
Introduction to Developing ACME Agents — Takaaki Shinagawa

Introduction to Developing ACME Agents
Takaaki Shinagawa OpenVMS Security Engineering, HP

Overview

ACME (Authentication Credential Management Extension) is the new authentication subsystem
provided as an EAK (Early Adopter Kit)1 on OpenVMS Alpha Version 7.3-2. ACME provides a
"plug-in" environment in which individual ACME agents for different authentication policies can be
loaded independently. In addition, ACME allows application programs to perform authentication
directly through the $ACM system service. Currently, HP provides the native VMS, Windows
NTLM, and LDAP agents. Third parties can develop ACME agents for new authentication policies.
Although the concept of ACME is very similar to PAM (Pluggable Authentication Module) on Unix
platforms, ACME has a proprietary architecture and programming interfaces. Developing an
ACME agent requires solid understandings of the overall ACME subsystems, interactions between
ACME agents, data structures and callout and callback functions in the agent, persona extensions,
and $ACM clients. The purpose of this article is to provide an overview of ACME and easy-to-
understand instructions on how to develop ACME agents.

The next section, Introduction to ACME, provides an overview of the entire ACME subsystem and
introduces concepts that are prerequisites for ACME agent development. Instructions for developing
ACME agents and persona extensions are addressed in Section 3, Implement an ACME Agent,
and Section 4, Implement a Persona Extension, respectively. Section 5, Configure ACME, shows
how to configure an ACME subsystem using all of the components.

Introduction to ACME

What is an ACME Agent?

An ACME agent is a module that implements an authentication policy on an OpenVMS system.
When we log into an OpenVMS system, the system asks us to enter a username and password,
and then it performs authentication. By default, authentication on OpenVMS systems is performed
by comparing the user-entered username and password against the SYSUAF file. This is the
authentication policy implemented in the VMS ACME agent. In addition to the VMS agent, the NT
and LDAP agents are available with OpenVMS Alpha today. The NT ACME agent authenticates
users with the NTLM database with the Microsoft LAN Manager authentication policy, and the
LDAP ACME agent authenticates users against an LDAP server.

What if we need new authentication policies for our OpenVMS operating environments? This is the
motivation of developing new ACME agents. If we want new ways of authenticating users on
OpenVMS systems, the answer is to develop a new ACME agent. You can develop new ACME
agents for new authentication policies to accommodate your needs.

1 Because this is an early adopter kit release, ACME should be used only for non-production purposes. The SYS$ACM
component, however, has been ready for production since OpenVMS Alpha Version 7.3-1. Currently the platform for ACME agent
development is OpenVMS Alpha Version 7.3-2 or higher. As of this writing (May 2004), ACME is not yet available on OpenVMS
I64 (Itanium). There is no plan to provide this functionality on OpenVMS VAX.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 1

Introduction to Developing ACME Agents — Takaaki Shinagawa

What is the ACME subsystem?

The ACME subsystem refers to all of the components for authentication on an OpenVMS system
(Figure 1). Its main feature is in its "plug-in" architecture, in which you can load individual ACME
agents implementing authentication policies. An OpenVMS system administrator can load an
ACME agent for a new authentication policy. For example, in order to authenticate users against
an LDAP directory, the system administrator can load the LDAP ACME agent along with the VMS
agent. Authentication is invoked by the $ACM system service in the application.

There are two distinct types of ACME agents: DOI and Auxiliary agents. The most significant
difference is whether the agent issues credentials. A DOI agent has a capability to issue
credentials, but an Auxiliary agent does not. An Auxiliary ACME agent implements specific
functions that complement a DOI agent. Extra functions such as additional authentication methods
(e.g. token-based and smart card), password filtering and new password checking can be
implemented in Auxiliary agents.

An OpenVMS system manager can load multiple ACME agents in addition to the mandatory VMS
ACME agent. When multiple DOI agents handle requests (authentication, authorization, credential
generation, etc.) in an ACME subsystem, it is called a cooperative model. An independent model
refers to a situation where only one DOI ACME agent processes requests and issue credentials
along with the VMS ACME agent

Figure 1: Overview of the ACME Subsystem

© Copyright 2004 Hewlett-Packard Development Company, L.P. 2

Introduction to Developing ACME Agents — Takaaki Shinagawa

How does the ACME subsystem work?

As shown in Figure 1, the ACME subsystem is composed of the ACME server, ACME agents and
the $ACM application. Applications send an authentication-related request by calling the
SYS$ACM system service. The request is eventually processed by the ACME agent. In order for an
OpenVMS system manager to configure the ACME subsystem, the SET SERVER ACME commands
are provided on the DCL command line. A persona extension also plays an important role in
conjunction with the subsystem—it is responsible for storing credentials issued by the ACME agent.

In the following lines, interactions inside the ACME subsystem are described in the order the ACME
subsystem is configured and processes requests.

1. If all the ACME components have been in place, the first step to using the ACME subsystem is
to start the ACME server (SET SERVER ACME/START). The ACME server can be considered as
an engine of the ACME subsystem— it dispatches requests from a $ACM application to ACME
agents.

2. Once the ACME server is started, it becomes possible to load ACME agents. When an ACME
agent is being loaded in the ACME subsystem (SET SERVER ACME/CONFIGURE), the
ACME$CO_AGENT_INITIALIZE control callout function is executed in the agents (Figure 2).

Figure 2: ACME Control Flow for ACME$CO_AGENT_INITIALIZE

© Copyright 2004 Hewlett-Packard Development Company, L.P. 3

Introduction to Developing ACME Agents — Takaaki Shinagawa

3. To activate request dispatching, the system manager runs the SET SERVER ACME /ENABLE
command. At this time, the ACME$CO_AGENT_STARTUP routine in each ACME agent
specified in the command is executed (Figure 3).

Figure 3: ACME Control Flow for ACME$CO_AGENT_STARTUP

4. Once the dispatching is enabled successfully, the ACME server and agents are ready to
process the requests from the $ACM application. Every Authenticate Principal or Change
Password request is performed using the following steps:

4-1. The application calls the $ACM system service. The

ACME$_FC_AUTHENTICATE_PRINCIPAL function code is specified for the Authenticate
Principal request, and ACME$_FC_CHANGE_PASSWORD is specified for the Change
Password request.

4-2. The ACME server receives the request from the $ACM system service and dispatches it to
the ACME agents.

4-3. The requests are processed by the ACME agents in the order the agents are loaded.

4-4. Each time the request is processed by a callout routine, a return value from the routine to
the ACME server determines the request’s flow.

• If ACME$_CONTINUE is returned, the ACME server dispatches the request to the next
callout routine.

• If the agent returns ACME$_PERFORMDIALOGUE, the ACME server performs a
specified input/output dialogue, and then the request is dispatched to the same callout
routine again.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 4

Introduction to Developing ACME Agents — Takaaki Shinagawa

• If the agent returns ACME$_FAILURE, the server dispatches the request to the final
callout routine, ACME$CO_FINISH.

• If the agent returns ACME$_AUTHFAILURE, the ACME server continues processing
through the ACME$CO_AUTHENTICATE callout routine, and then the service will
return ACME$_AUTHFAILURE to the $ACM client.

For more return values, refer to Table 1-2 in the ACME Developer's Guide.

4-5. Repeat Steps 4-3 through 4-5 until you complete the ACME$CO_FINISH callout routine.
Figure 4 shows all phases and request flows for authenticate-principal and change-
password requests.

Figure 4: Authentication and change-password request phases and flow

Both Authenticate Principal and Change Password requests follow the procedures described above.
There are, however, some differences in callout routines that these two types of requests go
through. As shown in Figure 4, the Authenticate Principal and Change Password requests are
processed through different series of callout routines. Some callout routines are specific to either
type of requests. Callout routines from ACME$CO_NEW_PASSWORD_1 through
ACME$CO_SET_PASSWORD (Figure 4) are used to handle one or two new password(s)—these
are essential to a change-password request. But an authentication request does not go though these

© Copyright 2004 Hewlett-Packard Development Company, L.P. 5

Introduction to Developing ACME Agents — Takaaki Shinagawa

routines unless the password is expired, and a new password must be obtained from the user. For
a change-password request, the ACME server doesn’t dispatch the request to the
ACME$CO_ANNOUNCE, ACME$CO_MESSAGES, ACME$CO_AUTHORIZE,
ACME$CO_NOTICES, ACME$CO_LOGON_INFORMATION, and ACME$CO_CREDENTIALS
routines. The next section describes more details about callout routines.

Figure 5: ACME Control Flow for the PRINCIPAL_NAME and ACCEPT_PRINCIPAL
phases

Figure 5 illustrates ACME control flow in the PRINCIPAL_NAME and ACCEPT_PRINCIPAL phases.
Whereas Figure 4 shows sequence and flow only in an ACME agent, Figure 5 shows the ACME
control flow when multiple ACME agents are loaded. After completing the INITIALIZE through
AUTO_LOGON phases, the ACME dispatches the request to the ACME$CO_PRINCIPAL_NAME
callout routine of the ACME agent loaded first (1 in Figure 5). To queue a username prompt
(Username:) to the $ACM client, this callout routine returns ACME$_PERFORMDIALOGUE (2). The
ACME server sends the prompt string to the $ACM application (3). After the user enters a

© Copyright 2004 Hewlett-Packard Development Company, L.P. 6

Introduction to Developing ACME Agents — Takaaki Shinagawa

username (4), the request is dispatched again to the PRINCIPAL_NAME callout routine (5). If the
principal name is received, the callout routine returns ACME$_CONTINUE (6). If only one ACME
agent is loaded, the request is dispatched into the ACCEPT_PRINCIPAL routine for the next step. In
this example, however, the ACME server dispatches the request to the same phase in the agent
loaded in the second place (7). Because this phase has already been completed by the first agent,
the second agent returns ACME$_CONTINUE (8). Then, the ACME server dispatches the request to
the next phase, ACCEPT_PRINCIPAL, in the first agent (9). If the principal name policy accepts the
user-entered principal name, the ACME$CO_ACCEPT_PRINCIPAL routine returns
ACME$_CONTINUE (10), and the request is dispatched to the same callout routine in the second
agent (11). The second agent is not a Designated DOI agent (the Designated DOI should have
been declared by the first one in the ACCEPT_PRINCIPAL phase or before). Thus it simply returns
ACME$_CONTINUE (12). The request will be dispatched by the ACME server in the same way
through the FINISH phase.

Upon successful authentication, a $ACM client can acquire credentials from the ACME agent that
supports issuing credentials in the CREDENTIALS callout routine. The ACME agent issues
credentials to a persona extension associated with the $ACM application by calling the
ACMEKCV$CB_ISSUE_CREDENTIALS callback function in its ACME$CO_CREDENTIALS callout
routine. Once the credentials have been issued into the persona extension, the $ACM application
can perform operations with the credentials by calling the PERSONA system services such as
SYS$PERSONA_ASSUME and SYS$PERSONA_QUERY. To retrieve and handle the credentials, the
application must support the formats of the credentials. For example, an application that supports
only the VMS credentials cannot handle those newly defined in another persona extension. It is
essential that the $ACM client, ACME agents, and persona extensions agree on the credentials
formats. Figure 6 depicts the whole process of issuing and acquiring the credentials.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 7

Introduction to Developing ACME Agents — Takaaki Shinagawa

Figure 6: Credential generation process

In addition to the authenticate-principal and change-password requests, there are three types of
requests from a SYS$ACM system service: QUERY, EVENT, and RELEASE_CREDENTIALS. Their
function codes with the SYS$ACM are ACME$_FC_QUERY, ACME$_FC_EVENT and
ACME$_FC_RELEASE_CREDENTIALS. The QUERY and EVENT requests are processed by the
ACME$CO_QUERY and ACME$CO_EVENT callout routines in an ACME agent, respectively. The
RELEASE_CREDENTIALS request simply deletes the credentials in the persona extension. The
implementation of these callout routines will be discussed in the next section.

When a system is terminating the ACME subsystem or disabling ACME agents,
ACME$CO_AGENT_SHUTDOWN is executed in the same manner as
ACME$CO_AGENT_STARTUP (Figure 3).

What do we have to develop?

As mentioned above, if you are developing an ACME agent that issues credentials, we also need
to develop its persona extension as well as an ACME agent. The next section presents instructions
for developing an ACME agent, and the following section describes how to implement a persona
extension. Also, if the credential type and input requested by the agent are not supported by the
existing $ACM application, it is necessary to develop a new one or modify the application.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 8

Introduction to Developing ACME Agents — Takaaki Shinagawa

Implement an ACME Agent

Determine the type of the ACME agent

Before you start the implementation, decide on the type of the ACME agent. The ACME agent type
is either a DOI or Auxiliary agent. As mentioned in the Introduction to ACME section, a DOI agent
issues credentials. An Auxiliary ACME agent does not work alone—it is designed to provide
additional functionality such as complementary authentication in conjunction with a DOI agent.

An DOI agent acts as the Designated DOI agent when it is the target of the $ACM call. If you are
developing a DOI agent, you also need to decide whether it can function as a Secondary DOI
agent in the cooperative model for an untargeted $ACM call. In the cooperative model, each of
multiple DOI agents (both Designated and Secondary DOI agents) is expected to be responsible for
authentication and issuing credentials. In the independent model, only the DOI agent issues
credentials—Secondary DOI agents other than the VMS agent do not perform those operations.

It is desirable to know all other ACME agents with which your agent will be configured in the
ACME subsystem. When loading multiple ACME agents, the collection of those rules in all agents
defines the operation model (either cooperative or independent model). The ACME server or ACME
subsystem doesn't control behaviors of ACME agents to conform the specific operation model.
Instead, rules implemented in each agent and occasionally order of agents make differences in
their operations. The more details you know about other agents, the easier it becomes to develop
an ACME agent that works correctly with those agents.

Start implementing an ACME agent

Once you decide the ACME agent type, it is time to start implementing the ACME agent. The
example below is based on the example code shipped in OpenVMS Alpha
(SYS$EXAMPLES:ACME_EXAMPLE_DOI_ACME.C). This example agent is a DOI agent for the
independent model and demonstrates the basic implementation necessary for any agent. If you are
new to ACME agent development, it is highly recommended that you create a new one based on
the example ACME agent.

Define data structures

In the ACME agent, you define three data structures to store data specific to the agent or each
request. The ACME subsystem uses ACME data structures such as WQE (Work Queue Entry) and
KCV (Kernel Callback Vector), but they are already predefined in the system header files such as
acmedef.h.

The acme_context data structure

Information in the acme_context data structure is kept as long as the ACME agent is active
(from startup until shutdown). Thus, data such as authentication success/failure and the number
of requests can be defined and stored in this data structure.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 9

Introduction to Developing ACME Agents — Takaaki Shinagawa

The request_context (= wqe_context) data structure
The request_context data structure is also called wqe_context— they are synonyms. Information
in the request_context data structure is kept during a single request. Authentication data and
user/account specific information associated with an authentication request can be defined
and stored in this data structure. For example, a username and password received from the
$ACM client are stored.

The credential data structure
If the ACME agent issues credentials, this data structure is essential. All credential fields must
be defined in a credential data structure. The definitions of the credential data must be the
same as that in the persona extension source code.

Implement callout routines

The major task of developing an ACME agent is to implement a series of callout routines. They can
be classified into the following three types:

• control callout routines

• authenticate-principal/change-password callout routines

• event and query callout routines

The steps that should be implemented in those callout routines are described below. For
implementation in C, refer to the example program (ACME_EXAMPLE_DOI_ACME.C) in
SYS$EXAMPLES.

This article provides comprehensive procedures for callout functions. For more details such data
types of arguments and item/function codes, refer to the ACME Developer's Guide.

Control callout routines

The control routines are ACME$CO_AGENT_INITIALIZE, ACME$CO_AGENT_STARTUP,
ACME$CO_AGENT_STANDBY, and ACME$CO_AGENT_SHUTDOWN. As explained in the
Introduction to ACME section, these control callout routines are invoked when a system manager
loads, starts, suspends, and shuts down the ACME agents/server.

ACME$CO_AGENT_INITIALIZE

This routine is executed when loading the ACME agent (with SET SERVER ACME
/CONFIGURE command).

1. Verify the revision levels of the WQE and KCV data structures. The purpose is to check the
compatibility of data structure versions of the ACME server and the ACME agent. A
structure revision level should be checked in WQE, whereas both ACM kernel and
structure revision levels are checked in KCV. In each revision levels, major and minor
versions exist. The major versions need to be equal, and the minor version from the ACME
server (in WQE) needs to be greater than or equal to the one with the ACME agent. If the

© Copyright 2004 Hewlett-Packard Development Company, L.P. 10

Introduction to Developing ACME Agents — Takaaki Shinagawa

revision levels mismatch, return ACME$_UNSUPREVLVL. For more details in the revision
levels, refer to Section 4.1.1 and 4.1.2 in the ACME Developer's Guide.

2. Initialize ACME Resource Block (ACMERSRC). Although this initialization is optional for
most fields in ACMERSRC, it is required to explicitly set some fields such as privileges
depending on the ACME agent's operations. More information about ACME Agent
Resource Requirements Block is available in Section B.5 in the ACME Developer's Guide.

3. Set the ACME agent's name and report it to the ACME server with
ACMEKCV$CB_REPORT_ATTRIBUTES().

4. Set the current status string and report it to the ACME server with
ACMEKCV$CB_REPORT_ACTIVITY().

5. Return ACME$_CONTINUE.

ACME$CO_AGENT_STARTUP
This routine is executed when activating the ACME agent (with the SET SERVER ACME
/ENABLE command).

1. Allocate the acme_context data structure with ACMEKCV$CB_ALLOCATE_ACME_VM().

2. Initialize the counters in acme_context if they exist.

3. Return ACME$_CONTINUE.

ACME$CO_AGENT_SHUTDOWN
This routine is executed when stopping (with SET SERVER ACME /EXIT) or disabling (with SET
SERVER ACME /DISABLE) the ACME agent.

1. Deallocate the acme_context data structure with
ACMEKCV$CB_DEALLOCATE_ACME_VM().

2. Return ACME$_NORMAL upon success.

ACME$CO_AGENT_STANDBY
This routine is executed when temporarily disabling (with SET SERVER ACME /SUSPEND) the
ACME agent. The purpose of this operation is to close files for a possible system backup
operation. Note that there is no corresponding resume callout routine. The request processing
resumes when the operator issues the SET SERVER ACME/RESUME command. The example
agent does not implement any operation in this callout routine and returns
ACME$_CONTINUE.

Request callout functions

The request routines are invoked by an authentication request from a $ACM client.

ACME$CO_INITIALIZE
This is the first routine every authenticate-principal/change-password request goes through.
ACME$CO_INITIALIZE allocates request_context, which is the context data structure for a
request, and process common and ACME-specific item lists. If the request is in the dialogue

© Copyright 2004 Hewlett-Packard Development Company, L.P. 11

Introduction to Developing ACME Agents — Takaaki Shinagawa

mode, those lists are empty. In the non-dialogue mode, however, items such as a username
and password can be obtained in this routine.

1. If another ACME agent is targeted by the $ACM client, return ACME$_CONTINUE (skip
the rest of the steps in this ACME agents). This check is done by comparing ACME
numbers of ACMEWQE$L_TARGET_ACME_ID and ACMEWQE$L_CURRENT_ACME_ID.

2. If another ACME agent has already declared as a Designated DOI agent, return
ACME$_CONTINUE. This check is done by comparing ACME numbers of
ACMEWQE$L_DESIGNATED_ACME_ID and ACMEWQE$L_CURRENT_ACME_ID.

3. Allocate and initialize the request-specific data structure (request_context).

4. Set the target status (whether the agent is targeted or not), and update target status value in
request_context.

5. Process the common item list (principal name and password may be supplied by the
$ACM client).

6. Process the ACME specific item list (ACME-specific items may be supplied by the $ACM
client).

7. Return ACME$_CONTINUE.

ACME$CO_SYSTEM_PASSWORD
This callout routine is intended to be implemented only in the VMS agent. Other agents simply
return ACME$_CONTINUE. In this routine, the VMS agent obtains a system password for
authentication. This phase is associated with the ACME$_PASSWORD_SYSTEM item code with
the $ACM system service.

ACME$CO_ANNOUNCE
This routine is invoked by the ACME server only for the Authenticate Principal request. It is
implemented to display information to the user prior to the username prompt. The VMS agent
displays the message defined with the SYS$ANNOUNCE logical. The example agent doesn't
output any message by simply returning ACME$_CONTINUE. To display a message,
however, implement the following procedure.

1. If this is the first time to enter this routine:

• The agent sends the message to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Return ACME$_PERFORMDIALOGUE.

2. If this is the second time to enter this routine:

• Return ACME$_CONTINUE.

ACME$CO_AUTOLOGON
If the ACME agent determines a principal name automatically (i.e. without user intervention),
the mechanism is implemented in this callout routine. If this capability is necessary, follow the
steps below.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 12

Introduction to Developing ACME Agents — Takaaki Shinagawa

1. Check the ACMEWQEFLG$V_PHASE_DONE flag. If this phase has been completed by
another agent, return ACME$_CONTINUE.

2. Implement the agent's specific mechanism to determine a principal name.

3. Load the principal name string and length in WQE through
ACMEKCV$CB_SET_WQE_PARAMETER.

4. Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

5. Return ACME$_CONTINUE.

ACME$CO_PRINCIPAL_NAME
In the dialogue mode, this routine is responsible for prompting and obtaining a principal name
string from the $ACM client.

1. Check the ACMEWQEFLG$V_PHASE_DONE flag. If this phase has been completed by
another agent, return ACME$_CONTINUE.

2. If another ACME agent has already declared as a Designated DOI agent, return
ACME$_CONTINUE (skip the rest of the steps in this ACME agents).

3. If this is the first time to enter this routine:

• If a principal name has already been provided, return ACME$_CONTINUE.

• If the principal name is not in the buffer:

• Queue the principal name prompt to the $ACM client by calling
ACMEKCV$CB_QUEUE_DIALOGUE().

• Set a flag that indicates the request has already entered this routine once. Since
returning ACME$_PERFORMDIALOGUE causes the request to be returned to this
routine as soon as completing this dialogue, this flag is necessary to know that the
next time the request enters this routine is the second time.

• Return ACME$_PERFORMDIALOGUE.

4. If this is the second time to enter this routine:

• If the ACME$_PRINCIPAL_NAME_IN item code is not in the common item list, return
ACME$_FAILURE.

• Load the principal name string and length in WQE through
ACMEKCV$CB_SET_WQE_PARAMETER.

• Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

• Return ACME$_CONTINUE.

ACME$CO_ACCEPT_PRINCIPAL
This callout routine examines a principal obtained in the ACME$_CO_PRINCIPAL_NAME
routine. If the principal name is accepted by the principal name policy, this routine must
declare as a Designated DOI agent. This is the last phase in which an ACME agent can set the
Designated DOI status.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 13

Introduction to Developing ACME Agents — Takaaki Shinagawa

1. Check the ACMEWQEFLG$V_PHASE_DONE flag. If this phase has been completed by
another agent, return ACME$_CONTINUE.

2. If another ACME agent has already declared as a Designated DOI agent, return
ACME$_CONTINUE (skip the rest of the steps in this ACME agents).

3. Load the principal name and length in request_context from WQE. This is necessary when
the ACME$CO_ACCEPT_PRINCIPAL routine was completed by another agent. In this
situation, the principal and its length fields in the request_context is empty, whereas they
are stored in the WQE.

4. Implement a policy to accept a principal name:

• If the principal is not accepted by the policy, return ACME$_AUTHFAILURE.

5. Set the accepted principal name in WQE thorough
ACMEKCV$CB_SET_WQE_PARAMETER().

6. Declare this is the Designated DOI agent.

7. Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

8. Return ACME$_CONTINUE.

ACME$CO_MAP_PRINCIPAL
This routine specifies the VMS username in the SYSUAF file which corresponds to the principal
name accepted in the previous phases. If the accepted principal name is identical to the VMS
username, no mapping is necessary. Because VMS usernames are uppercased, uppercasing is
required in the mapping process. For example, an accepted principal name john@openvms
may be mapped to JOHN in the UAF record in this routine.

1. Check the ACMEWQEFLG$V_PHASE_DONE flag. If this phase has been completed by
another agent, return ACME$_CONTINUE.

2. If this agent is not participating in this request (address of request_context is null), return
ACME$_CONTINUE.

3. If this agent is not the Designated DOI agent, return ACME$_CONTINUE.

4. Implement the mapping policy.

5. Convert the principal string to uppercase. This conversion is necessary because the current
ACME server doesn't uppercase the principal string. Without uppercasing, a
lowercase/mixed-case principal string causes a mismatch against a VMS username, which
is always uppercased.

6. Set the uppercased principal in WQE through ACMEKCV$CB_SET_WQE_PARAMETER().

7. Return ACME$_CONTINUE.

ACME$CO_VALIDATE_MAPPING
Optionally, an ACME agent can check the validity of the mapped username in this routine. The
VMS agent always checks the mapped VMS username in this phase. If the mapped username
doesn't exist in the SYSUAF file, the request is terminated by the VMS agent.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 14

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_ANCILLARY_MECH_1
This routine is used when the ACME agent collects additional information from the $ACM
client. The example ACME agent doesn't implement this routine because no information other
than a username and password is used. However, if an ACME agent uses other types of user
credentials such as a cryptographic token, it is expected to obtain them in this callout routine or
the other two ancillary mechanism routines (ACME$CO_ANCILLARY_MECH_2 and
ACME$CO_ANCILLARY_MECH3).

ACME$CO_PASSWORD_1
In the dialogue mode, this routine is responsible for prompting and obtaining a password from
the $ACM client.

1. Check the ACMEWQEFLG$V_PHASE_DONE flag. If this agent is not participating in this
request or this phase has been completed by another agent (address of request_context is
null), return ACME$_CONTINUE.

2. If the pre-authenticated flag (ACMEWQEFLG$V_PREAUTHENTICATED) has been set:

• Return ACME$_AUTHFAILURE, or if the agent allows the pre-authenticated mode,
return ACME$_CONTINUE.

3. If another ACME agent has already declared as a Designated DOI agent, return
ACME$_CONTINUE (skip the rest of the steps in this ACME agents).

4. If this is the first time to enter this routine:

• If a password has already been provided, return ACME$_CONTINUE.

• If the password is not in the buffer:

• The password prompt will be sent to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Set a flag that indicates the request has already entered this routine once. Since
returning ACME$_PERFORMDIALOGUE causes the request to be returned to this
routine as soon as completing this dialogue, this flag is necessary to know that the
next time the request enters this routine is the second time.

• Return ACME$_PERFORMDIALOGUE.

5. If this is the second time to enter this routine:

• If the ACME$_PASSWORD_1 item code is not in the common item list, return
ACME$_FAILURE.

• Load the password string and length in WQE through
ACMEKCV$CB_SET_WQE_PARAMETER.

• Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

• Return ACME$_CONTINUE.

ACME$CO_ANCILLARY_MECH_2
This routine is used when the ACME agent collects any ACME-specific authentication
information between the ACME$_PASSWORD_1 and ACME$_PASSWORD_2 phases. The
example ACME agent doesn't implement this routine.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 15

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_PASSWORD_2
If the ACME agent needs a second password for authentication, this routine should be
implemented. The implementation should follow the same procedures as for the
ACME$CO_PASSWORD_1 routine.

ACME$CO_ANCILLARY_MECH_3
This routine is used when the ACME agent collects any ACME-specific authentication
information between the ACME$_PASSWORD_1 and ACME$_PASSWORD_2 phases. The
example ACME agent doesn't implement this routine.

ACME$CO_AUTHENTICATE
An ACME agent-specific authentication policy is implemented in this routine.

1. If this agent is not participating in this request (address of request_context is null), return
ACME$_CONTINUE.

2. If this is not a Designated DOI agent, return ACME$_CONTINUE.

3. If the pre-authenticated flag (ACMEWQEFLG$V_PREAUTHENTICATED) has been set, return
ACME$_AUTHFAILURE.

4. If the agent allows the pre-authenticated mode, return ACME$_CONTINUE.

5. Implement an authentication policy. The example agent implements a very simple
authentication policy. It simply checks the first character of the password. If the password
starts with 'a', the request is authenticated. Otherwise, authentication fails. In ACME agents
for production use, it would be necessary to communicate with a file or database storing
user credentials such as passwords.

• If authentication succeeds, return ACME$_CONTINUE.

• If authentication fails, return ACME$_AUTHFAILURE.

ACME$CO_MESSAGES
This routine is invoked by the ACME server only for the Authenticate Principal request. This is
used to output any text message to the $ACM client between the ACME$CO_AUTHENTICATE
and ACME$CO_AUTHORIZE phases. The implementation will be similar to other messaging
callout routines such as ACME$CO_ANNOUNCE.

1. If this is the first time to enter this routine:

• The message will be sent to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Return ACME$_PERFORMDIALOGUE.

2. If this is the second time to enter this routine, return ACME$_CONTINUE.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 16

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_AUTHORIZE

This routine is invoked by the ACME server only for the Authenticate Principal request. It
performs authorization for the authenticated request. The request is authorized based on the
ACME agent-specific authorization policy. Access restrictions such as privileges, modes of
operation, and account duration are examined to grant the authorization. If there is no
authorization policy with the ACME agent, this callout routine is optional.

ACME$CO_NOTICES
This routine is invoked by the ACME server only for the Authenticate Principal request. This is
used to output a long text message to the $ACM client after successfully completing the
authentication and authorization phases. For example, the VMS agent displays a message
defined with SYS$WELCOME. The implementation will be similar to other messaging callout
routines such as ACME$CO_ANNOUNCE and ACME$CO_MESSAGES.

1. If this is the first time to enter this routine:

• The message will be sent to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Return ACME$_PERFORMDIALOGUE.

2. If this is the second time to enter this routine:

• Return ACME$_CONTINUE.

ACME$CO_LOGON_INFORMATION
This routine is invoked by the ACME server only for the Authenticate Principal request. This is
used to output text information to the $ACM client after the authorization phase. The difference
from the ACME$CO_NOTICES callout routine is that this routine displays short, critical logon
information. This will be the final output text after authentication and authorization. The VMS
agent uses this phase to display last logon time and number of logon failures. The
implementation will be similar to other messaging callout routines such as
ACME$CO_ANNOUNCE and ACME$CO_MESSAGES.

1. If this agent is not participating in this request (address of request_context is null), return
ACME$_CONTINUE.

2. If this is not a Designated DOI agent, return ACME$_CONTINUE.

3. If this is the first time to enter this routine:

• If dialogue is not possible, skip the rest of this routine (return ACME$_CONTINUE).

• Send a logon message to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Return ACME$_PERFORM DIALOGUE.

4. If this is the second time to enter this routine, return ACME$_CONTINUE.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 17

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_NEW_PASSWORD_1
This callout routine is mainly for change-password requests. The only situation in which this
routine is used for authenticate-principal requests is when the password has expired. It prompts
and obtain a new password for the $ACM client. The implementation is similar to the
ACME$CO_PASSWORD_1 routine.

1. Check the address of request_context and ACMEWQEFLG$V_PHASE_DONE flag. If this
agent is not participating in this request or this phase has been completed by another
agent, return ACME$_CONTINUE.

2. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return ACME$_CONTINUE.

3. If this is not a Designated DOI agent, return ACME$_CONTINUE.

4. If the request in the AUTHENTICATE_PRINCIPAL mode and the PasswordExpired flag is not
set, return ACME$_CONTINUE. As mentioned above, unless a password is expired, an
authenticate-principal doesn't need this phase.

5. If this is the first time to enter this routine:

• If a new password has already been provided, return ACME$_CONTINUE.

• If the new password is not in the buffer:

• If either input or noecho can't be performed, return ACME$_INSFDIALSUPPORT.

• The new password prompt will be sent to the $ACM client through
ACMEKCV$CB_QUEUE_DIALOGUE().

• Set a flag that indicates the request has already entered this routine once. Since
returning ACME$_PERFORMDIALOGUE causes the request to be returned to this
routine as soon as completing this dialogue, this flag is necessary to know that the
next time the request enters this routine is the second time.

• Return ACME$_PERFORMDIALOGUE.

6. If this is the second time to enter this routine:

• If the ACME$_NEW_PASSWORD_1 item code is not in the common item list, return
ACME$_FAILURE.

• Load the new password string and length in WQE through
ACMEKCV$CB_SET_WQE_PARAMETER.

• Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

• Return ACME$_CONTINUE.

ACME$CO_QUALIFY_PASSWORD_1
This callout routine implements a policy to accept a new password. The length and
special/numerical characters in a new password are usually examined.

1. Check the address of wqe_context and ACMEWQEFLG$V_PHASE_DONE flag. If this
agent is not participating in this request or this phase has been completed by another
agent, return ACME$_CONTINUE.

2. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return ACME$_CONTINUE.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 18

Introduction to Developing ACME Agents — Takaaki Shinagawa

3. If this is the first time to enter this routine:

• If this is not a Designated DOI agent, return ACME$_CONTINUE.

• If the request in the AUTHENTICATE_PRINCIPAL mode and the PasswordExpired flag is
not set, return ACME$_CONTINUE.

• If the new password is not in the buffer, return ACME$_FAILURE.

• If the new password is in the buffer:

• Implement a policy to accept or reject a new password.

• If the new password is accepted:

• Update the new password in the password database/file.

• Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE
through ACMEKCV$CB_SET_WQE_FLAG().

• return ACME$_CONTINUE.

• If the new password is rejected:

• A message indicating that the new password was rejected is sent to the
$ACM client through ACMEKCV$CB_QUEUE_DIALOGUE().

• Return ACME$_PERFORMDIALOGUE.

4. If this is the second time to enter this routine (only when the password was rejected):

• Set the "phase done" flag (ACMEWQEFLG$K_PHASE_DONE) in WQE through
ACMEKCV$CB_SET_WQE_FLAG().

• To terminate the request, return ACME$_FAILURE. However, in most production
systems, it is a common practice to ask the user to enter another new password. To
implement this way, use ACME$_RETRYPWD. This return value causes the request to
re-enter the previous routine, ACME$CO_NEW_PASSWORD_1.

ACME$CO_NEW_PASSWORD_2
If the ACME agent needs a second password for authentication, this routine should be
implemented. The implementation should follow the same procedures as for the
ACME$CO_NEW_PASSWORD_1 routine.

ACME$CO_QUALIFY_PASSWORD_2
If the ACME agent needs a second password for authentication, this routine should be
implemented. The implementation should follow the same procedures as for the
ACME$CO_QUALIFY_PASSWORD_1 routine.

ACME$CO_ACCEPT_PASSWORDS
The purpose of this routine is to prepare for the next routine. It checks the availability of the
password database and other resources (e.g. network connections to the database) for the
operation in the ACME$CO_SET_PASSWORD callout routine. This is to minimize the possibility
of failure in the next phase.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 19

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_SET_PASSWORD
The role of this routine is to update the password file/database for the ACME agent. Because
the example ACME agent doesn't have its password database, it is not implemented. If the
password update fails in this phase, this may cause discrepancies of saved passwords in
password databases of multiple ACME agents. For example, if ACME agent B fails to update a
password after ACME agent A has successfully updated the password in its password file, the
passwords saved for agent A and B are inconsistent. To avoid or minimize such a situation, it
is recommended to check the availability of the password database/file in the previous routine,
ACME$CO_ACCEPT_PASSWORDS.

ACME$CO_CREDENTIALS
This routine is invoked by the ACME server only for the Authenticate Principal request. This
must be implemented in any DOI agent, which always issues credentials to the $ACM client.
Only the authenticate-principal requests invoke this routine. Since credentials are passed to and
stored in the persona extension image, the definition of the credential data structure must be
consistent with the one in the persona extension code.

1. Check the address of request_context. If this agent is not participating in this request, return
ACME$_CONTINUE.

2. If this is not a Designated DOI agent, return ACME$_CONTINUE.

3. If the credential is not requested by the $ACM client, return ACME$_CONTINUE (skip the
rest).

4. Send the credential to the $ACM client through ACMEKCV$CB_ISSUE_CREDENTIALS().

5. Return ACME$_CONTINUE.

ACME$CO_FINISH
This is the last routine in the ACME agent. Cleanup operations such as memory deallocation
and file I/O closure are implemented in this routine.

1. If this agent is not participating in this request (address of request_context is null), return
ACME$_NORMAL.

2. Deallocate request_context.

3. Return ACME$_NORMAL.

Event and Query callout routines

The optional routines ACME$CO_EVENT and ACME$CO_QUERY are not executed in the course
of the dialogue request processing. They are invoked when an application calls the $ACM system
service with function codes specifying those operations. Unlike the request callout functions, these
routines are always executed in the targeted mode. The $ACM client targets a specific ACME
agent with the ACME$CO_EVENT or ACME$CO_QUERY call, so the ACME server calls no other
agents for this callout routine. Therefore, you don’t have to consider configurations and scenarios
with other ACME agents. This is the reason no specific and required internal steps exist for these
routines. In both routines, item codes from the $ACM client can be found in the item list, and a
specific event or information query should be implemented for each supported item code.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 20

Introduction to Developing ACME Agents — Takaaki Shinagawa

ACME$CO_EVENT
This routine, ACME$CO_EVENT, is implemented for event-related operations of an ACME
agent. The ACME$_FC_EVENT function code with SYS$ACM in the application invokes this
callout routine. Although implementing this routine is optional, it is appropriate to handle
discrete events such as auditing and error checking. In this routine, the following input and
output item codes are processed.

• ACME$_EVENT_DATA_IN

The ACME$_EVENT_DATA_IN item code is an input item code. It specifies the buffer
containing information applicable to an event operation. The meaning of this data is
specific to the domain of interpretation for which it is used.

• ACME$_EVENT_TYPE

The ACME$_EVENT_TYPE item code is an input item code. It specifies the type of event
being reported. The buffer must contain a longword value. Interpretation of the value is
specific to the domain of interpretation to which the event is being reported.

• ACME$_SERVER_NAME_IN

Specifies the Event Server to which an Event should be directed. The meaning of this item is
specific to the target domain of interpretation.

• ACME$_EVENT_DATA_OUT

The ACME$_EVENT_DATA_OUT item code is an output item code. It specifies the buffer to
receive information returned from an event operation. The meaning of this data is specific
to the domain of interpretation for which it is used.

• ACME$_SERVER_NAME_OUT

Reports the Event Server to which an Event was directed. The meaning of this item is
specific to the target domain of interpretation.

ACME$CO_QUERY
This routine is used to provide the ACME agent's information with a $ACM client for function
code ACME$_FC_QUERY. In this routine, it is necessary to parse values in the three input item
codes (ACME$_QUERY_TYPE, ACME$_QUERY_KEY_TYPE, and ACME$_QUERY_KEY_VALUE)
and return data with the output item code, ACME$_QUERY_DATA.

• ACME$_QUERY_TYPE

The ACME$_QUERY_TYPE item code is an input item code. It specifies the type of data
to be returned in the buffer described by the corresponding ACME$_QUERY_DATA
item code. The ACME$_QUERY_TYPE item code requires that an
ACME$_QUERY_DATA item code immediately follow it in the item list.

• ACME$_QUERY_DATA

The ACME$_QUERY_DATA item code is an output item code. It specifies the buffer to
receive the data returned from the query operation relating to the corresponding
ACME$_QUERY_TYPE item code. The ACME$_QUERY_DATA item code requires that
an ACME$_QUERY_TYPE item code immediately precede it in the item list.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 21

Introduction to Developing ACME Agents — Takaaki Shinagawa

• ACME$_QUERY_KEY_TYPE

The ACME$_QUERY_KEY_TYPE item code is an input item code. It specifies the key
type for establishing the context of a query operation. The key format is specific to the
ACME agent to which the call is directed. An ACME$_QUERY_KEY_TYPE item requires
that an ACME$_QUERY_KEY_VALUE item immediately follow it in the item list.

• ACME$_QUERY_KEY_VALUE

The ACME$_QUERY_KEY_VALUE item code is an input item code. It specifies the key
data for establishing the context of a query operation. An
ACME$_QUERY_KEY_VALUE item requires that an ACME$_QUERY_KEY_TYPE item
immediately precede it in the item list.

Implement a Persona Extension

The persona extension's role with the ACME subsystem is to store authentication credentials issued
by its corresponding ACME agent. As mentioned earlier, an ACME agent issuing credentials
requires its corresponding persona extension (for the mechanism of issuing credentials, refer to
Figure 6). If the ACME agent doesn't issue any credentials, it is not necessary to develop a persona
extension for the ACME agent. If the ACMEKCV$CB_ISSUE_CREDENTIALS callback function is
called in the ACME$CO_CREDENTIALS routine, its persona extension must be installed with the
ACME agent. This section provides introductory guidelines for development of a persona extension
image for ACME agent developers.

Introduction to a persona and persona extension

A persona is a group of kernel-based, protected data structures storing a user’s security profile for a
process/thread. Every process in the system has at least one persona, called the natural persona.
The natural persona is created during process creation. The primary data structure of a persona is
the Persona Security Block (PSB). The PSB contains the security profile, including UIC, system rights
chains, privileges, account name, user name, auditing flags, and counters. As shown in Appendix
C in the ACME Developer's Guide, a persona is composed of several data structures:

• Persona Security Block (PSB)

• Persona Extension Block Array (PXB_ARRAY)

• Persona Extension Block (PXB)

• Persona Extension Creation Flags (PXB_Flags)

• Persona Extension Dispatch Vector (PXDV)

• Persona Extension Registration Block (PXRB)

• Persona Extension Create Flags (Create_Flags)

• Persona Delegation Block (DELBK)

• PSB Ring Buffer (PSBRB)

• Persona Security Block Array (PSB_ARRAY)

© Copyright 2004 Hewlett-Packard Development Company, L.P. 22

Introduction to Developing ACME Agents — Takaaki Shinagawa

A persona extension is a data structure called Persona Extension Block (PXB). Figure 7 illustrates
how a PXB is linked to the PSB data structure. All persona extensions except the VMS extension are
indexed in the PXB_ARRAY structure. Each extension is a PXB data structure that a system manager
can load the agent-specific persona extension as an executive image. The Configure ACME section
addresses the installation of a persona extension, and Appendix B provides DCL and SYSMAN
commands for building and installing a persona extension image. In the following lines in this
section, we will focus on development of a persona extension image.

Figure 7: Some persona data structures (credentials are stored in “Extension-specific Fields”)

Start implementing a person extension

The developer must follow the programming interface for a persona extension—it is different from
the ACM agent’s interface. The primary task of persona extension development is to implement
persona extension routines. The instructions for those routines will be provided in this section.

The example persona extension code (ACME_PERSONA_EXT.C) can be found in the
SYS$EXAMPLES directory. It is strongly recommended that you refer to the file while reading

© Copyright 2004 Hewlett-Packard Development Company, L.P. 23

Introduction to Developing ACME Agents — Takaaki Shinagawa

instructions in this section. For building and installing the example persona extension program,
refer to Appendix B.

Define data structures in the persona extension program

As listed above, the entire persona extension system uses several data structures. In the persona
extension program, only the credential and Persona Extension Block (PXB) data structures must be
defined — both are specific to the persona extension.

The credential data structure

The definition of this credential data structure must be exactly the same as the definition in the
ACME agent. Any differences between the data structure definitions cause problems, including
a difference as small as a buffer size.

Persona Extension Block (PXB)

PXB is the data structure to store the persona extension data. The header fields are pre-defined
and must always be defined in a PXB. If the PXB is defined as a struct pxb_p1 as in the
example code, its header fields are defined as follows:

• struct pxb_p1 *pxb_p1$l_flink;

• struct pxb_p1 *pxb_p1$l_blink;

• unsigned short int pxb_p1$w_size;

• unsigned char pxb_p1$b_type;

• unsigned char pxb_p1$b_subtype;

The remaining fields in the PXB are the credentials. All fields in the credential data structure
should be appended after the header part.

For more information about PXB, refer to Section C.3 in the ACME Developer's Guide.

Implement persona extension routines

Initialization routine (mandatory)

int persona_ext_initialize ();

The role of this routine is to declare the addresses of other person extension routines. All
routines in the persona extension image are registered during a system boot.
NSA$REGISTER_PSB_EXTENSION() in this routine performs this registration. Two arguments

© Copyright 2004 Hewlett-Packard Development Company, L.P. 24

Introduction to Developing ACME Agents — Takaaki Shinagawa

are passed to this initialization function. The first argument is a descriptor containing a name of
the extension image. The second argument is a Persona Extension Dispatch Vector (PXDV).
Addresses of persona extension routines must be set to their corresponding fields
(PXDV$A_CREATE, PXDV$A_CLONE, PXDV$A_DELEGATE, PXDV$A_DELETE,
PXDV$A_MODIFY, PXDV$A_QUERY, and PXDV$A_MAKE_TLV) in PXDV. The details about
NSA$REGISTER_PSB_EXTENSION() are available in Section 12.5 in the ACME Developer's
Guide.

Assuming that the persona extension routines are named as persona_ext_create() and so forth,
and pxdv is the PXDV declared in this routine, we can register the routines as follows in this
initialize routine.

 pxdv.pxdv$a_create = (void *) persona_ext_create; /* required */

 pxdv.pxdv$a_clone = (void *) persona_ext_clone; /* optional */

 pxdv.pxdv$a_delegate = (void *) persona_ext_delegate; /* optional */

 pxdv.pxdv$a_delete = (void *) persona_ext_delete; /* required */

 pxdv.pxdv$a_modify = (void *) persona_ext_modify; /* required */

 pxdv.pxdv$a_query = (void *) persona_ext_query; /* required */

 pxdv.pxdv$a_make_tlv = (void *) persona_ext_make_tlv; /* required */

 status = nsa$register_psb_extension(&p1_desc, &p1_pxdv);

Create routine (mandatory)

int persona_ext_create (

 PSB *psb,

 PXB **pxb,

 P1_CREDENT *credential,

 unsigned int credential_size

);

This routine creates a new persona extension. Specifically, this routine allocates a PXB in the
non-paged pool and sets credential values in the PXB. For PXB allocation in the non-paged
pool, EXE_STD$ALONONPAGED() is used. Credentials are copied into the credential data
structure defined in this program.

Clone routine (optional)

int persona_ext_clone (

 PSB *psb,

 PXB *pxb,

© Copyright 2004 Hewlett-Packard Development Company, L.P. 25

Introduction to Developing ACME Agents — Takaaki Shinagawa

 PXB *new_pxb

);

This routine copies an existing persona extension in the context of the current process. An
OpenVMS application can request this operation by calling the $PERSONA_CLONE system
service. In the Clone routine, another extension-specific PXB is allocated with
EXE_STD$ALONONPAGED(), and the system PXB is copied to the newly allocated PXB.
Before returning SS$_NORMAL, the address of the new PXB must be passed to the new PXB
provided as the third argument of this routine. The implementation of this routine is optional. If
it is not implemented, no persona extension is created in the new persona during the
$PERSONA_CLONE operation.

Delegate routine (optional)

int persona_ext_delegate (

 PSB *psb,

 PXB *pxb,

 int unused,

 PXB *new_pxb,

 PSB *new_psb

);

This routine copies an existing persona extension into a different process. This routine is
invoked by the $PERSONA_DELEGATE system service in an application program. The
implementation is similar to the clone routine. A new extension-specific PXB is allocated with
EXE_STD$ALONGPAGED(). After the original PXB is copied to the new PXB data structure, the
address of the new PXB is given to the routine’s forth argument.

Delete routine (mandatory)

int persona_ext_delete (

 PSB *psb,

 PXB *pxb

);

In this routine, the PXB data structure is deleted with EXE_STD$DEANONPAGED(). In general,
the implementation of this routine is simple. Unless the PSB or PBX is empty, the whole PXB is
deallocated with EXE_STD_DEANONPAGED(). But the way of deletion depends on the clone
and delegate implementation.

Modify routine (mandatory)

© Copyright 2004 Hewlett-Packard Development Company, L.P. 26

Introduction to Developing ACME Agents — Takaaki Shinagawa

int persona_ext_modify (

 PSB *psb,

 PXB *pxb,

 int itemcode,

 char *buf_addr,

 int buf_len

);

This routine modifies data in the persona extension when the application calls the
$PERSONA_MODIFY system service. In this routine, the item code provided as a third
argument is modified to the value stored in the buffer in the forth argument. If the input item
code is not supported, SS$_BADITMCOD must be returned. If the modification operation is
successful, SS$_NORMAL will be the return value.

Query routine (mandatory)

int persona_ext_query (

 PSB *psb,

 PXB *pxb,

 int itemcode,

 char *buf_addr,

 int buf_len,

 int *ret_len,

 int queryflg,

 struct dsc$descriptor_s *dsc

);

This routine retrieves a credential field requested by the application calling the
$PERSONA_QUERY system service. The following item codes must be supported:

• ISS$_COMMON_FLAGS

• ISS$_DOI

• ISS$_COMMON_USERNAME

• ISS$_DOMAIN

• ISS$_COMMON_PRINCIPAL

• ISS$_COMMON_ACCOUNT

• ISS$_EXTENSION

If the input item code is not supported in this routine, SS$_BADITMCOD will be returned.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 27

Introduction to Developing ACME Agents — Takaaki Shinagawa

When queryflag is turned on, this routine compares the input data to the one in PXB. For every
item code, the flag is checked first, and then both “compare” and “retrieve” modes should be
implemented. The following lines are an example.

case ISS$_DOI:

if (queryflg == COMPARE) {

/* compare buffer */

 if (strcmp(buf_addr, pxb_p1_p->pxb_p1$domain) != 0)

 status = FALSE;

 else

 status = TRUE;

}else{

 if (buf_len >= sizeof(pxb_p1_p->pxb_p1$domain)){

 strncpy(buf_addr, pxb_p1_p->pxb_p1$doi,

sizeof(pxb_p1_p->pxb_p1$doi));

 ret_len = sizeof(pxb_p1_p->pxb_p1$doi);

 }else

 status = SS$_BADBUFLEN;

 }

 break;

Make_TLV routine (mandatory)

int persona_ext_make_tlv (

 PSB *psb,

 PXB *pxb,

 int itemcode,

 char *buf_addr,

 int buf_len,

 int *ret_len,

 int flags

);

This routine is available with the intention to package credentials into a position-independent
string for batch jobs. However, implementation of this routine is rarely required at this point.
Thus, it is sufficient to simply return SS$_UNSUPPORTED in most cases.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 28

Introduction to Developing ACME Agents — Takaaki Shinagawa

Configure ACME — Put all the components together

Now we have all of the pieces for authentication with the ACME subsystem. For ACME agents to
work properly, careful configuration of the ACME components, which are explained in the previous
sections, is necessary. Follow the steps below.

Installing the persona extension image

The installation of a persona extension requires more than just copying the image into
SYS$LOADABLE_IMAGES. The Alpha image should be tested with CHECK_SECTIONS.COM, a
utility to check that the executive image is loadable. In addition, run a SYSMAN command to load
the persona extension image, and then execute VMS$SYSTEM_IMAGES.COM to generate a new
system image data file. After all this is done, reboot the system. The DCL and SYSMAN commands
for these operations can be found in Appendix B.

Configuring the SYSUAF flags and security policy bits

If your ACME agent performs authentication, you must set either the EXTAUTH flag in the SYSUAF
record for each VMS account to use external authentication or the IGNORE_EXTAUTH security
policy bit. If either flag is not set in the user account and you enable the VMS agent first, the VMS
agent handles authentication requests.

For an untargeted $ACM call, an ACME agent including the VMS agent becomes the Designated
DOI agent if it declares DOI through the ACMEKCV$CB_SET_DESIGNATED_DOI() callback
function.

When an ACME agent (other than the VMS agent) becomes the Designated DOI agent and
performs authentication, the VMS agent synchronizes the password with the mapped user account
in the SYSUAF file. For example, after a user, Mike, is authenticated by ACME agent X in which
Mike's password is "password_x," Mike's password in SYSUAF will be updated to password_x. To
disable this automatic password synchronization, the DISPWDSYNCH flag can be set in Mike's
account in SYSUAF.

To enforce the same effects as the EXTAUTH and DISPWDSYNCH flags for all user accounts in the
entire system, the IGNORE_EXTAUTH and GUARDS_PASSWORD bits in the SECURITY_POLICY
system parameter bitmask can be used. The SECURITY_POLICY bit can be modified by the SET
SECURITY command with the SYSGEN utility. After changing a value in the SECURITY_POLICY bit,
the system must be rebooted to enforce the new value.

For more information about those flags and bits, refer to Section 1.10 in the ACME Developer's
Guide. Values of the SECURITY Policy bits can be found in Chapter 7 in the OpenVMS Guide to
System Security.

Configuring the ACME subsystem

The ACME agent images must be copied to SYS$LIBRARY, and then the ACME subsystem can be
configured with SET SERVER ACME commands shown below. There are several states of the
ACME subsystem, and the SHOW SERVER ACME command displays the current state.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 29

Introduction to Developing ACME Agents — Takaaki Shinagawa

Figure 5 shows the ACME subsystem's state transitions with SET SERVER ACME commands.

Figure 5: SET SERVER ACME commands and states of the ACME subsystem

$ SET SERVER ACME/START

This command is the first step—it starts the ACME server.

$ SET SERVER ACME/CONFIGURE=(NAME=agent_name, CREDENTIAL=credential_name)

After the ACME server gets started, this command can be run to load an ACME agent.

To load the VMS ACME agent:

$ SET SERVER ACME/CONFIGURE=(NAME=VMS, CREDENTIAL=VMS)

To load the example ACME agent (ACME_EXAMPLE_DOI) with the example persona
extension (P1):

$ SET SERVER ACME/CONFIGURE=(NAME=ACME_EXAMPLE_DOI, CREDENTIAL=P1)

© Copyright 2004 Hewlett-Packard Development Company, L.P. 30

Introduction to Developing ACME Agents — Takaaki Shinagawa

$ SET SERVER ACME/ENABLE

This command activates ACME agents that have already been loaded in the ACME
subsystem. The order of ACME agents is specified by this command. The following
commands demonstrate the order of the VMS and example ACME agents.

The VMS agent is the first agent.

$ SET SERVER ACME/ENABLE=NAME=(VMS, ACME_EXAMPLE_DOI)

The example agent is the first agent.

$ SET SERVER ACME/ENABLE=NAME=(ACME_EXAMPLE_DOI, VMS)

$ SET SERVER ACME/DISABLE

This command disables the ACME server and agents.

$ SET SERVER ACME/EXIT

Run this command to stop the ACME server. Once this command is executed, all of the
ACME agents are unloaded because the ACME subsystem stops.

Perform a request from the $ACM application

Once the ACME subsystem has been configured, it is essential to send requests from the $ACM
application that will be used in the production environment. If the ACME agent issues credentials,
the $ACM application must be capable of handling them. Ensure that the proper $ACM
application is used for testing. The ACMEUTIL example program is provided to test the example
ACME agent, which issues a simple username and principal as credentials,. Note that Telnet and
ftp can be used to send authentication requests, but they are not directly calling the $ACM system
service. The authentication with Telnet, ftp, and SET HOST is invoked by the $ACM service in the
ACME LOGINOUT image.

Sending an untargeted request

$ ACMEUTIL AUTH /PERSONA/DIALOGUE=(INPUT,NOECHO)

Sending a request targeting the ACME_EXAMPLE_DOI agent

$ ACMEUTIL AUTH /PERSONA /DIALOGUE=(INPUT,NOECHO) /DOMAIN=
ACME_EXAMPLE_DOI

Sending a request targeting the VMS agent

$ ACMEUTIL AUTH /PERSONA/DIALOGUE=(INPUT,NOECHO)/DOMAIN=VMS

© Copyright 2004 Hewlett-Packard Development Company, L.P. 31

Introduction to Developing ACME Agents — Takaaki Shinagawa

Summary

The ACME subsystem provides a new authentication environment on OpenVMS. To enforce new
authentication policies, we can load ACME agents in a "plug-in" manner. Many OpenVMS system
managers will benefit from the flexibility of this new capability. As OpenVMS developers, we can
create new ACME agents for new authentication policies.

The major task for developing an ACME agent is to implement every callout routine for its
authentication policy. By referring to the steps in every callout routine in the Implement an ACME
Agent section as well as the example ACME agent's source, ACME agent developers will have
clearer ideas about how to implement ACME agents.

If the ACME agent issues credentials, it is also necessary to develop its persona extension. A
persona extension is an executive image that securely stores credentials for the $ACM application
process/thread. The Implement a Persona Extension section provides comprehensive steps for
developing a persona extension. It is recommended that you read this part with the source code of
the sample persona extension.

Finally, after the ACME agent and its persona extension become available, ACME developers and
OpenVMS system managers have to know how to install and configure all the components for
testing and setting up production environments. Comprehensive steps for installing and configuring
an ACME agent and persona extension are available in the Configure ACME section.

For more information

• ACME Developer's Guide (SYS$HELP:ACME_DEV_GUIDE.PDF)

• Chapter 33. Authentication and Credential Management (ACM) System Service, OpenVMS
Programming Concept Manual
(http://h71000.www7.hp.com/doc/731FINAL/5841/5841pro_contents_010.html#toc_chap
ter_33)

• OpenVMS Guide to System Security (http://h71000.www7.hp.com/doc/732FINAL/aa-
q2hlg-te/aa-q2hlg-te.PDF)

• HP OpenVMS System Services Reference Manual: GETUTC–Z
(http://h71000.www7.hp.com/doc/732FINAL/DOCUMENTATION/PDF/aa-qsbnf-te.PDF)

Acknowledgements

While I was writing this article, I received tremendous support from many people in the OpenVMS
Engineering Group. I spent lots of time with the members of the ACME project, Rick Barry, John
Harney, Doug Fyfe, and Barbara Thomson, about the details of the ACME and persona extension

© Copyright 2004 Hewlett-Packard Development Company, L.P. 32

http://h71000.www7.hp.com/doc/732FINAL/aa-q2hlg-te/aa-q2hlg-te.PDF
http://h71000.www7.hp.com/doc/732FINAL/aa-q2hlg-te/aa-q2hlg-te.PDF
http://h71000.www7.hp.com/doc/732FINAL/DOCUMENTATION/PDF/aa-qsbnf-te.PDF

Introduction to Developing ACME Agents — Takaaki Shinagawa

architectures. The feedback from Rick, Barbara and John for the drafts was invaluable. I also thank
the editor of this article, Kathleen Johnson, for her extensive review of this article.

Appendix A: How to Build and Set Up the Example ACME Agent
(ACME_EXAMPLE_DOI_ACME.C)

1. Compile the message file (if it hasn't been done)

$ MESSAGE ACME_EXAMPLE_DOI_MSG.MSG

- This command creates ACME_EXAMPLE_DOI_MSG.OBJ, which will be linked later

2. Build (compile and link) the example ACME agent

 (This command creates VMS$ACME_EXAMPLE_DOI_ACMESHR.EXE)

 $ @ACME_EXAMPLE_DOI_BUILD.COM

3. Copy the example ACME agent image to SYS$LIBRARY

 $ COPY VMS$ACME_EXAMPLE_DOI_ACMESHR.EXE SYS$LIBRARY

© Copyright 2004 Hewlett-Packard Development Company, L.P. 33

Introduction to Developing ACME Agents — Takaaki Shinagawa

Appendix B: How to Build and Set Up the Persona Extension Example
(ACME_PERSONA_EXT.C)

1. Build (compile and link) the example persona extension image

 (This command creates P1_EXT.EXE)

 $ @ACME_PERSONA_BUILD.COM

2. Test the example persona extension image with SYS$ETC:CHECK_SECTIONS.COM (on
OpenVMS Alpha only)

 $ @SYS$ETC:CHECK_SECTIONS.COM P1_EXT.EXE

3. Copy the example persona extension image to SYS$LOADABLE_IMAGES

 $ COPY P1_EXT.EXE SYS$LOADABLE_IMAGES

4. Install the example persona extension image

 (the image is P1_EXT.EXE, and the product name is ACMETEST)

 $ MCR SYSMAN

 SYSMAN> SYS_LOADABLE ADD/LOG ACMETEST P1_EXT

 $ @SYS$UPDATE:VMS$SYSTEM_IMAGES.COM

5. Reboot the system

 $ @SYS$SYSTEM:SHUTDOWN

During reboot, an error message appears if the persona extension Image is not

loaded. If you don't see the error message, the image should be loaded properly.

To verify:

 $ ANALYZE /SYSTEM

 SDA> SHOW EXECUTIVE P1_EXT

© Copyright 2004 Hewlett-Packard Development Company, L.P. 34

Introduction to Developing ACME Agents — Takaaki Shinagawa

Appendix C: How to Set Up the ACME Agent and Persona Extension After Reboot

1. Start the ACME server

$ SET SERVER ACME/START/LOG

2. Load the VMS ACME agent (this agent must be always loaded)

$ SET SERVER ACME/CONFIGURE=(NAME=VMS,CREDENTIAL=VMS)

3. Load the example agent with the example persona extension (P1)

$ SET SERVER ACME/CONFIGURE=(NAME=ACME_EXAMPLE_DOI,CREDENTIAL=P1)

4. Enable the agents (the order is the example agent is first)

$ SET SERVER ACME/ENABLE=NAME=(ACME_EXAMPLE_DOI,VMS)

© Copyright 2004 Hewlett-Packard Development Company, L.P. 35

Introduction to Developing ACME Agents — Takaaki Shinagawa

Appendix D: How to Test the Example Agent from the ACMEUTIL Client Program
(in SYS$EXAMPLES)

ACMEUTIL is a DCL utility program executing the $ACM[W] system service for
authentication and change-password requests.

 Authenticate Principal request (targeted call, credential is requested)

 $ acmeutil auth /persona/dialogue=(input,noecho)/domain=acme_example_doi

 Change Password request (Untargeted call)

 $ acmeutil change dialogue=(input,noecho)

For more information about this program, see ACMEUTIL_SETUP.COM in SYS$EXAMPLES.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 36

Introduction to Developing ACME Agents — Takaaki Shinagawa

Appendix E: How to Install the ACME LOGINOUT Image

The ACMELOGIN kit is provided to install versions of LOGINOUT.EXE and SETP0.EXE that are
modified to use the SYS$ACM system service. Since these images use SYS$ACM, they will use the
authentication policies provided by the ACME agents that have been configured on your system
including user-defined agents.

Note: It is recommended that you first test your ACME agent using the ACMEUTIL utility described
earlier in this document before installing the ACMELOGIN kit.

Three PCSI kits are contained in the BACKUP saveset SYS$UPDATE:ACME_DEV_KITS.BCK. Restore
the PCSI kits to your default directory using BACKUP:

$ BACKUP SYS$UPDATE:ACME_DEV_KITS.BCK/SAVE *.*

This will create three PCSI kits:

DEC-AXPVMS-V732_ACMELOGIN-V0100--4.PCSI (ACMELOGIN V1.0 patch kit)

The ACMELOGIN kit contains modified versions of LOGINOUT.EXE and SETP0.EXE that use the
SYS$ACM system service to perform authentication and password changes.

DEC-AXPVMS-V732_LOGIN-V0100--4.PCSI (LOGIN V1.0 patch kit)

The LOGIN kit contains the original LOGINOUT.EXE and SETP0.EXE images that were shipped
with this release. You can install this kit to restore the original versions of these files if you've
previously installed the ACMELOGIN kit for development and testing.

Note: If you previously installed any ECO kits that modified LOGINOUT.EXE or SETP0.EXE, you
will need to re-apply those ECO kits after restoring the original images using the LOGIN kit.

DEC-AXPVMS-V732_ACMELDAP-V0100--4.PCSI (ACMELDAP V1.0 patch kit)

The ACMELDAP kit contains the LDAP ACME sharable image, management tools, a startup file,
CLD file, and initialization template, as well as the .PS, .TXT and .HTML documentation.

Install the kit using the Polycenter Software Installation Utility from a privileged account.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 37

Introduction to Developing ACME Agents — Takaaki Shinagawa

To install the ACME LOGINOUT image:

 $ PRODUCT INSTALL V732_ACMELOGIN

To install the traditional LOGINOUT image:

 $ PRODUCT INSTALL V732_LOGIN

© Copyright 2004 Hewlett-Packard Development Company, L.P. 38

Introduction to Developing ACME Agents — Takaaki Shinagawa

Appendix F: ACME Terminology

Agent-specific item codes

The set of extended item codes that are defined by an agent and known only to that agent and
any customized $ACM applications. An agent never prompts a generic $ACM application for
agent-specific item codes unless the item code represents a simple text-based data element that a
generic $ACM application can process blindly. For example, an agent can prompt a generic
$ACM application for an agent-specific item code representing a token id string which can be
responded to by a human user, but the agent is not allowed to prompt a generic $ACM
application for specialized, binary data such as might be used in a hardware token.

Auxiliary agent

An agent that implements a partial authentication policy or some function such as password
filtering, but cannot issue credentials. It cannot be the target of an $ACM call. An auxiliary agent
logically works in conjunction with the designated DOI agent.

Common item codes

The set of basic item codes documented by the $ACM system service that exists for every
OpenVMS system and is recognized by all agents and $ACM applications. All common item
codes can be specified on the initial $ACM call, but only a subset of well known common item
codes may be processed in dialogue mode (see below). Examples of common item codes are:

ACME$_LOGON_TYPE

ACME$_AUTH_MECHANISM

ACME$_NEW_PASSWORD_FLAGS

ACME$_PRINCIPAL_NAME_IN

ACME$_PASSWORD_1

Cooperative model

For untargeted $ACM calls, an DOI agent in the cooperative model enforces authentication and
issue credentials using a single principal-name and password scheme as seen from the
perspective of the $ACM application.

Credential

Information containing the user’s identity, privileges, and roles within a given security
environment.

Designated DOI agent

For targeted $ACM calls, the Designated DOI agent is the DOI agent specified in the $ACM call.
For untargeted $ACM calls, the Designated DOI agent is generally the first DOI agent in the
order of execution that locates the principal-name in its principal-name database. This is the only

© Copyright 2004 Hewlett-Packard Development Company, L.P. 39

Introduction to Developing ACME Agents — Takaaki Shinagawa

DOI agent allowed to prompt for passwords. It always issues credentials if the authentication is
successful and is responsible for the ultimate success or failure of the request unless the VMS
agent cannot map the principal name.

Dialogue mode

The mode in which an agent issues a request to acquire information from the user (or to be
displayed to the user). The calling application obtains the information from the user (or displays it
to the user) and calls $ACM again to proceed until the service indicates that no further interaction
is required. $ACM applications that specify the context argument operate in dialogue mode.

DOI

Domain-of-Interpretation. A DOI represents a security environment having a principalnamespace,
authentication and authorization schemes, and information representing a user’s identity (both
VMS and DOI-specific) and privileges. A DOI agent implements a particular DOI. A DOI agent
can be the target of an $ACM call.

Independent model

In the independent model, a DOI agent performs authentication and issues credentials only when
it is operating as the designated DOI agent, otherwise it does not participate in the request.

LOGINOUT

Two different LOGINOUT images are shipped with the OpenVMS Alpha operating system. To
use the ACME subsystem, the ACME LOGINTOUT image must be installed. The other image,
LOGIN82, is used for the traditional $LGI authentication. The procedures to install ACME
LOGINOUT will be described in Appendix E.

Phase

A phase is a discrete stage of request processing. Each phase is associated with a callout routine
within an agent that the ACME server invokes.

Principal-Name

A string representing a user (sometimes referred to as username).

Request

An $ACM request is represented internally as a work queue entry (WQE). The WQE is used to
maintain the state of the request through multiple stages of processing. It is also used to control
certain interactions among the agents.

© Copyright 2004 Hewlett-Packard Development Company, L.P. 40

Introduction to Developing ACME Agents — Takaaki Shinagawa

Secondary DOI agent

A DOI agent is one that is not operating as the designated DOI agent. It may perform
authentication and issue credentials.

Targeted call

A call to $ACM that specifies the ACME$_TARGET_DOI_ID or ACME$_TARGET_DOI_

NAME item code.

Untargeted call

A call to $ACM that does not specify the ACME$_TARGET_DOI_ID or ACME$_

TARGET_DOI_NAME item code.

Well-known item codes

The set of common item codes that an $ACM application can expect to process in dialogue
mode (or to supply in a single non-dialogue $ACM call). Generic $ACM applications can
respond to well-known item codes, even in restricted operating environments where there is no
human user with which to interact or where application protocols accept only username and
password data. Examples of well-known item codes are:

ACME$_PASSWORD_SYSTEM

ACME$_PRINCIPAL_NAME_IN

ACME$_PASSWORD_1

© Copyright 2004 Hewlett-Packard Development Company, L.P. 41

	Introduction to Developing ACME Agents
	Overview
	Introduction to ACME
	What is an ACME Agent?
	What is the ACME subsystem?
	How does the ACME subsystem work?
	What do we have to develop?

	Implement an ACME Agent
	Determine the type of the ACME agent
	Start implementing an ACME agent
	Define data structures
	The acme_context data structure
	The request_context (= wqe_context) data structure
	The credential data structure

	Implement callout routines
	Control callout routines
	ACME$CO_AGENT_INITIALIZE
	ACME$CO_AGENT_STARTUP
	ACME$CO_AGENT_SHUTDOWN
	ACME$CO_AGENT_STANDBY

	Request callout functions
	ACME$CO_INITIALIZE
	ACME$CO_SYSTEM_PASSWORD
	ACME$CO_ANNOUNCE
	ACME$CO_AUTOLOGON
	ACME$CO_PRINCIPAL_NAME
	ACME$CO_ACCEPT_PRINCIPAL
	ACME$CO_MAP_PRINCIPAL
	ACME$CO_VALIDATE_MAPPING
	ACME$CO_ANCILLARY_MECH_1
	ACME$CO_PASSWORD_1
	ACME$CO_ANCILLARY_MECH_2
	ACME$CO_PASSWORD_2
	ACME$CO_ANCILLARY_MECH_3
	ACME$CO_AUTHENTICATE
	ACME$CO_MESSAGES
	ACME$CO_AUTHORIZE
	ACME$CO_NOTICES
	ACME$CO_LOGON_INFORMATION
	ACME$CO_NEW_PASSWORD_1
	ACME$CO_QUALIFY_PASSWORD_1
	ACME$CO_NEW_PASSWORD_2
	ACME$CO_QUALIFY_PASSWORD_2
	ACME$CO_ACCEPT_PASSWORDS
	ACME$CO_SET_PASSWORD
	ACME$CO_CREDENTIALS
	ACME$CO_FINISH

	Event and Query callout routines
	ACME$CO_EVENT
	ACME$CO_QUERY

	Implement a Persona Extension
	Introduction to a persona and persona extension
	Start implementing a person extension
	Define data structures in the persona extension program
	The credential data structure
	Persona Extension Block (PXB)

	Implement persona extension routines
	Initialization routine (mandatory)
	Create routine (mandatory)
	Clone routine (optional)
	Delegate routine (optional)
	Delete routine (mandatory)
	Modify routine (mandatory)
	Query routine (mandatory)
	Make_TLV routine (mandatory)

	Configure ACME — Put all the components together
	Installing the persona extension image
	Configuring the SYSUAF flags and security policy bits
	Configuring the ACME subsystem
	Perform a request from the $ACM application

	Summary
	For more information
	Acknowledgements
	Appendix A: How to Build and Set Up the Example ACME Agent (
	Appendix B: How to Build and Set Up the Persona Extension Ex
	Appendix C: How to Set Up the ACME Agent and Persona Extensi
	Appendix D: How to Test the Example Agent from the ACMEUTIL
	Appendix E: How to Install the ACME LOGINOUT Image
	Appendix F: ACME Terminology
	Agent-specific item codes
	Auxiliary agent
	Common item codes
	Cooperative model
	Credential
	Designated DOI agent
	Dialogue mode
	DOI
	Independent model
	LOGINOUT
	Phase
	Principal-Name
	Request
	Secondary DOI agent
	Targeted call
	Untargeted call
	Well-known item codes

