
Examining Web Services – David J. Sullivan

OpenVMS Technical Journal

Examining Web Services:
Protecting Your OpenVMS Investment
David J. Sullivan, Expert Member Technical Staff

What are web services?

Web services are a set of technologies designed to aid in the development of heterogeneous and
platform-neutral solutions. Since their introduction, web services have received unprecedented
acceptance among enterprise software vendors. They provide businesses with a strategic
advantage because of their relative simplicity, lower cost, and wide cross-platform availability.

This article examines web services from both a business perspective and a technical perspective. It
explains the business needs driving web services as well as the core web services technologies. It
also explains the OpenVMS strategy for supporting web services and provides example
applications that illustrate the integration of an OpenVMS application with other platforms, such as
Microsoft® .NET and Linux®. These topics may be read independently. Use the links below to go
to the sections of most interest to you:

• Why should you care about web services?

• Technology

• OpenVMS web service products and tools

• Web services examples

Why should you care about web services?

Traditional integration technologies have many flaws. The traditional approach to integration relies
on the use of middleware products. These products are often costly, proprietary, and difficult to
use. Middleware is rarely available across all platforms and the costs associated with the use of
middleware are significant. Perhaps of most concern is that a user is forced to bet their business on
the success of a particular vendor’s middleware product.

Web services provide a technology that is capable of tying together any applications written in any
language on any operating system. As compared with traditional middleware, web services are
less expensive, open, and simpler to use. Your business is safe because implementations of the
web service standards are widely available from many different sources.

A common and costly business problem occurs when technology limits the availability of
information that flows throughout the corporation. Often, applications located in different divisions
of a corporation cannot share data because they use different operating systems, middleware, and
programming languages. These islands of technology are often isolated from each other or use
gateways that attempt to patch together the various technologies. The potential combinations of
integration points are significant.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

For example, in Figure 1, the lettered boxes represent separate applications, and each arrow
represents a technology used to integrate them. The boxes represent the following types of
applications:

A: OpenVMS applications

B: Microsoft C++ application using DCOM

C: IBM C application using MQSeries

D: HP-UX COBOL application using CORBA

E: This system does not access an OpenVMS system

F: Microsoft Windows® Java™ application using JMS

G: Sun Java application using J2EE

Figure 1: High-cost, complex IT environment

It is easy to see the complexity and overhead that is required to develop and maintain this
infrastructure. Each arrow represents a large investment of resources in hardware, software,
management and training. Each hard-coded connection has unique security concerns that increase
complexity. Also, this outdated technology does not work well across the Internet, thereby
eliminating the ability to perform effective business-to-business interactions. Integrating applications
becomes very difficult because each pair of applications must be addressed separately.

With web services, solutions architects have a common integration technology on all platforms. By
exposing an OpenVMS application as a web service, it can be called by any web service client,
regardless of the platform or programming language used by the client (Figure 2). Likewise, the
web service client never knows the platform or programming language of the web service being
called.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Figure 2: Simpler, less expensive IT environment

Integration issues with OpenVMS are now much easier and less costly with web services. Architects
can make use of the unique strengths of OpenVMS systems without having to make the undesirable
tradeoffs listed earlier. Legacy applications can be integrated with other solutions that are based on
web services. The original investment in design, development, testing, and maintenance of
OpenVMS applications continues to pay dividends to the business while freeing money and
resources for investments in other areas.

Table 1 lists the advantages of using web services over traditional middleware integration products.

Table 1: Advantages of web services over traditional middleware

Traditional middleware Web services

Communication styles are dictated by
middleware. Usually RPC or MOM.

Supports many styles of communication
RPC, Messaging, 1-way, 2-way, conversational.

Lack of cross-platform availability creates islands
of separate technology.

Allows single integration backbone across all
platforms.

Lacks standards:
• Many ways to do common jobs
• Proprietary solutions from individual

vendors

Standards based:
• One way to do common jobs
• Open solutions from many vendors

Hard to use (design, program, manage). Simpler to use.
Expensive. Less expensive.
Does not encourage reuse of code. Encourages reuse of code.
Customized for certain operating systems and
programming languages.

Operating system and programming language
neutral.

Does not scale across devices. Can be used from the smallest handheld device
up to a large server.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Does not work over Internet. Designed to operate over Internet.
Brittle and rigid. Flexible and adaptable.
Tightly coupled. Loosely coupled.
Proprietary data formats. Leverages XML.
Undocumented binary protocols. Uses open and standard text protocols.
Invasive. Less invasive.

How do OpenVMS customers benefit?
There are many ways in which OpenVMS customers can benefit from using web services. The
advantages over traditional middleware are significant.

Investment protection
An existing application can be exposed as one or more web services to extend its use and prolong
its life.

Utilization of OpenVMS strengths
The strengths of OpenVMS can be used throughout a corporation to host critical, bet-your-business
applications. These OpenVMS applications can be exposed as web services and can be used by
non-OpenVMS platforms. The client code never knows that the service being used is deployed on
OpenVMS.

Availability of more applications
OpenVMS applications can make use of applications that are not natively available on OpenVMS.
In these cases, the OpenVMS system acts as a consumer of web services that are deployed on
other platforms, such as Microsoft Windows .NET or HP-UX.

Phasing out expensive middleware
Customers have the option of phasing out costly, unnecessary middleware over time.

New opportunities for legacy applications
Web services provide a new opportunity for applications that previously could not be integrated
with traditional middleware. Web services support more design models than traditional
middleware and are neutral as to the programming model used by the application.

Cross-language programming
Web services can be used on OpenVMS systems as a simpler and more extensible mechanism for
communication between different programming languages.

Availability over the Internet
OpenVMS applications can be programmatically accessed from the Internet. Web services are
designed to operate over the Internet without any extra design or coding.

Cost savings
Standardizing on web services reduces the cost of development, testing, maintenance, and
management. Web services platforms are widely available from many sources including free, high-
quality, open source offerings.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Compatibility with newer technologies
Because of the wide acceptance and availability of web services, new technologies such as the
Adaptive Enterprise, Virtualization, and the GRID are all built on a web services IT backbone.

Use of XML
XML is the preferred data storage and description mechanism. It is highly likely that a business
already uses XML documents to represent valuable data. Web services are based on XML and
naturally support the exchange of XML documents.

Common business languages
Industries are using XML to define industry-standard definitions of common business entities.

Success Stories

Many interesting case studies show how web services have had a significant and positive impact
for Fortune 500 businesses. Web Services Case Studies

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://searchwebservices.techtarget.com/bestWebLinks/0,289521,sid26_tax288865,00.html

Examining Web Services – David J. Sullivan

Technology

The technologies behind web services are designed by standards organizations. There are a
staggering number of drafts, recommendations, and standards dealing with web services.
Fortunately, most developers do not need to master, or even understand, the majority of these
specifications.

Web services development platforms hide many of the details of these technologies from the
developer. In fact, some development platforms allow engineers to use wizards to generate all the
source code for a web service. However, the more developers understand the concepts behind the
core technologies, the more effectively they can design and develop robust solutions based on web
services.

Each web service platform presents these same concepts in different ways and with different levels
of exposure. After reading this section, you should have a much better understanding of how the
unique development tools are able to generate highly interoperable applications.

WS-I
The Web Services Interoperability (WS-I) organization is responsible for delivering clear and
consistent recommendations for ensuring interoperability between web services. This is perhaps the
most important standards organization in the web services world. In order for web services to
continue to spread, there must be a single definition of web services compliance.

In August 2003, WS-I announced the approval of the Basic Profile 1.0 (BP 1.0). BP 1.0 consists of
implementation guidelines for how a set of core web services specifications should be used
together to develop interoperable web services.

This article describes only those features that are included in the Basic Profile.

XML
XML stands for Extensible Markup Language. It was adopted by the W3C in 1998 and has since
become the preferred way to store business data.

XML was designed to describe and store data. It is similar to a markup language (such as HTML) in
that it has begin and end tags. Unlike HTML, it has no predefined tags. Rather, with XML the
author first defines the tags and then uses them to describe the data. When XML tags are defined,
they often have a hierarchy to convey a relationship, such as parent-child.

XML does not determine how the data is displayed. Separating the data from how it is displayed
allows XML to remain simple and flexible. XML gets its power and popularity from its simplicity. An
XML document is:

• A plain text file

• Human readable

• Understood by all platforms and programming languages

Because all operating systems understand text files, XML documents can be created and modified
using a simple text editor. It is this common understanding of text files that allows XML to be used
as a common data format across all platforms and languages.

As an example, the XML file (called employee.xml) in Figure 3 should be easy to understand even if
you have never before seen XML.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://www.ws-i.org/home.aspx

Examining Web Services – David J. Sullivan

<?xml version="1.0" encoding=”UTF-8”?>
<employee>

<name>
<first>David</first>
<last>Sullivan</last>

</name>
<email>davidjsullivan@hp.com</email>

</employee>
Figure 3: employee.xml

The employee.xml file in Figure 3 contains five tags: <employee>, <name>, <first>,
<last>, and <email>. Three pieces of data are stored in the file: <David>, <Sullivan>,
and <davidjsullivan@hp.com>. This is a complete, well-formed XML file. It has a hierarchy of
tags describing that an employee has a name and an email address. Also, the <name> tag
contains a first and last name. It’s that simple!

It would be simple for an application to parse this XML file and do something interesting with the
data. For instance, a browser might display the data as part of an employee list, or an application
might parse the file to send out automated email notifications.

XML schema
The XML document in Figure 3 is well formed. A well-formed document is syntactically correct. For
example, all begin and end tags are properly nested. This XML document is useful in its current
state. However, the document is not considered valid because we have no way of knowing
whether the tags and associated data are semantically correct. For instance, if we remove the line
<first>David</first>, is the <name> tag still useful (valid)? The answer is maybe. It depends
on the intent of the person who defined the tags. This is where an XML schema comes in.

An XML schema is a language used to describe XML tags. When an XML document has a schema,
it becomes much easier for an application to understand the layout of an XML document. Also, a
schema allows an application to determine whether the contents of the XML file are semantically
valid before processing the document.

Each tag in an XML document is defined with an element declaration. When writing a schema file,
the author has the option of specifying different properties for the elements, including:

• An associated data type (for instance, string, number, or user-defined type).

• Constrain the valid values for a data type (for instance, allow only integers that are even).

• Require or prohibit child elements and attributes (for instance, the element name could
require a last name but make the first name optional).

There are many more options in XML schemas. Refer to a good book on XML for details.

Figure 4 shows the schema file (called employee.xsd) for the XML document in the Figure 3. At first
sight, the schema language appears complex (and it is), but after a day or two, writing schema
files becomes second nature.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="x-schema/employeeData"
 xmlns="x-schema/employeeData"
 elementFormDefault="qualified">

<xsd:element name="employee">
 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="name">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="first"/>
 </xsd:sequence>
 <xsd:element name="last">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="email">
 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:schema>

Figure 4: employee.xsd

In the employee.xsd schema file, we see the definitions of the elements employee, name, first, last,
and email. Notice the nesting of the elements. Any XML file using this schema must include all of
the elements defined in the schema, because the author didn’t mark any of them as optional. For
this reason, the answer to the question in the previous section is no, the <name> tag is only valid if
it includes both a first and last name.

Modern development environments, such as the OpenVMS IDE NetBeans, provide rich tools to
create and modify XML and XML schemas.

Note: A DTD is an alternative to a schema. DTDs are not addressed here because they are out of
date and not used in web services.

Introducing SOAP, WSDL, and UDDI
There are three standards-based technologies that, along with XML, comprise the core of web
services.

• SOAP (Simple Object Access Protocol)

The function of SOAP is to transmit XML messages between two applications. SOAP is
itself an XML language and is defined using an XML schema.

• WSDL (Web Services Description Language)

WSDL is a language based on XML. It is used to precisely define the details of a web

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

service. Web service consumers use this information to build SOAP messages for the
service the WSDL describes.

• UDDI (Universal Description, Discover, and Integration)

UDDI is a specification that defines a directory for web services. Often called the “Yellow
Pages for Web Services,” UDDI directories are used to store services that are available to
consumers.

Figure 5 provides a high-level overview of how the SOAP, WSDL, and UDDI technologies interact.
These three technologies were defined specifically for use with web services. In Figure 5, a web
services client performs the following steps to obtain a stock quote from an OpenVMS application
that has been exposed as a web service.

Step 1: The client looks in a UDDI directory to find a web service that can supply stock quotes. It
discovers the stockQuote service can supply the desired features. The UDDI registry provides an
address, in the form of a URL, to the client. (You can skip this step if the client already knows the
address of the web service.)

Step 2: The client sends a lookup request to the address obtained in step1, asking for a description
of the service. This description is returned to the client in an XML schema language called WSDL.

Step 3: The consumer uses the WSDL description obtained in step 2 to identify the details of the
service’s functions and associated arguments. The client makes a call to the stockQuote service by
sending a SOAP protocol request.

Step 4: The web services platform receives the SOAP protocol request and returns the quote to the
client via a SOAP protocol response.

Figure 5: Overview of WSDL, SOAP, and UDDI

UDDI

 web service platform

stockQuote Service

web

service
client

 Link to StockQuote
WSDL

 1

2

SOAP request

SOAP response4

WSDL Lookup
StockQuote

WSDL
3

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

SOAP
SOAP stands for Simple Object Access Protocol. The function of SOAP is to transmit XML
messages between two applications. SOAP is itself an XML language and is defined using an XML
schema. The schema defines a SOAP root element called Envelope. You can look at the SOAP
V1.1 XML schema definition at the following URL:

http://schemas.xmlsoap.org/soap/envelope/

Before SOAP can transmit XML to a destination, it must first wrap the XML in a SOAP Envelope. An
Envelope defines SOAP-specific elements and has a specific structure. The envelope contains two
sections: a Header (optional) and a Body (required). Figure 6 shows the structure of the SOAP
Envelope.

Figure 6: Structure of the SOAP Envelope

Web services platforms use SOAP as the protocol for transmission of XML messages. In Figure 6,
the XML employee data is sent within the SOAP Body.

SOAP Messaging Styles
The data of the SOAP Body, also called the payload, is defined by the application. The SOAP
schema defines two styles for structuring the payload: RPC and document.

With the RPC messaging style, the structure of the payload is defined by SOAP. SOAP defines its
own representation of an RPC call. This structure specifies the method name and arguments for a
call to the service.

With the document messaging style, the structure of the payload is defined by the application’s
XML. SOAP does not impose any structure on the contents of the SOAP Body.

Figure 7 illustrates the two SOAP messaging styles.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://schemas.xmlsoap.org/soap/envelope/

Examining Web Services – David J. Sullivan

Figure 7: SOAP messaging styles

The following example shows a SOAP request using the RPC messaging style. In this example, the
method getStockPrice is being called and requires one argument, which is a ticker symbol. The
web services client application does not specify the element names or hierarchy. SOAP
automatically uses this structure within the SOAP Body for RPC messaging.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
xmlns:abc="http://abc.com/stock">
<soap:Body>
 <abc:getStockPrice>
 <symbol>HPQ</symbol>
 </abc:getStockPrice>
</soap:Body>
</soap:Envelope>

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://schemas.xmlsoap.org/soap/envelope/

Examining Web Services – David J. Sullivan

The following example shows a SOAP request using the document messaging style. In this example,
the contents of the SOAP Body are defined by the application. The employee XML is sent to the
web service without any intervention from SOAP.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
xmlns:abc="http://abc.com/employee">
<soap:Body>
<employee>

<name>
<first>David</first>
<last>Sullivan</last>

</name>
<email>davidjsullivan@hp.com</email>

</employee>
</soap:Body>
</soap:Envelope>

SOAP Transport
Although SOAP is responsible for transmitting the XML message, it is not designed to use its own
network transport to send messages. Instead, SOAP uses the HTTP protocol for sending messages.
By using HTTP as the transport vehicle, web services are available across the Internet.

Note: SOAP can use other transports, but the WS-I Basic Profile supports only HTTP.

SOAP extensibility
SOAP is extensible. The header section of the SOAP Envelope is used to add more features. For
instance, security, reliability, and transactions are important features for enterprise-level
corporations. These features can be added by specifying XML headers in the SOAP Envelope
request. The headers can be either standard or propriety extensions to the SOAP protocol.

When a SOAP message is sent to a receiver, the message can be transmitted through one or more
intermediaries. An intermediary can examine, modify, and remove headers, depending on its role
in the transmission of the message. Figure 8 shows the interaction of SOAP intermediaries.

 Figure 8: SOAP intermediaries

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://schemas.xmlsoap.org/soap/envelope/

Examining Web Services – David J. Sullivan

WSDL

WSDL stands for Web Services Description Language. WSDL is an XML language that is defined
using a schema and is used to define precisely the details of a web service. Developers typically do
not need to write in WSDL, but they need to understand the organization and purpose of WSDL
documents.

WSDL elements
The WSDL schema language provides a number of elements to describe a web service. These
elements fall into three groups.

Group 1: These elements describe the interface exposed for use by clients. The interface is defined
in abstract terms.

Group 2: These elements “bind” the abstract interface to a transport chosen by the service, such as
SOAP. This binding maps the abstract interface descriptions to concrete mechanisms of the chosen
transport.

Group 3: These elements name the web service and assign an address that the client uses to
identify the location of the service.

Group 1: Describing the interface
The group 1 WSDL elements describe the web service in abstract terms. Table 2 describes these
elements.

Table 2: WSDL elements that describe the web service interface (group 1)

Element name Description
portType Provides a name for an interface.

operation Provides a name for a method in a portType.

input, output Describe the operation element and are used to specify one of the
following interaction models:

• 1-way interaction: The client calls the service and the service
does not send a response back to the client. In this case. only the
input element appears in the operation.

• Request/reply interaction: The client calls the service and the
service sends a response back to the client. In this case, only the
input and output elements appear in the operation.

part Specifies a piece of data that must appear in the message element. There
may be zero or more part elements in a message element. There are two
attributes for describing the data: type and element.

With the type attribute, the part element is given an associated data
type. The type information is provided to the receiver of the message.

With the element attribute, the part element is an XML document. The
document’s schema provides the type information for use by the receiver.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

WSDL concepts often take some time to comprehend. Let’s look at the same concepts from the
client’s point of view. Imagine that you are a client who wants to call a web service. You might
you want the WSDL description to answer the following questions:

• What is the name of the interface for the client to call?

• Within that interface, what is the name of the method to call?

• For the method, what data must the client send, if any?

• Does the service return a response?

• If there is a response, what data will the response contain, if any?

Table 3 describes the WSDL elements associated with this information.

Table 3: Information associated with WSDL elements

Question WSDL elements Comments
What is the name of the interface? portType A servicecan have multiple

interfaces, each with a unique
name.

What is the name of the method? operation Each method in an interface
has a unique name.

What data must the client send? input, message; part
(optional)

By definition, there is an
incoming message; therefore,
we need input and message.

The service might not require
data from the client, so the
message element might not
have any part elements.

Does the service return a
response?

output (optional) Some services don’t return a
message to the client.

What data will the response
contain?

message; part (optional) The part dictates what will be
returned.

Let’s look at fragments of a WSDL document from the ABC stock exchange (Figure 9). They have a
web service with an interface named StockQuote and a method named getStockPrice. The method
receives an input message that contains a piece of data named symbol, which is a string. The
method also returns a message that contains a piece of data named price, which is a float.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

<!-- message elements describe the data passed as input and output -->
<message name="getStockPriceRequest">
 <part name="symbol" type="xsd:string"> </part>
</message>

<message name="getStockPriceResponse">
 <part name="price" type="xsd:float"> </part>
</message>

<!-- portType and operation element describe the interface -->
<portType name=”StockQuote”>
 <operation name=”getStockprice”>
 <input name="symbol" message="abc:getStockPriceRequest"> </input>
 <output name="price" message="abc:getStockPriceResponse"></output>
 </operation>
</portType>

Figure 9: Sample WSDL document

Group 2: Binding the inter ace to a transport f
The abstract interface described by the WSDL elements in group 1 must be bound to a transport.
The WSDL binding element uses the schema of the specified transport to define a mapping
between the abstract interface and the specific transport.

WSDL defines three separate transport bindings, SOAP, HTTP, and MIME. Each transport has its
own schema.

Note: This article addresses only the SOAP binding because it is the only binding supported by the
WS-I Basic Profile.

The SOAP protocol has a schema for binding to a WSDL interface. The schema defines elements
that are used within the WSDL document. These elements define the contents of the SOAP
Envelope, Header, and Body.

The SOAP schema for binding defines a number of elements that can influence the way a SOAP
message is formatted. This article focuses on the most common elements (and their attributes).

In Figure 10, the elements in bold are defined by the WSDL schema. The elements in italic are
defined by the SOAP schema. Note that the WSDL input element, which represents the request from
the client, is composed of a SOAP Header and a SOAP Body. Similarly, the WSDL output element,
which is the response from the service, is bound to the SOAP Body.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

<binding>
 <soap:binding/>
 <operation>
 <soap:operation/>
 <input>
 <soap:header/>
 <soap:body/>
 </input>

 <output>
 <soap:body/>
 </output>
 </operation>
</binding>

Figure 10: Binding hierarchy for WSDL and SOAP

The header element allows the application to specify a SOAP header in the header section of the
SOAP Envelope. As noted earlier, applications can specify their own headers to extend the SOAP
protocol. For example, an application might add a unique header to monitor the activity of a stock
broker.

The binding element has two attributes of interest: transport and style. The transport attribute
specifies the transport that SOAP uses. Note: HTTP is used in almost all cases and is the only
transport supported by the WS-I Basic Profile.

The style attribute defines the default SOAP messaging style to use for the entire interface
(portType). The style can have one of two values: RPC or document.

RPC-style request
If RPC is specified, the SOAP Body will contain the information required to call a method on an
interface. The required information is obtained from the WSDL elements. The following table
indicates which WSDL elements are to be used when writing the SOAP Body for an HTTP request.

Element used Where the data comes from in WSDL
Method name The name attribute of the operation element

Method argument name The name attribute of the input element

Using the previous stock quote example, the WSDL document in Figure 11 highlights the operation
and input elements that will be used to build the payload of the SOAP Body. Figure 12 shows the
associated SOAP message for this request.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

<!-- message elements describe the data passed as input and output -->
<message name="getStockPriceRequest">
 <part name="symbol" type="xsd:string"> </part>
</message>

<message name="getStockPriceResponse">
 <part name="price" type="xsd:float"> </part>
</message>

<!-- portType and operation element describe the interface -->
<portType name=”StockQuote”>
 <operati name=”getStockprice”> on
 <input name="symbol" message="abc:getStockPriceRequest"> </input>
 <output name="price" message="abc:getStockPriceResponse"></output>
 </operation>
</portType>

Figure 11: WSDL for an RPC-style request

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
xmlns:abc="http://abc.com/stock">
<soap:Body>
 <abc:getStockPrice>
 <symbol>HPQ</symbol>
 </abc:getStockPrice>
</soap:Body>
</soap:Envelope>
Figure 12: SOAP message for the RPC-style request

Document-style request
If document is specified, the SOAP Body will contain raw XML. The XML content is defined by the
application. The WSDL shown in Figure 13 is slightly different when using document style. Notice
that the part element has an attribute named element, which is used to include the employee XML
schema that we defined earlier in this article.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://schemas.xmlsoap.org/soap/envelope/

Examining Web Services – David J. Sullivan

<!-- include application defined employee schema -->
<types>
 <xsd:schema targetNamespace=http://abc.com/employee>
 <xsd:import namespace=”http://abc.com/employee”
 schemaLocation=”http://abc.com/employee.xsd”/>
 </xsd:schema>
</types>

<!-- message element describes the data passed as input -->
<message name="updateEmployee ">
 <part name="employeeRec" element="abc:employee"> </part>
</message>

<!-- portType and operation element describe the interface -->
<portType name=”HumanResources”>
 <operation name=”EmployeeRecord”>
 <input name="employeeRec" message="updateEmployee"> </input>
</portType>

Figure 13: WSDL for a document-style request

Figure 14 shows the associated document-style request. Note that the XML is inserted into the SOAP
Body without any extra definition. With document-style messaging, the application can send any
XML elements without SOAP dictating a structure.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
xmlns:abc="http://abc.com/employee">
<soap:Body>
<employee>

<name>
<first>David</first>
<last>Sullivan</last>

</name>
<email>davidjsullivan@hp.com</email>

</employee>
</soap:Body>
</soap:Envelope>

Figure 14: Associated document-style SOAP request

Group 3: Define a service and give it a name
Group 3 elements create a web service for use by clients. The service element contains one or more
port elements. A port element has an associated binding and an address. The address is a unique
URI that is used by clients to call this web service. In Figure 15, the web service StockQuoteService
is given the unique address http://abc.com/employee/stockQuote.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://schemas.xmlsoap.org/soap/envelope/
http://abc.com/employee/stockQuote

Examining Web Services – David J. Sullivan

<service name=”StockQuoteService”>
 <port name=”StockQuoteService_port” binding=”StockQuote_RPCbinding”>
 <soap:address location=”http://abc.com/employee/stockQuote” />
 </port>
</service>

Figure 15: WSDL defining the service to be called by clients

UDDI

UDDI stands for Universal Description Discovery and Implementation. UDDI registries act as
repositories for web services. Web service providers can publish their services for others to use.
Web service consumers can “shop” a UDDI registry to find the service that best fits its particular
needs.

Web service providers register their business in a UDDI registry. They describe their business along
with the services that they provide. A common analogy for describing the properties of a single
registration is based on the United States phone book. For each registration there are three
different levels of detail available. The first level is like the white pages: it provides basic
information about a company, such as the name, address and phone number. The second level is
like the yellow pages: it provides a categorization of a service provider and their services. A single
service can appear in different categories. For instance, a category might be based on the type of
service or on the service’s geographical location. The third level is like the green pages: it provides
the technical details of how to use the service.

A web service consumer uses the UDDI registry to locate services. Typically, the consumer can find
a service in one of two ways: using a web browser and programmatically. The web interface
allows a person to browse the many categories in the registry and read descriptions of the business
and services. The programmatic API allows applications the ability to browse and discover
businesses and their services.

UDDI registries can be public or private. Public registries are used by businesses to advertise their
company and the services that they support. A private registry can be used within a company or
within a division of a company to provide services to their employees.

Applications use UDDI registries to publish or discover web services. When a web service is
developed, a publishing API is required to place the web service description in the registry. When
a client wants to look up a web service, a discovery API is required. Some web service platforms
provide implementations for both the publishing and discovery programming interfaces. Some other
supply only the discovery interface and still others supply neither.

The UDDI registry is typically used at development time. If the developer already knows which web
service they want to use in the application, then a UDDI registry is not needed.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

OpenVMS web service products and tools

The OpenVMS integration strategy encourages partners to provide best-in-breed products whenever
available. OpenVMS will continue to port key open source products to provide a range of choices,
enabling users to pick the product that best fits their particular situation. Where appropriate,
OpenVMS will provide OpenVMS-aware tools to aid in the development and deployment of web
services. A number of web service related products have either been ported to OpenVMS or are
known to work on OpenVMS. Table 4 lists these products.

Table 4: Web service related products for OpenVMS

Open source

Product Description
SOAP Toolkit V1 Web services development and deployment toolkit. Based on

the older Apache SOAP Toolkit.

SOAP Toolkit V2 Web services development and deployment toolkit. Based on
Apache Axis.

XML-J Java XML parser supporting DOM and SAX interfaces. Based
on Apache Xerces.

Java transformation engine for converting XML document to
other HTTP and other XML documents. Based on Apache
Xalan.

XML-C C++ XML parser supporting DOM and SAX interfaces. Based
on Apache Xerces.

C++ transformation engine for converting XML document to
other HTTP and other XML documents. Based on Apache
Xalan.

Apache Ant Build environment supplied as part of Apache Tomcat.

Apache Log4j Java logging facility used for testing and debugging.

NetBeans Integrated Java development environment with XML support.

Partner products

Product Description
BEA WebLogic Server (WLS) Enterprise grade J2EE application server.

HP products

Product Description
HP BridgeWorks OpenVMS aware application integration

middleware.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Providing web services for OpenVMS applications

The majority of products listed in Table 4 allow OpenVMS applications written in Java to easily
create and consume web services. However, most OpenVMS applications are not implemented in
Java. For these applications, more development time is required to wrap their application and
expose them as web service. OpenVMS engineering understands the importance of web services
for the long-term viability of non-Java applications and intends to provide customers with tools that
will simplify the creation of web services for non-Java applications.

In the same way that vendors provide tools to generate web services wrappers from Java
applications, OpenVMS intends to provide a web services toolkit to generate web services
wrappers from non-Java applications.

In order to understand which components OpenVMS will supply, let’s examine the different
components of a web services platform. The delivery of web services features can be separated
into three distinct categories. Each of these categories is needed to support web services on
OpenVMS. Figure 16 illustrates the OpenVMS web services strategy.

• A web services client to call a web service. A client is capable of locating and calling a
web service. Clients allow OpenVMS applications to reuse services on other platforms.
OpenVMS relies on partners and open source projects for supporting web service clients

• A web services broker to deploy services. A broker takes an object (usually Java) and

makes it available as a web service. OpenVMS relies on partners and open source
projects for supporting web service brokers.

• A bridge from the broker (usually Java) to the legacy application (never Java). This is a key

component in supporting existing applications. It provides the glue between the web
service and the existing 3GL application. Without the bridge, only applications written in
Java can be easily exposed as services. No partners or open source projects provide this
component on OpenVMS. Therefore, OpenVMS will provide both development and run-
time components for wrapping 3GL applications. These components will be provided as a
toolkit.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Figure 16: OpenVMS web services strategy

Recommendations

OpenVMS provides a number of products and tools for developing web services. If you have not
already begun to evaluate web services, this is the time to do it. Start evaluating the RPC-style and
document-style web services designs. Identify the areas in your organization where web services
would provide a value.

It is important to remember that web service development platforms can generate code on your
behalf. These tools handle the details of WSDL and SOAP. Now that you have an understanding of
these technologies, you can alter them as needed to address your unique situation.

Most of the details of the web service technologies can be learned as needed. Most of the key
concepts of web services are not new. They have been used in traditional middleware products for
decades. You likely already understand more about web services concepts than you think.

Finally, look at the examples in the next section to see how easy it can be to create a web service
on OpenVMS and call it from client implementations such as .NET and JAX-RPC.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

Web services examples

As mentioned earlier, developing a web service is not difficult. To illustrate how easy using web
services can be, the examples do the following:

• Create a very simple OpenVMS web service.

• Test the services from a web browser.

• Review Java code that uses the JAX-RPC interface to call the OpenVMS service.

• Review C# code that uses Microsoft .NET to call the OpenVMS service.

After you see how easy this process can be, play with the service to make it more interesting. The
examples source code is available at the URI:

http://h71000.www7.hp.com/openvms/products/ips/soap/webservices.jar

To extract the contents of the jar file, issue the following command:

jar xvf webservices.jar

Install the required software
First, install the products listed in Table 5.

Table 5: Required software for OpenVMS development environment
Target
platform

OpenVMS V7.2-2 or higher

Target
languag
e

Java

Java V1.3.1 or higher

http://h18012.www1.hp.com/java/download/index.html

CSWS_JAVA (Apache Tomcat)

http://h71000.www7.hp.com/openvms/products/ips/apache/csws_java
.html

Required
software

SOAP_Toolkit V2.0 (Apache Axis)

http://h71000.www7.hp.com/openvms/products/ips/soap/soap.html

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://h71000.www7.hp.com/openvms/products/ips/soap/webservices.jar
http://h18012.www1.hp.com/java/download/index.html
http://h71000.www7.hp.com/openvms/products/ips/apache/csws_java.html
http://h71000.www7.hp.com/openvms/products/ips/apache/csws_java.html
http://h71000.www7.hp.com/openvms/products/ips/soap/soap.html

Examining Web Services – David J. Sullivan

Configure the required software
Verify that each product is installed properly and that all logicals are defined. Run the product’s
installation verification procedure (IVP), if available.

Step 1:
After you install the SOAP Toolkit V2.0, run the configuration utility located in the
AXIS$ROOT:[AXIS-1_1.OPENVMS.COMS]SOAP_TOOLKIT-2_0_UTIL.COM directory, and select
“Copy supplemental jar files to AXIS$ROOT:[AXIS-1_1.LIB]”. For example:

$ axis$root:[axis-1_1.openvms.coms]soap_toolkit-2_0_util

 SOAP Toolkit 2.0 (based on Apache AXIS) Utility

 1 - Show current configuration

 2 - Run SOAP Toolkit 2.0 Validation Procedure

 3 - Copy supplemental jar files to AXIS$ROOT:[AXIS-1_1.LIB]

 E. Exit SOAP Toolkit 2.0 Utility
 --
Please choose a task: 3

issuing command: copy/log AXIS$ROOT:[AXIS-1_1.LIBJARS] AXIS$ROOT:[AXIS-1_1.LIB]
/exclude=(xercesImpl.jar,xml-apis.jar)

%COPY-S-COPIED, AXIS$ROOT:[AXIS-1_1.openvms.libjars]activation.jar;1 copied to
AXIS$ROOT:[AXIS-1_1.LIB]activation.jar;1 (107 blocks)
%COPY-S-COPIED, AXIS$ROOT:[AXIS-1_1.openvms.libjars]ant.jar;1 copied to
AXIS$ROOT:[AXIS-1_1.LIB]ant.jar;1 (1440 blocks)
%COPY-S-COPIED, AXIS$ROOT:[AXIS-1_1.openvms.libjars]junit.jar;1 copied to
AXIS$ROOT:[AXIS-1_1.LIB]junit.jar;1 (237 blocks)
%COPY-S-COPIED, AXIS$ROOT:[AXIS-1_1.openvms.libjars]optional.jar;1 copied to
AXIS$ROOT:[AXIS-1_1.LIB]optional.jar;1 (1315 blocks)
%COPY-S-NEWFILES, 4 files created

Choice (R- Return to Menu) (E- Exit):

Step 2:
Configure Axis to run under Tomcat by copying the Axis webapps subdirectory under the Tomcat
webapps subdirectory. To determine the Tomcat home directory, run the
SYS$STARTUP:APACHE$JAKARTA.COM command procedure.

For example, if the Tomcat home directory is DISK$:[CSWS_JAVA.APACHE.JAKARTA.TOMCAT],
use the following backup command:

$ BACKUP/LOG/IGNORE=INTERLOCK AXIS$ROOT:[AXIS-1_1.WEBAPPS...]*.* -
_$ DISK$:[CSWS_JAVA.APACHE.JAKARTA.TOMCAT.WEBAPPS]

Step 3:
Start Tomcat by running the SYS$STARTUP:APACHE$JAKARTA.COM command procedure.

Create a simple web service
We will keep the web service as simple as possible. The service simply returns the IP address of the
OpenVMS system. From any directory, type or copy the following code into a file named
HELLOOPENVMS.JAVA.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

import java.net.*;

public class helloOpenVMS {

 /** Creates a new instance of helloOpenVMS */
 public helloOpenVMS() {
 }

 public String getAddress() {

 try {

 return InetAddress.getLocalHost().getHostAddress();

 } catch (java.net.UnknownHostException e) {
 return "could not retrieve host IP address";
 }
 }
}

Deploy the web service

Step 1:

Verify that JAVA$CLASSPATH is defined and that Tomcat is started.

Step 2:
Rename the file a file extension of .JWS (Java web service).

$ RENAME HELLOOPENVMS.JAVA HELLOOPENVMS.JWS

Step 3:
Copy the HELLOOPENVMS.JWS file to the Axis webapps deployment directory under the Tomcat
home directory.

For example, if the Tomcat home directory is DISK$:[CSWS_JAVA.APACHE.JAKARTA.TOMCAT],
use the following command:

$ COPY HELLOOPENVMS.JWS -
_$ DISK$:[CSWS_JAVA.APACHE.JAKARTA.TOMCAT.WEBAPPS.AXIS]

Congratulations! Your web service is ready to be tested.

Test the web service from a browser
Since we have not yet written a web services client, we will use a web browser to test our new
service. The browser can be located on any computer that has access to the computer where the
web service is deployed.

Type or copy the following URL into the address window of your favorite browser. Make sure you
replace your-computer-name with the name of the OpenVMS computer that deployed your web
service.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

http://your-computer-name:8080/axis/helloOpenVMS.jws?method=getAddress

This URL calls the web service broker located on your-computer-name. The broker is listening on
port 8080 for incoming SOAP requests, such as this one. The web service is located in the Axis
directory. The name of the web service is helloOpenVMS.jws. We want to call the method
getAddress, so we specify this by using the syntax ?method=getAddress.

Look at the SOAP Response
After you send the request to the web service, you should see something like the following text
returned in your browser. This is the SOAP response from your web service.

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body>
 <getAddressResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <getAddressReturn xsi:type="xsd:string">16.32.128.78</getAddressReturn>
 </getAddressResponse>
</soapenv:Body>
</soapenv:Envelope>

It is very easy to understand the SOAP response from the web service. Notice that the SOAP Body
contains our method getAddressResponse and specifies that the method returned the address
16.32.128.78. (This address will be different for your system.)

Look at the WSDL
Let’s look at the WSDL generated by Axis for our web service. Type or copy the following URL into
the address window of your favorite browser. Make sure you replace your-computer-name with the
name of the OpenVMS computer that deployed your web service.

http://your-computer-name:8080/axis/helloOpenVMS.jws?wsdl

This is the WSDL generated for the preceding SOAP response:

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://16.32.128.78:8080/helloOpenVMS.jws"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:apachesoap="http://xml.apache.org/xml-
soap" xmlns:impl="http://16.32.128.78:8080/helloOpenVMS.jws"
xmlns:intf="http://16.32.128.78:8080/helloOpenVMS.jws"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:message name="getAddressResponse">
 <wsdl:part name="getAddressReturn" type="xsd:string"/>
</wsdl:message>

<wsdl:message name="getAddressRequest">
</wsdl:message>

<wsdl:portType name="helloOpenVMS">
 <wsdl:operation name="getAddress">

<wsdl:input message="impl:getAddressRequest" name="getAddressRequest"/>
<wsdl:output message="impl:getAddressResponse" name="getAddressResponse"/>

 </wsdl:operation>
</wsdl:portType>

<wsdl:binding name="helloOpenVMSSoapBinding" type="impl:helloOpenVMS">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getAddress">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getAddressRequest">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://DefaultNamespace" use="encoded"/>

 </wsdl:input>

 <wsdl:output name="getAddressResponse">

<wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://16.32.128.78:8080/helloOpenVMS.jws" use="encoded"/>

 </wsdl:output>
 </wsdl:operation>

</wsdl:binding>

 <wsdl:service name="helloOpenVMSService">
 <wsdl:port binding="impl:helloOpenVMSSoapBinding" name="helloOpenVMS">
 <wsdlsoap:address location="http://16.32.128.78:8080/helloOpenVMS.jws"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

In this WSDL output, the message element is named getAddressResponse. It has a part element
named getAddressReturn, which is a string returned from the service -- in this case, an IP address.

Writing a simple client using JAX-RPC

Now let’s look at the client-side Java code that uses the JAX-RPC interface to call our service. If you
want to create this client yourself, refer to the detailed instructions in the samples download. For this
client:

• Target platform: any platform that supports Java (Linux, UNIX, Windows, OpenVMS)

• Target language: Java

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

The following Java code uses the JAX-RPC interface to call the OpenVMS web service The
preceding few lines of code are an entire web services client. In this example, the client code
establishes two JAX-RPC objects, Service and Call. The address of the helloOpenVMS web service
is set and the method getAddress is invoked. It’s all very simple.

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;

public class getAddress {

 /** Creates a new instance of getAddress */
 public getAddress() {
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 printAddress();
 }

 static void printAddress(){
 try {

 String endpoint =

"http://yourcomputername:8080/axis/helloOpenVMS.jws";

 Service service = new Service();

 Call call = (Call)service.createCall();
 call.setTargetEndpointAddress(new java.net.URL(endpoint));

 String ret = (String) call.invoke("getAddress" , null);

 System.out.println("got IP address: " + ret);

 } catch (Exception e) {
 System.err.println(e.toString());
 }
 }
}

Note: JAX-RPC is one of a number of Java interfaces for web services.

Writing a simple client using Microsoft .NET
Now let’s look at the client-side C# (C Sharp) code that uses the .NET environment to call our
service. If you want to create this client yourself, refer to the detailed instructions in the samples
download. For this client:

• Target platform: any Windows platform that supports .NET

• Target language: C#

The following C# code uses the .NET environment to call the OpenVMS web service. This code is
also very simple. A .NET web reference is generated using a simple wizard. This web reference
generates client-side proxy code that hides details of the invocation of the OpenVMS web service.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Examining Web Services – David J. Sullivan

For a description of how to create a web reference, refer to the detailed instructions in the samples
download.

using System;
using webreference.proxy;
namespace addressPicker
{

 class Class1
 {

 /// The main entry point for the application.
 [STAThread]
 static void Main(string[] args)
 {
 helloOpenVMSService myserv = new helloOpenVMSService();

 String ret = myserv.getAddress();

 System.Console.WriteLine("the Service returned the string " + ret);
 }
 }
}

Summary

Web services provide both a tactical and strategic advantage to businesses. Simplicity, low cost,
and high cross-platform availability have led to an unprecedented acceptance of web services by
enterprise software vendors. OpenVMS customers can use web services to reduce costs while
increasing the speed and quality of development projects.

OpenVMS provides best-in-breed products to its customers. With the Web Services Toolkit,
applications have new and unique opportunities to leverage OpenVMS strengths from other
platforms, such as Microsoft .NET and J2EE.

For more information

The examples used in this paper are available from the following location:

http://h71000.www7.hp.com/openvms/products/ips/soap/webservices.jar

Feel free to contact the author of this paper by sending email to davdjsullivan@hp.com.

© Copyright 2004 Hewlett-Packard Development Company, L.P.

http://h71000.www7.hp.com/openvms/products/ips/soap/webservices.jar

	OpenVMS Technical Journal
	Examining Web Services: �Protecting Your OpenVMS Investment
	What are web services?
	Why should you care about web services?
	Traditional middleware
	Web services

	How do OpenVMS customers benefit?
	Investment protection
	Utilization of OpenVMS strengths
	Availability of more applications
	Phasing out expensive middleware
	New opportunities for legacy applications
	Cross-language programming
	Availability over the Internet
	Cost savings
	Compatibility with newer technologies
	Use of XML
	Common business languages

	Success Stories
	Technology
	WS-I
	XML
	XML schema

	Introducing SOAP, WSDL, and UDDI
	WSDL (Web Services Description Language)��WSDL is a language
	UDDI (Universal Description, Discover, and Integration)��UDD
	SOAP
	SOAP Messaging Styles
	SOAP Transport
	SOAP extensibility

	WSDL
	WSDL elements
	Group 1: Describing the interface

	Element name
	Description
	Question
	WSDL elements
	Comments
	Group 2: Binding the interface to a transport

	Element used
	Where the data comes from in WSDL
	Document-style request
	Group 3: Define a service and give it a name

	UDDI
	OpenVMS web service products and tools
	Product
	Description
	Product
	Description
	Product
	Description

	Providing web services for OpenVMS applications
	Recommendations
	Web services examples
	Install the required software
	Configure the required software
	Step 1:
	Step 2:
	Step 3:

	Create a simple web service
	Deploy the web service
	Step 1:
	Step 2:
	Step 3:

	Test the web service from a browser
	Look at the SOAP Response
	Look at the WSDL
	Writing a simple client using JAX-RPC
	Writing a simple client using Microsoft .NET

	Summary
	For more information

