
Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

OpenVMS Technical Journal V7

Oracle Rdb Monitoring and Alarming on OpenVMS
Kostas G. Gavrielidis, Master Technologist HP Services

Overview

Several layered products and utilities exist for monitoring Oracle Rdb databases on OpenVMS
platforms. In this article, we review products available from other companies and propose an HP
internally-developed solution developed and deployed in customer production environments.

There are several Rdb monitoring and alarming utilities and tools available today:

 RMU/SHOW STATISTICS Utility

The RMU/SHOW STATISTICS utility, one of the most powerful and useful tools available to
database administrators (DBAs), analyzes performance characteristics of a database.
However, the ability to analyze performance problems is only one aspect of a performance
analysis tool. The DBA also needs to detect problems in a timely manner, then analyze the
problems and immediately perform corrective actions.

 PATROL Knowledge Module for Rdb

PATROL monitors and manages the resources in the environment using information from
special files known as Knowledge Modules (KM) that are loaded in the console. If PATROL
detects a problem with a particular computer or application that it is monitoring, these
modules provide information for PATROL to attempt to fix the problem. If the problem
escalates or requires human intervention, PATROL displays a warning or alarm condition for
every resource affected by the problem.

 Oracle Rdb Trace and Rdb Expert

Oracle Trace is a layered product that gathers and reports event-based data from OpenVMS
layered products and application programs that contain its service routine calls. Oracle Trace
provides Oracle Expert for Rdb along with data for optimizing existing Rdb databases. Event-
based data can be collected from products that contain Oracle Trace service routine calls. In
addition, Oracle Trace routine calls can be added to other user-developed applications to

© Copyright 2006 Hewlett-Packard Development Company, L.P 1

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

collect data from them. This process of adding Oracle Trace service routine calls to an
application is called instrumenting the application.

 Internally-Developed Solutions

Internally-developed solutions consist of the RMU/SHOW STATISTICS Utility along with
alarming and notification features based on rules customized by the database administrator.

This article is written for those who implement enterprise solutions that involve HP customer’s Oracle
Rdb and OpenVMS production environment configurations.

Database Monitoring Objectives

Database objectives include providing monitoring and alarming capabilities that support overall
Enterprise Management (EM) activities. These objectives maximize the availability of applications and
support the monitoring and alarming requirements that meet the following objectives:

• Develop software scripts, as necessary, to facilitate the monitoring and alarming of important
databases by focusing on specific areas previously identified by the customer. These include
(but are not limited to) the following areas:

a. database status (i.e., up or down)

b. elapsed transaction processing time

c. transaction rate

d. file system fragmentation

e. record locking

f. record level fragmentation

g. critical transaction rate

h. lock rate

i. transaction duration

j. number of fetches

k. number of stores

l. number of erases

• Document all developed software and the installation and deployment processes that be
performed in the customer production environment.

RMU/SHOW STATISTICS Utility
Introduction

Most database products provide tools to analyze the performance characteristics of the database and
the application. These tools often require constant manual attention or extensive post-processing of
recorded data in order to detect critical events that might be detrimental to the smooth operation of
the database.

In some cases, the DBA is not always available to constantly monitor the utility output, especially for
24*7 production databases. Post-processing recorded data is certainly not timely enough to prevent
or resolve potential real-time database downtime situations, particularly with real-world, mission-
critical requirements. The DBA needs the ability to be notified automatically when time-critical or
interesting events occur to the database.

© Copyright 2006 Hewlett-Packard Development Company, L.P 2

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

RMU/SHOW STATISTICS Events

The RMU/SHOW STATISTICS utility has been dramatically enhanced for Rdb7 to include many new
features that provide DBAs with the information necessary to detect, analyze, and correct
performance problems in the database. Even more enhancements have been added to the Rdb7A
release, including the Configuration File facility, which provides an extremely powerful and easy-to-
use User-Defined Event facility.

Using the RMU/SHOW STATISTICS configuration file, you can persistently define special events that
specify the action to be performed when something of interest occurs to the runtime database. An
event is an identification of a particular statistic value on which the RMU/SHOW STATISTICS utility
will perform some user-defined action. In other words, an event is signaled when a statistic's value
exceeds a user-defined set of thresholds.

Using events, the DBA can be automatically notified by an RMU/SHOW STATISTICS utility server
running on behalf of a particular database. You define an event by specifying a threshold against a
specific statistic and by optionally specifying the attributes the event is to have.

Event Definition Syntax

The RMU/SHOW STATISTICS utility configuration file is a text file that can be maintained using the
editor of your choice. The configuration file typically resides in the database directory, although it can
reside anywhere that you desire.

Each entry in the configuration file uses the general format variable=value;. The equal-sign (=)
separating the variable and value is required. Note also that each definition is terminated with a
semicolon character (;).

User-defined events are specified using the EVENT_DESCRIPTION variable. Events themselves are
not named; rather, they are defined on behalf of a specific statistic for a given threshold. The
EVENT_DESCRIPTION variable's value is a free-format description of the user-specified event. The
event definition consists of three required, position-dependent components and an optional
component. The following example describes the general format:

EVENT_DESCRIPTION="operation \
 statistic_name \
 threshold_name \
 [attribute_list]";

Event "Operation" Clause

The event operation clause identifies the action to be performed for the EVENT_DESCRIPTION
operation. The keyword ENABLE is used to enable a new event or change an existing event
definition. The keyword DISABLE is used to disable a previously defined event. This keyword is
typically used when importing a new configuration file.

Even though an event may be enabled, it may not be active. For an event to be active, you must also
specify either a program to be invoked or one or more operator classes to be notified.

During runtime, events can be disabled only by the RMU/SHOW STATISTICS utility or by importing a
new configuration file that explicitly disables an event.

Event "Statistic Name" Clause

The event statistic name clause identifies the particular valid statistic field for which the event will be
enabled or disabled. Note that some statistic names are valid only when certain database attributes

© Copyright 2006 Hewlett-Packard Development Company, L.P 3

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

are enabled, such as global buffers or record caching. The names of a particular statistic field can be
found on the individual screen of interest. When statistic field names contain multiple words, such as
process attaches, the statistic name must be either single- or double-quoted; failure to quote the
statistic name may result in a syntax error.

Certain statistic fields have leading blanks. This white space is considered part of the statistic name
and is necessary to identify a unique statistic. However, the use of leading blanks is often difficult to
discern in the configuration file. Therefore, the underscore character (_) or dash character (-) can be
used in place of spaces in statistic names that have leading spaces. For example, the statistic field
name " file extend" can also be specified as "_ _ file_extend" or "- - file-extend". This method
improves the readability of difficult statistic field names.

Most general events are defined using the summary statistics screens. However, it is sometimes
necessary to define an event on a specific table or index, or even a particular partition of a table. The
AREA attribute allows you to specify this type of drill-down event and indicate the name of a
particular storage area. When this clause is specified, the statistic field selected must be from the IO
Statistics (by file) or Locking Statistics (by file) screens. The identified statistic name can be also
qualified with the LAREA attribute to specify the name of a particular logical area, such as a table,
btree index, hash index, or blob. When this clause is specified, the statistic field selected must be
from the Logical Area screens. Further, if the selected logical area is partitioned across multiple
storage areas, the AREA clause can also be used to identify a specific partition against which to
define the event.

The following table explains the semantics for specifying the AREA and LAREA clauses to qualify a
statistic field name:

AREA LAREA Description

No No General Statistic Field

Yes No Storage Area Statistic Field

No Yes Logical Area Statistic Field, all partitions

Yes Yes Logical Area Statistic Field, single partition

The AREA and LAREA clauses are attributes and must follow the Threshold Name component of the
event definition.

Event “Threshold Name” Clause

The event threshold name clause identifies the particular event threshold for which the specified
statistic will be enabled or disabled. The thresholds are essentially the columns in the numeric version
of the statistics screens.

Up to eight different thresholds can be specified for a particular statistic field, although each
individual event name must be specified in its own EVENT_DESCRIPTION variable definition. The
threshold name clauses are as follows:

 MAX_RATE − The maximum "current" occurrence-per-second rate collected. This threshold
only increases as each event is signaled.

 MAX_CUR_TOTAL − The maximum "total" value collected since the database was opened.
This threshold only increases as each event is signaled.

 MIN_CUR_RATE − The lowest rate currently being sustained. This threshold remains constant.

 MAX_CUR_RATE − The highest rate currently being sustained. This threshold remains
constant.

© Copyright 2006 Hewlett-Packard Development Company, L.P 4

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

 MIN_AVG_RATE − The lowest average rate. This threshold only decreases as each event is
signaled.

 MAX_AVG_RATE − The highest average rate. This threshold only increases as each event is
signaled.

 MIN_PER_TX − The lowest per-transaction rate. This threshold only decreases as each event
is signaled.

 MAX_PER_TX − The highest per-transaction rate. This threshold only increases as each event
is signaled.

Event "Attribute List" Clause

The optional event attribute list clause provides additional characteristics for enabled event thresholds.
In general, these attributes are ignored when disabling an event. Any or all of the event attributes can
be specified for each event name within the same EVENT_DESCRIPTION variable definition. The
attribute list clauses are as follows:

 AREA storage_area_name − Defines the name of a particular storage area. When this
clause is specified, the statistic field selected must be from the "IO Statistics (by file)" or
"Locking Statistics (by file)" screens, unless the LAREA clause is also specified. This clause is
not ignored when disabling the event.

 LAREA logical_area_name − Defines the name of a particular logical area, such as a
table, btree index, hash index, or blob. When this clause is specified, the statistic field
selected must be from the "Logical Area" screens. This clause is not ignored when disabling
the event.

 INITIAL value − Defines the initial value of the "current" event threshold. The default
value is zero (0) for MAX_XXX thresholds and "very big number" for MIN_XXX thresholds. The
default value guarantees that at least one event will be signaled, thereby initializing the new
"current" threshold value.

 EVERY value − Defines the value by which the initial threshold will be incremented or
decremented when an event is signaled. If this value is the default value zero (0) for any
event except the MIN_CUR_RATE and MAX_CUR_RATE events, then the event will be
signaled only once.

 LIMIT value − Defines the maximum number of times the event can be signaled. If the
value is the default value zero (0), events can be signaled indefinitely providing that the
EVERY clause is specified with a non-zero value.

 SKIP value − Defines the number of event notifications to ignore before performing an
actual notification. This clause is extremely useful for the MIN_CUR_RATE and
MAX_CUR_RATE events, as the thresholds for these events are not reset upon being signaled.
The default value zero (0) ensures that all events are notified.

 NOTIFY oper_class_list − Defines the quoted comma-separated list of operators to be
notified for all events defined on the specified statistic. Valid operator keywords are
CENTRAL, DISKS, CLUSTER, SECURITY and OPER1 through OPER12.

 INVOKE program_name − Defines the user-supplied program to be invoked for all events
defined on the specified statistic. On OpenVMS, the program name is specified as a DCL
process global symbol known to the RMU/SHOW STATISTICS utility.

© Copyright 2006 Hewlett-Packard Development Company, L.P 5

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

Event Description Readability

Very long configuration file lines can be continued on the next line by terminating the line with a
back-slash (\). As the last character of a line, this continuation character is used to indicate that the
configuration entry is continued on the next line exactly as if it were entered as a single line. Lines can
be continued practically indefinitely, up to 2048 characters, even within quoted values. The following
example demonstrates how to define a multi-line event description:

EVENT_DESCRIPTION="ENABLE 'pages checked' \
 MAX_CUR_TOTAL \
 INITIAL 7 \
 EVERY 11 \
 LIMIT 100 \
 INVOKE DB_ALERT";

The continuation character is not limited to the EVENT_DESCRIPTION variable; it can be used for
any configuration variable.

Comments can be embedded in continued lines if they start at the beginning of the next line. The
following example demonstrates two event descriptions containing embedded comments. The
comment in the second event description takes precedence over the line continuation character.

EVENT_DESCRIPTION="ENABLE ' (Asynch. reads)' \
 MAX_CUR_TOTAL \
 AREA EMPIDS_OVER \
! this will work as expected
 INITIAL 6 EVERY 10 LIMIT 100 \
 INVOKE DB_ALERT";
EVENT_DESCRIPTION="ENABLE ' (Asynch. reads)' \
 MAX_CUR_TOTAL ! this will NOT work as expected \
 AREA EMPIDS_OVER \
 INITIAL 6 EVERY 10 LIMIT 100 \
 INVOKE DB_ALERT";

Event Semantics

For an event to be active, you must specify either one or both of the NOTIFY or INVOKE attribute
clauses. When using the INVOKE attribute clause, the program must be specified by defining a
process-global symbol pointing to the DCL command procedure or image to be invoked. The INVOKE
program and NOTIFY operator classes apply to all events defined for the statistic field. Therefore,
these clauses need to be defined only once per statistic field, no matter how many events thresholds
are defined for that statistic. By specifying multiple programs or operator classes, only the last-
specified attribute is used.

Once an event has been signaled, it will only be re-signaled if the EVERY attribute clause was
specified with a non-zero value. The current threshold value, originally initialized to the INITIAL
value, will be advanced for MAX_XXX thresholds and declined for MIN_XXX thresholds. The
exceptions to this rule are the current rate thresholds MIN_CUR_RATE and MAX_CUR_RATE, which
are never advanced nor declined. The MIN_XXX thresholds disable themselves once the INITIAL
value reaches zero (0), while the MAX_XXX thresholds never disable themselves.

© Copyright 2006 Hewlett-Packard Development Company, L.P 6

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

Once an event has been disabled, it can be re-enabled only by importing a new configuration file or
by manually using the Statistics Event Information screen, Re-enable all disabled events configuration
sub-menu option. Individual events cannot be re-enabled on line.

How User-Defined Events Work

The user-defined events are analyzed by the RMU/SHOW STATISTICS utility at the specified screen
refresh rate. The default screen refresh rate of 3-seconds is ideal for most databases. However, using
a 1-second refresh rate will produce a finer granularity event signaling mechanism. Multiple events
defined for the same statistic field may cause the specified program to be invoked multiple times (once
for each affected event).

As the RMU/SHOW STATISTICS utility identifies a statistic field whose current value or average value
is changing, it examines any defined event thresholds established for that statistic field. This manner of
examination minimizes the impact of event analysis, since the analysis is performed as part of the
normal statistics collection process.

When the utility determines that a specified event threshold has been exceeded, an event is signaled.
The signaling of the event means that any specified programs will be invoked and any specified
operators will be notified. The event notification occurs immediately.

If you defined a program that will be invoked when an event is signaled, the program will be invoked
with eight parameters. Some of the parameters contain multiple words that must be quoted if the
parameters are passed to other utilities.

The parameters passed to invoked programs are as follows:

 P1 − This parameter is the date and time the event occurred. This parameter contains
embedded blanks.

 P2 − This parameter is the statistic field name. This parameter may contain embedded blanks.

 P3 − This parameter is the event name.

 P4 − This parameter is the current event numeric value, expressed to the nearest tenth.

 P5 − This parameter is the word above or below.

 P6 − This parameter is the current event threshold value.

 P7 − This parameter is the event occurrence count.

 P8 − This parameter is the optional physical area and/or logical area name for the statistic
field.

The P8 parameter is either null (blank) or contains the name of the affected storage area and/or
logical area. The following example contains a log file sample output where an event for a
partitioned logical area was signaled. Note that when both the storage area and logical area names
are specified, they are separated by a period (.).

pages checked MAX_CUR_TOTAL 6.0 above 4.0 count is 1
area is EMPIDS_MID.EMPLOYEES
pages checked MAX_CUR_TOTAL 32820.0 above 5.0 count is 1
area is EMPIDS_OVER.EMPLOYEES

© Copyright 2006 Hewlett-Packard Development Company, L.P 7

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

Runtime Event Status Information

The current runtime status of the user-defined events can be examined using the new Statistics Event
Information screen, located in the Database Parameters sub-menu. Note that you do not have to be
viewing this screen to signal events. Note also that the physical area and logical area identifiers are
only displayed in Full mode.

Real-Life User-Defined Event Example

Nothing demonstrates a new feature better than a real-life example explained in step-by-step detail.
For the purposes of this example, suppose that the DBA wants to be sent email whenever a database
freeze occurs. A database freeze occurs when an application process on the database prematurely
terminates (i.e., “dies”). Such an event results in all application activity being temporarily suspended
until the recovery operation for the terminated process has been completed. This is a very significant
and serious runtime event that should be immediately detected.

Using events to notify the DBA when a process terminates prematurely is very easy to accomplish. The
following steps describe how this can be achieved using the RMU/SHOW STATISTICS utility User-
Defined Events:

1. Identify the operation. Because you are going to define a new event, specify the ENABLE
operation keyword.

2. Identify the statistic name to which the event will be assigned. Use the "process failures" statistic
from the "Recovery Statistics" screen, which is located in the "AIJ Information" sub-menu. This
statistic is available even if you are not using after-image journaling.

3. Identify the threshold name to use. Use the MAX_CUR_TOTAL threshold, since this represents
the current number of processes that have failed.

4. Identify the event attributes to use. This is probably the hardest part of defining an event. You
want to be alerted to any process failure, so you must set the INITIAL attribute to zero (0). Since
you want to be notified on each and every process failure, set the EVERY attribute to one (1) and
the LIMIT attribute to zero (0).

5. Define how you will be alerted about the event. Since you want to be sent mail, use the
INVOKE clause. Invoking a program on OpenVMS requires that you define a "DCL process-
global symbol" to identify the actual DCL script, as is demonstrated by the following example:

6. Write the program to be invoked. Since you want to be sent mail with a clear description of the

event actually signaled, use the simple DCL script in the following example:

7. Combin
the fina

© Copyrigh
$ set noon
$ create /nolog sys$scratch:dbr_logger.tmp
EOD
$ open /write dbr_logger sys$scratch:dbr_logger.tmp
$ write dbr_logger " '''p1' ''p2' ''p3' ''p4' ", -
" ''p5' ''p6' (count is ''p7') area is ''p8' "
$ close dbr_logger
$ mail sys$scratch:dbr_logger.tmp -
 RDB_DBA_USER /subject="DBR notification"
$ / $

$ DBR_LOGGER :==@SYS$SYSTEM:DBR_LOGGER.COM
e all of this information into the configuration file entry. The following example contains
l event description as you would enter it in the configuration file:

t 2006 Hewlett-Packard Development Company, L.P 8

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

EVENT_DESCRIPTION="ENABLE 'process failures'\
 MAX_CUR_TOTAL \
 INITIAL 0 EVERY 1 LIMIT 0 \
 INVOKE DBR_LOGGER";

8. Invoke the RMU/SHOW STATISTICS utility as a server, using the configuration file. Be sure to use
the /CLUSTER command qualifier if you want to be notified of cluster-wide events. The following
example demonstrates the command-line to perform this operation:

$ RMU/SHOW STATISTIC -
 /CONFIG=CONFIG.CFG -
 /NOINTERACTIVE /UNTIL=HH:MM:SS -
 MF_PERSONNEL

Because applications increasingly require 24*7 availability, the rate at which DBAs are expected to
react to potential downtime increases accordingly. The RMU/SHOW STATISTICS utility User-Defined
Events provides the means by which DBAs can be automatically alerted when such critical situations
arise, therefore enabling timely corrective actions.

Glossary of Terms for this Section

Configuration Variable − A symbolic name that defines a value that can be used to define other
variables’ values, or can be used by the RMU/SHOW STATISTICS utility.

Drill-Down Event − An event defined on a specific storage area, logical area, or logical area
partition statistic.

Event − The identification of a particular statistic value on which the RMU/SHOW STATISTICS utility
is to perform some user-defined action.

Oracle Rdb − A high-end client/server relational database for Alpha AXP and VAX.

Statistic Name − The valid statistic field for which the event is to be enabled or disabled.

Summary Event − A general-purpose event defined on a "summary" statistic field.

Threshold Name − The columns in the numeric version of the statistics screens for the specified
statistic to be enabled or disabled.

PATROL Knowledge Module for Rdb
PATROL is a systems, applications, and event management tool for database and system
administrators. It provides an object-oriented graphical workspace where you can view the status of
every vital resource in the distributed environment that it is managing. PATROL monitors and manages
the resources in the environment using information obtained from special files called Knowledge
Modules (KM) that are loaded in the console. If PATROL detects a problem with a particular computer
or application that it is monitoring, then these modules provide “knowledge” information that PATROL
will use to attempt to fix the problem. If the problem escalates or requires human intervention, PATROL
displays every resource affected by the problem in a warning or alarm condition. Table 1 (see
Appendix) includes a list of all the Rdb KM parameters that can be monitored. PATROL is made up of
three major components: the PATROL Console, the PATROL Agent, and the Knowledge Modules.

© Copyright 2006 Hewlett-Packard Development Company, L.P 9

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

Rdb Trace and Rdb Expert
Oracle Trace is a layered product that gathers and reports event-based data from any combination of
OpenVMS layered products and application programs containing Oracle Trace service routine calls.
Currently, the only way to perform gathering and reporting on Rdb databases on OpenVMS is
through the Oracle Trace for OpenVMS layered product. Application programs that can contain
Oracle Trace service routines are considered to be facilities that include the following products: DEC
ACMS, DEC ALL-IN-1, DECforms, Oracle CODASYL DBMS, Oracle RALLY, and Oracle Rdb.

Oracle Trace provides Oracle Expert for Rdb along with data that it uses to optimize existing Rdb
databases. Event-based data can be collected from products that contain Oracle Trace service routine
calls. In addition, Oracle Trace routine calls can be added to other user-developed applications to
collect data from them. The process of adding Oracle Trace service routine calls to an application is
called instrumenting the application.

The Oracle Trace software operates with minimum performance impact on the system. It can run with
both the development and production versions of your application to give you information about the
behavior of your application.

Features of the Oracle Trace

Using Oracle Trace, the event data collected from applications can be used for different purposes,
including the following:

 Tuning and performance improvements of applications

 Planning for hardware resources, (i.e., capacity planning, and so on)

 Tuning the performance of the databases

 Debugging applications

 Logging errors

Tuning the Performance of Databases

Oracle Trace provides request and transactional-level information from Oracle Rdb. This information
allows a database administrator to examine a wide variety of performance statistics and usage
information related to actual transactions and DML requests.

Oracle Trace provides RdbExpert information that RdbExpert uses to produce more efficient database
designs. Database administrators no longer have to guess about the database workload because
Oracle Trace collects actual workload information.

Transaction Processing

Oracle Trace tabular reports identify occurrences such as transaction with the higher virtual memory
usage or the 95th percentile disk I/O for each transaction. For transaction processing, Oracle trace
gathers information for DEC ACMS events to provide task-level performance information.

Relating Events Among Facilities

Oracle Trace allows the instrumentation of routines that use the cross-facility capability. For example,
using the cross-facility, Oracle Trace associates the ACMS Procedure Call event with its related
Oracle Rdb transactions and requests in order to provide a greater understanding of the total
resources the ACMS Procedure Call uses.

Internally Developed Tool
The MSE Rdb_Mon utility is an nternally-developed application that makes use of the Oracle Rdb
RMU/SHOW STATISTICS utility and adds alarming and notifications. Developed by MSE, this tool

© Copyright 2006 Hewlett-Packard Development Company, L.P 10

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

contains a number of DCL procedures that can be adapted to the needs and requirements of the
Oracle Rdb DBA.

Several forms of the Rdb_Mon utility currently exist. One form is a standalone configuration,
comprising a number of DCL command procedures, where the tool is not integrated with any other
enterprise management system. Another form integrates with an enterprise-wide management system.
Currently, the latter from has been integrated with the Heroix Enterprise Management products
RoboMon, RoboEDA, and so on. Rdb_Mon can be customized to be included and integrated under
any other suite of enterprise management products.

Database Monitoring and Alarming Basic Sequence

The following figure illustrates the sequence for monitoring databases:

Rdb_Mon High Level Design

The following figure shows the logic flow of the MSE-developed tools for the Vodafone Rdb Database
Monitoring and Alarming project:

Discover databases to
be monitored

Create performance reports

Analyze performance
reports based on rules

Exceptions notification
via SNMPTRAP,
OPCOM, VMS Mail,
etc.

Start

Discover
databases and

create Rdb reports
based on

predefined rules

Analyze Rdb
Performance Data

Database
performance data and

exceptions

Notification
Processes

(SNMPTRAP,
OPCOM, VMS

Mail, etc.)

time ?

End

© Copyright 2006 Hewlett-Packard Development Company, L.P 11

Oracle Rdb Monitoring and Alarming on OpenVMS - Kostas G. Gavrielidis

Summary

This article described the monitoring and alarming capabilities of existing utilities and products for the
Oracle Rdb database engine on OpenVMS platforms. It presented the MSE Rdb_Mon utility as one
of the internally-developed alternatives for this technology sector.

References

http://www.oracle.com/technology/products/rdb/index.html - Oracle Rdb

http://documents.bmc.com/supportu/documents/55/16/5516/5516.pdf - PATROL Knowledge

Module for Rdb User Guide

Kostas G. Gavrielidis works in HP Services Customer Support and has been with HP for more than 20
years. Currently, and for the last 10 years, he is involved with the MSE proactive consulting projects for our
customer production Database Management systems, and works on the analysis and performance
improvements for SAP R/3, Oracle, Rdb, Ingres, SYBASE, SQL Server on UNIX, OpenVMS, and Windows
platforms.

© Copyright 2006 Hewlett-Packard Development Company, L.P 12

http://www.oracle.com/technology/products/rdb/index.html
http://documents.bmc.com/supportu/documents/55/16/5516/5516.pdf

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

Appendix - Rdb KM parameters that can be monitored
Table 1: Rdb KM parameters that can be monitored

Parameter Description

RDB_aij_reads Displays the number of read QIOs issued to the database .AIJ file (if after-
image journaling is enabled).

RDB_aij_writes Displays the total number of QIOs issued to the database after-image journal
file (if after-image journaling is enabled).

RDB_attaches Displays the number of current attaches to the database.

RDB_blasts Monitors the number of blocking AST’s delivered to Rdb by the OpenVMS lock
manager.

RDB_buf_unmark This parameter is incremented each time a modified buffer is written back to
disk. Its value is equal to the sum of the 14 fields: transaction, pool overflow,
blocking AST, lock quota, lock conflict, user unbind, batch rollback, new area
mode, larea change, incr backup, no aij access, truncate snaps, checkpoint,
and aij_backup.

RDB_check_pts Displays the current number of checkpoints per minute.

RDB_df_reads Displays the number of read QIOs issued to the database storage area for a
single-file and multifile databases and snapshot files.

RDB_df_writes Displays the number of write QIOs issued to the database storage area for a
single-file and multifile databases and snapshot files.

RDB_dup_nd_ins Displays the number of duplicate index keys inserted into the database’s
indexes. There should be a one-to-one correspondence to the number of
duplicate records being stored in the table.

RDB_fetch_read Displays the number of synchronous data page requests to the PIO subsystem
where only read privileges are being requested for the page.

RDB_fetch_upd Displays the number of data page requests to the PIO subsystem where update
and read privileges are being requested for the page.

RDB_free_global This parameter displays the current percentage of free global buffers.

RDB_hash_del Displays the number of hash key deletions from the database’s hashed
indexes. It includes unique key deletions and duplicate key deletions.

RDB_hash_dup_ins Displays the number of duplicate hash key insertions in the database’s hashed
indexes.

RDB_hash_ins Displays the number of hash key insertions in the database’s hashed indexes.
It includes unique key insertions and duplicate key insertions.

RDB_lck_conf_unmask This parameter is incremented by 1 for each modified buffer that is written
back to the disk to reduce the possibility of a deadlock when Rdb discovers a
lock conflict.

RDB_lock_dem Displays the number of $ENQ lock requests to demote an existing lock to a
lower lock mode. These requests always succeed.

RDB_lock_req Displays the number of lock requests to new locks. Whether the lock request
succeeds or fails, it is included in this count.

RDB_overflow_unmark This parameter is incremented by 1 for each modified buffer that is written
back to disk as a result of a request to read in a new page from disk.

RDB_recoveries Displays the current number of detached recovery (DBR) processes acting on
this database.

RDB_rt_nd_rem Displays the number of index entries removed from a root node because of
deletion of entries within lower-level nodes. If an index consists of only one
node, removals from this node are not included in this field; but are included in
the leaf removals field.

RDB_rt_nd_ins Displays the number of index entries inserted into the root index node. The

© Copyright 2006 Hewlett-Packard Development Company, L.P 13

The Development Of A High Performance VAX 6000 Emulator – Robert Boers

number of insertions should be small except when you load a database. If an
index consists of only one node, insertions into this node are not included in
this field; but are included in the leaf insertion field.

RDB_rt_reads Displays the number of read QIOs issued to the database root (.RDB) file. Rdb
reads the .RDB file when a new user attaches to the database and when an
.RDB file control block needs to be updated because of database activity on
another OpenVMS cluster node.

RDB_rt_writes Displays the number of write QIOs issued to the database root (.RDB) file. Rdb
writes to the .RDB file when a user issues a COMMIT or ROLLBACK statements.
Other events also cause updates to the .RDB file.

RDB_ruj_reads Displays the number of read QIOs issued to the database recovery unit journal
(.RUJ) file. This operation reads before-image records from the .RUJ file to roll
back a verb or a transaction.

RDB_ruj_writes Displays the number of write QIOs issued to the database recovery unit journal
(.RUJ) file. This operation writes before-image records to the .RUJ file in case a
verb or a transaction must be rolled back. Before-image must be written to the
RUJ file before the corresponding database page can be written back to the
database.

RDB_trans_cnt Displays the number of completed database transactions. It is the count of the
COMMIT and ROLLBACK statements that have executed.

RDB_txn_unmark This parameter is incremented by 1 for each modified buffer that is written
back to disk as a result of a COMMIT or ROLLBACK statement.

RDBMON_attaches Displays the number of current attaches to all databases on this system.

RDBMON_databases Displays the number of open databases on this system.

RDBMON_recoveries Displays the current number of detached database recovery (DBR) processes
on this system.

RMU_stats This parameter is the collector for all Rdb parameters.

For more information
For more information on this article and to make suggestions and comments for improvements, please
email the author.

© Copyright 2006 Hewlett-Packard Development Company, L.P 14

	Oracle Rdb Monitoring and Alarming on OpenVMS
	Overview
	Database Monitoring Objectives
	RMU/SHOW STATISTICS Utility
	Introduction
	RMU/SHOW STATISTICS Events
	Event Definition Syntax
	Event "Operation" Clause
	Event "Statistic Name" Clause
	Event “Threshold Name” Clause
	Event "Attribute List" Clause
	Event Description Readability
	Event Semantics
	How User-Defined Events Work
	Runtime Event Status Information
	Real-Life User-Defined Event Example
	Glossary of Terms for this Section

	PATROL Knowledge Module for Rdb
	Rdb Trace and Rdb Expert
	Features of the Oracle Trace
	Tuning the Performance of Databases
	Transaction Processing
	Relating Events Among Facilities

	Internally Developed Tool
	Database Monitoring and Alarming Basic Sequence
	Rdb_Mon High Level Design
	Summary
	References

	Appendix - Rdb KM parameters that can be monitored
	For more information

