
Structured Programming in Assembly Language
Author: Dick Munroe
Cottage Software Works, Inc.

Overview
The stored program computer in its modern form was developed in the late 1940s. About 15
minutes after the first program was written (using patch panels and/or toggle switches on the front
panel) engineers started looking for ways to make writing programs easier. Some of the initial
attempts at making programming easier were what are now considered third generation
languages, e.g., Fortran II. However that still left the problem of writing low level (close to the
hardware) code. Fortran and the other languages developed at the time were unsuited to the
problem of dealing directly with hardware. As a result, low level languages, more or less
universally called assembly languages, were developed. These languages shared a number of
common characteristics. These are:

° One-for-one mapping from operands in the language to machine instruction
° Direct access to hardware resources,such as registers, I/O mechanisms, etc.

And they made programming at the lowest level of the computer substantially easier. They worked.

Over time, these assembly languages acquired additional mechanisms for making programming
easier, most notably a macro processing capability through which programmers could extend the
macro language. Most frequently “macros” were used to capture frequently-used code sequences,
for example, saving registers at the entrance to routines, restoring them at return, etc. Ultimately
the purpose of a macro was to reduce the opportunity for making mistakes. By putting common
instruction sequences into macros, a whole class of errors was eliminated making the writing of
assembly language programs more reliable and faster.

At the same time, substantial research was being done at the higher levels of programming (what
most would consider application programming) resulting in a variety of more or less general
purpose programming languages, Fortran 4, PL/1, Algol, C, Pascal, and a veritable tower of
Babel of others. All of these had interesting features and approaches with respect to how
programs were written. For example, Fortran included statements that were equivalent to the
ubiquitous compare/branch assembly language instructions (IF (A .EQ. B) GOTO …). This was
probably one of the very first uses of a “design pattern” in the history of modern computing.

Most interesting of all was the gradual elimination of the branch instruction in many of the
languages (notably Pascal which takes the elimination of GOTO to ridiculous lengths). The GOTO
or branch language construct was replaced by a variety of flow of control constructs such as:

° IF THEN ELSE

° FOR loops

° DO WHILE/UNTIL loops

The “elimination” of the GOTO and the use of the alternative flow of control constructs became
known as “structured programming.” Structured programming is probably the single biggest
contributor to the quality and quantity of code produced since the 1960s. There are several
reasons for this and they will be discussed later.

However, assembly language programmers (and there are a lot of us, though fewer now with the
advent of the RISC machine and the use of higher level languages for OS and driver development)
largely missed the advantages of structured programming.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 1

This article discusses the benefits of structured programming and how to do structured programming
in assembly language, specifically Macro-32. The techniques discussed here have been used in a
number of real time environments on a variety of platforms.

What is structured programming?
Well there are a lot of answers to that question. The most common one is “goto-less”
programming.

In fact, “structured programming” is little more than an enforced discipline that encodes information
directly into the “structure” of a program that makes some of the characteristics of the program
easier to understand by a programmer other than the original author. This is also useful if the
original author returns to that program after a substantial hiatus.

In the case of most higher level languages, the discipline is enforced by the language. For
example, Pascal literally has no GOTO in the language. C and C++ do have GOTO but also
have flow-of-control constructs that mitigate their use. In both languages, it is possible to write well
structured, easy to understand programs. It is also possible to write well structured, difficult to
understand programs. For good examples of such things, see the winners of the obfuscated C
contest held yearly. The obfuscated C programs all work, many do useful things, and all are
virtually incomprehensible by design.

So, goto-less programming is not a panacea. What use is it then?

Without discipline, none.

What structured programming enables is the ability to encode additional information into the body
of the program that makes it easier to understand. Specifically it let the programmer encode a
visual representation of the flow of control. In turn, this lets the programmer use extra pieces of
his/her brain to understand the program. The additional information is encoded by indenting the
bodies of the various flow-of-control constructs so as to make them stand out visually. Thus the
visual cortex is engaged to help understand the program. Humans evolved using their eyes to
detect predators and a substantial portion of the brain is dedicated to visual processing. As a
consequence, anything which adds visual information to a program makes understanding the
program easier because more of the brain is used when working with the program.

Of course the visual information must be added consistently, otherwise the programmer’s eyes get
confused and the additional information can be obscured. The guidelines for adding visual
information to programs are relatively straightforward. Basically, every flow-of-con trol structure
must be introduced consistently. The code executed with the flow of control must be indented to
show the scope of the flow-of-control construct. This indentation must be large enough to separate
the code visually while not being so large so that the eye “skips” over the indented code as though
it were divorced from the flow of control. In general, indents of less than three spaces is too little
and more than 5 spaces is too much. However, the human brain is enormously flexible and as
long as the rules for encoding flow-of-control information are consistently followed within a
program, practically anything will work.

Encoding is therefore largely a matter of personal style. In the open source community, there are at
least a dozen different popular structured programming styles. In my experience, Digital
Equipment Corporation and the code generated in support of its many products and product lines
was unique in that the same structured programming style was used for many of them. Today much
of the programming consistency is supported by languagesensitive editors such as EMACS and
LSEDIT. Virtually every integrated development environment (IDE) also enforces one or more
programming styles by being sensitive to the indentation in use at the time in the code being

© Copyright 2004 Hewlett-Packard Development Company, L.P. 2

written. All modern programming editors can be customized to support virtually any programming
style.

Again, the assembly language programmers have largely missed out on the advantages of modern
editors and IDEs bcause assembly language itself doesn’t provide any direct support for structured
programming.

So what are the benefits of structured programming in assembly language and how can it be
supported?

Benefits of Structured Programming
One common error in assembly language is a property of the flexibility of assembly language.
Assembly language programming is inherently untyped. The assembly language programmer may
treat any given piece of data as any type, byte, word, longword, ASCII, EBCDIC, null terminated,
counted string, etc. By itself, structured programming doesn’t deal with this source of errors.
OpenVMS (and before it, RSX-11M) used naming conventions to denote data types, byte, word,
longword, text, etc. The strict use of naming conventions provides an easy visual mechanism for
the programmer to make sure that the type of comparison matches the data type being compared.

Another common error is also a function of data typing. In particular, comparisons against all the
common data types can usually be done in either signed or unsigned modes. Since the difference
between a signed branch versus an unsigned branch is frequently a single character (for example,
in Macro-32, BGTR versus BGTRU for branch on greater than versus branch on greater than
unsigned), it is easy to forget that a data type is unsigned, or to simply make a typing error and
leave off the “U”. Again, by itself, structured programming doesn’t help with these errors but
naming conventions help facilitate the discovery and correction of such errors.

Another common error is not getting the sense of the comparison correct. I program in assembly
language on a variety of machines. Some machines test their operands from left to right (A < B)
when usin g comparison instructions. Others test their operands from right to left (B < A).
Switching from machine to machine can lead to programming errors simply from forgetting details
of the machine architecture. Again, structured programming, by itself, doesn’t help here either.

The place where structured programming does help is understanding the flow of control through a
maze of assembly language instructions. Properly designed, the tools to do structured
programming in assembly language will help with the other problems as well.

Needless to say, I’m not the first to think of this. During the development of the Record
Management System (RMS) on the PDP-11, Ed Marison, et al., developed a package of macros
that addressed virtually all of the defects of assembly language for the PDP-11. Unfortunately, this
package of macros (known as Super Mac) took forever to assemble, but the increased programmer
productivity and higher quality in terms of number of bugs was felt, correctly, to more than offset
the amount of time it took to assemble any given portion of RMS.

I developed and have used a similar macro pachage for 20 years now on a wide variety of
embedded systems (PDP-11, Z8000, Motorola 68K) and any number of driver development
projects (mostly on OpenVMS). This macro package focused mostly on what I feel are the largest
problems associated with assembly language programming, specifically, exposing the structure
(flow of control) of a program written in assembly language.

Introducing Simple Mac
The simple structured macro package (Simple Mac) has virtually eliminated my most common errors
in assembly programming and has substantially improved my ability to revisit and understand
programs that I’ve written years ago. Since I’m a pragmatic programmer (use what you need

© Copyright 2004 Hewlett-Packard Development Company, L.P. 3

when you need it), Simple Mac also makes it easy to spot where I don’t use proper structured
programming by making it possible to use labels only where unexpected branches occur rather
than everywhere a branch destination is required.

Listing 1 shows a basic structured program using Simple Mac.

.LIBRARY /SMPMAC.MLB/

SM32INIT

ONE: .BLKL

TWO: .BLKL

START.MODULE

SMPMAR_EXAMPLES:

IF #1 SET.IN R0

THEN

 MOVAB ONE,TWO

ELSE

 MOVAB TWO,ONE

END IF

10$:

BEGIN BLOCK_TEST

 IF RESULT IS VC LEAVE BLOCK_TEST

 MOVAB ONE,TWO

 END BLOCK_TEST

IFW R0 EQLU #0 GOTO 10$

IFL <ADDL ONE,TWO> IS PLUS THEN <MCOML TWO,TWO>

REPEAT

 MOVL ONE,TWO

 IF TWO GEQL ONE AND TWO NEQU #-1 NEXT

 MOVL TWO,ONE

END

DECRU ONE FROM #43 TO #-44 BY #13

 MCOML TWO,TWO

 NEXT

 MCOML TWO,ONE

END

DECRU ONE FROM #43 TO #-44 BY R0

 MCOML TWO,TWO

 NEXT

 MCOML TWO,ONE

END

DECR ONE FROM #43 TO #-44 BY #13

 MCOML TWO,TWO

 NEXT

 MCOML TWO,ONE

END

DECR ONE FROM #43 TO #-44 BY R0

 MCOML TWO,TWO

 NEXT

© Copyright 2004 Hewlett-Packard Development Company, L.P. 4

 MCOML TWO,ONE

 END

DECRU ONE FROM ONE TO #-44 BY #1

 MCOML TWO,TWO

 GOTOW 10$

 MCOML TWO,ONE

END

DECR ONE FROM ONE TO #-44 BY #1

 MCOML TWO,TWO

 LEAVE

 MCOML TWO,ONE

END

REPEAT

 ON.ERROR THEN <GOTOW 10$>

DECRS ONE TO #13 BY #25

REPEAT

 ON.NOERROR LEAVE MCOML TWO,TWO

DECRU ONE TO #13 BY #25

REPEAT

 ON.ERROR THEN <GOTOW 10$>

INCRS ONE TO #13 BY #25

REPEAT

 ON.ERROR THEN <GOTOW 10$>

INCRS ONE TO #13 BY R0

REPEAT

 ON.NOERROR LEAVE

 MCOML TWO,TWO

INCRU ONE TO #13 BY #25

REPEAT

 ON.NOERROR LEAVE

 MCOML TWO,TWO

INCRU ONE TO #13 BY R0

REPEAT

 ON.ERROR THEN <GOTOW 10$>

DECRS ONE TO #0 BY #1

REPEAT

 ON.ERROR THEN <GOTOW 10$>

DECRS ONE TO #0 BY R0

REPEAT

 ON.NOERROR LEAVE

 MCOML TWO,TWO

DECRU ONE TO #0 BY #1

REPEAT

© Copyright 2004 Hewlett-Packard Development Company, L.P. 5

 ON.NOERROR LEAVE

 MCOML TWO,TWO

DECRU ONE TO #0 BY R0

REPEAT

 ON.ERROR THEN <GOTOW 10$>

INCRS ONE TO #13 BY #1

REPEAT

ON.NOERROR LEAVE

 MCOML TWO,TWO

INCRU ONE TO #13 BY #1

SCASE R0 FROM 10 TO 30

SET

 $CASE OUTRANGE

 MCOML ONE,ONE

 END

 $CASE 10 TO 15

 MCOML TWO,TWO

 END

 $CASE 16 TO 20,10$

$CASE INRANGE

 MOVL R0,ONE

 END

 END

 SCASE R0 FROM 10 TO 30

 SET

$CASE 10 TO 15

 MCOML TWO,TWO

 END

 $CASE 16 TO 20,10$

 $CASE INRANGE

 MOVL R0,ONE

 END

 END

END.MODULE

.END

Listing 1
Simple M ac example program.

The Simple Mac example program doesn’t do anything except demonstrate that using Simple Mac
allows the programmer to focus on the implementation instead of worrying about how to implement
the flow of control thorough the program. In the above example, the necessary code to actually
implement the flow of control would substantially outnumber the actual executable code in the
program (not a normal situation, but for complex programs this can appear to be the case).
Additional documentation in the form of comments, discussion about the purpose of the program,

© Copyright 2004 Hewlett-Packard Development Company, L.P. 6

why each block exists and what each statement is doing would also appear in a real program,
adding to the ease of maintanence.

I have used Simple Mac in many environments. Of course, its principal use is in the development
of Macro-11 and Macro-32 programs. I’ve written many device drivers for OpenVMS compatible
with both the VAX and AXP versions of the system using Simple Mac. I’ve written system services
and a variety of other applications in assembly language using Simple Mac. I’ve also developed
embedded systems using Simple Mac on processor architectures other than the 16 and 32 bit
Digital/Compaq/HP machines. In these cases, the macro processing capabilities of the assembler
in the development environment was not sufficient to implement Simple Mac directly. Under these
circumstances I found it necessary to write a preprocessor that converted the Simple Mac statements
into assembly language which were then processed by the embedded system’s development
environment. By leaving the Simple Mac statements embedded in the generated assembly
language source files, debugging was straightforward.

Since developing Simple Mac 20+ years ago, I’ve written several hundred thousand lines of
assembly language on several different processor architectures. Use of Simple Mac has virtually
eliminated the most common of my programming errors in assembly language and substantially
improved my ability to maintain the assembly language code that I’ve written.

Conclusion
Like all tools, Simple Mac must be used where and when appropriate. Most of the benefits of
Simple Mac are simply copies of capabilities inherent in all modern high level languages. Given
the choice between implementing in assembly language and any higher level language (save
possibly Cobol) I will always choose a higher level language. But when, for whatever reasons, it’s
necessary to write code in assembly languaqge, I use Simple Mac.

In summary, use of Simple Mac, along with good naming conventions and strong programming
discipline can significantly improve programmer productivity and reduce maintenance costs for
projects written in assembly language.

Simple Mac syntax elements
Module A group of assembly language source lines

which begin with a START.MODULE, end with
an END.MODULE, and [may] include one or
more Simple Mac statements.

Module declaration A callable unit (CALL/CALLS/CALLG).

Macro statement Any valid assembly source statement, except
one of the Simple Mac statements.

Block statement Any of the block-structured statements: BEGIN,
REPEAT, CASE, IF-THEN-ELSE, REPEAT, etc.

Block type LOOP
BLOCK
CASE
Segment name
INNER
OUTER
REPEAT
INCR
DECR

Segment name 1-15 character symbolic name given to a

© Copyright 2004 Hewlett-Packard Development Company, L.P. 7

program segment by a BEGIN statement.

label Any valid MACRO address label.

condition operand relation operand
operand SET.IN/CLR.IN operand
operand ON.IN/OFF.IN operand
operand MASK.ON/MASK.OFF
RESULT IS relation
<macro-statement> IS relation

Conditional expression condition
condition AND condition
condition OR condition

Asm constant expr Any assembly time constant expression. It must
be possible to evalute the expression at
assembly time, not link time.

Case range expression asm-cons-expr TO asm-cons-expr1
asm-cons-expr

$Case range expression case-range-expression
INRANGE
OUTRANGE
<case-range-expression, …>

Operand Any valid assmembly language operand.

Status ERROR
NOERROR

1 the first asm constant expression must be less than the second

© Copyright 2004 Hewlett-Packard Development Company, L.P. 8

Relation EQ/EQL
 EQU/EQLU
 NE/NEQ
 NEU/NEQU
 GT/GTR
 HI/GTU/GTR
U GE/GEQ

HIS/GEU/GEQU

LT/LSS
LO/LTU/LSSU
 LE/LEQLOS/L
EU/LEQU
MINUS ZERO
 PLUS
 CC
 CS
 VC
 VS

SET.IN /ON.IN
CLR.IN/OFF.IN
MASK.ON
MASK.OFF

Signed Equal to

Unsigned Equal to

Not Equal To

Not Equal To

Greater than

Greater than Unsigned

Greater than or Equal
to

Greater than or Equal
to Unsigned

Less than

Less than Unsigned

Less than or equal

Less than or Equal to
Unsigned

Sign bit set

Zero bit set

Sign bit clear
Carry Clear

Carry Set

Overflow Clear

Overflow Set

Bit set in

Bit off in

Bit(s) on in the masked
operand

Bit(s) off in the masked
operand

© Copyright 2004 Hewlett-Packard Development Company, L.P. 9

Type B (byte)
W (word)
L (longword)
F (float, currently not implemented)
Q (quadword, currently not implemented)
O (octaword, currently not implemented)

Sign S (signed)
U (unsigned)

A conditional expression is true if:

− it is a single condition and that condition is true.
− it is an OR expression and either of the conditions is true.
− it is an AND expression and both conditions are true.

It is false otherwise.

The IF, UNTIL, and WHILE statements operate on the specified data types when evaluating a
conditional expression. If a type is unspecified, the default type is word.

The SCASE statement operates on the specified data type when evaluating a range, otherwise
word entities are used. Float values are not valid for case ranges.

The IS operation in a condition tests the settings of the current condition codes. If the first operand
is the reserved word RESULT, then the current setting of those codes is tested, otherwise the first
operand is assumed to be a macro statement. This macro statement is executed and the resulting
condition codes are tested.

SET.IN/CLR.IN and ON.IN/OFF.IN in a conditional expression refer to a bit in the second
operand, as selected by the first operand.

MASK.ON/MASK.OFF in a condition expression refer to a collection of bits in the second
operand, as masked by the first operand.

A Simple Mac source file contains one or more modules. SIMPLE-MAC statements may only
appear within a Simple Mac module (START.MODULE/END.MODULE).

A program block consists of one or more assembly language statements delimited by a starting
statement and an END statement.

− Conditional blocks begin with IF or SCASE statements.
− Loops begin with REPEAT, INCR, or DECR statements.
− Program segments are started by BEGIN or $CASE statements.

Multiline conditional blocks and program segments must be terminated by an END statement.
Loops can be terminated by an END, UNTIL, or WHILE statement. Note that THEN and ELSE
statements do not terminate a block.

Single line IF-THEN, IF-LEAVE, IF-NEXT, and IF-GOTO statements do not constitute a conditional
block and do not require an END statement.

Single line $CASE-range-expression, label statements do not constitute a program segment.

Simple Mac statements

BEGIN segment-name
Assigns the specific symbolic name to this program segment. The symbolic name can then be used
in LEAVE statements to exit the code contained within the block. BEGIN blocks may be nested.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 10

BEGIN CONTROL

 CALL INIT

 CALL CSIOV1

 ON.ERROR LEAVE CONTROL

 CALL PROCES

 CALL CLEAN

END

SCASE[type] operand FROM case-range-expression
To avoid confusing the Macro-32 compiler, the CASE instruction has been renamed SCASE.

This stands for Simple Mac CASE. This is the only distinction in syntax between SMPMAC.MAC
(Macro-11) and SMPMAC.MAR (Macro-32). Many processors do not directly implement a case
instruction. The SCASE macro provides the hooks by which one may be impleme nted.

Provides an EXTREMELY fast dispatch mechanism to a variety of possible alternative processing
paths. This function is expensive in memory since the speed is achieved using a dispatch table. If
the value of the case operand is outside the specified range and no OUTRANGE action is
specified, the case falls through to the end. If no action is specified for some set of values of the
operand, the case falls through to the end (remove the $CASE INRANGE in the example and
values 0 to 3 would fall through the CASE).

SCASE I FROM 0 TO 7

SET

 $CASE OUTRANGE,CASE.ERROR Go here if out of range.

 $CASE 4 TO 7 If 4 <= i <= 7 do this block

 CALL ON.HIBIT

 END

 $CASE INRANGE

 CALL OFF.HIBIT Otherwise do this block.

 END

END

$CASE $case-range-expression[,label]
Identifies which value or range of values will be processed by the following block. If a label is
specified, the $CASE causes a jump to that label to occur. A $CASE without a label argument
defines the beginning of a block. The block may be exitted via a LEAVE CASE. See the SCASE
example above for usage.

DECR[sign] loop-index FROM start TO end BY decrement
Initialize the loop index with the start value, and repeat the loop until the value of the loop index is
less than the stated end value. The test for termination is either SIGNED or UNSIGNED depending
on the value of the sign argument (S or U). The default is SIGNED comparison. The loop index
must be of type long. This loop is a 0 trip loop, that is, if the initial value of the loop index is less
than the end value, the loop is not executed. The termination test is performed at the top of the
loop. If the lexical value of the loop-index and the start value are the same, no loop initialization is
generated.

If the loop index is identical to the initial value, the loop assumes that the last thing done before
entering the loop was to set the loop index. No special code is generated to test things. Since the
0 trip versions of these loops assume the loading of the loop index, you MUST either load the loop

© Copyright 2004 Hewlett-Packard Development Company, L.P. 11

index just before the DECR/INCR instruction or issue a processor appropriate comparison
instruction (TSTL or CMPL for Macro-32) to get the condition codes set up properly.

ELIF
ELIF[type] conditional-expression
[THEN]
 conditional-block
[ELSE
 conditional-block]
END
ELIF is syntactic sugar equivalent to:

ELSE

 IF[type] conditional-expression

 …

 END

END

except that a single END statement to a series of IF-THEN-ELIF-THEN-ELIF statements will terminate
all statements including the introducing IF. The purpose of the ELIF statement is to avoid generating
excessive indentation with nested ifs. Excessive indentation can make a program very difficult to
read and obscure the flow of control.

All forms of IF are also valid with ELIF, e.g., ELIF-LEAVE, ELIF-GOTO, etc. When used in this
fashion, the ELIF terminates the current conditional block, and NO END is necessary since these
forms of IF statement have no ELSE clauses.

IFW A EQ #14

THEN

 …

ELIF A EQ #19

THEN

 …

ELIF A EQ #23

THEN

 …

ELSE

 …

END Conditional block is EXPLICITLY

 terminated.

IFW A EQ #14

THEN

 …

ELIF A EQ #23 GOTO DONE Conditional block is IMPLICITLY

 terminated.

IF
IF[type] conditional-expression
[THEN]
 conditional-block

© Copyright 2004 Hewlett-Packard Development Company, L.P. 12

[ELSE
 conditional-block]
END
Executes the subsequent conditional block if the specified conditional expression is true, otherwise,
it executes the optional ELSE conditional block. Type can be any of the primitive types supported
by the processor architecture. For Macro-32 these are Byte, Word, Longword, Quadword, and
Octaword, e.g. IFB, IFL, IFW, …

IFB (R1)+ GT #0

THEN

 MOVL R0,-(R3)

 INCL COUNT

 CALL NEWLIN

ELSE

 CALL ERROR

END

IF[type] conditional-expression THEN <macro-statement>
Executes the specified macro statement if the conditional expression is true. There are no
restrictions on the macro statement. It can be anything from a single instruction, to a subroutine, to
a macro-invocation in its own right. The macro-statement can, in fact, be another Simple Mac
statement.

IFW R0 LT #MAX THEN <CALL SWQR5>

IFB R5 LSSU #TABEND THEN <ADD #3,R5>

IF[type] conditional-expression LEAVE block-type
Transfers control to the end statement of the specified block type. LEAVE searches for the innermost
block that satisfies block-type. For example, you can exit a repeat loop from within a case block or
a BEGIN block from within an IF block. If a segment name is used in a LEAVE, the named segment
is exited. If the block type OUTER is used, the outermost block is exited, independent of block
type. If the block type INNER is used, the innermose block is exited, independent of block type.
The default value for block-type is INNER.

REPEAT

 IF A EQ #END

 THEN

 …

 IF (R0) EQL #0 OR RO GTRU LEAVE LOOP

 …

 ELSE

 …

 END

 …

END

IF[type] conditional-expression GOTO label
If the conditional expression is true, control is transferred to the specified label. This operation isn't
frequently needed, but is here for those times when a good old GOTO is just what's needed.

IF #ERROR SET.IN CONTROL THEN GOTO ABORT

© Copyright 2004 Hewlett-Packard Development Company, L.P. 13

END [COMMENT]
Terminates the current loop, conditional, or program segment. The optional comment can be used
to match end statement with block start statement, improving readability.

BEGIN

 …

END BEGIN

END.MODULE
Terminates the current module. A single file can contain more than one module.

GOTO[type] label
Transfers execution to the specified label. A GOTOB uses a branch instruction, a GOTOW uses a
jump. Unlike the other instructions, the default type for GOTO is B rather than W. The
implementation of this statement is rather heavily slanted towards the VAX processor architecture
and may need to be modified on other architectures. In that event, I suggest that the GOTOB
statement be used to indicate transfer of control to somewhere “close” visually and GOTOW to
someplace “far away.”

INCR[sign] loop-index FROM start TO end BY increment
END
Initialize the loop index with the start value, and repeat the loop until the value of the loop index is
less than the stated end value. The test for termination is either SIGNED or UNSIGNED depending
upon the value of the sign argument. The default is SIGNED comparison. The loop index must be
of type word. This loop is a 0-trip loop. The termination test is performed at the top of the loop. If
the lexical value of the loop-index and the start value are the same, no loop initialization is
generated. This statement is biased towards the VAX implementation for loops.

See also DECR.

LEAVE block-type
Transfers control to the end of the specified block type.

See IF conditional-expression LEAVE block-type for examples.

NEXT
Transfer control to the next iteration of the loop. Control is transferred to the loop termination tests.

ON.ERROR THEN <macro-statement>
ON.ERROR GOTO label
ON.ERROR LEAVE block-type

Perform the specific action if the low bit of R0 is clear. This is an implementation of the OpenVMS-
specific error-condition code covention in which error codes are returned in R0 and the low order
bit is cleared. Other processors and systems have other conventions.For example, PDP-11
operating systems generally returned success and failure by clearing and setting the carry-condition
flag. The Macro-11 implementation of Simple Mac reflects this difference.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 14

© Copyright 2004 Hewlett-Packard Development Company, L.P. 15

ON.NOERROR THEN <macro-statement>
ON.NOERROR GOTO label
ON.NOERROR LEAVE block-type
The opposite of the ON.ERROR statement.

REPEAT
END

REPEAT UNTIL[type] condition
END

REPEAT
UNTIL[type] condition

REPEAT WHILE[type] condition
END

REPEAT
WHILE[type] condition

REPEAT
DECR[sign] loop-index TO value BY decrement

REPEAT
INCR[sign] loop-index TO value BY increment

Perform the loop UNTIL the condition is true, WHILE the condition is true, or until the loop-index is
less than or equal to the specified value (for decrement repeat loops) or is greater than or equal to
the specified value (for increment repeat loops). The termination conditions are tested at the place
where they appear in the loop. If at the top, they are tested before the loop begins and the loop is
a 0-trip loop; if at the bottom, they are tested when the loop terminates and the loop is a 1-trip
loop. The loop index must be initialized before entering the loop and must be of type word. This
will vary from processor architecture to architecture.

START.MODULE
Defines the beginning of a module. Initializes the state of Simple Mac.

For more information
Dick Munroe – my resume and contact information, I’m looking for work, contract or permanent.

http://www.csworks.com/resume

	Structured Programming in Assembly Language
	Overview
	What is structured programming?
	Benefits of Structured Programming

	Introducing Simple Mac
	Conclusion
	Simple Mac syntax elements

	Simple Mac statements
	BEGIN segment-name
	SCASE[type] operand FROM case-range-expression
	$CASE $case-range-expression[,label]
	DECR[sign] loop-index FROM start TO end BY decrement
	ELIF
	IF
	IF[type] conditional-expression THEN <macro-statement>
	IF[type] conditional-expression LEAVE block-type
	IF[type] conditional-expression GOTO label
	END [COMMENT]
	END.MODULE
	GOTO[type] label
	INCR[sign] loop-index FROM start TO end BY increment�END
	LEAVE block-type
	NEXT
	ON.NOERROR THEN <macro-statement> �ON.NOERROR GOTO label �ON.NOERROR LEAVE block-type
	START.MODULE

	For more information

