Cluster Test Manager (CTM) for OpenVMS

Richard Stammers
Software Engineer, OpenVMS

Overview

This paper discusses CTM, the OpenVMS Cluster Test Manager. CTM is one of the principal tools
used internally for testing OpenVMS in large and high-risk cluster configurations. CTM consists of
two parts: the software that is used to manage and control the running of the tests, (known as the
CTM test harness), and a variety of tests that are specifically designed and written to be run by
CTM (known as CTM test modules).

This paper discusses the CTM test harness, and discusses in general the goals, strategy, and
internal design of CTM. Later papers may discuss various CTM test modules.

Introduction

Testing OpenVMS can be very challenging. Not the least of these challenges is the sheer volume of
work that is involved in thoroughly testing everything. This is patrticularly true in a cluster
environment, where the possible permutations and combinations of hardware types, versions of the
operating system software, and all the other software and their versions, can be gigantic. Providing
the means to expedite such a large volume of testing work was one of the primary reasons why
CTM was developed.

CTM is not a test as such. Rather, CTM provides a framework, or “test harness,” in which a large
variety of tests can be efficiently controlled and managed in an OpenVMS Cluster environment.
CTM provides a comprehensive means for managing such testing efforts on large and complex
OpenVMS Clusters, where simply using DCL commands or BATCH to run the tests would be
impractical. Using CTM hundreds of tests can be distributed across a cluster, and can be started
and stopped with just a single command. CTM test runs can involve several thousand varied test
processes when CTM is used on large test clusters.

Of course, testing involves more than merely running a lot of tests. The quality and nature of the
tests are crucial. However, the way that the tests are sequenced and managed can be just as
important to the quality of the testing as the tests themselves. With so much testing work to be done,
the testing process can be very much a race against time, so it is essential to use the available
testing time as efficiently as possible. In general, problems are much more likely to occur when a
system or cluster under test is in a state of flux and is subjected to frequent changes, as against
being in a “smooth” or steady state with respect to the tasks that are running. OpenVMS software
has a natural tendency to smooth out the load on a system. This is very desirable for normal
operations, but it might not give rise to the best conditions for testing. For example, if a group of
tests are run continuously for, say, 10 hours and do not detect a problem, this does not in general
provide 10 times the confidence level that running those same tests for just 1 hour would provide.
In fact, the 10 hours of testing time can generally be used to better effect by constantly varying and
modifying the tests that are run during the 10-hour test period. CTM provides the means to do this,
“stirring the mix” of the testing, so to speak, by permitting repeated and continuous starting,
stopping, and modification of the text mix throughout the test period.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 1

Finding problems is only half the battle. The cause of a problem has to be isolated and identified so
that it can be fixed. This can be very challenging in a large and complex cluster, especially
particularly because the various components and subsystems of the OpenVMS operating system are
so highly interrelated. It might seem rather a simplistic approach, but often the most viable initial
testing strategy is to subject the systems under test to extreme stress testing. That is, subject the
systems to a veritable barrage consisting of as large and complex and varied a sequence of tests
that they can reasonably be expected to sustain. The idea is to “bring them to their knees,” as it
were, just to “see if anything breaks.” When a problem is encountered, it can require considerable
knowledge and skill to identify its cause. The test manager has to be able to meet this challenge,
providing the means whereby the subsequent testing can be organized and sequenced to
progressively home in on whatever is causing the problem and to provide the information required
to fix it. This means that CTM not only has to provide the means to run a very large and complex
mix of tests, but also has to provide the capability to be extremely precise in the selection and
sequencing of tests in order to identify and fix problems. A corollary to this is that, with such an
extreme degree of interrelationship between the components, if anything is changed or fixed, then
everything needs to be retested.

Overview of CTM

CTM is designed to operate in a cluster environment. In general such clusters may comprise a mix
of VAX and Alpha nodes, with CTM providing seamless functionality and testing capability across
both the VAX and Alpha platforms. Similarly, CTM provides backwards compatibility for all the
previous versions of OpenVMS that are supported and might be present in the cluster. At the time
of this writing, a new version of CTM, providing similarly seamless capabilities for HP OpenVMS
Industry Standard 64 Evaluation Release Version 8.1 (OpenVMS 164) is in development. CTM can
run on a wide range of cluster sizes, varying from clusters comprising a single node through to
clusters comprising 60 or more nodes with more than 600 storage spindles.

Perhaps the most fundamental aspect of the design of CTM is that it views the cluster as a whole as
a collection of testing resources. In this context, a “testing resource” is any item of hardware within
the cluster that can be used for testing. The current CTM implementation has two main categories of
testing resources: nodes (single CPU systems or SMP systems) and storage devices (disks or
magnetic tapes). This concept of testing resources is key to the whole design. CTM automatically
maintains a dynamic database of testing resources that are available on the cluster on which it is
running. A separation is made between the hardware resources on the cluster that CTM is
permitted to use for testing, and those resources that are protected from CTM. All the resources on
the cluster are potentially available for use by CTM. The test engineers are provided the means to
dynamically control those resources that are to be used and those that are to be protected. For
example the system disks are usually protected — in general, it is not a very good idea to do 1/0
testing on the system disks!

The tests that are run by CTM have to be specifically written to work with the CTM test harness, and
are referred to as CTM test module. At present there are about 25 such test module in regular use,
and these are constantly being updated and added to. Again, the concept of test resources is
fundamental to a CTM test module. Within CTM, test modules are characterized as requiring
certain test resources in order to run. For example, CTM_HIGH_IO is a disk 170 test that repeatedly
writes, reads and verifies data to disk. It is characterized as requiring one CPU resource and one

© Copyright 2004 Hewlett-Packard Development Company, L.P. 2

disk resource. Similarly, CTM_TCP is a TCP/IP test that causes TCP/IP packets to be exchanged
between CPUs within the cluster. It requires two CPU test resources.

The interaction between the resources that are available to CTM in the cluster and the resources
that are required by each of the tests is the basis of the CTM design. The cluster resources are
described in two databases - those that are available to CTM, and those that are protected from
CTM. A weak pun is used for the naming of these databases that are called, respectively, the CARE
(CTM Active Resource Entry) and DONT databases. The resources that each of the s module
require are maintained in what is referred to as the Test Module Data Base (TMDB). An additional
file, the load-numbers file, contains a numeric description of the performance characteristics of each
all the different resource types that could be present in the cluster. Using the information in these
files and databases, CTM can automatically start up, load balance, and manage large numbers of
tests with very brief commands from the test engineer. The following command examples illustrate

this.

CTM Command

Action

$ CTM START CTM_HIGH_IO /process=100

Starts 100 copies of the CTM_HIGH IO
test, automatically balancing the load
across each of the nodes and disks that
are available in the cluster.

$ CTM START CTM_HIGH_IO /perdisk=4

Starts 4 copies of the CTM_HIGH IO,
targeting each disk in the cluster, and
automatically selecting the CPUs that will
perform each of the tests.

In fact, the CARE and TMDB databases contain quite a detailed characterization of the test
resources that are available on the cluster and the test resources that are required by a CTM test
module. This information provides the test engineer with a considerable range of control for
specifying how tests are to be run, ranging from the examples shown where CTM is used to
automatically select and load balance the resources that are used, to detailed selection of the

characteristics of the resources that the tests will use.

Test engineers interact with CTM through the CTM command center. The CTM command center
provides an extensive command-line interface that lets test engineers control the starting and
stopping of tests, monitor tests in progress, control test resources in the cluster, generate test reports,
and perform all the other functions associated with controlling CTM and the running of CTM tests
within the cluster. For convenience and redundancy, and because the component nodes within the
cluster may be physically separated, CTM permits any node in the cluster to function as the
command center. In fact, there may be multiple command s active on the cluster at any one time
(one per node in the cluster). However, at any given time only one command center can act as the
master command center, which is capable of issuing action commands that change the state of
CTM, such as starting or stopping tests or modifying the characteristics of the test resources within
the cluster. Other, nonmaster command s may be active but are confined to issuing interrogative
commands, such as generating reports or getting information about active tests.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Organizing and identifying CTM tests

It is not uncommon for a CTM test run to involve running 3000 or more test processes. With so
many tests being run it is essential that each tests is uniquely identified so that it can be properly
managed and identified. CTM uses a job and process number scheme to identify the tests that it
runs. In CTM nomenclature, each line to the command center that starts up test processes is referred
to as a job. Job numbers revert to 1 each time CTM is restarted on the cluster. When a job involves
starting multiple test processes, each test process within the job is allocated a sequential process
number, starting at 1. Hence, the job and process number are always unique for all test processes
that CTM is running at any point in time. These unique job/process numbers are referred to CTM
as a DPID.

In the preceding example, if the command to start up 100 CTM_HIGH_IO processes were the first
job, this would generate 100 test processes with DPIDs 00010001, 00010002, through
00010064 (hexadecimal), respectively. CTM uses the DPID for a variety of purpose. For instance,
it is used as the OpenVMS process name on the nodes on which the test runs, is used to generate
the names of whatever files the test process create, and is used as part of any data patterns that the
test uses.

Viewing CTM test results

In general, every test process generates a test log. All test logs are placed in an area defined by
the CTM$LOGS directory, which is accessible to every node on the cluster that is running CTM. The
DPID is used to provide a unique name for each test log. The log usually contains header
information that identifies the test, the test resources it was using, and the parameters that were
used to invoke the test, followed by whatever other log information the test may generate during the
test.

Once a CTM test is started, it runs until it is either explicitly stopped by the test engineer, or until a
fatal error condition is detected. If a fatal error condition is detected (for example, a data
corruption) the test usually generates an error or corruption report and then stops.

As they run, the CTM tests also generate performance and other types of information about their
test run, which they periodically send via a mailbox to the TELogging process. This process exists
on every participating CTM node in the cluster. It is responsible for adding the information that the
test tasks send to it into the TEL data files, which are a common repository for information on all the
tests that are running or have been run by CTM on the entire cluster

CTM provides a utility known asthe TRU (TEL Reporting Utility) that can be run on any
node in the cluster at the behest of the test engineers. The TRU generates reports based
on the information in the TEL datafiles, and permits this information to be organized and
presented by avariety of different criteria, such astime, or device or device type, or node
or node type. This allows the test engineers to see what is happening on the cluster as a
whole as well as providing the means to monitor the performance of individual systems
under test, devices, or test processes.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 4

Data patterns

There are no real constraints on the functionality of the tests that can be run within CTM, as long as
the test complies with both the conventions required to communicate with the CTM test harness, and
the needs and inventiveness of whoever is writing the test. However, a theme that is common to
many of the tests is the transfer of data. For example, the CTM_WIDEST test involves transferring
data between different areas of memory; the CTM_HIGH_IO test involves transferring data to and
from disk files; and the CTM_TCP test involves transferring TCP/IP packets between different nodes
on the cluster. The common theme is that a data pattern is generated, the data is transferred, and
the results of the transfer are checked and validated. Data corruption is probably the most serious
and most dangerous problem that can ever occur - much worse, in fact than a process or system
failure because of the potential to destroy user data without warning. Thus, great importance is
attached to the data patterns that are used, and the requirements for the data patterns are quite
demanding:

e The data pattern should provide the best possible chance of detecting corruptions.

» Wherever feasible, the data pattern should provide as much evidence and as many clues
as possible as to what caused the corruption

» The data patterns should allow quick construction and verification, so that as many test
iterations as possible can be performed within a given time.

Many techniques are employed within the CTM tests to meet these requirements. In general, each
test uses its unique DPID within the data pattern so that if a crossover of data occurs between test
tasks, the source of the offending data can be identified. For example, if multiple CTM_TCP tasks
are exchanging packets, and a packet is erroneously sent to or received by the wrong recipient,
the source of the bad data can be identified. Similarly, sequence numbers are often used within the
data patterns so that dropped data can be identified. When writing to disks, the block number and
position of the data fields within the blocks are usually incorporated into the patterns in order to
provide more complete information about the nature of the corruption. Various schemes are used to
vary the positions and alignment of the data buffers with respect to OpenVMS pages and disk
blocks.

Speed is also of the essence, with respect to both creating and verifying the data patterns. The
usual technique is to build all the data patterns or as many of them as possible at the start of the
test so that time is not wasted on this during actual test iterations. Fields within the data patterns are
usually organized and aligned on quadword or longword boundaries so that the verification can
be done very briskly, and routines to do the compares and verification are frequently written in
assembly language for the same reason.

When elements of the data patterns are common between successive transfers, the transfer may not
actually take place properly, but because of the stale data in the receive area, a corruption might
go undetected. Poisoning the receive areas before the transfer is one way of avoiding this, but this
technique is avoided in the CTM tests because of the time it takes. Instead, a technique of
alternating the data that is transferred with the 1s complemented form is used. In this way, literally
every bit of the transferred data is changed on each successive transfer, and the performance hit is
taken only once, up front, when two forms of the data pattern — the “true” data and the 1s
complemented form are built.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 5

Tracking down problems

Normally, a CTM test runs until it is explicitly stopped by the test engineer, or until a fatal error is
detected. Almost all errors that the tests detect are considered to be fatal.

If a fatal error condition (such as, a data corruption) is detected, the test usually generate an error
report and then stops. The nature of the error report depends on the nature of the test, but where
the test involves a data transfer, a corruption report is always generated. To simplify the debugging
process, the corruption reports usually show the expected data alongside the actual data, with the
incorrect or corrupted fields flagged so that they can be readily identified. As described earlier, the
data patterns often involve a 1s complemented form of the “true” data, and because humans are
not very good at reading 1s complement, a translated hexadecimal form of the data is provided for
convenience.

For some tests, a corruption report is not always sufficient to debug the problem. For example, with
the CTM_TCP test or the CTM_LOCK IT test (a CTM test that stress tests the Distributed Lock
Manager), a “history of events” leading up to the error is often required to debug what is going
wrong. In these instances, the test maintains a ring buffer that describes events leading up to the
failure, which is output before the test is stopped.

In extreme cases, a crash dump may be needed to debug the problem, and for some tests a
parameter is provided that is used to that specify that a bugcheck is to be performed when the
problem is detected. If a bugcheck is needed, then the ensuing crash dump is most valuable if it is
produced as soon as possible after the problem is detected. In these instances, no reports are
generated.

In very extreme cases, a bugcheck might be required on multiple nodes on the cluster in order to
debug a problem. For example, a CTM_HIGH_IO test might be running on one node in the cluster,
targeting disk 1/0Os to a disk that is served by a different node on the cluster. When a problem is
detected it might require a timely crash dump of both these nodes in order to figure out what is
going wrong. CTM uses a technique known as “triggering” to accomplish this.

The way that triggering works is that a “trigger arming” routine is provided with CTM that permits a
node to arm itself on a trigger. There are 256 such triggers available. In the preceding example of
the CTM_HIGH_IO test, the node that was serving the disk would be armed on a trigger. When a
node arms on a trigger, it uses DLM to take out shared access to a lock that is associated with the
trigger, and specifies a blocking asynchronous system trap (AST) to fire when this lock is lost. The
blocking AST routine performs the bugcheck. When the node that is conducting the CTM_HIGH_IO
test detects the corruption, it takes out exclusive access to the lock in question, thereby causing both
the blocking AST to fire on the node that is serving the disk and a timely crash dump to be
generated.

Tracking down problems in a large and complex cluster can sometimes become very complicated
indeed, particularly if the problem is intermittent and occurs very infrequently. The problem might
be caused by any one of a number of components, or by the interaction between multiple
components that are distributed across the cluster. Triggering permits multiple nodes in the cluster to
be made aware very quickly when a test process on any given node detects a problem. In such
instances multiple different nodes can each be armed on a number of triggers. Even a crash dump

© Copyright 2004 Hewlett-Packard Development Company, L.P. 6

might not be sufficient to figure out what is going wrong. For this reason, the functionality that is
invoked by triggering on the nodes can be changed to do things other than bugcheck by changing
the functionality within the blocking AST that is fired when a node is triggered. For example, the
blocking AST might be modified to output a data pattern that can be identified on a data scope or
bus analyzer when a problem is detected and the node is triggered.

Varying test mixes and sequencing tests.

As suggested previously, the most efficient use of test time - certainly in terms of surfacing
particularly nasty problems - is often achieved by varying the loads and changing the mix of tests
that as much as possible on the systems under test. Although it’s difficult to be very specific about
what constitutes a “nasty problem,” such problems leave little doubt as to their nature when they
have to be fixed. They also seem to have certain common characteristics. For instance, they tend to
happen intermittently and infrequently. Often the way they manifest themselves is not directly
related to what caused them and provides few clues as to what is actually causing them. The
problem may not be detected until some time after the original problem event occurred by which
time the context that caused the problem has changed. Sometimes they happen as a result of an
unusual combination of circumstances or interactions between components that are otherwise
thought to be very solid and reliable. The effects can be very serious - data corruptions, system
failures, and so on.

The observation that these types of problems are most likely to be found by varying the testing mix
as much as possible is borne out by both experience and empirical results. However, it is not hard
to also think of theoretical reasons why this should be the case. A large OpenVMS Cluster is an
amazingly complex system, and looking for problems in it can be likened to searching an immense
combinatorial tree of all the possible states that the cluster can be in. The greater the variety of the
tests and more the tests are mixed, the greater the area of the tree that will be searched. Hence, the
increased probability that a problem will be found. On a more prosaic level, these types of
problems often occur when unusual events occur, such as infrequent timers expiring, queues
becoming full, or buffers overflowing. Continually stirring the test mix and spiking the loads tends to
make these types of things happen more often than when the systems under test are left in a
relatively constant state.

CTM provides the capability to mix tests, spike loads, and otherwise “torture” the systems under test
by means of what are referred to as pulses. Logically, a CTM pulse can be thought of as a square
wave that alternates indefinitely and with a certain specified periodicity between two states —
blocking and free. A CTM pulse is shown schematically in Figure 1.

The pulses are implemented by means of the CTM pulse utility, which enables up to 256 such
pulses to be defined and made available to every node in the cluster. Each pulse is completely
independent as to when it starts and the amount of time it will subsequently block and free tests.
When a CTM job is started, any of the defined pulses can be specified, with the effect that all the
test processes associated with that job will stop and start in accordance with the specified pulse.

The pulse functionality is implemented by means of DLM. The pulse utility creates a lock that is
associated with each pulse that is defined. It blocks by converting to exclusive access on the lock,
and frees by converting to null access on the lock, in accordance with the timings specified in the
definition of the pulse. Tests processes that have been instructed to synchronize to the pulse

© Copyright 2004 Hewlett-Packard Development Company, L.P. 7

precede each test iteration with an attempt to convert to shared access to the lock, and hence run
only when the pulse is free and are stopped when the pulse blocks.

Because each job can use any one of 256 different pulses, there is considerable flexibility for
varying the mix of tests that are running at any one time. In addition, because the state of the locks
is so rapidly communicated across the cluster, they provide a means to generate very sharp spikes
in the load to which the systems under test and the cluster as a whole are subjected.

Specified pulse

start time
V BLOCKED BLOCKED
— L N N]
Pulse
State
FREE FREE FREE
R
< >« > >« >
Block interval Free interval Block interval Free interval
for the pulse for the pulse for the pulse for the pulse

Real Time I

Figure 1. Schematic Representation of a CTM Pulse

Pulses can also be used as a diagnostic aid to isolate and identify components and combinations
of components that cause problems. This is accomplished by successively “switching in” tests that
use different components until the problem is detected, thereby allowing the culprits to be
determined by the process of elimination.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 8

Overall CTM design

Figure 2 provides a schematic view of the design and principal components of CTM.

In order to provide the highest degree of fault tolerance, the CTM harness software is based on a
heterarchical rather than a hierarchical design. That is, there is no single “control” node or control
process within the cluster that controls the running of the tests. Therefore, CTM as a whole is not
vulnerable to failures on any given node in the cluster. Instead each node participates as a CTM
peer within the cluster and each is capable of and required to perform all the tasks required by
CTM. This redundancy is very important because CTM is often used to test high-risk clusters where
some of the components are in early testing.

A participating CTM node always has the CTM server process, and the TELogger (Test Event
Logger) process running. The CTM command center process is run whenever a participating node
is explicitly called upon to act as the command center. The TRU (Test Report Utility) process is run
whenever a participating node is explicitly called upon to generate a test report, and the Test
Module Data Base (TMDB) utility is run whenever a patrticipating node is called upon to modify or
interrogate the TMDB.

The CTM related processes that run on participating CTM nodes communicate and share
information by means of common databases and directories that are pointed to by logical names
that are common to all participating CTM nodes in the cluster. Access to these databases and
directories is controlled and synchronized, as required, by the Distributed Lock Manager (DLM).
DLM is also used extensively for signaling and synchronization between the various processes that
constitute CTM running on each of the participating nodes.

Note that the CTM “databases” are not databases in the usual sense, but rather are specially
constructed RMS files. The OpenVMS File Definition Language (FDL) utility is used to create many of
them.

CTM databases and related files

A number of directories, databases and files are involved in the implementation of CTM within a
cluster, and are shared by and common to all the participating CTM nodes. The principal ones are
as follows.

CTMS$LIBRARY

This area contains the load-numbers file mentioned earlier, and all the executables, command files,
and other files that constitute the CTM test harness. In general, there are separate versions of each
of these files for the VAX and Alpha platforms. When any CTM-related process is to be run, the
type of platform is identified and the appropriate version for that platform is used.

By convention, any corruption and error reports that a test generates are usually placed in this area
as well.

The OpenVMS 164 version of CTM that is in development is very similar as regards the directories,

databases and files that are used, but instead contains versions of the CTM test harness files that
are appropriate for the OpenVMS 164 platform.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 9

TELogger Process
Always runs on every participating
Node in the cluster

Each CTM test process reports
performance information to the
TELogger process that is
running on its node via a mailbox

TEL Mailbox

TEL data files
Contains performance and other
information for every CTM test
that has been run

TRU Utility
Runs on demand on any node in the cluster
to generate reports based on the information
inthe TEL datafiles.

Command Center
Runs on demand on any node in the cluster
to start and stop CTM test jobs and
processes, modify resources and report on
the status of CTM jobs, processes and
resources.

TMDB Utility

Test Process

Test Process

Test Process

Each CTM test process is
started, stopped and monitored
by the CTM server process that
is running on its node. The lock
manger is used together with ast
routines for the communication

Runs on demand on any node in the cluster
to report on and modify information on the
test modules that are installed on the cluster

!
TMDB

Contains information about

Avang tact madinla inctallad An

CTM Server Process
Always runs on every participating
nodein the cluster

KEY

Test Pr

Database

Process always runs |
Process runs on demand |

Informational

CARE Database

DONT Database

JET Database

APE Database

Collectively these databases
contain information on all the
test resources that are available
to CTM within the cluster, and all
CTM jobs and test processes
that are running in the cluster

Figure 2. A schematic overview of CTM

© Copyright 2004 Hewlett-Packard Development Company, L.P.

10

CTM$TMROOT

This area contains all the executables, command files, and other files that are required for whatever
CTM test module are installed on the system. Again, in general there are separate versions of each
file for the VAX and Alpha platforms; when any CTM test module related process is to be run, the
type of platform is identified and the appropriate version for that platform is used.

Similarly for the OpenVMS 164 version of CTM that is in development this area contains versions of
the CTM test module that are appropriate for the OpenVMS 164 platforms.

CTM$DATABASES.

This area contains the major CTM databases that are used by the cooperating CTM processes
within the cluster to record the test resources that are available to CTM, the test jobs and test
process that are in progress, and the test resources that are being used by them. Access to these
databases is protected and controlled by means of DLM.

CARE and DONT Databases

These databases are used by CTM to record the test resources that are available within the cluster
and to record whatever cluster resources are protected from CTM. CTM automatically “probes for”
and maintains a record of whatever test resources are available. Protected resources are explicitly
controlled by the test engineers, either from the command center or by appropriately modifying the
CTM startup sequence.

APE and JET Databases

The Job Entry Table (JET) database and the Active Process Entry (APE) database are used by CTM
to record the tests that are in progress and the test resources they are using, and are maintained
automatically by CTM. As described earlier, in CTM nomenclature each command issued at the
command center is considered a job, and the various test processes that are started for that CTM
job are considered processes within that job. The job/process number is always unique for all the
test processes CTM is running at any point in time.

There is no correspondence between a job and a process as understood by OpenVMS, and a
CTM job or process — other than each CTM job/process gives rise to a uniqgue OpenVMS process
on whatever node or nodes involved in that test. These tests take the DPID as the OpenVMS process
name.

Loosely speaking, the JET database contains information about the jobs that CTM is running, and
the APE database contains information about the processes that CTM is running and the test
resources they are using. However, there is a lot of cross-pointing and shared information between
the CARE, DONT, JET, and APE databases.

CTM$TMDB

This area contains the TMDB database that describes all the test module that are installed on the
cluster, a characterization of the resources they require, and other information pertaining to how
they are to be run.

TEL Data Files

As each test process runs, it may periodically report metrics on the performance of the test as well
as other information about the progress of the test. All such information is collected in the TEL, or
Test Event Logging, files. All TEL data from all the tests that have run since CTM was installed is kept

© Copyright 2004 Hewlett-Packard Development Company, L.P. 11

in TEL data files. This data is cleared only when CTM is reinstalled or when the database is
explicitly reinitialized.

CTM$LOGS
This area is a repository for the logs that each of the tests produces. The test logs are named simply
by the unique DPID of the test process to which they relate.

In addition, each of the CTM server process that are running on all the participating nodes in the
cluster maintain their own logs, which are also kept in this area.

CTM test harness software

Normally, on a cluster where CTM is to be used, a CTM$STARTUP command file is invoked as part
of the system startup procedure for every node in the cluster that is to participate in the CTM testing.
This command file defines the CTM related logicals as described earlier, and installs the CTM
server and the TELogger images on each of these nodes.

Subsequent logging in to any of these nodes as CTM invokes a LOGIN.COM file that uses the
Command Definition Utility (CDU) to define the command CTM to run the CTM command center
process and to define the syntax of all CTM commands. The commands and their syntax are quite
extensive, reflecting all the functionality that is provided by the CTM command center.

Similarly, the commands and the syntax for the TMDB utility (which is used to modify and update
the Test Module Data Base) and for the TRU utility (which is used to generate test reports) are
defined at this time.

A general mechanism and technique is employed by which all the cooperating CTM processes
signal and communicate with each other across the cluster. DLM is used extensively, and each
cooperating node creates a series of locks whose names are predicated on the node’s name in the
cluster. Each node prepares itself to be signaled by taking out shared access to its own locks,
specifying blocking ASTs that are to fire when they are signaled. Other nodes that wish to signal
that node then initiate communication by taking out exclusive access to the appropriate lock for the
node they wish to signal, thus causing that nodes blocking AST to fire.

The CTM Command Center Process

This process can be run on any patrticipating node in the cluster. It provides a command-line
interface (CLI) that allows the test engineer to control and interrogate CTM. The first instance of this
process being run becomes the CTM command center master. As such, the CLI provides a
command set that provides the following functionality.

» Starting (booting) and stopping CTM as an active participant on each nodes in the cluster

e Making test resources available to CTM or protecting test resources from CTM

» Mounting and dismounting the storage devices that will be used as test resources by CTM

» Starting and stopping the CTM jobs and test processes

e Interrogating CTM about what test resources are available, the CTM jobs and test
processes that are running, and the test resources they are using

» Generating reports from the TEL data files

© Copyright 2004 Hewlett-Packard Development Company, L.P. 12

Booting CTM

As the command center master, the CLI provides a command set that permits CTM to be stopped
and started (booted) as an active participant on each node in the cluster that has successfully
completed the CTM$STARTUP sequence. Normally, the first operation that is performed at the
command center is to boot CTM on one or more nodes in the cluster.

Booting CTM involves several stages, one of which is to start up the CTM server and TELogging
process on each node to be booted. The general mechanism by which CTM processes use DLM to
signal each other across the cluster is used. Another task involved in booting CTM is to create or
update the CARE database (the database of resources that are available to CTM). This is done by
a sequence of wildcarded calls to SYS$GETSY| and SYS$GETDVI to identify the resources that are
available on the cluster. Similarly, the JET and APE databases are also initialized to show that there
are no jobs currently being run by CTM.

Controlling CTM resources

Requests to change the protection of test resources are handled by making the appropriate changes
to the CARE and DONT databases. If the changed protection affects a resource that is in use by a
test that is already running the status of that test can also be modified in the APE and JET
databases. Commands to mount and dismount storage devices are handled in a similar fashion,
and the node on which the device is being served is signaling to perform the mount or dismount in
batch.

Starting and stopping CTM jobs and test processes

To start a job, the command center master is involved in varying amounts of work, depending on
which test resources the test engineer has unambiguously specified in the command. The resource
requirements for the specified test are first established from the TMDB. If all of these resources are
unambiguously specified in the command, then details of the job are placed in the JET database,
and the node that was specified is signaled to start the test processes. If the test resource is not
specified clearly, the command center must determine what test resource to use. It attempts to load
balance by referencing the tests that are already running (as described in the APE and JET
databases), the load-numbers file, and various internal algorithms. Once the test resources to be
used are identified, details of the job are then placed in the JET and the selected nodes are
signaled to start the test processes. Handling commands to stop test processes is much easier; the
nodes that are running the test processes are simply identified from the JET database, and then are
signaled to stop the test processes.

Interrogating CTM and generating reports

When the command center is already running, any subsequent invocations of CTM give rise to a
nonmaster version of the command center. As nonmaster the command CLI provides a reduced
command set that is limited to generating reports and interrogating CTM about the resources that
are available and about the jobs and test processes that are running. Requests for information
about CTM resources and jobs and processes that are running are handled by examining the
CARE, APE, and JET databases. Requests for reports are handled by calling the TEL Reporting
Utility to generate the requested report based on the contents of the TEL database.

The CTM Server Process

This process runs on every participating node in the cluster on which CTM has been booted. Its
primary purpose, based on commands signaled from the command center, is to stop and start CTM

© Copyright 2004 Hewlett-Packard Development Company, L.P. 13

test processes on the node on which it is running, and to periodically monitor whether these tests
are still alive.

Starting a CTM test process involves several stages. The TMDB for the test process is examined,
and the required test resources are verified and are assigned to the test process. The OpenVMS
context in which the test is to run is established and is described to the test by a series of process
local symbol definitions. For example, the DPID that the test is to use is defined as a local process
symbol. Similarly, if the test is required to create data files, a directory for these files is created on
behalf of the test and is also defined as a process local symbol. Finally, the test process is started
by creating an OpenVMS process to run a DCL command file that is specific to the test.

The CTM server process is responsible for maintaining the status in the APE of all the test processes
that are running on the node. Because there can be so much work occurring on the test nodes, they
are often extremely busy and there can be significant delays in the communication between the
CTM server process and the test processes it is running. After each test process is started, it is
“pinged” periodically by the CTM server process to ascertain that it is still alive. When the first
correct response to the ping is received back from the test process it is flagged as RUNNING. If a
test process fails to respond to the pings in a timely fashion, it is eventually flagged as MIA. When
a test encounters a fatal error and stops, the CTM server process is notified and the test is flagged
as DEAD. Stopping a test at the behest of the command center can also involve significant delays if
the system is very busy. The test’s ping is changed to a request to stop, and the test is flagged as
FIP (finish in progress). When the test process eventually stops, the CTM server process is notified
and the test is flagged as FINISHED.

As long as CTM is booted and running on a node, a secondary function of each CTM server
process is to wake up periodically to verify that the contents of the CARE, APE, and JET databases
are accurate and up to date. Access to each of these databases is controlled by the acquisition of
DLM locks. If the state of the locks indicates that a CTM server process on another node is verifying
the databases, no action is taken, and CTM relies on the functionality of the peer server process to
maintain their accuracy. If not, the databases are “walked” and verified by issuing a series of
SYS$GETSYI, SYS$GETDVI and SYSSGETIPI system service calls to verify that the contents of the
databases are accurate and up to date.

The TELogger Process

This process runs on every participating node in the cluster on which CTM has been booted. Its
function is to accept messages, such as performance metric information from the test tools, and to
write that information to the TEL data files.

The Test Module Data Base Utility

The TMDB utility is used to create, maintain, and report information about the CTM test module that
are installed on the cluster. It is run on demand, and it can be run on any patrticipating node in the
cluster. It handles such information as the name of test module, a characterization of the test
resources used by each of the test module, and other information pertaining to how the tests are to
be run.

The TRU Reporting Utility

This utility is used to create generate reports from the data that is contained in the TEL
database. It is run on demand, and can be run on any participating node within the cluster.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 14

TEL data files
Contains performance
and other information for
every CTM test that has
been run

CARE Database

DONT Database |

JET Database

APE Database

TMDB Database
Contains information about
every test module installed on
the cluster

Figure 3. A schematic representation of how a CTM test processisrun

© Copyright 2004 Hewlett-Packard Development Company, L.P.

15

CTM Test Modules (Test Processes)

Figure 3 provides a schematic representation of how a test process is run by CTM.

The primary function of a CTM test module is, of course, to perform whatever actual testing
functionality is required. Several such test modules have been mentioned in the foregoing
description of CTM. For example, the CTM_HIGH_IO test performs disk 1/0 testing by means of
repeatedly writing, reading back, and then verifying data patterns to and from disk. Because CTM
test modules have to be written specifically to work within the CTM test harness, they also must
perform certain additional tasks.

All test processes are initiated from the CTM command center, which resolves any ambiguity
concerning the resources that the test is to use, including the node on which the test is to run. The
CTM command center then signals the CTM server process on the selected node to start the test.
The CTM server process on the signaled node establishes an OpenVMS context for the test process
and then starts it.

In order to interface with CTM, the test module must use the test context provided by the CTM server
process by using parameters that are passed to the test by the CTM server process. These
parameters establish the process logical names that describe them. By convention, the DPID that is
established by the CTM server process and that is passed as a process logical name is used in
building whatever the data patterns the test may use. Similarly, the directories and file names that
the test module uses must comply with what the CTM server process tells the test to use.

The test is also required check in periodically with the CTM server process and to respond
periodically to pings from the CTM server.

As the test process runs it periodically sends the TELogging process that is running on that node
performance metric information for the test. The TELogging process places this information in the
TEL data files, where it can be accessed and reported on in the context of other activity taking
place on the cluster. This confers a great deal of standardization to the reports that are generated
and results in a considerable saving of effort by eliminating the onerous task of writing lengthy
report-generating programs for each test.

Assuming that the test does not encounter a fatal error, it is eventually stopped by an explicit
command from the CTM command center. In turn, the CTM server process signals the test task to
stop. Upon receiving this signal, the test task makes one final report on the overall test metrics to the
TELogger and then stops. Once the test process has stopped, the CTM server process updates the
various CTM databases and files to reflect that the test is no longer running.

Summary

After many years of use, there can be no doubt that CTM is an invaluable tool for testing
OpenVMS on large clusters, and that it provides power and flexibility that goes beyond what could
be provided by any single test. The TEL Reporting Utility (TRU) provides reports and clusterwide
overviews of the testing and test history that are invaluable and that would not otherwise be
possible.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 16

Although this paper began by talking about the challenges involved in testing on OpenVMS, the
greatest challenge of all was left unstated. That challenge is to continue to maintain the highest

levels of quality and reliability for which OpenVMS is renowned. The hope and expectation is that
CTM wiill continue to help meet this challenge in the years to come.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

17

	Cluster Test Manager (CTM) for OpenVMS
	Overview
	Introduction
	Overview of CTM
	Organizing and identifying CTM tests
	Viewing CTM test results
	Data patterns
	Tracking down problems
	Varying test mixes and sequencing tests.
	Overall CTM design
	CTM databases and related files
	
	
	CTM$LIBRARY
	CTM$TMROOT
	CTM$DATABASES.
	CARE and DONT Databases
	APE and JET Databases
	CTM$TMDB
	TEL Data Files
	CTM$LOGS

	CTM test harness software
	
	
	The CTM Command Center Process
	Booting CTM
	Controlling CTM resources
	Starting and stopping CTM jobs and test processes
	Interrogating CTM and generating reports
	The CTM Server Process
	The TELogger Process
	The Test Module Data Base Utility
	The TRU Reporting Utility

	CTM Test Modules (Test Processes)
	Summary

