process manager,
CGIplus::process. Listing 2 shows the “obvious” port to use CGIplus.

unshift @INC,"HT_ROOT:[SRC.PERL]" ;

use strict;

use 5.6.1 ;

use CGI ;

require CGIplus ;

CGIplus::process(\&doit) ;

sub doit

{

my $theCGI = new CGI ;

print $theCGI->header('text/plain') ;

my @theParameterNames = $theCGI->param() ;

print "The Parameter/Value pairs (Usage: ",

CGIplus::usageCount(),"):\n" ;

print "--------------------------\n\n" ;

foreach (sort @theParameterNames)

{

my @theValue = $theCGI->param($_) ;

if ($#theValue)

{

for (my $i = 0; $i <= $#theValue; $i++)

{

print $_,"[$i] = ",$theValue[$i],"\n" ;

}

}

else

{

print $_," = ",$theValue[0],"\n" ;

}

}

print "\n--------------------------\n" ;

if ($ENV{'QUERY_STRING') eq "eoj")

{

exit ;

}

}

Listing 2
Port to CGIplus

If you run http://www.csworks.com/cgiplus-bin/vtj/listing2.pl?foo=1 repeatedly, changing the
value of the foo query parameter, you’ll notice two things. First, the format of the output changes
abruptly. All of a sudden there are a few extra new lines in the output. Second, and much more

13 Since CGIplus isn’t part of the standard Perl distribution, the unshift/require pair is necessary to get
CGIplus loaded and ready for use. You could copy CGIplus.pm into your Perl library tree (at my site, I
would put it in PERL_ROOT:[LIB.VMS_AXP.5_6_1]) and then use either a “require” or “use” statement.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 156

http://www.csworks.com/cgiplus-bin/vtj/listing2.pl?foo=1

important, the value of foo doesn’t change from invocation to invocation, although the displayed
usage count tells you that the CGI is, indeed, getting invoked. What’s wrong?

This is the second lesson in server agnosticism. It’s related to the first insofar as the problem is with
CGI.pm, but the causes are completely different. CGI.pm predates CGIplus.pm by quite some time
and CGI.pm has never been modified to take the WASD specific CGIplus environment into
consideration. CGI.pm has been modified to look for Active States PerlEx and CGIplus.pm
attempts to take advantage of that fact by asserting that CGI.pm is running in a PerlEx environment.
By asserting “PerlEx” mode CGIplus.pm causes CGI.pm to reset its internal persistent state every
time a new CGI object is created. All well and good, but listing2.pl still doesn’t work!

What emerges is an ordering problem. CGIplus.pm asserts “PerlEx” mode when CGIplus::process
is run. CGI.pm checks for the PerlEx environment when it loads (at the time the require or use
statement loading CGI.pm is executed). As written, the CGI.pm loaded in listing 2 believes that it’s
running in a standard CGI environment and it never finds out about the persistent CGIplus
environment.

So the lesson is to make sure that your CGI interface library stays sane across all environments. It
may be necessary to build the occasional shim to make things work. If things get too complicated
(and that is a judgement call), it’s probably time to consider modifying the standard distribution of
your CGI interface library and offer the modifications for general use.

Listing 3 shows the correct way to use CGIplus and fully implement server agnosticism as
understood so far.

unshift @INC,"HT_ROOT:[SRC.PERL]" ;

use strict;

use 5.6.1 ;

my $useCGIplus = ($ENV{'CGIPLUSEOF'} ne undef) &&

($ENV{'SCRIPT_RTE'} eq undef) ;

eval { require CGIplus ; } || die "Can't find CGIplus.pm" ;

if ($useCGIplus)

{

#CGIplus::stripWWW(1);

CGIplus::process(\&doit) ;

}

else

{

doit()

}

sub doit

{

require CGI if (!defined(&CGI::new)) ;

my $theCGI = new CGI ;

print $theCGI->header('text/plain') ;

my @theParameterNames = $theCGI->param() ;

my $theString = "The Parameter/Value pairs" ;

$theString .= " (Usage: " . CGIplus::usageCount() . ")"

if (CGIplus::isCGIplus()) ;

$theString .= ":\n" ;

print $theString ;

print "--------------------------\n\n" ;

© Copyright 2003 Hewlett-Packard Development Company, L.P. 157

foreach (sort @theParameterNames)

{

my @theValue = $theCGI->param($_) ;

if ($#theValue)

{

for (my $i = 0; $i <= $#theValue; $i++)

{

$theString = $_ . "[$i] = " . $theValue[$i] . "\n" ;

print $theString ;

}

}

else

{

$theString = $_ . " = " . $theValue[0] . "\n" ;

print $theString ;

}

}

print "\n--------------------------\n" ;

if ($ENV{'QUERY_STRING'} eq "eoj")

{

exit ;

}

}

Listing 3
Fully Agnostic CGI

The third lesson in building server-agnostic CGIs is to ensure that the output of your CGI is constant
across all environments. When http://www.csworks.com/cgiplus-bin/vtj/listing3.pl ?foo=1 is run
repeatedly, and the value of the query parameter varied, the display of the CGI output remains
constant, the display of the usage counter comes and goes depending on the environment (CGI or
CGIplus), and those pesky extra new lines have been eliminated.

However, those pesky new lines are important if CGIs that output binary data such as graphics are
written. When the standard output data stream is opened for the second and later instances of a
CGI executing in the CGIplus execution environment, the standard output stream is opened in
record mode. This means that for every I/O operation presented to the standard output stream a
record delimiter is added. In this case, an extra new line (or carriage return/line feed pair, I
haven’t verified which), is inserted at the end of each I/O operation. Since the standard output
stream isn’t buffering data, each collection of data gets written in a new operation, and each
operation has a record delimiter, therefore the extra lines. By collecting the data to be presented
into strings, and writing each fully formatted string in a single I/O operation, formatting is
preserved.

We need to briefly address providing binary data output in a server-agnostic fashion. CGIplus.pm
provides interfaces that write binary data to the standard output stream. These work for all WASD
Perl execution environments except OSU emulation, or within OSU.

As was seen above, if the standard output stream is in record mode, spurious data is introduced
into the CGI output stream. For HTML data this is largely harmless, but for binary data of any kind,
it’s fatal. The data stream is corrupted by the spurious carriage control. The necessary fix for the
OSU server and WASD OSU emulation is to remove the change to record mode for the standard
output stream. The following shows the portion of WWWEXEC.COM that is changed.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 158

http://www.csworks.com/cgiplus-bin/vtj/listing3.pl?foo=1

$ perl_script:

$ tfile = "sys$scratch:perlcgi_" + f$string(f$getjpi("0","PID")) + ".tmp"

$! write_net "<DNETRECMODE>"

$ on warning then goto perl_done

Once this is done, the binary output interfaces provided by WASD’s CGIplus.pm can be used.
Note that a “typical” Perl CGI using CGI.pm and using a standard output stream that is not in
record mode will break. CGI.pm is written based on record mode being OpenVMS’s default
behavior for the standard output stream. In a production environment WWWEXEC.COM should
be modified so that record mode is the default except for some class of CGIs that could be detected
by directory, file name or file extension. Implementation of this patch at your site is left as an
exercise to the reader.

For the interested reader a server-agnostic CGI that does binary output has been implemented and
can be downloaded from http://www.csworks.com/download/modularian.html.

The last execution environment available to Perl using the WASD server is PerlRTE. PerlRTE is
essentially a persistent Perl Interpreter capable of running any Perl CGI. The state of the CGI is
discarded upon CGI exit, so PerlRTE is similar to the standard CGI execution environment without
the overhead of sub-process creation and loading of the Perl interpreter. A CGIplus script cannot be
activated (the module detects and prevents it) using the PerlRTE in RTE mode (a seemingly subtle but
very real distinction with WASD). As seen in listing 3, CGIplus::process is only executed if
CGIPLUSEOF is defined in the Perl environment and the SCRIPT_RTE environment variable is
undefined. Since the SCRIPT_RTE environment variable is always defined by PerlRTE then
CGIplus::process will never get executed and the CGI in listing 3 is ready to execute correctly in
the PerlRTE environment.

Apache for OpenVMS
One server has gone unmentioned in this article, not because I wished to ignore it but because I
can’t run a copy easily (my systems are still running 7.1) without breaking out an old box and
spending a couple of days building up a new system. However since these server-agnostic CGIs
rely upon CGI.pm and CGI.pm is well known to function in a mod_cgi or mod_perl environment,
then I believe that server-agnostic CGIs developed for WASD and OSU should also run “out of the
box” on Apache as well. Mark Daniels (the author of WASD) tested listing3.pl under Apache for
OpenVMS14 for me. The script runs unmodified. This makes server-agnostic programming even
more useful since by being able to run under OSU, WASD, and Apache for OpenVMS, the large
majority of OpenVMS web server installations are accounted for. Platform agnostic CGIs, those
written in a “portable” language (Perl, Python, PHP, et al.) and using nothing but commonly
available interfaces, can move from platform to platform without change, and can thus easily be
made truly agnostic, caring about neither server nor platform.

Summary
Using two of the web servers commonly available for OpenVMS systems and a simple CGI, we’ve
deduced three guiding principles for developing server-agnostic CGIs. These principles are:

1. Make sure that the execution environment meets the expectations of your CGI interface library
2. Make sure that the innards of your CGI interface library stay sane independent of the execution

environment
3. Make sure the output of the CGI stays constant independent of the execution environment

The mechanisms used to build server-agnostic CGIs are not expensive (in terms of performance) or
difficult (in terms of programming); all it takes is a little care.

14 The test configuration was OpenVMS 7.3-1, CSWS 1.3, and CPQ Perl 5.6.1 or CSWS Perl 1.1.

© Copyright 2003 Hewlett-Packard Development Company, L.P. 159

http://www.csworks.com/download/modularian.html

© Copyright 2003 Hewlett-Packard Development Company, L.P. 160

The benefits are that your CGIs can be used “anywhere,” allowing you and your customers more
flexibility in terms of development, debugging, and deployment.

I’m interested in seeing server agnostic CGIs in as many environments as possible. So far I have
accommodated WASD, OSU, and Apache for OpenVMS. If there are others in active use on
OpenVMS, I’d love to know what has to change to make listing3.pl work on your server. In
addition, please send be the results of listing3.pl on platforms other than OpenVMS. I can be
reached at munroe@csworks.com.

Thanks
I’d like to thank my reviewers and editors, Mark Daniels, author of WASD, Jennifer Cole Ripman,
my wife, and Ben Ripman, my son. Their contributions to this article made it significantly better
than it would otherwise have been. Any errors remaining at this point are mine and not theirs.

For more information
Modularian – A server agnostic CGI that produces binary output.

Framework – A Perl script I used to convert a client’s DCL OSU CGIs to simple server agnostic
CGIs.

ServerAgnosticPerl.zip – sources of the listings for this article.

FastCGI Interface Specification – The FastCGI protocol and interface specification.

CGI Interface Specification – The Common Gatewate Interface specification.

PerlEx – A Perl performance enhancement for Windows.

WASD - A web server implemented using multiple processes.

OSU – A web server implemented using DECThreads.

Afterword
Perl makes, more or less, anything possible. The listings shown in this article present an “under the
hood” view of server agnostic CGIs. It is possible to package these requirements and simplify the
process enormously. As an exercise I have done so. Included in ServerAgnosticPerl.zip are two
additional files, listing4.pl and saperlcgi.pm which demonstrate how well hidden the details of
server agnostic CGI programming can be made in Perl.

http://www.csworks.com/download/modularian.html
http://www.csworks.com/download/framework.pl
http://www.csworks.com/download/serveragnosticperl.zip
http://www.fastcgi.com/devkit/doc/fcgi-spec.html
http://www.w3.org/CGI/
http://www.activestate.com/Products/PerlEx/
http://wasd.vsm.com.au/
http://kcgl1.eng.ohio-state.edu/www/doc/serverinfo.html
http://www.csworks.com/download/serveragnosticperl.zip

	HP OpenVMS Technical Journal V2 (July 2003)
	A Survey of Cluster Technologies
	Overview
	Introduction
	Single-System and Multi-System-View Clusters
	Multi-System-View Clusters in an Active-Passive Mode
	Multi-System-View Clusters in an Active-Active Mode
	Failover of a Multi-System-View Cluster �(Active-Active or Active-Passive)
	Single-System-View Clusters
	How Do the Clusters on HP Systems Fit into These Schemes?
	Linux Clustering
	Serviceguard
	Himalaya NonStop Kernel
	TruCluster V5.1b
	OpenVMS Cluster Software
	Windows 2000 DataCenter

	Cluster File Systems
	Quorum
	Cluster Configurations
	Application Support
	Single-Instance and Multi-Instance Applications
	Recovery Methods
	Cluster Resilience
	Dynamic Partitions
	Data High Availability
	Disaster Tolerance

	Summary
	Acknowledgements
	For More Information

	Local Area Network Cluster Interconnect Monitoring
	Overview
	LAN Cluster Interconnect Monitoring using LAVC$FAILURE_ANALYSIS
	Background
	Implementing LAVC$FAILURE_ANALYSIS
	Maintaining LAVC$FAILURE_ANALYSIS
	How Failure Analysis Is Done
	Getting Failures Fixed
	Gathering Information
	Network Building Blocks
	Handling Network Loops
	Handling Multiple LANs
	Gathering Information
	Getting MAC address info
	Editing the Template Program
	Edit 1
	Edit 2
	Edit 3
	Edit 4
	Edit 5
	Handling MAC Address Duplications with Multiple LANs
	Level of Detail

	Other tools for use with LAVC$FAILURE_ANALYSIS
	Turning On LAVC$FAILURE_ANALYSIS
	Disabling LAVC$FAILURE_ANALYSIS
	Using LAVC$FAILURE_ANALYSIS to Monitor Non-cluster LAN Components
	Summary

	For more information
	Documentation on LAVC$FAILURE_ANALYSIS
	Spanning Tree Algorithm
	Contact Information

	Internet Technologies for OpenVMS
	Overview
	Introduction
	Java
	Data Integration
	Application Integration
	Legacy Application Integration
	Systems Integration
	Availability
	Summary
	Acknowledgement
	For more information

	Configuring TCP/IP for High Availability
	Overview
	Comparing High Availability Technologies
	failSAFE IP
	Introduction to failSAFE IP
	failSAFE IP Configuration Requirements
	failSAFE IP Service – Interface Health Monitor
	Figure 1 Finite State Machine for failSAFE IP Ser

	Configuring failSAFE IP Service
	Detectable Failures

	Application
	Management Utilities
	Home Interfaces
	Site-Specific Customization of failSAFE IP
	Logical Names
	Static and Dynamic Routing
	Best Practices
	Validating failSAFE IP
	Configuring failSAFE IP Service
	Avoiding Phantom Failures
	Creating IP Addresses with Home Interfaces
	Private Addresses Should Not Have Clusterwide Standbys

	Examples
	Example 1 – Single node configured with two inter
	Figure 2 Simple failSAFE IP Configuration
	Figure 3 Interface IE0 has failed

	Example 2 – Clustered Nodes configured with Two I
	Example 3 – Preferred failSAFE IP Configuration –

	IP Cluster Alias
	Introduction to IP Cluster Alias
	IP Cluster Alias Configuration Requirements
	Detectable Failures
	Application
	Management Utilities
	Example

	DNS Alias with Load Broker and Metric Server
	Introduction to DNS Alias
	DNS Alias Configuration Requirements
	DNS Alias
	Load Broker and Metric Server
	Detectable Failures
	Application
	Management Utilities
	Example

	Summary
	For more information

	DCPI for OpenVMS a Technical Introduction
	Introduction
	DCPI for OpenVMS, Some Background Information
	DCPI for OpenVMS. How Does It Work?
	Alpha Chip Performance Monitoring
	Data Analysis Tools on DCPI for OpenVMS
	Profiling of Code Generated “on the Fly”
	DCPI Usage
	Running the Data Collection
	Analyzing the Data
	Some Basic Hints for DCPI Analysis

	RMS Performance: Duplicate key chains
	Overview
	Problem statement
	Overview of RMS Indexed File Internals
	Here’s where the trouble starts
	Detecting a duplicate key chain problem
	Monitor I/O rates
	Analyze files

	RMS Tune Check Tool
	How to Solve a Duplicate Key Chain Problem
	Drop the Key
	Use a NULL KEY value
	Increase the Bucket Size
	Deduplicate the Key Values

	Why Me, Why Now?
	Notes

	A Customer Case Study of Oracle Rdb Database Consolidation
	Overview
	Company Overview
	Acknowledgements
	The Server Consolidation Project: “Golem” — The M
	Introduction
	Benchmark Setup and Preparation
	History Reports
	Comments About Tests
	Final Results
	Summary

	Technical Analysis of Benchmark
	Methodology
	Hardware Configuration
	Software Configuration
	Analysis of Results
	Database Activity
	Final Considerations
	Looking Forward

	Appendix
	Test Summary
	Global Buffer in Standard Memory (32-Bit)
	TP2
	TP3
	TP4
	TP5

	Global Buffer in VLM (64-Bit)
	TZ1
	TZ2 (version TZ2B)
	TZ3 (version TZ3B)
	TZ4 (version TZ4B)
	TZ5
	TZ6

	Database Machine, Global Buffer in VLM
	TDB1
	TDB5
	TDB7

	Database Machine, Global Buffer and Row Cache in VLM
	TRC5
	TRC7
	TRC7N

	Comparison Test
	Test Summary for Comparison
	TC1
	TC2
	TC3

	Best of the HP Customer Support Center
	Overview
	What Changed?
	Configuration Profile
	Hardware Setup Profile
	System Setup Configuration
	System Boot Profile
	Performance Profile
	Managing and Using the Profiles

	Best of Ask the Wizard
	HP OpenVMS Support Resources and How to Use Them
	ECO Kits
	Direct and Formal HP Assistance
	Software Code Reproducer
	System Bugchecks
	Summary

	Server-Agnostic Perl/DCL �CGI Programming with WASD and OSU
	Overview
	Hedging My Bets
	Perl CGI Programming in the Different Environments
	Apache for OpenVMS
	Summary
	Thanks
	For more information
	Afterword

