
Inheritance Based Environments in Stand-alone OpenVMS Systems
and OpenVMS Clusters
Author:
By Robert Gezelter, CDP, CSA, CSE
Software Consultant

Introduction

The standard OpenVMS user environment conceptually rests upon two related, yet
distinct logical hierarchies:

• the four hierarchical levels of the logical name environment1 and

• the execution of the system-wide and user-specific login profiles2

The classification of users into groups, the separate identification of privileged user
groups (those identified as “System”), and all other users, suggests a natural
hierarchical structure. While these hierarchies are more than what many other
operating systems provide, they still are not fully reflective of many environments. The
organization, the applications, and the computing environment of today’s corporate
organization are often more complex than a single organization with easily identifiable,
disjoint groups.

Many user environments are far richer in diversity than they appear at first glance,
reflecting users’ different collections of applications, their roles, and their
responsibilities.

Computing environments are more than single instances of processors, memories, and
peripherals. The most critical elements of a well-configured OpenVMS environment
reside in the logical environment created by the system manager and application
architect, not in the specification of the bare hardware and software environment. The
exact processor (VAX, Alpha, or Itanium) and peripheral configuration of the system is
far less important.

 1 LNM$SYSTEM (composed of LNM$SYSTEM_TABLE and LNM$SYSCLUSTER, which in turn really translates to
LNM$SYSCLUSTER_TABLE), LNM$GROUP, LNM$JOB, and LNM$PROCESS are part of the user’s context created as
part of the processing performed by $CREPRC.
 2 The system-wide login command file is located in SYS$MANAGER:SYLOGIN.COM; by default, the user-specific
login is in the user’s default directory. The user’s login can alternatively be placed in any private or shared file that
is accessible to the user through setting the appropriate fields of the user’s record in the system UAF.

User environments are hierarchically nested. For example, an individual user is typically
a member of a group. In its turn, the group is a part of a company. Thus, an
individual’s application environment depends upon that person’s place in the
organization. Similarly, the group or department’s environment is merely an instance of
the standard company-level environment, tailored to the specific functions performed by
that department. In a service bureau or Applications Service Provider (generally referred
to as an “ASP”) environment, where multiple companies (or several sibling companies)
share a system, there are also company-wide environments, which are shared by all
users at an individual company but differ to some extent between different companies.

A review of the mechanics of what happens when a user connects to an OpenVMS
system is appropriate at this point.

When a user logs on to an OpenVMS system, LOGINOUT.EXE creates a basic
operating environment consisting of:3

• the default directory, SYS$LOGIN

• the device upon which the default directory is located, SYS$LOGIN_DEVICE

• a scratch device/directory, SYS$SCRATCH

• the default device characteristics established by the command procedures
executed as part of the login process

• the logical name environment, which is a hierarchical list of names and
translations of names. The logical name tables are searched in a variety of
situations when commands and programs access a variety of resources, most
commonly files and queues. Generally speaking, translation continues until no
more translations are possible, each iteration starting again from the beginning.
This feature is dramatically different from the one-pass symbolic parameters
available on other systems. A user process’s actual logical name context is built
by LOGINOUT.EXE and includes:

o the command files executed as part of login processing

o the job logical name table, specific to the job, referred to by the name
LNM$JOB4

 3 For simplicity, we refer to the basic case of an interactive user. The start of a network or batch produces similar
results and follows a similar path. Creating processes that are neither interactive, batch, nor network may create a
similar environment, or may result in a slightly truncated environment (e.g., whether the /AUTHORIZE option is
used on the RUN/DETACH command). Environmental truncation has important implications for the proper
operation of applications and facilities.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 2

o the group logical name table, applicable to all users who share the same
UIC Group number, LNM$GROUP5

o the system logical name table, LNM$SYSTEM

o the cluster logical name table, LNM$CLUSTER_WIDE6

• other process characteristics established as a part or consequence of login
processing.

These capabilities are generic, and straightforwardly support the construction of
environments based upon a simple cluster belonging to a single entity with groups of
users, each with their own profiles. However, environments are often not as
straightforward. Traditionally, complex environments have been implemented by
explicitly invoking the particulars of each environment from the individual user’s
LOGIN.COM file. A user’s specific environment is achieved by manually adding
elements to the user’s login profile. This method requires inordinate maintenance, is
excessively fragile, and is virtually impossible to manage.

 4 LNM$JOB is itself a logical name, whose translation resides in the LNM$PROCESS_DIRECTORY as
LNM$JOB_XXXXXXXX, where XXXXXXXX is the eight-digit hexadecimal address of the Job Information Block (see
Goldenberg, Kenah, Dumas, “VAX/VMS Internals and Data Structures, Chapter 35, page 1073, first footnote)
 5 LNM$GROUP is itself a logical name, whose translation resides in the LNM$PROCESS_DIRECTORY as
LNM$GROUP_GGGGGG, where GGGGGG is the six-digit octal UIC group number (ibid.)
 6 Introduced in OpenVMS Version 7.2 (OpenVMS Version 7.2 New Features Manual, Order#AA-QSBFC-TE, July
1999)

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 3

Philosophic Basis

OpenVMS provides a straightforward approach, founded upon the same architectural
principles as the operating system itself, which dramatically simplifies the creation of
customized environments. This can be accomplished with a minimum of complexity and
maintenance effort, and a high degree of manageability and scalability.

The basis of the simplification is the realization that while environments differ dramatically,
they do so in an orderly, systematic way, and those differences can be implemented with
minor, manager-level changes.

An approach based upon axes of variation, leveraging the strengths of OpenVMS and its
hierarchical logical name structure, is more robust, more auditable, and more maintainable
than the traditional explicit enumeration approach.

Environments can be characterized by multiple, independent axes of variation. For the
purposes of this paper, we will consider five axes of variation, although the concept can be
easily extended to address further axes of variation.

Figure 1 – Five illustrative independent axes of variation

The axes are considered independent; changes in the names comprising a single axis do not
imply changes in different axes. There is also no need to restrict name translation iterations to
a single axis.

There are five axes of variation referred to in this paper, namely:

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 4

Clusterwide Variations

Clusterwide variations reflect those differences that define the individual cluster as a whole.

Clusterwide variances are best dealt with using the clusterwide logical name table.7 The
clusterwide local name table is automatically included in the logical name resolution path,
LNM$FILE_DEV, at a lower precedence than that of the system-wide logical names contained
in LNM$SYSTEM.

System Configuration Variations

System specific variations reflect the particular needs of a particular system and its hardware.

System specific variations are best dealt with by adding appropriate logical name definitions
to the standard system logical name table, LNM$SYSTEM.

Site-Specific Variations

Site-specific variability reflects the connection and capability differences that exist on a specific
site that is a member of a multi-site OpenVMS Cluster system.

While this axis of variation is not explicitly supported by OpenVMS, it can be added to
OpenVMS by the addition of a new, system-wide logical name table inserted in the search
path (LNM$FILE_DEV in LNM$SYSTEM_DIRECTORY or LNM$PROCESS_DIRECTORY)
between the systemwide and clusterwide logical name tables.

Firm/Group/User-Specific Variations

Some variations are specific to an individual’s organization, or place within the organizational
hierarchy.8 OpenVMS traditionally recognizes the group/department and user hierarchy with
UIC-based protection and the existence of the group logical name table. This existing axis of
variation can be extended and enhanced through slight adjustments to the login processing
and the logical name search path.

Application-Specific Variations

Lastly, some environmental parameters are specific to a particular application. They may
overmap similar parameters from similar applications, but differ in that each user of the
application must have definitions in his or her logical name search path providing the value for

 7 Ibid
 8 Within this paper, we refer to this as firm, group, and user. Additional levels (e.g., division or region) can easily be
accommodated by similar means.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 5

these parameters. Thus, applications can be completely parameter-driven by their environment,
with all of the implications of hierarchical defaulting.

One Parameter, One Line of Code

Another overall principal is that each definition should appear, like a common subroutine, only
once. Duplicate definitions are a major element in maintenance complexity and costs, as well
as an ongoing source of errors.

Dependency

The inclusion of all the definitions in the logical name search path allows different logical
names to be phrased in terms of other logical names in the search path. As an example, the
location of a file may be expressed as a logical name definition:

$ ASSIGN/PROCESS SYS$SCRATCH:VEHICLES.DAT DATABASE

which itself includes a reference to a definition in the user’s process logical name context (to
the logical name SYS$SCRATCH). In turn, SYS$SCRATCH may include a reference to the
logical name DISK$SCRATCH which might be defined in the group’s logical name table.
DISK$SCRATCH could also be defined in the system logical name table, LNM$SYSTEM.

This is the same approach used by OpenVMS itself. Many logical names are explicitly or
implicitly dependent on the definition of SYS$SYSROOT9 or SYS$SYSDEVICE. In practice,
multiple dependencies of logical names incur a generally insignificant cost.10

 9 Most of the SYS$ logical names are expressed in just such a way, in terms of SYS$SYSROOT. For example, SYS$SYSTEM
is defined as SYS$SYSROOT:[SYSEXE]. SYS$MANAGER is similarly defined as SYS$SYSROOT:[SYSMGR]. SYS$SYSROOT
is defined as a search list including both the system-specific and clusterwide OpenVMS systems directories. Expanding this
scheme to include additional levels beyond system-specific and clusterwide is straightforward.
10 The processing costs associated with the rapid opening and closing of files and other operations is far more significant. In
any event, the labor costs and inflexibility of the approaches required to save the logical name translations are far greater. In
applications where thousands of records are processed, the cost of a few extra logical name translations is negligible.

Migrating logical names from private copies in LNM$PROCESS to LNM$JOB or other logical name tables
with a wider purview increases performance by reducing the need to copy large numbers of process-
private logical names during SPAWN operations.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 6

Inheritance

Successive dependence, illustrated in the previous section, is a powerful technique. Defaulting,
a concept implicitly familiar to OpenVMS users in the guise of default file types, and the
traditional hierarchy of logical name tables, is a far more powerful mechanism than generally
realized. Viewed as a form of inheritance, defaulting is also a mechanism for expressing the
variability of user environments.

It has previously been remarked that each axis of variability embodies a hierarchical series of
qualifications within the axis. On the individual axis, users are members of groups; groups are
members of firms. On the cluster axis, the highest level is the cluster as a single entity; within
the cluster, there are sites; within the sites, there are individual cluster nodes.11

Hiding the Physical and the Organizational

The purpose of isolating the physical and organizational aspects of a user’s environment is the
same as the more familiar OpenVMS concepts of disk space management (virtual blocks) and
memory management (virtual memory). In the case of disk space and memory management,
the purpose is to free the application from managing the details of a specific processor or
device environment.

Adapting the same philosophy to users’ logical environments similarly allows the re-
organization of users and their hardware platforms without the need to explicitly re-engineer
each and every reference to the environment.

11 One could also argue that within nodes, there are individual realizations of nodes on particular hardware. For example, the
node ALPHA could run at different times on either an ES40 or with a pre-configured alternative configuration for an
Alphaserver 1200 as a backup. It is straightforward to implement such an environment, but does not affect the overall
discussion.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 7

Figure 2 – Hierarchical dependencies and inheritance – Cluster/Site/System

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 8

Figure 3 – Hierarchical Dependencies and Inheritance – Firm/Group/User

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 9

Physical Configurations

Simple Configuration

Simple systems are employed for a variety of reasons, including cost and space. A large,
complex system may not be justified or economically feasible for small organizations or for
small applications. A small system may also be used in a large organization or for a large
application to support development or to prototype applications.

Small systems, such as a DS10 or similar small workstation or server, are frequently used for
testing installation, startup, shutdown, and restart procedures. These operations are extremely
disruptive to a large production environment.

The affordability of relatively inexpensive, small OpenVMS platforms permits developers and
maintainers to perform these highly disruptive tests with minimal impact on production systems
and with a high degree of certainty that the full-scale tests will be successful.

Small systems are also used for projects in the proof-of-concept stage, where economics can
make the difference between feasibility and infeasibility.

Advanced Configuration

Larger configurations present more options than small systems. While small systems may be
restricted to one or more directly attached disks, a larger configuration may include a mix of
directly attached disks (directly attached to the integral SCSI adapters on systems such as the
GS-series and ES-series), local disks (CI or SAN attached), and remote SAN or network-
attached storage. Each of these storage categories has different operational and performance
characteristics.

Different user groups may be assigned to login environments with different attributes,
depending upon a multitude of factors. Some factors will be technical in nature (such as a
need for large scratch areas, or a need for shadowed and/or mirrored storage) and some will
be organizational or political in nature (one department may have contributed the funds for a
particular storage facility). In either event, the environment for one group of users (or in some
environments, a particular user) will determine the need for that group’s default environment to
differ from some other group’s default environment.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 10

Applications Environments

User Disks

During login processing, LOGINOUT.EXE determines a user’s default disk from the contents
of the user’s login profile, located in the user authentication file (referred to as the UAF).
LOGINOUT.EXE populates SYS$LOGIN and SYS$LOGIN_DEVICE in the user’s job
logical name table as executive mode logical names (making them available to and usable by
privileged images).

Scratch Space

Similarly, LOGINOUT.EXE uses the same information to populate the contents of
SYS$SCRATCH.

Access to Data

When creating a user’s process, LOGINOUT.EXE also attaches a series of rights list
identifiers to the process. These identifiers come from two sources: a set of identifiers that
reflect the origin of the process (e.g., BATCH, INTERACTIVE, REMOTE) and those identifiers
associated with the user’s UAF entry in RIGHTSLIST.12

12 The rights list identifiers associated with a process are used to determine access rights to system resources beyond those
granted through the normal System/Owner/Group/World and privilege access mechanisms. The details of the access
checking scheme and how identifiers are used is described the “OpenVMS Guide to System Security”.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 11

Default Inheritance

While not often appreciated, the OpenVMS login processing provides an easy and natural
idiom for using at least three levels of inheritance, clusterwide, system, and group.

Concealed, rooted logical names,13 coupled with the conventions for directory names in FILES-
11, provide a natural naming convention and structure for inheritance, as illustrated in Figure
4.
Architectural Concepts

Architects understand that building designs must deal correctly with the forces of nature. A
realizable design must always address the realities of construction, the details of the physical
materials, and the techniques of fabrication. Designs do not exist in a vacuum, devoid of
context.

Systems architecture is a hybrid discipline. In some sense, computer software is totally
malleable, purely a creation of the mind of its creator. However, some architectural principles
do apply. One such principle is that the overall architecture will only work if the details are
correct, both architecturally and in the resulting implementation. For example, Digital’s RT-11
(with the “DK:” device) and Microsoft Windows™ (with the “C:” device) have been hobbled
when compared to a system, such as OpenVMS, that hides the identity of the system device
behind a logical name.

The principles that apply to the quality of pictures when enlarged or reduced have their analog
in the world of OpenVMS configurations. Reducing the size of a picture makes detail
imperceptible, but it is still there. When enlarging a picture, detail cannot be invented.

The logical environment used for a larger, clustered system, can be easily reconfigured to
transparently provide access to the same resources in a smaller workstation or development
system (in effect, the analog to reducing a picture – no loss of picture quality occurs). However,
an environment designed for a small system is frequently not suitable when used with a larger
configuration (the analog of enlarging a picture – the picture loses sharpness and clarity as it is
enlarged). The inherent problem is that the environment designed for the small system does not
address the issues that occur in larger configurations.

To an even greater degree, different members of a cluster, whether a conventional OpenVMS
Cluster system or a distributed, multi-site disaster tolerant OpenVMS Cluster system, offer the
same challenge along a different axis.

13 Much has been written on the use of concealed, rooted logical names, including this author’s articles on OpenVMS.org,
accessible directly or though the author’s www site at http://www.rlgsc.com/publications.html.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 12

Figure 4 – Inheritance with rooted, concealed logical names.

 Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 13

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 14

Developing a logical environment that is transparent across different systems requires
care. In a clustered environment, the different member nodes must be fully
interoperable, while still being appropriate for the different members and/or sites
comprising the cluster. In both stand-alone and clustered systems, the logical
environment must effectively embrace all operational issues without imposing unneeded
presumptions of organizational structure or hardware configuration on any of the
affected users (general users, developers, or system managers).

Issues

Different systems have their own issues, many of which are addressed through the
judicious use of different elements in one of the login files, or the environment created
by one of the elements of the STARTUP process.

Physical Machine Characteristics

Significant differences exist among system models. A small DS10 may be limited to an
internal disk, and perhaps a small external storage shelf. A large GS1280 may have
access to a complex SAN, as well as multiple local disks. Intermediate sized systems
will be variations on the theme, with a hierarchy of storage, ranked by size, speed,
latency, integrity, and cost.

Applications Impact

File placement depends upon use. Data files that are used throughout a cluster must be
completely accessible throughout. On systems attached to a multi-site SAN, the
straightforward choice for widely shared files is on SAN-mounted volumes.

Conversely, there are other files on the other extreme of the spectrum. Process-private
temporary files are used only within a given image or process. A scratch file used by
the SORT/MERGE utility is a common member of this class of files. Scratch files have no
context or meaning outside of the moment, and need not be accessible to any other
member of the cluster. Nor do they need backup, shadowing, or any other data
protection scheme. If the process terminates for any reason, software or hardware
failure, the files will, of necessity, be recreated when the process is restarted.

Often, temporary files are of substantial size. Placing them on remotely shadowed
volumes, or volumes with full backup support, is a common source of overall system
performance problems.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 15

Physical Location

One of the strengths of OpenVMS is that it allows the programmer and system manager
to generally ignore the actual location and configuration of mass storage. However, like
any other virtualization scheme, this information cannot be ignored; performance and
other issues merely move from one level to another.

It is tempting, but overly simplistic to consider the use of a SAN as a solution to all of
the performance questions which bedevil large configurations. While SAN technology
is quite effective, it cannot change the laws of physics. Some correlation between the
function of mass storage and its location is extremely beneficial to system performance.

Implementation Aspects

These issues, concepts, and concerns may seem abstract or theoretical. This is far from
the case. Examining the issues and concepts in the context of a particular example will
help bring them into focus.

Consider a firm with a disaster-tolerant OpenVMS Cluster system located at two sites,
with two systems at each site. To illustrate the full range of issues, let us assume that
each of the four systems is different, ranging from an enterprise-class machine at the
high end (e.g. a GS80 or GS1280), to departmental-class machines (e.g., ES4x) to
small servers (e.g., DS10/DS20). A SAN is deployed at each site, and the systems take
full advantage of the mirroring and shadowing facilities of OpenVMS and the storage
controllers to provide mass storage.

User-Specific Configurations

The default value for SYS$SCRATCH created by LOGINOUT.EXE is the user’s default
directory, as contained in the UAF. This is far from an optimal decision for several
reasons:

• the user’s default directory will likely be on a volume that is mirrored (within a
site) and/or shadowed (between sites). While conceptually simple, the reality is
that there is an overhead associated with both local mirroring and remote
shadowing. In the case of shadowing, the reality is that the inter-site interconnect
has a finite bandwidth far less than that available either within the computer
room itself or on the system’s local interconnect.

• scratch files are frequently high activity files.

• scratch files may be very large.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 16

• scratch files generally have little meaning outside of the particular process or job
that created them.

A straightforward way to address this situation, while simultaneously using the
configuration to best advantage, would be to relocate the scratch directory somewhere
else. One obvious place is locally connected disks, namely disks connected directly to
the individual system. Whether the scratch disks support all processes on the machine or
a single user is irrelevant. The critical issue is access to an appropriate scratch area
through the SYS$SCRATCH logical name as translated from within a user’s individual
process context.

So far, it seems quite simple. While this issue can sometimes be addressed at the level
of an individual user, it is more appropriate to address it in a hierarchical fashion.
Scratch areas can generally be described on a group (department), set of departments,
firm, or system basis, with only a small customization for the individual user.

Group-Specific Configurations

At the highest level of the scratch volume, create a series of directories, one for each
department. These directories need to be accessible to all members of the group, either
through rooted, concealed group logical name table entries for DISK$SCRATCH, or
through rooted, concealed system logical name table entries for
DISK$GROUP_SCRATCH, or other means.

In the SYLOGIN.COM file, we can redefine SYS$SCRATCH in the job logical name
table (LNM$JOB) to point to the correct location.14

14 The ASSIGN/JOB DISK$GROUP_SCRATCH:[USERNAME] SYS$SCRATCH command defines a supervisor
mode name in LNM$JOB. The definition of SYS$SCRATCH generated by LOGINOUT.EXE is in executive mode. In
most user situations, this difference is of no import.

If the dichotomy caused by having the supervisor and executive mode logical names pointing to
different directories is an issue, it is possible to enable the CMEXEC privilege in the user’s
default privilege field in the UAF (but not in the authorized privilege field). SYLOGIN.COM will
then execute with the CMEXEC privilege initially enabled. In this case, SYLOGIN.COM should
immediately redefine the SYS$SCRATCH logical name in LNM$JOB as an executive mode
logical name, and then downgrade the process by removing the CMEXEC privilege with the SET
PROCESS/PRIVILEGE=(NOCMEXEC) command. Alternatively, a small privileged image could
perform the same functionality with more restrictions.

If done properly, the preceding is not a security hazard. However, one should exercise
prudence. In most cases, SYS$SCRATCH can be defined as a supervisor mode logical name
with no ill effects.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 17

Thus, each group of users will seem to be pointing at their own scratch volume. For
example, in the System or Firm Logical Name Tables we have definitions for
DISK$SCRATCH as follows:

Group Scratch Device
Value of DISK$SCRATCH in Group

Logical Name Table
ITDevelopers

DISK$NODESCRATCH DISK$NODESCRATCH:[ITDEVELOPERS.
]

Accounting
DISK$NODESCRATCH DISK$NODESCRATCH:[ACCOUNTING.

]

Operations
DISK$NODESCRATCH DISK$NODESCRATCH:[OPERATIONS.]

Table 1 – System/Firm definition variations in translation of DISK$SCRATCH

The preceding may appear rather obvious, and indeed it is a rather simple example.
However, suppose that as the system activity increases, we realize that the space and
performance requirements of the scratch space for accounting have been
underestimated. We decide to allocate a dedicated stripe set to servicing the large
scratch space requirements of the Accounting group. With the above structure, only a
single logical name needs to be modified, namely the definition of
DISK$NODESCRATCH in the Accounting group’s group logical name table as shown
below.

Group
Scratch Device (value of

DISK$SCRATCH)
Value of DISK$SCRATCH in Group

Logical Name Table

ITDevelopers DISK$NODESCRATCH DISK$SCRATCH:[ITDEVELOPERS.]

Accounting DISK$NODESCRATCH1 DISK$SCRATCH:[ACCOUNTING.]

Operations DISK$NODESCRATCH DISK$SCRATCH:[OPERATIONS.]

Table 2 – Translation of DISK$SCRATCH when System/Firm level definitions are
overridden in the Accounting Department Group Logical Name Table.

The system does not need to be restarted, only the users in the Accounting group must
be removed from the individual cluster member momentarily while the logical name is

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 18

changed and the files migrated to the new location.15 It is important to note that the
impact of the change is very limited. Since the changes only affect the realization of the
conceptual environment on the actual environment, only the system management group
needs to be involved with this change.16 Users will be unaffected, and in many cases
unaware of the change, provided that they do not examine configuration-specific
information not directly relevant to their applications.17

Site-Specific Configurations

The preceding discussion addressed user- or group-specific scratch file locations. A
similar technique can be used to identify a site-specific resource, such as a site-local
scratch disk.

In its most primitive sense, a site-specific scratch location can be identified by the
creation of a single name identifying the site that the system is associated with.
SYS$MANAGER:SYLOGIN.COM (or the group logins, where appropriate) can then
construct the logical name values appropriate for a particular site.

This approach allows the flexible provisioning of multiple levels of resources in a
logically consistent manner. For example, three levels of scratch space can be made
available to users and applications, each with different characteristics, as follows:

Name Characteristics Restrictions

DISK$SCRATCH
Machine local Only available on a single

system

DISK$SITE_SCRATCH
Site local SAN connected,

topologically local to each
system

DISK$CLUSTER_SCRATCH
Clusterwide SAN connected, shared

with all cluster members

Table 3 – Scratch Resources by Location, Connection, and Accessibility

15 Though not strictly required for scratch files, it is highly recommended. Copying the current contents of the old
scratch device to the new scratch device during the changeover should not take long, and will prevent many
problems for users who use SYS$SCRATCH as a storage place for transient files (e.g., test files generated during
debugging sessions).
16 An automatic procedure is useful for generating the group directory trees from a reliable roster of group
members (e.g., an automatically generated and parsed listing of the system UAF).
17 While users can use system services and DCL lexical functions to see the actual difference in their environment,
there is no normal reason for them to do so. Done properly, the differences should be transparent.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 19

Company-Wide Defaulting

In a similar fashion, a hierarchical environment can be exploited to reduce the
complexity and redundancy of applications. Suppose several sibling organizations
share a hierarchically structured environment.18 The same techniques traditionally used
to support the differences between groups can be used to separate and support the
parallel environments.

The parallel environments may represent subsidiaries or divisions of the same
organization using common applications, different departments within a division, or
customers of a service bureau. From an environmental perspective, the similarities far
outweigh the differences.

In creating a hierarchical structure to bridge department-level differences, we would use
the group logical name table (LNM$GROUP). Users, who belong to different, yet
parallel environments, require us to create a new category or level,19 for example Firm
(in this narrative, we will refer to it as LNM_FIRM).

Logical names reflecting the company-wide environment would be inserted into
LNM_FIRM. In SYS$MANAGER:SYLOGIN.COM we would insert LNM_FIRM20 in
the logical name search path (LNM$FILE_DEV in LNM$PROCESS_DIRECTORY)
between the group and system-wide logical name tables. Each group would be uniquely
identified with a particular firm.21

It is admittedly simplistic, but this structure allows the creation of parallel application
environments with minimal effort and minimal code differences between different
branches of the tree.

The same process can be used to implement testing environments. It is admittedly
expansive, but this approach can leverage the seemingly simple OpenVMS UAF, rights
list, and logical name facilities to support large numbers of parallel development, test,
and production environments for similar yet separate organizations on a single
integrated OpenVMS Cluster system.

18 Conceptually, it does not matter if the actual systems involved are separate stand-alone systems maintained by
common managers or applications developers, a single consolidated server, or an OpenVMS cluster comprised of
many individual systems.
19 The logical name hierarchy in a baseline OpenVMS is cluster, system, group, job, and process.
20 Paralleling the design of the OpenVMS logical name facility, LNM_FIRM would be a name located in
LNM$PROCESS_TABLE containing a pointer to the name of the actual firm-wide logical name table for that
particular process. The protection on LNM_FIRM must also be set appropriately.
21 Each group belongs to an identifiable firm. Thus, it is possible to identify the correct firm-wide logical name table
through a group-wide login script, the contents of the group logical name table, a rights list identifier, or a file in a
common group-wide directory.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 20

Company-Wide Constant Data

It is obvious that brief information specific to a particular sibling company can be stored
in LNM_FIRM. Examples of such information are the name of the firm or the locations
of company-wide resources or files.

Application-Wide Defaulting

The same principles that apply to individual subsystems apply to individual users or
groups of users. The names of files and commonly used constants can be contained in
an application-specific logical name table, and that name table can be inserted in one
of the active search paths.22 The benefits of this technique include:

• easier maintenance – only one copy of the definition to use

• fewer logical names in the process or job logical name tables23

• faster logins as the command files defining the logical names need not be
executed at each login

• faster SPAWN operations, as the voluminous process logical name table need
not be copied to the sub-process each time a process is spawned.

Logical names used by different applications should not overlap. If the logical names
used by pre-existing applications overlap, changing the sequence of name tables in
LNM$FILE_DEV can be used to resolve the problem.

System Resources

The location of scratch space is but one example of an instance where the location or
identity of system resources can be managed through the use of logical names.

Naming Conventions

Names that will be used globally should be named separately from names that are
unique to a particular process or application. Care should be exercised to allow the
same mechanisms to be used by different groups or ISVs. One possible way to avoid
naming conflicts is to use the registered Internet domain names as the leading part of
the logical name.

22 If an entire community makes use of a particular application, it may make sense for that application’s logical
name table to be included at a higher level in the hierarchy than an individual user (e.g. the firm or group).
23 Admittedly, memory consumption for logical name tables is not the concern for system performance that it once
was. However, 200 logical names for each user on a large machine is still a potential performance issue when
each of several hundred users defines a full complement of the names.

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 21

Summary

Presenting a conceptually consistent, although not necessarily identical user-perceived
environment, is a powerful approach when implementing OpenVMS systems, whether
stand-alone or as members of OpenVMS Cluster systems.

Hierarchical environments provide a powerful way to express the differences while
retaining common elements. The source of the differences does not matter. The
differences may be matters of mass storage configuration, as in the SYS$SYSROOT
hierarchy used by OpenVMS itself, or the differences may reflect the management
structure of the organization. Hierarchical environments allow the differences between
disparate systems, and the differences in organizations, to be hidden from users and
applications. The greater the disparity between the underlying systems or organizations,
the greater the leverage of using different, yet conceptually identical, environments to
provide users and applications with a perceived identical computing context.

Using inheritance to dynamically instantiate logically identical user environments on
dramatically different systems simplifies system management, reduces the cost of system
management, and increases system availability. This method can be of even greater
use to the end-user and system manager than to the base operating system and layered
products.
Bibliography

HP OpenVMS DCL Dictionary: A–M, © 2003, Order #AA-PV5KJ-TK, September
2003

HP OpenVMS DCL Dictionary: N–Z, © 2003, Order #AA-PV5LJ-TK, September
2003

HP OpenVMS Systems Manager’s Manual, Volume 1: Essentials,
Order #AA-PV5MH-TK, September 2003

HP OpenVMS Systems Manager’s Manual, Volume 2: Tuning, Maintaining, and
Complex Systems, Order #AA-PV5NH-TK, September 2003

HP OpenVMS System Services: A–GETUAI, © 2003, Order #AA-QSBMF-TE,
September 2003

HP OpenVMS System Services: GETUTC-Z, © 2003, Order #AA-QSBNF-TE,
September 2003

OpenVMS Guide to System Security, Order # AA-Q2HLF-TE, June 2002

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 22

OpenVMS User Manual, Order #AA-PV5JD-TK, January 1999

OpenVMS Version 7.2 New Features Manual, © 1999, Order #AA-QSBFC-TE

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 1”,
http://www.openvms.org/columns/gezelter/logicalnames1.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 2”,
http://www.openvms.org/columns/gezelter/logicalnames2.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 3”,
http://www.openvms.org/columns/gezelter/logicalnames3.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 4”,
http://www.openvms.org/columns/gezelter/logicalnames4.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 5”,
http://www.openvms.org/columns/gezelter/logicalnames5.html

Goldenberg, R, Kenah, L “VAX/VMS Internals and Data Structures – Version 5.2”,
© 1991, Digital Equipment Corporation

Goldenberg, R, Saravanan, S “VMS for Alpha Platforms: Internals and Data
Structures, Preliminary Edition, Volume 3, © 1993, Digital Equipment
Corporation, ISBN#1-55558-095-5

Goldenberg, R, Dumas, D, Saravanan, S “OpenVMS Alpha Internals: Scheduling
and Process Control”, © 1997, Digital Equipment Corporation, ISBN#1-
55558-156-0

Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters 23

http://www.openvms.org/columns/gezelter/logicalnames1.html
http://www.openvms.org/columns/gezelter/logicalnames2.html
http://www.openvms.org/columns/gezelter/logicalnames3.html
http://www.openvms.org/columns/gezelter/logicalnames4.html
http://www.openvms.org/columns/gezelter/logicalnames5.html

	Inheritance Based Environments in Stand-alone OpenVMS Systems and OpenVMS Clusters
	Introduction
	Philosophic Basis
	Clusterwide Variations
	System Configuration Variations
	Site-Specific Variations
	Firm/Group/User-Specific Variations
	Application-Specific Variations
	One Parameter, One Line of Code
	Dependency
	Inheritance
	Hiding the Physical and the Organizational
	Physical Configurations
	Simple Configuration
	Advanced Configuration

	Applications Environments
	User Disks
	Scratch Space
	Access to Data

	Default Inheritance
	Architectural Concepts
	Issues
	Physical Machine Characteristics
	Applications Impact
	Physical Location

	Implementation Aspects
	User-Specific Configurations
	Group-Specific Configurations
	Site-Specific Configurations
	Company-Wide Defaulting
	Company-Wide Constant Data
	Application-Wide Defaulting
	System Resources
	Naming Conventions

	Summary
	Bibliography

