
Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

Parallelism and Performance in the OpenVMS TCP/IP Kernel 
Robert Rappaport, HP Software Engineer 

Yanick Pouffary, HP Software Technical Director 

Steve Lieman, HP Software Engineer 

Mary J. Marotta, HP Information Developer 

Introduction 
In October 2003, TCP/IP Services for OpenVMS introduced into OpenVMS production 
environments a radically modified and improved Scalable Kernel.  The Scalable Kernel enables 
parallelism in TCP/IP by taking advantage of available CPU capacity in a multiCPU configuration.  
It allows network performance to scale almost linearly as CPUs are added to the configuration.  The 
Scalable Kernel was designed to enhance network application performance without jeopardizing 
the integrity of the basic UNIX code. 

The SMP Challenge 
The TCP/IP Kernel maintains a large in-memory database.  Access to this database is synchronized 
by the use of several spin locks, all of which are associated with interrupt priority level (IPL) 8.  On 
single CPU systems, only one active IPL 8 thread executes at a time.  Therefore, there is no 
possibility for contention for the TCP/IP-specific spin locks on single CPU systems.  On multiCPU 
systems, however, the potential for such contention increases as the number of CPUs in the 
configuration increases.  The Scalable Kernel eliminates this contention. 

When customers add CPUs to symmetric multiprocessing (SMP) systems, they expect the extra 
processing power to boost network performance, but the classic TCP/IP kernel does not take 
advantage of the extra processing power of the added CPUs.  The number of users may actually 
increase, but almost all network I/O interactions are handled while holding the TCP/IP global spin 
lock (I/O lock 8).  Contention for this lock makes it difficult to increase network throughput under 
these circumstances. 

The Architecture of the TCP/IP Kernel 
The OpenVMS TCP/IP kernel, the heart of the OpenVMS TCP/IP architecture, was ported from BSD 
UNIX.  It was intentionally designed to operate like the UNIX- TCP/IP kernel and to interoperate 
with the OpenVMS operating system with a minimum of programming changes. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 1



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

 

OpenVMS Operating System 

TCP/IP 
Kernel 

Cradle 

Figure 1  The Architecture of the TCP/IP Kernel 

As illustrated in Figure 1, the OpenVMS TCP/IP kernel consists of two distinct parts: 

• The TCP/IP kernel -- code that is ported from UNIX. 
• The cradle -- OpenVMS code that supports and nurtures the UNIX code. 
 

The cradle surrounds the UNIX code, creating an environment in which only a small percentage of 
the UNIX code has to be made aware that it is not operating in a UNIX system.  The cradle 
provides transparent UNIX-like interfaces that serve the ported UNIX code in three general areas: 
 

• User-level I/O requests are preprocessed in the cradle and fed into the UNIX code at the 
appropriate point. 

• I/O terminations from the UNIX code are intercepted by the cradle transparently, as are all 
UNIX interactions with the LAN drivers. 

• All interactions from the UNIX code with the OpenVMS operating system, such as the 
dynamic allocation and deallocation of memory, are handled transparently. 

TCP/IP Thread Contexts 
Code executing in the TCP/IP kernel is either in process context or kernel context mode.  A 
thread running in process context mode has access to the user address space (for example, the 
user’s buffers). Threads running in process context are almost always executing code in the cradle.  
Threads running in kernel context run at IPL 8 holding the TCP/IP global spin lock. 

In the classic TCP/IP kernel, when a thread changes mode to kernel context, it has to wait for the 
TCP/IP global spin lock.  In the Scalable Kernel environment, kernel context threads are created as 
IPL fork threads, which then acquire the TCP/IP global spin lock.  Kernel context threads are almost 
always executing in the UNIX-ported portion of the code. 

Figure 2 illustrates how process context threads running in the classic Kernel environment contend 
for I/O lock 8 (the TCP/IP global spin lock of that environment) in order to change their mode to 
kernel.  Once a thread acquires this spin lock it can then proceed to carry out its TCP/IP kernel 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 2



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

work while all process context threads contending for this spin lock must wait, spinning and 
wasting valuable CPU cycles. 

 

Process 
Context 1 

 
Figure 2 Process Context in the Traditional Kernel 

As the number of network links per system gets larger and as the links get faster and faster, the 
potential number of network users requesting service can expand rapidly.  As the demand 
increases, more and process context threads end up spinning in a loop, waiting for service while 
other threads are processed 

Introducing Parallelism into the TCP/IP Kernel 
To address the problem of wasted CPU cycles spent spinning and to allow more work to get done 
on SMP systems, parallelism was introduced into the TCP/IP kernel code.  Analysis of the classic 
kernel showed that only a small part of the processing of network operations had to be done while 
the TCP/IP internal database was locked.  It was possible to change the order of the code flow in 
the two most frequently invoked network operations (read and write) so that: 

• The kernel context portion of each read or write could run in an IPL 8 fork thread. 

• The completion of read and write operations would not depend on these IPL 8 fork threads 
being completed. 

In other words, read and write operations could be designed so that the process context portion of 
the work queues an IPL 8 fork thread to complete the kernel context portion of the work.  Once this 
fork thread is queued, the user I/O request can then be completed.  This is how the TCP/IP 
Scalable Kernel works. 

In the Scalable Kernel, read and write operations are processed at IPL 2 in process context and 
queue IPL 8 fork threads to complete the kernel context work.  Because each read or write 

TCP/IP Kernel 
Copying Data 
from User Space 
to Kernel Space 

// 
// 

 

Waiting While Kernel 
Context Locked 
(I/O Lock 8) 

Process 
Context 2 

Process 
Context 3 

At Any Time Only 
One CPU Can Do 
Kernel Work 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 3



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

operation does not have to wait until the fork thread has completed, the operation can be marked 
as completed (I/O Posted) immediately after queueing the fork thread.  

The IPL 8 fork threads that are operating in kernel context need to acquire the TCP/IP global spin 
lock in order to access the in-memory database.  Allowing these fork threads to run on any 
available CPU would lead to contention for the spin lock.  Therefore, all of these TCP/IP kernel 
context fork threads are directed to a queue that is processed on one specific CPU in the 
configuration (the designated TCP/IP CPU) on a first-come, first-served order.  Because all the 
threads in the system that need to acquire the TCP/IP global spin lock run on one single CPU, 
contention for this spin lock is eliminated.  And because this spin lock is no longer I/O lock 8, no 
other OpenVMS code will attempt to use it. 

The Scalable Kernel introduces a new mechanism for code to request the creation of a kernel 
context thread.  The mechanism involves allocating a newly-defined data structure (the TCPIP_KRP), 
filling in the TCPIP_KRP, and then queuing this data structure to a global work queue.  If the queue 
is empty at the time, an IPL 8 fork thread is created, which will run on the designated TCP/IP CPU 
and which will process every TCPIP_KRP in the queue. 

Tracking a Write Operation 

The object of any TCP/IP write operation is to take data from a user buffer and place this data into 
a socket.  The operation is performed in two distinct steps: 

1. Copy the user data from the user buffer into a system buffer (MBUF) or a chain of system 
buffers (does not require holding the TCP/IP global spin lock) 

2. Append this chain of system buffers into the socket (requires holding the TCP/IP global 
spin lock) 

In the Scalable Kernel, the processing of a write operation is straight-forward.  One or more 
MBUFs are allocated to accommodate the user data, and then the data is copied from user space 
into the new MBUF chain.  A TCPIP_KRP is allocated and initialized so that it requests that this new 
MBUF chain be appended to the data in a particular socket.  The initialization of the TCPIP_KRP 
includes passing the address of the MBUF chain, the address of the socket, and so forth.  After the 
TCPIP_KRP is initialized, it is queued to the global work queue and the write request is completed. 

At the same time that the write operation is being processed on one CPU, another write operation 
can be processed on another CPU in the system.  Presumably, the other write operation is writing to 
a different socket.  Because neither of these operations needs to acquire the global spin lock to 
complete, both operations run to completion without any interference.  Similarly, they can run in 
parallel with ongoing read operations as well. 

The power of the design of the Scalable Kernel becomes obvious.  In a large multiCPU system, user 
programs running in parallel on the various CPUs of the system constantly call TCP/IP operations 
such as read and write.  They run to completion, in parallel, without interfering with each other.  
Each of these requests leaves behind a TCPIP_KRP that is queued to be processed on the 
designated TCP/IP CPU; the processing of these TCPIP_KRP requests also runs in parallel with all 
the other operations. 

Each process context operation leads to an associated kernel context operation.  The amount of 
work entailed in each kernel context operation adds to the load of work on the designated TCP/IP 
CPU, but as long as this designated CPU is not completely saturated with work, the Scalable Kernel 
is able to scale close to linearly as more CPUs are added to the configuration. 

The Scalable Kernel takes advantage of multiple CPUs by separating the user processes from the 
kernel process.  Rather than blocking the CPU, it queues new user I/O requests.  The flow of the 
send and receive logic in the cradle runs from start to finish without any interference from other 
TCP/IP threads.  When they are successful, operations leave a pending asynchronous kernel-

© Copyright 2004 Hewlett-Packard Development Company, L.P. 4



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

context thread to complete their requests.  The user application does not have to wait for the kernel 
context thread to complete.  When it queues the kernel context thread, the user request is 
completed.  Network operations become more like transaction-oriented operations, where the 
parallel threads prepare transactions to be processed by the designated TCP/IP CPU. 

As illustrated in Figure 3, applications no longer compete with one other to acquire locks in order 
to proceed. 

Process Context 1 

Process Context 2 

 
Figure 3 Process Context Threads in the Scalable Kernel 

 
Types of Kernel Request Packets (KRPs) 

The TCPIP_KRP describes the request to perform an operation in kernel context, including a pointer 
to the action routine to be called, and a series of parameters that the routine will need to complete 
the request.  There are many different types of requests for kernel context work in the Scalable 
Kernel. 

In total, there are over 50 different types of KRPs in the Scalable Kernel.  The type of KRP created 
depends on the work: 

• A thread executing in process context that wishes to write data to a socket packages up 
all the data to be written to the socket inside a KRP and then creates a kernel context 
thread to process the KRP.  The processing of this KRP includes extracting the information 
from the KRP and calling the UNIX routines that insert new data into the transmit channel of 
a socket. 

• A thread receiving a call from the OpenVMS LAN driver must pass received data from 
the network.  This thread packages the received network data in a KRP and then creates a 
kernel context thread to process this KRP.  To process this KRP, the kernel has to parse the 
received network data (IP header, TCP or UDP header, and so forth), place the parsed 

TCP/IP 
Kernel 

Action: 
Copy data from 
user space to 
system space 

KRP
TCP/IP CPU Holding Dynamic Spin 

lock 

KRP 
1. Prepare work to 

be done in 
Kernel Request 
Packet (KRP)  

2. Queue KRP to 
run on TCP/IP 
CPU 

Process Context 3 

3. Complete I/O 
request 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 5



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

data into the receive channel of a socket, and possibly wake up a user thread waiting fo
data to arrive on this socket. 
When a thread running a TCP

r 

• /IP timer goes off, the information about the timer is 

 
ernel Context Threads 

The processing of kernel context threads is invisible to the TCP/IP application program.  All the 
t 

igh 

several new dynamic spin locks, like the TCP/IP 

 

ting all the kernel threads on the same CPU also optimizes CPU cache utilization because the 

The Scalable Kernel 
5.4 introduces the Scalable Kernel as an optional new feature for the 

 
for 

 release of TCP/IP Services 

Measuring Throughput 
t in system throughput by using the Scalable Kernel is a direct function 

 

pacity (headroom) 

e 

Scalable Kernel Performance Tests 
nfirming the success of parallelism in the field.  Note 

 
 

specific unit of time. 

packaged in a KRP and a kernel context thread is created to process it, executing the 
appropriate code to deal with the specific timer that expired. 

K

kernel threads access the same shared in-memory database, which holds information that canno
be accessed concurrently by more than one thread at a time.  Processing in kernel context is 
ensured by the fact that the threads that execute in kernel context are all directed to a single, 
designated CPU in the configuration, where they execute one by one, at high priority and at h
speed with no interference from other threads. 

Instead of I/O lock 8, the Scalable Kernel uses 
global Spin lock, which is held for relatively long periods of time, and several mini-spin locks, 
which are never held for very long.  Each TCPIP_KRP is processed in an IPL 8 fork thread on the
designated TCP/IP CPU, while holding the TCP/IP global Spin lock. Since all of the threads that 
need the TCP/IP global spin lock run on the TCP/IP CPU, there is never any contention for the spin 
lock. 

Execu
same objects in the shared database are usually referenced from the same CPU. 

TCP/IP Services Version 
specific purpose of validating and quantifying the performance gains for those systems with the
heaviest TCP/IP loads on SMP systems.  The Scalable Kernel significantly improves the potential 
performance gains depending on the applications and configuration. 

The Scalable Kernel will be the default TCP/IP kernel in the next major
for OpenVMS beyond V5.4.  Tests have shown equivalent or better operational performance on 
single-CPU systems, and indisputable benefits for multiCPU systems under the heaviest TCP/IP 
loads.  To obtain the benefits of the Scalable Kernel, you must upgrade your system to TCP/IP 
Services Version 5.4 or higher. 

The maximum gain to expec
of the amount of MPSYNCH that is attributable to TCP/IP, based on measurements using the classic
TCP/IP kernel.  System throughput gain is always highly application-dependent. 

In a given configuration running the Scalable Kernel, the amount of remaining ca
can be estimated by measuring the amount of time that the TCP/IP global spin lock is held by the 
designated TCP/IP CPU under heavy TCP/IP load.  For example, in a multiCPU configuration, if th
TCP/IP global spin lock is held for 40% of the time, the number of CPUs in the configuration can be 
doubled before causing TCP/IP bottlenecks. 

The following graphs show real-life data co
that although performance tests may show higher I/O operations per second, better utilization of
system resources, and so forth, the customer is only interested in getting more of his work done in a

© Copyright 2004 Hewlett-Packard Development Company, L.P. 6



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

Performance Summary 

On a16-CPU GS160 Wil
resulted in an MPSYNCH

dfire system running the classic TCP/IP kernel, the testbed application 
 backup averaging four or more CPUs.  That is, at any given time, four or 

 of 
 the Scalable Kernel allows greatly expanded 

hen the scalable kernel is running (in 

more CPUs were spinning and doing nothing constructive.  (This represents 25% to 35% of the 
potential productivity of a 16-CPU machine!) 

The Scalable Kernel restores that 25% to 35% gain in throughput, virtually eliminating the waste
the previously spinning CPUs.  In other words,
parallelism to make use of previously lost CPU cycles. 

Comparing the Traditional Kernel to the Scalable Kernel 

These test results show the overall pattern of improvement w
green), and when it is not running (in red). 

 

Figure 4 - TCP/IP Transmit Packets per Second 

The purpose of the scalable kernel is to increase the amount of network I/O that an OpenVMS 
IP traffic can potentially increase by 30% system can process.  As Figure 4 shows, the rate of TCP/

or more when the Scalable Kernel enabled. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 7



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

 

Figure 5 – Customer Orders per Minute 

As shown in Figure 5, the Scalable Kernel allows the system to format more customer orders in a 
given time than the classic kernel. When the load gets heavy, the Scalable Kernel is able to 
respond and complete more real work per minute than previously possible. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 8



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

 

 

Figure 6 – MPSYNCH Percentage 

When the Scalable Kernel is running, multiprocessor synchronization contention (MPSYNCH) is 
dramatically reduced, as shown in Figure 6. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 9



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

 

 

Figure 7 – Percentage of CPU Busy 

As Figure 7 shows, a greater percentage of CPU time is spent in user-mode, which means that 
more application work is getting done when the Scalable Kernel is running. 

 

 

Figure 8 - Buffered I/O Rate 

On OpenVMS, TCP/IP I/O activity is expressed as buffered I/O.  Figure 8 shows how the rate of 
buffered I/O increases when the Scalable Kernel is running. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 10



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

Comparing the Traditional Kernel to the Scalable Kernel 
 Traditional Kernel Scalable Kernel 

Hold % All Locks 54.8% 35.2%  (while completing 
more work) 

Spin % All Locks 24.1% 4.4% (very good) 

Locks Per Second 204,153 162,033 (doing more work 
with far fewer locks per unit of 
work) 

I/O Lock 8 Hold Time 31.4% <5% (very good.  Now much 
more of I/O lock 8 is available 
for handling heavy disk I/O.) 

 

The Importance of Maintainability 
Over half the OpenVMS TCP/IP kernel code is ported from UNIX and the TCP/IP code base is 
under constant development.  In order for the OpenVMS TCP/IP kernel to remain up-to-date with 
leading-edge functionality, frequent infusions of new UNIX code are required.  The OpenVMS 
TCP/IP engineering team must repeat the port of the UNIX code periodically.  The amount of 
OpenVMS modifications introduced into the ported UNIX code must be restricted, so that re-porting 
operations remain a manageable task that can be accomplished in a time period of weeks, not 
years. 

Limits on the amount of changes that could be introduced into the UNIX code dictated the approach 
to the challenge of achieving parallelism in the TCP/IP Services for OpenVMS product.  
Complicated locking schemes that would require that lock domains span both the ported UNIX 
code and the OpenVMS cradle would have greatly increased the complexity of the solution, 
introducing issues of quality as well as increased maintenance. 

The Scalable Kernel is the ideal solution because it is customized to the OpenVMS SMP 
environment, it operates just as well in a single-CPU configuration as an SMP system, and it 
imposes the least amount of overhead for future maintenance. 

Future Kernel Enhancements 
In the future, the Scalable Kernel may be enhanced to handle even larger CPU configurations.  To 
accomplish this, the current single, shared in-memory database could be divided into two or more 
databases, each of which would be serviced by its own designated kernel context CPU.  This 
would ensure that the designated TCP/IP CPU does not become a limit to system throughput. 

Additional performance gains can be realized by optimizing the processing of the transactions, so 
that the designated TCP/IP CPU takes less time and effort to process each individual transaction, 
thereby supporting a greater number of parallel threads without becoming overloaded. 

For More Information about TCP/IP Services Performance 
The Scalable Kernel allows greater parallelism in the processing of TCP/IP requests and is not a 
generalized performance panacea that solves everything.  Processing tens of thousands of TCP/IP 
packets and distributing them over thousands of sockets requires CPU cycles, which will inevitably 
take its toll.  The Scalable Kernel allows you to deal efficiently with this necessary use of CPU 
resources by adding CPUs to the configuration and then allowing these additional CPUs to be 
effectively used by the system instead of merely spinning, doing nothing and getting in the way. 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 11



Parallelism and Performance in the OpenVMS TCP/IP Kernel – TCP/IP Engineering Team 

There are other steps, independent of the Scalable Kernel, which you can take to improve the 
performance of individual TCP/IP operations, including TCP/IP tuning, adjusting window sizes for 
sockets, and so forth.  For more information about these performance enhancement techniques, 
consult the TCP/IP Services for OpenVMS Tuning and Troubleshooting guide. 

 

© Copyright 2004 Hewlett-Packard Development Company, L.P. 12


	Parallelism and Performance in the OpenVMS TCP/IP Kernel
	Introduction
	The SMP Challenge
	The Architecture of the TCP/IP Kernel
	TCP/IP Thread Contexts
	Introducing Parallelism into the TCP/IP Kernel
	Tracking a Write Operation
	Types of Kernel Request Packets (KRPs)
	Kernel Context Threads

	The Scalable Kernel
	Measuring Throughput
	Scalable Kernel Performance Tests
	Performance Summary
	Comparing the Traditional Kernel to the Scalable Kernel


	Figure 5 – Customer Orders per Minute
	Comparing the Traditional Kernel to the Scalable Kernel
	The Importance of Maintainability
	Future Kernel Enhancements
	For More Information about TCP/IP Services Performance


