
OpenVMS Technical Journal V6

Using Python for OpenVMS Web Development

Using Python for OpenVMS Web Development ... 2
The Python Language ... 2

Porting Python.. 3
The Challenge.. 3

The Choices We Made... 4
Some Examples of Integration with OpenVMS... 4

Example 1... 4
Example 2... 5
Example 3... 6

Applications, Libraries, and Tools .. 6
For More Information.. 7

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Using Python for OpenVMS Web Development
Author: Jean-Francois Pieronne

A few years ago, a large company whose data-processing architecture is built around OpenVMS
were seeking a “Webification” solution for its applications. This company naturally wished to deploy
this solution on OpenVMS.

A major criteria criterion was to offer the level of security and audit trail auditing equivalent to that
offered by the classic character-cell based applications on OpenVMS using a VT terminal. It was
therefore imperative to keep the authentication and security of OpenVMS.

Each user must run his applications in his own process just as in the case of a VT terminal session,
only the interface has changed.

A system was needed that was sufficiently light in resource consumption so as to be able to instantiate
each user, without an excessive consumption merely supporting such an infrastructure, and providing
the required security, identification, and traceability.

Usually application servers like Tomcat or equivalent commercial offerings do not have this level of
granularity because of their heavy resource usage.

For reasons of functionality, integration with OpenVMS, and performance, the WASD server package
was selected.

Other criteria for the choice of the language for development included:

• Productivity in the creation and maintenance of the programs
• Wealth of libraries, existing tools
• Size of the installed base and the reputation of the language

A scripting language was preferable, due to the much higher productivity of developers in these types
of languages than in other more traditional environments.

Finally, Python was selected as the principal language of development because, in conjunction with
the WASD web server, it gave the best possibility of successfully deploying the required environment.

The Python Language
Python is a portable, interpreted, interactive, object-oriented programming language.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very
high level dynamic data types, and strong dynamic typing. New built-in modules are easily written in
C or C++. Python is also usable as an extension language for applications that need a programmable
interface.

Python runs on most operating systems and for each has interfaces to many system calls and libraries.

The first public version was released in 1991. In 2001, Guido van Rossum, who is the author of
Python, started a foundation named "Python Software Foundation," devoted to advancing open
source technology related to the Python programming language.

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

The Python implementation is copyrighted but freely usable and distributable, even for commercial use.

Since its origin this language has met a growing success, its user-base doubling each year. Many
books, articles and Internet sites are regularly devoted to it. Python is currently used by many
companies such as Google, Yahoo, Redhat, Microsoft, Nokia, and others.

In the OpenVMS world, several companies use Python intensively; some of them have based their
whole Web architecture on the WASD/Python combination.

One company that deploys a software system on hundreds of systems also uses Python intensively,
including critical applications.

Here is an example of a script used to replace all the events of a character string in a whole series of
HTML files contained in a directory:

import glob
for fn in glob.glob('./*.html'):
 res = open(fn).read().replace('old string', 'the new string')
 open(fn, 'w').write(res)
For more information and other demonstrations to refer to the site http://www.python.org.

Porting Python
A first port of Python 1.5.2 had been carried out, but for technical reasons and to ensure easier
development in the future, it was decided to set out again from scratch.

Currently, this port is the result of collaborative work among several people, with the occasional
participation of HP employees.

The current version of Python for OpenVMS is 2.3.5. New kits are periodically released, including
bug fixes, or updates of the libraries contained in this port.

Since version 2.3.5, as the kits are now versioned, it is possible to have several versions of Python
installed on the same system.

The Challenge
We had to ensure a port that is perennial and evolutionary, that facilitates the port of future versions,
and is not a one-shot port.

This includes submission of the patches carried out specifically for OpenVMS for inclusion into the
main stream Python codebase. This has been partially accomplished. However, there still exist some
patches that are not included. Indeed, this is sometimes difficult. For example, it was necessary to
explain how a file system like RMS works, because most people think that a file is limited to a flow of
bytes.

We also had to ntegrate specific OpenVMS features, for example:

• Allow the calling of system services or various runtime library routines (SYSxxx, LIBxxx etc)
• Offer access to RMS files and not be limited to sequential files with organisation type of

STREAMLF
• Utilize environments specific to OpenVMS such SGBD Oracle/Rdb or the WASD web server
• Allow the addition of modules or the evolution of existing modules without having to rebuild the

whole interpreter.

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

• Allow the simplest possible port, under OpenVMS, of Python applications initially developed for
other OS. For example, it was decided that for Python OpenVMS is seen as a posix system and
that the routines for access to the file-system followed posix naming rules and not those of
OpenVMS naming rules.

• Provide a form of installation integrated into OpenVMS.

The Choices We Made
The Python interpreter is built as a shareable image. The Python program itself is only one small
program of 24 lines.

The extensions for OpenVMS are also built in the form of shareable images. Therefore, it is simple to
upgrade a module or add new ones.

Moreover, as these libraries are dynamically activated, it is possible to deploy Python with all of the
modules provided, on systems that do not have the specific environments installed (for example
Oracle/Rdb or the Web server WASD).

When the modules use libraries that can also be used outside of Python, this functionality is provided
in the form of separate kits.

Here is the list of the libraries for which there is a PCSI kit and a Python interface:

• Zlib
• LibBZ2
• LibJPEG
• LibPNG
• Freetype
• LibImaging
• LibGD
• GDChart
• LibXML2 Libxslt/Libexslt
• OPENSSL
• Swish-E

The OpenVMS Python kit and all the separate libraries are distributed in the form of PCSI kits and are
therefore easily installable and upgradable.

It was also decided that the minimum supported version of OpenVMS would be V7.3 with the latest
version of the CRTL. (There is a partial version for OpenVMS V7.2, but it is not maintained.)

It is strongly advisable to install Python on a ODS-5 disk. However, in the absence of a physical disk
of this type, it is possible to use a virtual disk in a container file with LDdriver, the latter being
included with OpenVMS starting from the V7.3-1. LDdriver for older versions of OpenVMS is
available on the Freeware CD. (Editor’s Note: Look for the article about the LDdriver in this issue of
the OpenVMS Technical Journal.)

Some Examples of Integration with OpenVMS
Example 1
Display users whose accounts are not disusered and who have not logged on for 31 days or more:

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

import vms.user, vms.starlet, vms.uaidef
def fcmp(u1, u2):
 return cmp(u2.lastlogin_i, u1.lastlogin_i)
users = vms.user.all_users()
users = users.values()
descending sort on last login interactive
users.sort(fcmp)
s,delta = vms.starlet.bintim('31 0:0:0.00')
s,curtim = vms.starlet.asctim()
s,minlogin = vms.starlet.bintim(curtim)
minlogin += delta
for user in users:
 if (not (user.flags & vms.uaidef.UAI_M_DISACNT) and
 0 < user.lastlogin_i < minlogin):
 print "%-33s %s" % (user.username,
 vms.starlet.asctim(user.lastlogin_i)[1])
This gives the following result:

USER1 8-APR-2005 13:38:43.51
FIELD 8-APR-2005 13:16:48.21
DEMO 27-SEP-2002 12:49:57.24

Example 2
Sample code to fetch information from queues, display all queue names and descriptions and for
each queue all jobs name and id:

from vms.rtl.lib import getqui
from vms.quidef import *
from vms.jbcmsgdef import JBC__NOMOREQUE, JBC__NOSUCHJOB,\
 JBC__NOMOREJOB
getqui(QUI__CANCEL_OPERATION)
while True:
 queue_name = ''
 try:
 s, v, queue_name = getqui(QUI__DISPLAY_QUEUE, QUI__QUEUE_NAME,
 None, '*')
 except VMSError, e:
 if e.errno == JBC__NOMOREQUE:
 break
 else:
 raise
 s, v, queue_desc = getqui(QUI__DISPLAY_QUEUE,QUI__QUEUE_DESCRIPTION,
 None, '*', QUI_M_SEARCH_FREEZE_CONTEXT)
 print 'Queue:', queue_name, '<', queue_desc, '>'
 while True:
 try:
 s, v, js = getqui(QUI__DISPLAY_JOB, QUI__JOB_STATUS,-1,None,
 QUI_M_SEARCH_ALL_JOBS)
 except VMSError, e:
 if e.errno in (JBC__NOMOREJOB, JBC__NOSUCHJOB):
 break
 else:
 raise
 s, v, jn = getqui(QUI__DISPLAY_JOB, QUI__JOB_NAME, -1, None,
 QUI_M_SEARCH_ALL_JOBS |
 QUI_M_SEARCH_FREEZE_CONTEXT)
 s, v, en = getqui(QUI__DISPLAY_JOB, QUI__ENTRY_NUMBER, -1, None,
 QUI_M_SEARCH_ALL_JOBS |

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

 QUI_M_SEARCH_FREEZE_CONTEXT)
 print ' Job: %s (%s)' % (jn, en)
This gives the following result:

Queue: ASSP_QUEUE < queue for Anti-Spam SMTP Proxy Server >
 Job: LOGIN_ASSP (6)
Queue: LASER1 < >
Queue: SCHEDULER < >
 Job: IPCHECK (562)
 Job: CHECKAUDIT (292)
 Job: update_spamdb (530)
Queue: SETI$BATCH < >
Queue: SYS$BATCH_NODE1 < Queue batch NODE1 >
Queue: SYS$BATCH_GENERIC < Queue batch generic >
Queue: TCPIP$SMTP_NODE1_00 < >

Example 3
A small Rdb example which displays the user tables and views from the famous "mf_personnel"
demonstration database. An iterator is used to read the lines.
import rdb
attach = rdb.statement("attach 'filename mf_personnel'")
commit = rdb.statement("commit work")
readonly = rdb.statement("set transaction read only")
curs = rdb.statement("""select rdb$relation_name from rdb$relations
where rdb$system_flag = ? order by rdb$relation_name""")
attach.execute()
print "users relations name:"
readonly.execute()
curs.execute(0)
for line in curs:
 print line[0]
commit.execute()

Which gives the following results:

users relations name:
CANDIDATES
COLLEGES
CURRENT_INFO
CURRENT_JOB
CURRENT_SALARY
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
For more information and other examples, refer to the site Python for OpenVMS.

Applications, Libraries, and Tools
It is generally easy to port a Python application to OpenVMS provided that it doesn’t use platform
specific libraries. For example, the porting of the application server Webware which represents
around 40,000 lines of code required only the modification of a single line in the installation script. A
PCSI installation kit for Webware will be shortly available.

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

Many other tools & libraries are installed and use the standard installation procedure without any
modification for example the the Cheetah templating system which comprises around 12,000 lines of
Python code or the PyChecker tool which is a Python source code checking tool and comprises
approximately 5,000 lines of Python code.

A Web T4 viewer has been developed in a few days and comprises about only 900 lines of Python
code. A demonstration is available from http://vmspython.dyndns.org/.

For More Information
Some interesting reading may be:

• The article from John K. Ousterhout creator of the TCL language: Scripting: Higher Level
Programming for the 21st Century

• The article from Ill Venners: Use the Best Tool for the Job
• The comparative study written by Lutz Prechelt: An Empirical Comparaison of C, C++, Java, Perl,

Python, Rexx, and Tcl.
• Artima.com's six-part interview with Python creator Guido van Rossum:

http://www.artima.com/intv/guido.html
• The following presentations from Stefen Ferg:

- The Business Case for Agile Languages
- Python:a Powerful, Easy-to-Use, Open-Source Scripting Language
- Python & Java: a Side-by-Side Comparison
- More material can be accessed from http://www.ferg.org/python_presentations/index.html.

For more information about T4, read the following article by Steve Lieman a previous OpenVMS
Technical Journal:

TimeLine-Driven Collaboration with "T4 & Friends": A Time-saving Approach to OpenVMS Performance

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

	Using Python for OpenVMS Web Development
	The Python Language
	Porting Python
	The Challenge

	The Choices We Made
	Some Examples of Integration with OpenVMS
	Example 1
	Example 2
	Example 3

	Applications, Libraries, and Tools
	For More Information

