
Alignment faults…what are they and why should I care? – Guy Peleg

 OpenVMS Technical Journal V9

Alignment Faults – What Are they and Why Should I Care?

Guy Peleg, Director of EMEA Operations, BRUDEN-OSSG
Overview
The article explains what alignment faults are, describes how alignment faults impact application
performance, presents ways to detect alignment faults on a running system, and provides a few ideas
on fixing alignment faults.

What is an Alignment Fault?
AlphaServer and Intel® Itanium® 2 processors provide fast access to naturally aligned data. To be
naturally aligned, a word datum must be on a word boundary, a longword datum must be on a
longword boundary, and a quadword datum must be on a quadword boundary.

When an attempt is made to load or store a quadword, longword, or word to or from a memory
location that does not have a naturally aligned address, the processor transfers control to a special
routine (PALcode on AlphaServer systems and an operating system routine on Intel® Itanium® 2
systems) to execute a series of instructions to perform the unaligned access. The step of executing a
special set of routines to access unaligned data is referred to as alignment fault.

The following diagram illustrates the difference between aligned and unaligned memory access:

© Copyright 2007 Hewlett-Packard Development Company, L.P. 1

Alignment faults…what are

© Copyright 2007 Hewlett-Packard Development Company, L.P.

they and why should I care? – Guy Peleg

1

2

3

In the first row, we access a longword starting with address 0 that is naturally aligned so all is we
the second row we attempt to access a longword starting at address 10. This address is not natur
aligned (10 divided by 4 does not yield a remainder of 0). Alignment fault will occur in this case.
the third row, we attempt to read a quadword starting at address 16 that is naturally aligned (16
divided by 8 yields a remainder of 0) so all is well. In the fourth row, we attempt to access a
quadword starting at address 28. Address 28 is not quadword aligned so an alignment fault will
occur.

Okay…I understand Alignment faults but why should I care?
When the compiler can detect misaligned data, what would normally take three instructions on an
AlphaServer system will take fifteen. As not all of these instructions access memory, the aggregate
degradation in performance is an instruction stream that is three times slower. When the compiler
cannot correct the problem, a run time alignment fault is incurred. The alignment handler is about
to twenty times slower than accessing naturally aligned data.

The behavior of an Intel® Itanium® 2 system is similar to the AlphaServer, except that alignment fa
are hundreds to thousands of times slower than accessing naturally aligned data, as alignment fa
are handled by the operating system itself instead of PAL code (firmware). There is also a system-w
impact for resolving alignment faults. This impact is due to the requirement for spinlock (MMG) an
associated MP synchronization time.

Let’s take a look at a small example. The following program allocates 1 GB of virtual memory in P
space and randomly increments 50,000,000 quadwords.

$ ty aligned.c

#include <far_pointers>

#include <gen64def>

#include <ints>

#include <starlet>

#include <stdio>

#include <stdlib>

#include <lib$routines.h>

#include <unistd.h>
0

8
 2

6

4

2

ll. In
ally
 In

 ten

ults
ults

ide
d

2

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 3

#include <stsdef>

#define random_key(upper_bound) (abs (random () % upper_bound))

void main()

{

int NumberOfBytes = 1000000000; // 1GB using marketing bytes

int status;

VOID_PQ MappedVA;

INT64_PQ RandomVA;

 lib$init_timer(); // initialize timer

 //

 // Allocate 1GB from P2 space

 //

 status = lib$get_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 RandomVA = MappedVA;

 for (int i=0; i<50000000; i++)

 {

 // Increment a random Quadword

 RandomVA [random_key((100000000/8) -1)] ++ ;

 }

 //

 // Free VM

 //

 status = lib$free_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 lib$show_timer();

}

$! Run the program – rx2600 1.3 GHZ

$ cc/pointer=long aligned

$ link aligned

$ r aligned

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 4

 ELAPSED: 0 00:00:18.97 CPU: 0:00:18.97 BUFIO: 0 DIRIO: 0 FAULTS: 713808

$

Incrementing 50,000,000 random quadwords on a 1.3 GHz Integrity rx2600 Server took 18.97
seconds.

Now, let’s force the above program to increment 50,000,000 quadwords using unaligned pointers:

$ ty not_aligned.c

#include <far_pointers>

#include <gen64def>

#include <ints>

#include <starlet>

#include <stdio>

#include <stdlib>

#include <lib$routines.h>

#include <unistd.h>

#include <stsdef>

#define random_key(upper_bound) (abs (random () % upper_bound))

void main()

{

int NumberOfBytes = 1000000000; // 1GB using marketing bytes

int status;

VOID_PQ MappedVA;

INT64_PQ RandomVA;

 lib$init_timer(); // initialize timer

 //

 // Allocate 1GB from P2 space

 //

 status = lib$get_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 //

 // Force the pointer to become unaligned

 //

 RandomVA = (INT64_PQ)((char *) MappedVA + 1);

 for (int i=0; i<50000000; i++)

 {

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 5

 // Increment a random Quadword

 RandomVA [random_key((100000000/8) -1)] ++ ;

 }

 //

 // Free VM

 //

 status = lib$free_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 lib$show_timer();

}

$ cc/pointer=long not_aligned.c

$ link not_aligned

$ r not_aligned
 ELAPSED: 0 00:03:45.62 CPU: 0:03:45.53 BUFIO: 0 DIRIO: 0 FAULTS: 200027

$

The same 1.3 GHz Integrity rx2600 Server increments 50,000,000 unaligned quadwords in 3
minutes and 45 seconds.

For our small test program, performance degrades by more than 12 times when accessing unaligned
data.

Detecting Alignment Faults
Now that you are all convinced that alignment faults are bad for performance, let’s take a look at
various tools provided by OpenVMS for detecting alignment faults:

• MONITOR ALIGN (V8.3)
• FLT extension in SDA
• Symbolic Debugger

MONITOR ALIGN
OpenVMS V8.3 introduced a new class for the monitor utility. The align class monitors alignment
faults currently occurring throughout the system and breaks out the output per mode.

The following display was generated while running the NOT_ALIGNED program:

$ monitor align/int=1

 OpenVMS Monitor Utility

 ALIGNMENT FAULT STATISTICS

 on node IT13

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 6

 21-NOV-2006 01:50:13.26

 CUR AVE MIN MAX

 Kernel Fault Rate 0.00 0.44 0.00 4.00

 Exec Fault Rate 0.00 0.00 0.00 0.00

 Super Fault Rate 0.00 0.00 0.00 0.00

 User Fault Rate 445492.00 220809.67 0.00 445492.00

 Total Fault Rate 445492.00 220810.12 0.00 445492.00

Our test program generates more than 445,000 alignment faults per second, all in user mode.

MONITOR ALIGN provides a high-level overview of alignment faults currently occurring on the
system. It helps detect alignment faults and warns that the system is suffering from alignment faults. But
MONITOR ALIGN does not provide any information about which process or program generated the
alignment faults. MONITOR ALIGN is intended to help and determine if you are suffering from
alignment faults. Different tools should be used to determine what is generating the faults. Note that
MONITOR ALIGN is currently available on Intel® Itanium® 2 systems only.

FLT Extension in SDA
Once you determine that your system is prone to alignment fault issues, the next step is to determine
where the faults are coming from. The FLT extension in SDA is a very powerful tool for detecting and
logging alignment faults. For each alignment fault that occurs while logging is enabled, it logs the
time the fault occurred, the CPU encountering the fault, the unaligned Virtual Address, access mode,
and process id. This information allows the developer to determine the exact location in the
application which generated the alignment fault. The FLT extension is available on both AlphaServer
and Intel® Itanium® 2 systems.

Here are few examples demonstrating the use of FLT

$ ana/sys

OpenVMS system analyzer

Load the SDA extension

SDA> flt load

FLT$DEBUG load status = 00000001

Start tracing …

SDA> flt start trace

Tracing started...

Look at the summary display

SDA> flt show trace/sum

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 7

Fault Trace Information: (at 21-NOV-2006 02:07:21.87, trace time 00:00:00.190015)

Exception PC Count Exception PC Module
Offset

----------------- ------------ -------------------------------------- ---------------------------------
-

00000000.000103D1 39384 SYS$K_VERSION_16+00391

00000000.000103E1 39383 SYS$K_VERSION_16+003A1

Two Program Counters are displayed pointing to PC 103D1 and 103E1, each PC generated
more 39834 faults. Let’s find our culprit, instead of looking at the summary output
we can look at individual entries in the trace buffer for more information:

SDA> flt show trace

Unaligned Data Fault Trace Information:

Timestamp CPU Exception PC Unaligned VA Access
EPID Trace Buffer

---------------------- --- --- ----------------- ------ ----
---- -----------------

21-NOV 02:08:22.002794 00 00000000.000103E1 SYS$K_VERSION_16+003A1 00000000.840BECF9 User
2160057F FFFFFFFF.7E4E86C0

21-NOV 02:08:22.002791 00 00000000.000103D1 SYS$K_VERSION_16+00391 00000000.840BECF9 User
2160057F FFFFFFFF.7E4E8658

21-NOV 02:08:22.002789 00 00000000.000103E1 SYS$K_VERSION_16+003A1 00000000.84617049 User
2160057F FFFFFFFF.7E4E85F0

21-NOV 02:08:22.002786 00 00000000.000103D1 SYS$K_VERSION_16+00391 00000000.84617049 User
2160057F FFFFFFFF.7E4E8588

21-NOV 02:08:22.002784 00 00000000.000103E1 SYS$K_VERSION_16+003A1 00000000.8252A0E1 User
2160057F FFFFFFFF.7E4E8520

21-NOV 02:08:22.002781 00 00000000.000103D1 SYS$K_VERSION_16+00391 00000000.8252A0E1 User
2160057F FFFFFFFF.7E4E84B8

21-NOV 02:08:22.002779 00 00000000.000103E1 SYS$K_VERSION_16+003A1 00000000.850E3241 User
2160057F FFFFFFFF.7E4E8450

21-NOV 02:08:22.002776 00 00000000.000103D1 SYS$K_VERSION_16+00391 00000000.850E3241 User
2160057F FFFFFFFF.7E4E83E8

21-NOV 02:08:22.002774 00 00000000.000103E1 SYS$K_VERSION_16+003A1 00000000.84CD53D1 User
2160057F FFFFFFFF.7E4E8380

21-NOV 02:08:22.002771 00 00000000.000103D1 SYS$K_VERSION_16+00391 00000000.84CD53D1 User
2160057F FFFFFFFF.7E4E8318

…….

All the entries are pointing to process with ID 2160057F, let’s look at the
process to find out what image it is executing:

SDA> set proc/id=2160057F

SDA> show proc/image

Process index: 017F Name: Faulty Extended PID: 2160057F

--

 Process activated images

 Image Name Type IMCB GP

--------------------------------------- ------------ -------- -----------------

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 8

NOT_ALIGNED MAIN 7FE89290 00000000.00240000

DCL MRGD SHR 7FE88BD0 00000000.7B0D8000

LIBRTL GLBL SHR 7FE8BC10 00000000.7B546000

LIBOTS GLBL SHR 7FE8A690 00000000.7B560000

CMA$TIS_SHR GLBL SHR 7FE88010 00000000.7B73C000

DPML$SHR GLBL SHR 7FE88270 00000000.7B904000

DECC$SHR GLBL SHR 7FE883A0 00000000.7BB10000

SYS$PUBLIC_VECTORS GLBL 7FE886C0 FFFFFFFF.8CA00400

SYS$BASE_IMAGE GLBL 7FE88920 FFFFFFFF.8CA24E00

Total images = 9 Pages allocated = 322

SDA> map 0103E1

Image Base End Image Offset

NOT_ALIGNED

 Code 00000000.00010000 00000000.0001059F 00000000.000103E1

SDA>

We found out that all the alignment faults are generated by process “Faulty” executing
the NOT_ALIGNED image. Next step would be to look at the listing and determine
the offending code in offset 103E1.

Before we look at the listing, the FLT extension can interpret the location of the faulting PC
if the image contains traceback information and if it lives in system space. Now, let’s
install NOT_ALIGNED.EXE as resident image, it will force the image to be copied into system
space:

SDA> flt stop trace

SDA> spawn instal add/resi SYS$SYSDEVICE:[PELEG]NOT_ALIGNED

SDA> flt start trace

Tracing started...

SDA> flt show trace/summ

Fault Trace Information: (at 21-NOV-2006 02:13:23.77, trace time 00:00:00.190637)

Exception PC Count Exception PC Module
Offset

----------------- ------------ -------------------------------------- ---------------------------------
-

FFFFF802.11EFE3D1 39384 NOT_ALIGNED+103D1 NOT_ALIGNED
000103D1

 NOT_ALIGNED + 000003D1 / main + 000002D1

FFFFF802.11EFE3E1 39383 NOT_ALIGNED+103E1 NOT_ALIGNED
000103E1

 NOT_ALIGNED + 000003E1 / main + 000002E1

SDA>

We start tracing again, now the summary display show the exact location in the image that
generated the fault. In our example this is routine main+2D1 and main +2E1 in NOT_ALIGNED.EXE.

Let’s look at relevant portion of the listing in NOT_ALIGNED.LIS

001000000046 0240 (pr6) break.m 1048577

00C7080121C0 0241 setf.sig f7 = r9

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 9

018402242200 0242 cmp4.lt pr8, pr0 = i, r34 ;; // pr8, pr0 = r33, r34
// 023707

 }

 { .mfi

00C708006180 0250 setf.sig f6 = r3 // 023711

000008000000 0251 nop.f 0

000008000000 0252 nop.i 0 ;;

 }

 { .mfi

000008000000 0260 nop.m 0

0000E000E240 0261 fcvt.xf f9 = f7

000008000000 0262 nop.i 0

 }

 { .mfi

000008000000 0270 nop.m 0

0000E000C200 0271 fcvt.xf f8 = f6

000008000000 0272 nop.i 0 ;;

 }

 { .mfi

000008000000 0280 nop.m 0

000630910280 0281 frcpa.s1 f10, pr6 = f8, f9

000008000000 0282 nop.i 0 ;;

 }

 { .mfi

000008000000 0290 nop.m 0

018448A021C6 0291 (pr6) fnma.s1 f7 = f10, f9, f1

000008000000 0292 nop.i 0 ;;

 }

 { .mfi

000008000000 02A0 nop.m 0

010438A142C6 02A1 (pr6) fma.s1 f11 = f10, f7, f10

000008000000 02A2 nop.i 0

 }

 { .mfi

000008000000 02B0 nop.m 0

010438700186 02B1 (pr6) fma.s1 f6 = f7, f7, f0

000008000000 02B2 nop.i 0 ;;

 }

 { .mfi

000008000000 02C0 nop.m 0

0104508001C6 02C1 (pr6) fma.s1 f7 = f8, f10, f0

000008000000 02C2 nop.i 0 ;;

 }

 { .mfi

000008000000 02D0 nop.m 0

010430B16286 02D1 (pr6) fma.s1 f10 = f11, f6, f11
000008000000 02D2 nop.i 0 ;;

 }

 { .mfi

000008000000 02E0 nop.m 0

0184389102C6 02E1 (pr6) fnma.s1 f11 = f9, f7, f8
000008000000 02E2 nop.i 0

 }

 { .mfi

000008000000 02F0 nop.m 0

018448A02186 02F1 (pr6) fnma.s1 f6 = f10, f9, f1

000008000000 02F2 nop.i 0 ;;

 }

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 10

 { .mfi

main + 2D1 and main + 2E1 point to line number 23711 in the source:

 1 23707 for (int i=0; i<50000000; i++)

 2 23708 {

 2 23709

 2 23710 // Increment a random Quadword

 2 23711 RandomVA [random_key((100000000/8) -1)] ++ ;
 2 23712

 1 23713 }

The next step logical step would be fixing the program to avoid unaligned memory access.

Symbolic Debugger
The symbolic debugger can be used for detecting alignment faults. The
SET BREAK/UNALIGN command will cause the debugger to break each time an alignment fault
occurs. The faulting Virtual Address, the current PC, and the source line that generated the fault will
be displayed:

$ run/debug not_aligned

 OpenVMS I64 Debug64 Version V8.3-009

%DEBUG-I-INITIAL, Language: C, Module: NOT_ALIGNED

%DEBUG-I-NOTATMAIN, Type GO to reach MAIN program

DBG> set break/unaligned

DBG>

* SRC: module NOT_ALIGNED -scroll-
source**

 23703: // Force the pointer to become unaligned

 23704: //

 23705: RandomVA = MappedVA + 1;

 23706:

 23707: for (int i=0; i<50000000; i++)

 23708: {

 23709:

 23710: // Increment a random Quadword
->3711: RandomVA [random_key((100000000/8) -1)] ++ ;

 23712:

 23713: }

 23714:

 23715: //

 23716: // Free VM

 23717: //

 23718: status = lib$free_vm_64 (&NumberOfBytes, &MappedVA);

 23719:

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 11

* OUT -
output**
**

Unaligned data access: virtual address = 0000000081E0E7E1, PC = 00000000000103E2

break on unaligned data trap preceding NOT_ALIGNED\main\%LINE 23711+402

 23711: RandomVA [random_key((100000000/8) -1)] ++ ;

DBG>

NOTE: SET BREAK/UNALIGNED can not be used while the FLT utility is in use. When FLT is
running, attempting to use the debugger for reporting alignment faults will fail with the
following error:

DBG> set break/unalign
%SYSTEM-E-AFR_ENABLED, alignment fault reporting already enabled
-FOR-W-NOMSG, Message number 00189E80
DBG>

Guidelines for Fixing Alignment Faults
The perfect application avoids alignment faults completely; however life is not always perfect.
Alignment faults are likely to be encountered when a module that declared unaligned data calls a
routine in another module that does not anticipate receiving unaligned data. Remember that
alignment faults are bad on AlphaServer systems, but are really bad on Intel® Itanium® 2 systems.

Some alignment faults are easy to fix, some are very hard, and some are close to impossible. Here
are the most popular ways of fixing alignment faults:

• Align the data.

• Hint to the compiler that the data about to be accessed is (or may be) unaligned.

• Copy the data to an aligned buffer.

Align the Data
Aligning the data is the best solution for avoiding alignment faults.

Today’s compilers are smart enough to detect alignment faults problems most of the time and add
code to access the data through multiple loads, shifts, and masks.
Sometimes it is not possible or not practical to align the data. Such examples would be when
transferring data between systems or when reading/write from/to fixed record layout in a file.

Make sure fields within data structures are naturally aligned. Some compilers like C and C++ do this
by default. In MACRO, use .align [quad|long]. In SDL, use basealign [quad|long]

Hints to the Compiler
Programming languages may support declaration modifiers that will cause predicated code to be
generated that will test for unaligned data and operate on it in such a way as to preclude alignment
faults.
Language support includes:

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 12

• __unaligned (C)

• .set_registers unaligned=<Rx> (Macro)

• align(x) (Bliss32/Bliss64)

• aligned(x) (Pascal)

Using the options will eliminate the alignment faults. However, code accessing aligned data will be
slower than normal.

Remember – the extra code generated when giving hints to the compiler that data maybe unaligned
will perform much better than hitting an alignment fault.

Let’s modify the NOT_ALIGNED program to declare that the pointer for the random data is unaligned:

$ ty not_aligned.c

#include <far_pointers>

#include <gen64def>

#include <ints>

#include <starlet>

#include <stdio>

#include <stdlib>

#include <lib$routines.h>

#include <unistd.h>

#include <stsdef>

#define random_key(upper_bound) (abs (random () % upper_bound))

void main()

{

int NumberOfBytes = 1000000000; // 1GB using marketing bytes

int status;

VOID_PQ MappedVA;

INT64_PQ RandomVA;

 lib$init_timer(); // initialize timer

 //

 // Allocate 1GB from P2 space

 //

 status = lib$get_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 //

 // Force the pointer to become unaligned

 //

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 13

 RandomVA = (INT64_PQ)((char *) MappedVA + 1);

 for (int i=0; i<50000000; i++)

 {

 // Increment a random Quadword – pointer now declared unaligned
 __int64 __unaligned *MyData = &RandomVA [random_key((100000000/8) -1)];
 *MyData = *MyData + 1;

 }

 //

 // Free VM

 //

 status = lib$free_vm_64 (&NumberOfBytes, &MappedVA);

 if (!$VMS_STATUS_SUCCESS(status))

 {

 lib$signal (status);

 return;

 }

 lib$show_timer();

}

$ cc/pointer=long not_aligned.c

$ link not_aligned

$ r not_aligned
 ELAPSED: 0 00:00:20.74 CPU: 0:00:20.67 BUFIO: 0 DIRIO: 0 FAULTS: 703741

$

Now our program completed in 20.74 seconds…this is a big
improvement comparing to 3 minutes and 45 seconds when the
compiler was not expecting unaligned data.

Copying the Data
The last option for fixing alignment faults is to copy the data to an aligned buffer. This approach is
useful when the data itself is aligned but the buffer containing the data is not.

If the amount of data that needs to be moved is small and many references are made to it, then
copying the data is a good idea. However, if the quantity of data to be moved is large and only a
small number of references are made to it, then it is better to take a few alignment faults and leave the
data alone.

Summary
From a performance standpoint, Alignment faults are expensive on AlphaServer systems but are VERY
expensive on Intel® Itanium® 2 systems. For achieving good performance on the latter, alignment
faults need to be resolved. OpenVMS allows monitoring alignment faults using the MONITOR ALIGN
command, the FLT extension in SDA, and the debugger.

To avoid alignment faults, naturally align the data, declare pointers to be unaligned, or copy the data
to an aligned buffer where it makes sense.

Alignment faults…what are they and why should I care? – Guy Peleg

© Copyright 2007 Hewlett-Packard Development Company, L.P. 14

For more information
To get to the latest issue of the OpenVMS Technical Journal, go to:
http://www.hp.com/go/openvms/journal

Author Bio

Guy Peleg joined BRUDEN-OSSG last September, he is a Senior Member of the Technical Staff and
Directorof EMEA Operations. Prior to joining BRUDEN-OSSG, he was a software engineer in the
OpenVMS Engineering group working on the various utilities. He was part of the team ported
OpenVMS to Integrity Server Platforms (IPF), he lead the LMF port to IA64, the EDCL project and
various virtualization projects on IPF. Before joining Engineering, Guy provided customer support and
consulting with Compaq/DEC in their field offices. He is known worldwide for his commitment to the
OpenVMS customer. He has given numerous technical presentations and has been published in the
OpenVMS Systems Technical Journal. His presentations are entertaining and highly informative.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

	Alignment Faults – What Are they and Why Should I Care?
	Overview
	What is an Alignment Fault?
	Okay…I understand Alignment faults but why should I care?
	Detecting Alignment Faults
	MONITOR ALIGN
	FLT Extension in SDA
	Symbolic Debugger
	Guidelines for Fixing Alignment Faults
	Align the Data
	Hints to the Compiler
	Copying the Data
	Summary
	For more information
	Author Bio

