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Overview   
The stored program computer in its modern form was developed in the late 1940s.  About 15 
minutes after the first program was written (using patch panels and/or toggle switches on the front 
panel) engineers started looking for ways to make writing programs easier.  Some of the initial 
attempts at making programming easier were what are now considered third generation 
languages, e.g., Fortran II.  However that still left the problem of writing low level (close to the 
hardware) code. Fortran and the other languages developed at the time were unsuited to the 
problem of dealing directly with hardware.  As a result, low level languages, more or less 
universally called assembly languages, were developed.  These languages shared a number of 
common characteristics.  These are: 

° One-for-one mapping from operands in the language to machine instruction 
° Direct access to hardware resources,such as registers, I/O mechanisms, etc. 

And they made programming at the lowest level of the computer substantially easier.  They worked. 

Over time, these assembly languages acquired additional mechanisms for making programming 
easier, most notably a macro processing capability through which programmers could extend the 
macro language.  Most frequently “macros” were used to capture frequently-used code sequences, 
for example, saving registers at the entrance to routines, restoring them at return, etc.  Ultimately 
the purpose of a macro was to reduce the opportunity for making mistakes.  By putting common 
instruction sequences into macros, a whole class of errors was eliminated making the writing of 
assembly language programs more reliable and faster. 

At the same time, substantial research was being done at the higher levels of programming (what 
most would consider application programming) resulting in a variety of more or less general 
purpose programming languages, Fortran 4, PL/1, Algol, C, Pascal, and a veritable tower of 
Babel of others.  All of these had interesting features and approaches with respect to how 
programs were written.  For example, Fortran included statements that were equivalent to the 
ubiquitous compare/branch assembly language instructions (IF (A .EQ. B) GOTO …).  This was 
probably one of the very first uses of a “design pattern” in the history of modern computing. 

Most interesting of all was the gradual elimination of the branch instruction in many of the 
languages (notably Pascal which takes the elimination of GOTO to ridiculous lengths).  The GOTO 
or branch language construct was replaced by a variety of flow of control constructs such as: 

° IF THEN ELSE 

° FOR loops 

° DO WHILE/UNTIL loops 

The “elimination” of the GOTO and the use of the alternative flow of control constructs became 
known as “structured programming.”  Structured programming is probably the single biggest 
contributor to the quality and quantity of code produced since the 1960s.  There are several 
reasons for this and they will be discussed later. 

However, assembly language programmers (and there are a lot of us, though fewer now with the 
advent of the RISC machine and the use of higher level languages for OS and driver development) 
largely missed the advantages of structured programming. 
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This article discusses the benefits of structured programming and how to do structured programming 
in assembly language, specifically Macro-32.  The techniques discussed here have been used in a 
number of real time environments on a variety of platforms. 

 

What is structured programming? 
Well there are a lot of answers to that question.  The most common one is “goto-less” 
programming. 

In fact, “structured programming” is little more than an enforced discipline that encodes information 
directly into the “structure” of a program that makes some of the characteristics of the program 
easier to understand by a programmer other than the original author.  This is also useful  if the 
original author returns to that program after a substantial hiatus. 

In the case of most higher level languages, the discipline is enforced by the language.  For 
example, Pascal literally has no GOTO in the language.  C and C++ do have GOTO but also 
have flow-of-control constructs that mitigate their use.   In both languages, it is possible to write well 
structured, easy to understand programs.  It is also possible to write well structured, difficult to 
understand programs.  For good examples of such things, see the winners of the obfuscated C 
contest held yearly.  The obfuscated C programs all work, many do useful things, and all are 
virtually incomprehensible by design. 

So, goto-less programming is not a panacea.  What use is it then? 

Without discipline, none. 

What structured programming enables is the ability to encode additional information into the body 
of the program that makes it easier to understand.  Specifically it let the programmer encode a 
visual representation of the flow of control.  In turn, this lets the programmer use extra pieces of 
his/her brain to understand the program.  The additional information is encoded by indenting the 
bodies of the various flow-of-control constructs so as to make them stand out visually.  Thus the 
visual cortex is engaged to help understand the program.  Humans evolved using their eyes to 
detect predators and a substantial portion of the brain is dedicated to visual processing.  As a 
consequence, anything which adds visual information to a program  makes understanding the 
program easier because more of the brain is used when working with the program. 

Of course the visual information  must be added consistently, otherwise the programmer’s eyes get 
confused and the additional information can be obscured.  The guidelines for adding visual 
information to programs are relatively straightforward.  Basically, every flow-of-con trol structure 
must be introduced consistently.  The code executed with the flow of control must be indented to 
show the scope of the flow-of-control construct.  This indentation must be large enough to separate 
the code visually while not being so large so that the eye “skips” over the indented code as though 
it were divorced from the flow of control.  In general, indents of less than three spaces is too little 
and more than 5 spaces is too much.  However, the human brain is enormously flexible and as 
long as the rules for encoding flow-of-control information are consistently followed within a 
program, practically anything will work. 

Encoding is therefore largely a matter of personal style.  In the open source community, there are at 
least a dozen different popular structured programming styles.   In my experience, Digital 
Equipment Corporation and the code generated in support of its many products and product lines 
was unique in that the same structured programming style was used for many of them.  Today much 
of the programming consistency is supported by languagesensitive editors such as EMACS and 
LSEDIT.  Virtually every integrated development environment (IDE) also enforces one or more 
programming styles by being sensitive to the indentation in use at the time in the code being 
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written.  All modern programming editors can be customized to support virtually any programming 
style. 

Again, the assembly language programmers have largely missed out on the advantages of modern 
editors and IDEs bcause assembly language itself doesn’t provide any direct support for structured 
programming. 

So what are the benefits of structured programming in assembly language and how can it be 
supported? 

 

Benefits of Structured Programming 
One common error in assembly language is a property of the flexibility of assembly language.  
Assembly language programming is inherently untyped.  The assembly language programmer may 
treat any given piece of data as any type, byte, word, longword, ASCII, EBCDIC, null terminated, 
counted string, etc.  By itself, structured programming doesn’t deal with this source of errors.  
OpenVMS (and before it, RSX-11M) used naming conventions to denote data types, byte, word, 
longword, text, etc.  The strict use of naming conventions provides an easy visual mechanism for 
the programmer to make sure that the type of comparison matches the data type being compared. 

Another common error is also a function of data typing.  In particular, comparisons against all the 
common data types can usually be done in either signed or unsigned modes.  Since the difference 
between a signed branch versus an unsigned branch is frequently a single character (for example, 
in Macro-32, BGTR versus BGTRU for branch on greater than versus branch on greater than 
unsigned), it is easy to forget that a data type is unsigned, or to simply make a typing error and 
leave off the “U”.  Again, by itself, structured programming doesn’t help with these errors but 
naming conventions help facilitate the discovery and correction of such errors. 

Another common error is not getting the sense of the comparison correct.  I program in assembly 
language on a variety of machines.  Some machines test their operands from left to right (A < B) 
when usin g comparison instructions.  Others test their operands from right to left (B < A).  
Switching from machine to machine can lead to programming errors simply from forgetting details 
of the machine architecture.  Again, structured programming, by itself, doesn’t help here either. 

The place where structured programming does help is understanding the flow of control through a 
maze of assembly language instructions.  Properly designed, the tools to do structured 
programming in assembly language will help with the other problems as well. 

Needless to say, I’m not the first to think of this.  During the development of the Record 
Management System (RMS) on the PDP-11, Ed Marison, et al., developed a package of macros 
that addressed virtually all of the defects of assembly language for the PDP-11.  Unfortunately, this 
package of macros (known as Super Mac) took forever to assemble, but the increased programmer 
productivity and higher quality in terms of number of bugs was felt, correctly, to more than offset 
the amount of time it took to assemble any given portion of RMS. 

I developed and have used a similar macro pachage for 20 years now on a wide variety of 
embedded systems (PDP-11, Z8000, Motorola 68K) and any number of driver development 
projects (mostly on OpenVMS).  This macro package focused mostly on what I feel are the largest 
problems associated with assembly language programming, specifically, exposing the structure 
(flow of control) of a program written in assembly language. 

Introducing Simple Mac 
The simple structured macro package (Simple Mac) has virtually eliminated my most common errors 
in assembly programming and has substantially improved my ability to revisit and understand 
programs that I’ve written years ago.  Since I’m a pragmatic programmer (use what you need 
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when you need it), Simple Mac also makes it easy to spot where I don’t use proper structured 
programming by making it possible to use labels only where unexpected branches occur rather 
than everywhere a branch destination is required. 

Listing 1 shows a basic structured program using Simple Mac. 

.LIBRARY /SMPMAC.MLB/ 

SM32INIT 

 

ONE: .BLKL 

TWO: .BLKL 

START.MODULE 

SMPMAR_EXAMPLES: 

IF #1 SET.IN R0 

THEN 

    MOVAB ONE,TWO 

ELSE 

    MOVAB TWO,ONE 

END IF 

10$: 

BEGIN BLOCK_TEST 

     IF RESULT IS VC LEAVE BLOCK_TEST 

    MOVAB ONE,TWO 

    END BLOCK_TEST 

IFW R0 EQLU #0 GOTO 10$ 

IFL <ADDL ONE,TWO> IS PLUS THEN <MCOML TWO,TWO> 

REPEAT 

    MOVL ONE,TWO 

   IF TWO GEQL ONE AND TWO NEQU #-1 NEXT 

    MOVL TWO,ONE 

END 

DECRU ONE FROM #43 TO #-44 BY #13 

    MCOML TWO,TWO 

    NEXT 

    MCOML TWO,ONE 

END 

DECRU ONE FROM #43 TO #-44 BY R0 

 MCOML TWO,TWO 

    NEXT  

    MCOML TWO,ONE 

END 

DECR ONE FROM #43 TO #-44 BY #13 

    MCOML TWO,TWO 

   NEXT 

  MCOML TWO,ONE 

END 

DECR ONE FROM #43 TO #-44 BY R0 

  MCOML TWO,TWO 

    NEXT 
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  MCOML TWO,ONE 

 END 

DECRU ONE FROM ONE TO #-44 BY #1     

  MCOML TWO,TWO 

  GOTOW 10$ 

  MCOML TWO,ONE 

END 

DECR ONE FROM ONE TO #-44 BY #1 

  MCOML TWO,TWO 

  LEAVE 

  MCOML TWO,ONE 

END 

 

REPEAT 

  ON.ERROR THEN <GOTOW 10$> 

DECRS ONE TO #13 BY #25 

 

REPEAT 

  ON.NOERROR LEAVE MCOML TWO,TWO 

DECRU ONE TO #13 BY #25 

 

REPEAT 

  ON.ERROR THEN <GOTOW 10$> 

INCRS ONE TO #13 BY #25 

 

REPEAT 

  ON.ERROR THEN <GOTOW 10$> 

INCRS ONE TO #13 BY R0 

 

REPEAT 

  ON.NOERROR LEAVE 

  MCOML TWO,TWO 

INCRU ONE TO #13 BY #25 

 

REPEAT 

    ON.NOERROR LEAVE 

    MCOML TWO,TWO 

INCRU ONE TO #13 BY R0 

REPEAT 

    ON.ERROR THEN <GOTOW 10$>     

DECRS ONE TO #0 BY #1 

 

REPEAT 

    ON.ERROR THEN <GOTOW 10$>     

DECRS ONE TO #0 BY R0 

 

REPEAT 

    ON.NOERROR LEAVE 

    MCOML TWO,TWO 

DECRU ONE TO #0 BY #1 

 

REPEAT 
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    ON.NOERROR LEAVE 

    MCOML TWO,TWO 

DECRU ONE TO #0 BY R0 

 

REPEAT 

    ON.ERROR THEN <GOTOW 10$> 

INCRS ONE TO #13 BY #1 

 

REPEAT 

ON.NOERROR LEAVE 

    MCOML TWO,TWO 

INCRU ONE TO #13 BY #1 

 

SCASE R0 FROM 10 TO 30 

SET 

  $CASE OUTRANGE 

  MCOML ONE,ONE 

  END 

 

  $CASE 10 TO 15 

  MCOML TWO,TWO 

  END 

 

  $CASE 16 TO 20,10$ 

$CASE INRANGE 

   MOVL R0,ONE 

    END 

  END 

 

  SCASE R0 FROM 10 TO 30 

  SET 

$CASE 10 TO 15 

   MCOML TWO,TWO 

    END 

 

    $CASE 16 TO 20,10$ 

 

    $CASE INRANGE 

   MOVL R0,ONE 

    END 

  END 

 

END.MODULE 

.END 

Listing 1 
Simple M ac example program. 

The Simple Mac example program doesn’t do anything except demonstrate that using Simple Mac 
allows the programmer to focus on the implementation instead of worrying about how to implement 
the flow of control thorough the program.  In the above example, the necessary code to actually 
implement the flow of control would substantially outnumber the actual executable code in the 
program (not a normal situation, but for complex programs this can appear to be the case).  
Additional documentation in the form of comments, discussion about the purpose of the program, 
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why each block exists and what each statement is doing would also appear in a real program, 
adding to the ease of maintanence. 

I have used Simple Mac in many environments.  Of course, its principal use is in the development 
of Macro-11 and Macro-32 programs.  I’ve written many device drivers for OpenVMS compatible 
with both the VAX and AXP versions of the system using Simple Mac.  I’ve written system services 
and a variety of other applications in assembly language using Simple Mac.  I’ve also developed 
embedded systems using Simple Mac on processor architectures other than the 16 and 32 bit 
Digital/Compaq/HP machines.  In these cases, the macro processing capabilities of the assembler 
in the development environment was not sufficient to implement Simple Mac directly.  Under these 
circumstances I found it necessary to write a preprocessor that converted the Simple Mac statements 
into assembly language which were then processed by the embedded system’s development 
environment.  By leaving the Simple Mac statements embedded in the generated assembly 
language source files, debugging was straightforward. 

Since developing Simple Mac 20+ years ago, I’ve written several hundred thousand lines of 
assembly language on several different processor architectures.  Use of Simple Mac has virtually 
eliminated the most common of my programming errors in assembly language and substantially 
improved my ability to maintain the assembly language code that I’ve written. 

Conclusion 
Like all tools, Simple Mac must be used where and when appropriate.  Most of the benefits of 
Simple Mac are simply copies of capabilities inherent in all modern high level languages.  Given 
the choice between implementing in assembly language and any higher level language (save 
possibly Cobol) I will always choose a higher level language.  But when, for whatever reasons, it’s 
necessary to write code in assembly languaqge, I use Simple Mac. 

In summary, use of Simple Mac, along with good naming conventions and strong programming 
discipline can significantly improve programmer productivity and reduce maintenance costs for 
projects written in assembly language. 

Simple Mac syntax elements 
Module A group of assembly language source lines 

which begin with a START.MODULE, end with 
an END.MODULE, and [may] include one or 
more Simple Mac statements. 

Module declaration A callable unit (CALL/CALLS/CALLG). 

Macro statement Any valid assembly source statement, except 
one of the Simple Mac statements. 

Block statement Any of the block-structured statements: BEGIN, 
REPEAT, CASE, IF-THEN-ELSE, REPEAT, etc. 

Block type LOOP 
BLOCK 
CASE 
Segment name 
INNER 
OUTER 
REPEAT 
INCR 
DECR 

Segment name 1-15 character symbolic name given to a 
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program segment by a BEGIN statement. 

label Any valid MACRO address label. 

condition operand relation operand 
operand SET.IN/CLR.IN operand 
operand ON.IN/OFF.IN operand 
operand MASK.ON/MASK.OFF  
RESULT IS relation 
<macro-statement> IS relation 

Conditional expression condition 
condition AND condition 
condition OR condition 

Asm constant expr Any assembly time constant expression.  It must 
be possible to evalute the expression  at 
assembly time, not link time. 

Case range expression asm-cons-expr TO asm-cons-expr1 
asm-cons-expr 

$Case range expression case-range-expression 
INRANGE 
OUTRANGE 
<case-range-expression, …> 

Operand Any valid assmembly language operand. 

Status ERROR 
NOERROR 

                                                 
1 the first asm constant expression must be less than the second 
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Relation EQ/EQL 
 EQU/EQLU
 NE/NEQ
 NEU/NEQU
 GT/GTR
 HI/GTU/GTR
U GE/GEQ
  
HIS/GEU/GEQU
  
LT/LSS             
LO/LTU/LSSU
 LE/LEQLOS/L
EU/LEQU  
MINUS  ZERO
  PLUS
  CC
  CS
  VC
  VS
   
SET.IN /ON.IN  
CLR.IN/OFF.IN  
MASK.ON           
MASK.OFF          

Signed Equal to 

 

Unsigned Equal to 
 
 

Not Equal To 
 
Not Equal To  
 
Greater than 
 
Greater than Unsigned
 

Greater than or Equal 
to 

 
Greater than or Equal 
to Unsigned 

Less than 
 

Less than Unsigned 
 
Less than or equal  
 
Less than or Equal to 
Unsigned 

Sign bit set 

 
Zero bit set 
 

Sign bit clear 
Carry Clear 
 

Carry Set 
 
Overflow Clear 
 

Overflow Set 

 
Bit set in 
 
Bit off in 
 
Bit(s) on in the masked 
operand 

Bit(s) off in the masked 
operand 
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Type B (byte) 
W (word) 
L (longword) 
F (float, currently not implemented) 
Q (quadword, currently not implemented) 
O (octaword, currently not implemented) 

Sign S (signed) 
U (unsigned) 

A conditional expression is true if: 

− it is a single condition and that condition is true. 
− it is an OR expression and either of the conditions is true. 
− it is an AND expression and both conditions are true. 

It is false otherwise. 

The IF, UNTIL, and WHILE statements operate on the specified data types when evaluating a 
conditional expression.  If a type is unspecified, the default type is word. 

The SCASE statement operates on the specified data type when evaluating a range, otherwise 
word entities are used.  Float values are not valid for case ranges. 

The IS operation in a condition tests the settings of the current condition codes.  If the first operand 
is the reserved word RESULT, then the current setting of those codes is tested, otherwise the first 
operand is assumed to be a macro statement.  This macro statement is executed and the resulting 
condition codes are tested. 

SET.IN/CLR.IN and ON.IN/OFF.IN in a conditional expression refer to a bit in  the second 
operand, as selected by the first operand. 

MASK.ON/MASK.OFF in a condition expression refer to a collection of bits in the second 
operand, as masked by the first operand. 

A Simple Mac source file contains one or more modules.   SIMPLE-MAC statements may only 
appear within a Simple Mac module (START.MODULE/END.MODULE). 

A program block consists of one or more assembly language statements delimited by a starting 
statement and an END statement. 

− Conditional blocks begin with IF or SCASE statements. 
− Loops begin with REPEAT, INCR, or DECR statements. 
− Program segments are started by BEGIN or $CASE statements. 

Multiline conditional blocks and program segments must be terminated by an END statement.  
Loops can be terminated by an END, UNTIL, or WHILE statement.  Note that THEN and ELSE 
statements do not terminate a block. 

Single line IF-THEN, IF-LEAVE, IF-NEXT, and IF-GOTO statements do not constitute a conditional 
block and do not require an END statement. 

Single line $CASE-range-expression, label statements do not constitute a program segment. 

Simple Mac statements 

BEGIN segment-name 
Assigns the specific symbolic name to this program segment.  The symbolic name can then be used 
in LEAVE statements to exit the code contained within the block.  BEGIN blocks may be nested. 
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BEGIN CONTROL 

  CALL INIT 

  CALL CSIOV1 

  ON.ERROR LEAVE CONTROL 

  CALL PROCES 

  CALL CLEAN 

END 

SCASE[type] operand FROM case-range-expression 
To avoid confusing the Macro-32 compiler, the CASE instruction has been renamed SCASE. 

This stands for Simple Mac CASE.  This is the only distinction in syntax between SMPMAC.MAC 
(Macro-11) and SMPMAC.MAR (Macro-32).  Many processors do not directly implement a case 
instruction.  The SCASE macro provides the hooks by which one may be impleme nted. 

Provides an EXTREMELY fast dispatch mechanism to a variety of possible alternative processing 
paths.  This function is expensive in memory since the speed is achieved using a dispatch table. If 
the value of the case operand is outside the specified range and no OUTRANGE action is 
specified, the case falls through to the end.  If no action is specified for some set of values of the 
operand, the case falls through to the end (remove the $CASE INRANGE in the example and 
values 0 to 3 would fall through the CASE). 

SCASE I FROM 0 TO 7 

SET 

  $CASE OUTRANGE,CASE.ERROR  Go here if out of range. 

 

  $CASE 4 TO 7    If 4 <= i <= 7 do this block 

   CALL ON.HIBIT 

  END 

 

  $CASE INRANGE 

   CALL OFF.HIBIT   Otherwise do this block. 

  END 

END 

$CASE $case-range-expression[,label] 
Identifies which value or range of values will be processed by the following block.  If a label is 
specified, the $CASE causes a jump to that label to occur.  A $CASE without a label argument 
defines the beginning of a block. The block may be exitted via a LEAVE CASE.  See the SCASE 
example above for usage. 

DECR[sign] loop-index FROM start TO end BY decrement 
Initialize the loop index with the start value, and repeat the loop until the value of the loop index is 
less than the stated end value.  The test for termination is either SIGNED or UNSIGNED depending 
on the value of the sign argument (S or U).  The default is SIGNED comparison.  The loop index 
must be of type long.  This loop is a 0 trip loop, that is, if the initial value of the loop index is less 
than the end value, the loop is not executed.  The termination test is performed at the top of the 
loop.  If the lexical value of the loop-index and the start value are the same, no loop initialization is 
generated. 

If the loop index is identical to the initial value, the loop assumes that the last thing done before 
entering the loop was to set the loop index.  No special code is generated to test things.  Since the 
0 trip versions of these loops assume the loading of the loop index, you MUST either load the loop 
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index just before the DECR/INCR instruction or issue a processor appropriate comparison 
instruction (TSTL or CMPL for Macro-32) to get the condition codes set up properly. 

ELIF  
ELIF[type] conditional-expression 
[THEN]          
  conditional-block  
[ELSE         
  conditional-block]       
END          
ELIF is syntactic sugar equivalent to: 

ELSE 

  IF[type] conditional-expression 

      … 

   END 

END 

 

except that a single END statement to a series of IF-THEN-ELIF-THEN-ELIF statements will terminate 
all statements including the introducing IF. The purpose of the ELIF statement is to avoid generating 
excessive indentation with nested ifs.  Excessive indentation can make a program very difficult to 
read and obscure the flow of control. 

All forms of IF are also valid with ELIF, e.g., ELIF-LEAVE, ELIF-GOTO, etc.  When used in this 
fashion, the ELIF terminates the current conditional block, and NO END is necessary since these 
forms of IF statement have no ELSE clauses. 

IFW A EQ #14 

THEN 

  … 

ELIF A EQ #19 

THEN 

  … 

ELIF A EQ #23 

THEN 

 … 

ELSE 

  … 

END     Conditional block is EXPLICITLY 

       terminated. 

IFW A EQ #14 

THEN 

    … 

ELIF A EQ #23 GOTO DONE    Conditional block is IMPLICITLY 

      terminated. 

IF 
IF[type] conditional-expression  
[THEN]       
  conditional-block    
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[ELSE       
  conditional-block]     
END        
Executes the subsequent conditional block if the specified conditional expression is true, otherwise, 
it executes the optional ELSE conditional block.   Type can be any of the primitive types supported 
by the processor architecture.  For Macro-32 these are Byte, Word, Longword, Quadword, and 
Octaword, e.g. IFB, IFL, IFW, … 

IFB (R1)+ GT #0 

THEN 

  MOVL R0,-(R3) 

  INCL COUNT 

  CALL NEWLIN 

ELSE 

  CALL ERROR 

END 

IF[type] conditional-expression THEN <macro-statement>  
Executes the specified macro statement if the conditional expression is  true.  There are no 
restrictions on the macro statement.  It can be anything from a single instruction, to a subroutine, to 
a macro-invocation in its own right.  The macro-statement can, in fact, be another Simple Mac 
statement. 

IFW R0 LT #MAX THEN <CALL SWQR5> 

IFB R5 LSSU #TABEND THEN <ADD #3,R5> 

IF[type] conditional-expression LEAVE block-type 
Transfers control to the end statement of the specified block type. LEAVE searches for the innermost 
block that satisfies block-type.  For example, you can exit a repeat loop from within a case block or 
a BEGIN block from within an IF block.  If a segment name is used in a LEAVE, the named segment 
is exited.  If the block type OUTER is used, the  outermost block is exited, independent of block 
type.  If the block type  INNER is used, the innermose block is exited, independent of block type. 
The default value for block-type is INNER. 

REPEAT 

  IF A EQ #END 

  THEN 

   … 

   IF (R0) EQL #0 OR RO GTRU LEAVE LOOP 

   … 

  ELSE 

  … 

    END 

  … 

END 

IF[type] conditional-expression GOTO label  
If the conditional expression is true, control is transferred to the specified label.  This operation isn't 
frequently needed, but is here for those times when a good old GOTO is just what's needed. 

IF #ERROR SET.IN CONTROL THEN GOTO ABORT 
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END [COMMENT]  
Terminates the current loop, conditional, or program segment.  The optional comment can be used 
to match end statement with block start statement, improving readability. 

BEGIN 

  … 

END BEGIN 

END.MODULE  
Terminates the current module.  A single file can contain more than one module. 

GOTO[type] label  
Transfers execution to the specified label.  A GOTOB uses a branch  instruction, a GOTOW uses a 
jump.  Unlike the other instructions, the default type for GOTO is B rather than W.  The 
implementation of this statement is rather heavily slanted towards the VAX processor architecture 
and may need to be modified on other architectures.  In that event, I suggest that the GOTOB 
statement be used to indicate transfer of control to somewhere “close” visually and GOTOW to 
someplace “far away.” 

INCR[sign] loop-index FROM start TO end BY increment 
END                                               
Initialize the loop index with the start value, and repeat the loop until the value of the loop index is 
less than the stated end value.  The  test for termination is either SIGNED or UNSIGNED depending 
upon the value of the sign argument.  The default is SIGNED comparison.  The loop index must be 
of type word.  This loop is a 0-trip loop.  The termination test is performed at the top of the loop.  If 
the lexical value of the loop-index and the start value are the same, no loop initialization is 
generated.  This statement is biased towards the VAX implementation for loops. 

See also DECR. 

LEAVE block-type 
Transfers control to the end of the specified block type.   

See IF conditional-expression LEAVE block-type for examples. 

NEXT  
Transfer control to the next iteration of the loop.  Control is transferred to the loop termination tests. 

ON.ERROR THEN <macro-statement>  
ON.ERROR GOTO label              
ON.ERROR LEAVE block-type        

Perform the specific action if the low bit of R0 is clear.  This is an implementation of the OpenVMS-
specific error-condition code covention in which error codes are returned in R0 and the low order 
bit is cleared.  Other processors and systems have other conventions.For example, PDP-11 
operating systems generally returned success and failure by clearing and setting the carry-condition 
flag.  The Macro-11 implementation of Simple Mac reflects this difference. 
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ON.NOERROR THEN <macro-statement>  
ON.NOERROR GOTO label  
ON.NOERROR LEAVE block-type 
The opposite of the ON.ERROR statement. 

REPEAT                   
END                    
 
REPEAT UNTIL[type] condition                 
END  
 
REPEAT 
UNTIL[type] condition 
 
REPEAT WHILE[type] condition                 
END  
 
REPEAT    
WHILE[type] condition  
 
REPEAT                                       
DECR[sign] loop-index TO value BY decrement  
 
REPEAT                                       
INCR[sign] loop-index TO value BY increment  

Perform the loop UNTIL the condition is true, WHILE the condition is true, or until the loop-index is 
less than or equal to the specified value (for decrement repeat loops) or is greater than or equal to 
the specified value (for increment repeat loops).  The termination conditions are tested at the place 
where they appear in the loop.  If at the top, they are tested before the loop begins and the loop is 
a 0-trip loop; if at the bottom, they are tested when the loop terminates and the loop is a 1-trip 
loop.  The loop index must be initialized before entering the loop and must be of type word.  This 
will vary from processor architecture to architecture. 

START.MODULE  
Defines the beginning of a module.  Initializes the state of Simple Mac. 

For more information 
Dick Munroe – my resume and contact information, I’m looking for work, contract or permanent. 
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