
OpenVMS Technical Journal V5

Porting the Macro-32 Compiler to OpenVMS I64

Porting the Macro-32 Compiler to OpenVMS I64 .. 2
Overview .. 2
History of the Macro-32 Compiler for OpenVMS Alpha .. 2
Goals of the Macro-32 Compiler for OpenVMS I64 ... 2
Organization of the Macro-32 Compiler for OpenVMS Alpha... 2
What Changed and What Stayed the Same? .. 3
Flow Analyzer Changes .. 3
Instruction Generation ... 4
Calling Standard Differences ... 4
Floating and Packed Decimal Instruction Support ... 5
AMACRO Utility Routines .. 5
Summary... 5
Acknowledgements... 5

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1

Porting the Macro-32 Compiler to OpenVMS I64
John Reagan, Macro-32 Project Leader

Overview
In June 2001, the OpenVMS Engineering organization began porting OpenVMS from the Alpha
architecture to the Itanium architecture. One of the key components required was the Macro-32
compiler. Porting the compiler from OpenVMS Alpha to OpenVMS I64 presented several challenges
and problems. This paper describes the porting of the Macro-32 compiler from OpenVMS Alpha to
OpenVMS I64.

History of the Macro-32 Compiler for OpenVMS Alpha
A large portion of OpenVMS is written in Macro-32. When OpenVMS was first ported from VAX to
Alpha, a Macro-32 compiler was created that would accept Macro-32 source code and produce
Alpha object files. This enabled much of the Macro-32 source code to be ported from VAX to Alpha
with only mechanical changes to the source code. Usually, Macro-32 source code had to be
enhanced to include new directives (such as “.call_entry” and “.jsb_entry”) and to recode several
VAX code constructs that could not be supported by the Macro-32 compiler on Alpha.

Goals of the Macro-32 Compiler for OpenVMS I64
Unlike porting from OpenVMS VAX to OpenVMS Alpha which often required source code changes,
our goal for porting Macro-32 code from OpenVMS Alpha to OpenVMS I64 was that modules would
simply recompile with no source changes whatsoever. We hoped that the directives that were added
to Macro-32 source files when ported from VAX to Alpha would be sufficient for compiling the code
on I64. In the end, it turned out that we needed to add a few additional directives and a handful of
source modules would need modification to use them.

Organization of the Macro-32 Compiler for OpenVMS Alpha
The Macro-32 compiler has four main phases:

• Phase 1: Source Parser
The source parser is the same parser that is used by the Macro-32 assembler on OpenVMS
VAX. The parser, written in Macro-32, tokenizes the source lines into an intermediate tuple
stream. This tuple stream includes instructions, register references, memory references,
symbol assignments, conditional compilation information, and labels.

• Phase 2: Flow Analyzer
The flow analyzer, written in C, analyzes the tuple stream to identify loops, register usage,
condition code usage, and breaks up the instruction stream into a sequence of flow blocks
where each flow block begins with a label and ends with a branch or call. The register
analysis identifies which registers are input, output, read, or written in a flow block. This
information is later used to identify registers that can be used by the code generator as short-
term scratch registers. The condition code analysis optimizes the generated code by
materializing the equivalent VAX condition codes only when they are used by subsequent
instructions.

• Phase 3: Code Generator and Register Allocator
The code generator and register allocator, written in BLISS, processes the flow blocks
produced by the flow analyzer. For each VAX instruction in the flow blocks, the code
generator produces Alpha instructions to produce the equivalent behavior. The output from
the code generator is a list of code cells where each code cell might be an Alpha instruction
with its operands or a label. The register allocator keeps tracks of temporary registers used
by the code generator. Most of the temporary registers are used only during the code
corresponding to a single VAX instruction. However, some of the temporary registers
represent condition codes and may have to live for multiple instructions or even around a
loop.

• Phase 4: Instruction Scheduler and Peephole Optimizer
The instruction scheduler and peephole optimizer are provided by the GEM backend code

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

generator used by the other Alpha compilers. However, in those compilers, the
corresponding language front ends produce a sequence of intermediate language tuples and
GEM performs its own flow analysis and code generation. In the case of Macro-32, those
components of GEM are not used. The Macro-32 compiler produces the list of code cells
itself and passes them to the final phases of GEM. The instruction scheduler reorders
instructions for better performance. The peephole optimizer removes or modifies related
instructions for better performance. GEM also produces the debug information and writes the
object file.

What Changed and What Stayed the Same?
For porting the Macro-32 compiler from Alpha to I64, each phase required a different set of changes
with two phases requiring almost no work on our part.

The parser required only two source lines to be changed to identify a CALLS instruction to a routine
that returned values in registers other than R0 or R1. Such a construct requires the use of a new
directive for OpenVMS I64 (the directive is ignored by the compiler on Alpha). The resulting parser is
common code between the Alpha and I64 compilers.

The instruction scheduler and peephole optimizer provided by GEM still accepted code cells as input
but those code cells now represented Itanium instructions rather than Alpha instructions. There is a
different GEM for each target. While the GEM team spent many person years developing the code,
from the Macro-32 compiler’s point of view, the interface stayed basically the same with the addition
of a handful of new flags in the GEM symbol table.

Flow Analyzer Changes
The main tasks of the flow analyzer of grouping tuples into flow blocks and identifying registers used
in each block remained essentially the same and required no changes.

However, the flow analyzer also is aware of how many routine arguments are passed in registers
and which registers are preserved around routine calls. These values are different from Alpha to I64.
For instance, on Alpha the first six arguments are passed in registers while on I64 the first eight
arguments are passed in registers. Likewise, on Alpha a standard routine preserves registers R2-R15
by default while on I64 only registers R4-R7 are preserved by a standard routine.

Unfortunately, when the Alpha Macro-32 compiler was written, the information was coded with literal
numbers such as “6” or as literal integer or hexadecimal masks. We had to hand examine the entire
flow analyzer looking for literals like “5”, “6”, “7”, etc. and change them into symbolic constants
which expand to the correct value depending on the target of the compiler.

We added one significant feature to the flow analyzer to deal with a unique feature of the Itanium
architecture. Itanium integer registers are actually 65 bits wide. They contain 64 bits of data and
another bit called the NaT bit (Not a Thing). This bit identifies a register that has not been initialized
and doesn’t contain a value. When a register that contains a NaT is written to memory with the
regular Itanium store instructions, the hardware raises a NaT Consumption Fault. To avoid this error,
there are special Itanium instructions that must be used to spill all 65 bits of a register to memory.

In Macro-32 routines, we found a common practice of what we call a courtesy save. This is code,
usually in JSB routines, that explicitly does a PUSHL of some register, then uses that register for some
local purpose, and then does a POPL to restore that register. The save sequence is always executed,
it does not matter if the caller was actually using that register. On VAX and Alpha, for callers that did
not use that register, the save sequence simply saved and restored some random value. However, on
Itanium, if that register happened to contain a NaT, the PUSHL would result in a NaT consumption
fault. If that occurs in kernel mode, OpenVMS will crash. We found this out the hard way.

We could not use the special 65 bit register save instructions since Macro-32 code that is building a
data structure on the stack or is pushing arguments for an upcoming routine call would only expect 32
bits to be written. So we decided that if we could identify registers written to memory that appear to
be courtesy saves (writes to memory with no prior writes to that register), then we would generate
additional code in the routine prologue to detect a NaT and write a negative one (-1) into that
register. In addition, if the register was one of the Itanium preserved registers (R4-R7), we would have
to restore the NaT at routine exit.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

The flow analyzer was enhanced to find these courtesy saves and propagate the information between
flow blocks. The result was a mask of registers that would need NaT Guarding in the routine
prologue.

Instruction Generation
The code generator processes each instruction tuple in the flow blocks built by the flow analyzer and
generates either Alpha or Itanium instructions. The code generator phase is the only place where we
decided not to use common code but have separate modules for Alpha and I64. We cloned the
eight Alpha-specific modules and then re-implemented every routine in each module. Some
instructions were easy (for example, MOVL and ADDL) while others (DIV, FFS, INSV, EXTZV,
EVAX_LDQ_L, and others) took several times to get correct. One subtle difference between the Alpha
instructions and the I64 instruction is that literal operands in the Alpha instructions are zero-extended
while literal operands in the I64 instructions tend to be sign-extended. We also found several cases
where the compiler on Alpha had extended traditional VAX instructions to access part of the Alpha
architecture. For example, allowing the BBC instruction to branch on a bit larger than 31 in a
register. None of these were ever documented by the Alpha compiler and were only found after
problem reports from OpenVMS I64 testing. After that experience, we were more careful about
checking our results both against the VAX architecture and the Alpha compiler behavior.

The Alpha compiler has a large set of EVAX_ built-ins to provide access to Alpha instructions. In
almost all cases, we support those built-ins by generating one or more Itanium instructions to do the
same task. However, some of the EVAX_ built-ins are PAL calls on Alpha. Since there is no PAL code
on I64, new system services were added to OpenVMS to provide the similar functionality. The PAL
support was removed from the compiler (with the exception of the queue instructions) and new macros
were provided in STARLET.MLB that expand to the appropriate system service. The end result is that
Macro-32 source code believes that it is using Alpha EVAX_ built-ins to access PAL code when in fact
it is calling newly written system services.

Given the relatively small number of available registers on Alpha, the Alpha compiler has extensive
code to spill registers to the stack if the generated code requires more temporaries than are currently
available. We were able to delete all of that code but had to extend our register allocation
mechanisms to include predicate registers as well as distinguishing between the lower 32 static
registers and the higher 96 stacked registers. Each routine on I64 can have up to 128 registers. In
addition, because the I64 output registers vary based on the most recently executed ‘alloc’
instruction, we added analysis to ensure that routines that jumped between each other had
compatible output registers numbers.

Calling Standard Differences
The Calling Standard for I64 defines registers R8 and R9 as the return value registers. However, all
existing Macro-32 source code has assumed that it is dealing with either the VAX or Alpha calling
standards and specifies R0 and R1 as the return value registers. Since our goal was to just recompile
Macro-32 code from Alpha, we invented a register mapping table. With this register mapping, the
compiler on I64 maps all references to R0 and R1 to R8 and R9, respectively. Once we moved R0
and R1, we had to move many of the other registers to make the puzzle all fit together. The end result
is that Macro-32 source code believes that it is using Alpha-numbered registers and the compiler’s
register mapping silently adjusts to match the I64 calling standard. The complete mapping table is
available in the HP OpenVMS Macro Compiler Porting and Users Guide in the OpenVMS
documentation set.

Most existing Alpha Macro-32 code has been written with the Alpha calling standard in mind.
Programmers have assumed that registers R2 through R15 will be preserved by calls to external
routines, especially those written in another language like C or FORTRAN. However, on I64, only
registers R4 through R7 are preserved by the calling standard. Since we did not want to make
people change their source code between Alpha and I64, the compiler automatically preserves R2,
R3, and R8 through R15 around each CALLS and CALLG instruction. In general, this behavior is
correct. However, for routines that return values in registers other than R0 and R1, the register saves
and restores might undo a non-standard return value. In order to support these routines, we had to
invent several new directives to provide linkage information about the called routine. These new
directives, named “.call_linkage”, “.define_linkage”, and “.use_linkage”, tell the compiler about the
non-standard output register usage of the target routine.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

In a similar situation, it is possible on Alpha to use a JSB instruction to call a routine that is not written
in Macro-32. For instance, if the target routine is written in C, the Alpha calling standard requires the
C compiler to preserve registers R2 through R15. Calling this routine with a JSB instruction works
correctly. However, on I64, the C compiler preserves only R4 through R7. The Macro-32 program
would suddenly find that registers R2, R3, and R8 through R15 would be corrupted by JSB’ing to a C
routine. Again, the new directives have an option to indicate that the target routine is written in a
language other than Macro-32. In that case, the compiler will preserve R2, R3, and R8 and R15
even around the JSB instruction.

These new directives are also used by the system macros that expand to the system services that
replace the Alpha PAL code. For calls to those routines, the compiler must save many more registers
to emulate the Alpha behavior of PAL calls not modifying any register, including those higher than
R15.

Floating and Packed Decimal Instruction Support
The Alpha compiler supports VAX floating and packed decimal instructions through a set of macros
and helper routines written in Macro-64. These routines were re-implemented in Itanium assembly
code and the macros were modified to use a different calling sequence.

AMACRO Utility Routines
All of the AMAC$ utility routines from Alpha had to be either rewritten or at least modified to deal
with the parameter passing mechanism on I64.

Summary
Porting the Macro-32 compiler from Alpha to I64 was a challenge since we were learning the Itanium
architecture and also learning the internals of the Macro-32 compiler. We came close to our original
goal of being able to recompile Macro-32 code from Alpha. The vast majority of the Macro-32 code
in the OpenVMS source pool recompiled without modification.

Acknowledgements
Peter Haynes and Karl Puder worked on porting the Macro-32 compiler along with the author. Each
contributed significant effort to the final compiler. Greg Jordan helped with initial register mapping
table. Greg and Christian Moser suggested the Itanium code used to emulate the Alpha load-locked
and store-conditional instructions.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

	Porting the Macro-32 Compiler to OpenVMS I64
	Overview
	History of the Macro-32 Compiler for OpenVMS Alpha
	Goals of the Macro-32 Compiler for OpenVMS I64
	Organization of the Macro-32 Compiler for OpenVMS Alpha
	What Changed and What Stayed the Same?
	Flow Analyzer Changes
	Instruction Generation
	Calling Standard Differences
	Floating and Packed Decimal Instruction Support
	AMACRO Utility Routines
	Summary
	Acknowledgements

