
OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President, BRUDEN-OSSG

 OpenVMS Technical Journal V9

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting
Bruce Ellis, President, BRUDEN-OSSG

Overview
This article intends to cover mailboxes from the basic concepts through advanced troubleshooting. If
you are just starting with mailboxes, you might want to read from the beginning to the basic
examples. If you have experience with mailboxes you may want to move ahead to the troubleshooting
section. Hopefully, there is something for everybody in this article.

Much of the implementation details, starting at the "Mailbox Creation" section are discussed in more
detail in the HP OpenVMS I/O User's Reference Manual Chapter 4 and under the $CREMBX section
of the HP OpenVMS System Services Reference Manual.

Inter-process Synchronization and Communication
OpenVMS processes provide an environment in which programs can be executed. This environment
includes software context, hardware context, and virtual address space. The "divide and conquer"
approach to problem solving allows different programs, running simultaneously under different
processes, to take on parts of a task concurrently. To support this design, the processes need methods
to communicate with one another and to synchronize, or coordinate, activities between the processes.

OpenVMS provides several methods for interprocess synchronization and communication. Methods
for interprocess communication include shared files, logical names, mailboxes, and global sections
(shared virtual memory). Inter-process synchronization methods include common event flags,
mailboxes, and lock management services.

Shared files are generally slow methods of communication. Logical names are potentially faster than
shared files, but extensive use may fragment paged pool. Global sections are probably the fastest
form of interprocess communication. The one major drawback to each of these methods is that there is
no built-in signaling mechanism to notify the target process that there is a need to obtain the new

© Copyright 2007 Hewlett-Packard Development Company, L.P. 1

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

data. In each case, the application could poll for new data, but this wastes CPU time and/or may
cause delays in event notification.

For synchronization within a single system, common event flags have limited name space. You can
only wait on one common event flag cluster at a time and there are only 32 (single-bit) event flags per
cluster. Lock management system services are designed more for coordination of activities than
signaling, although signaling mechanisms can be implemented using the lock management services.
Mailboxes provide methods that allow processes to communicate with one another and to receive
notification that there is data to be processed. In addition, there is an implicit queuing mechanism for
multiple messages that have been written to the mailbox. The programming interface to mailboxes is
simple to implement and can be written in just about any programming language, including DCL.

Mailbox Concepts
Mailboxes are pseudo-devices, similar to UNIX-style pipes. However, mailboxes allow bi-directional
communication, i.e., a single process can read and write the same mailbox. Messages written to a
mailbox are queued in first-in-first-out fashion. To implement pipe-oriented communication, channels
can be assigned to a mailbox, such that the mailbox channel can only be written, or conversely, can
only be read.

A mailbox can have multiple writers and multiple readers, although multiple reader designs are
probably rarer than multiple writers. It is usually easier to implement a single reader of a mailbox
(Figure 1).

Mailbox
Reader

Mailbox
Writer A

Mailbox
Writer B

Mailbox
Writer C

Figure 1. Sample Mailbox Design

When the writer wants to get messages back from the reader, it may use various methods, including
creating a separate mailbox and passing along the mailbox unit number to the reader. The "reader"
would assign a channel to the target mailbox unit and send a response as in Figure 2.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 2

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Mailbox
Reader

Mailbox
Writer A

Mailbox
Writer B

Mailbox
Writer C

Mailbox
Reader

Mailbox
Writer A

Mailbox
Writer B

Mailbox
Writer C

Figure 2. Communication between Mailbox Writer and Reader

In general, a mailbox read operation does not complete until there is a corresponding write
operation. Similarly, write operations do not complete until there is a corresponding read operation.
Applications that perform synchronous read or write operations will stall, waiting on an event flag (in
the scheduling state LEF), until the counterpart operation is issued by another process.

Mailbox operations can be performed using high-level language I/O constructs, but more commonly
are processed using the QIO (sys$qio) system service. The specifics of QIO operations on mailboxes
are documented in chapter 4 of the OpenVMS I/O User's Reference Manual. Before you can issue a
QIO on a device, a channel must be assigned. The channel identifies the device on your QIO system
service calls. For more information on QIO and channels see chapter 23 of the OpenVMS
Programming Concepts Manual.

Mailbox writes can be forced to complete immediately upon queuing by using a QIO system service
function modifier (IO$M_NOW). This mechanism is different than performing an asynchronous QIO,
in that the I/O request is not pending. What this means is that if a program that has issued a write
using the IO$M_NOW modifier exits, its write stays queued to the mailbox, as long as some process
on the system is interested in the mailbox (has a channel assigned to it). If a write was issued
asynchronously without the IO$M_NOW modifier and the program exits, the write is canceled (when
the channel to the mailbox is deassigned) and the write is lost.

Data that is written to the mailbox can be in any form and can vary in size. The mailbox driver simply
treats the data as an array of bytes. The writer identifies the number of bytes being written to the
mailbox. The size can vary from 0 to 64,000 bytes, dependent on the maximum message size
assigned to the mailbox. The 64,000 byte limit is based on the fact that mailbox messages are
allocated from non-paged dynamic memory (a.k.a. non-paged pool). Pool packets contain a word
(16-bit) sized field to identify the amount of pool that the packet occupies.

The mailbox reader must supply a buffer that is large enough to hold the largest data item that will be
written to the mailbox. To determine the number of bytes actually written, the reader should pass an
I/O status block on a QIO to the mailbox driver. The reader can examine the size field in the I/O
status block upon completion of the read.

Mailbox Creation
Before a mailbox can be used, it must be created. Mailbox creation is performed using the Create
Mailbox (sys$crembx) system service. When a mailbox is created, it is assigned a name of the form
MBAu, where u is a unit number assigned by OpenVMS. Prior to V8.2, OpenVMS limited the unit

© Copyright 2007 Hewlett-Packard Development Company, L.P. 3

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

numbers on mailboxes to 9999. Additionally, mailbox creation and deletion required sequential
scans of all existing units, which could be a slow process. V8.2, and greater, systems were modified
to support up to 32,767 mailbox units. The I/O database was optimized to speed the creation and
deletion of mailboxes.

The program does not generally have knowledge of the mailbox device name that it is creating, as
OpenVMS dynamically defines the name. To associate multiple processes to the same mailbox,
processes usually identify the mailbox using a logical name. The logical name is passed by descriptor
as the seventh argument to the sys$crembx system service call.

To create a mailbox at the DCL level you can use the command CREATE/MAILBOX.

Temporary and Permanent Mailboxes
The first parameter to sys$crembx is a flag that identifies whether the mailbox is a temporary or
permanent mailbox. If the flag is set you get a permanent mailbox, otherwise you get a temporary
mailbox.

Temporary mailboxes require TMPMBX privilege to create. They are deleted when all channels to the
mailbox have been deassigned. The logical name passed to sys$crembx is cataloged in the logical
name table identified by the logical name LNM$TEMPORARY_MAILBOX. By default, this logical
name is assigned to LNM$JOB. Therefore, by default, using the logical name passed to the
sys$crembx, system service associates processes in the same job to the same mailbox. Changes to
this logical name are best made within the program, in user mode. Changes made at the DCL level
may cause problems with SPAWN/ATTACH commands. If you do choose to change the logical name
LNM$TEMPORARY_MAILBOX at the DCL level, make sure to change it in the
LNM$PROCESS_DIRECTORY logical name table.

Permanent mailboxes require PRMMBX privilege to create and delete. They must be explicitly deleted
using the sys$delmbx system service. The mailbox is actually deleted after all channels to the mailbox
have been deassigned. The logical name passed to sys$crembx is cataloged in table identified by the
logical name LNM$PERMANENT_MAILBOX. This logical name is set to LNM$SYSTEM by default.

If you are using DCL to create a mailbox, you can define that the mailbox will be temporary or
permanent using the /TEMPORARY or /PERMANENT qualifiers, respectively. The default qualifier is
/TEMPORARY. Just like the sys$crembx system service, you need TMPMBX privilege to create
temporary mailboxes and PRMMBX privilege to create permanent mailboxes. You also need CMEXEC
privilege to create a temporary mailbox. This privilege is required to allow the mailbox to be created
in supervisor mode. The plan is to remove this restriction in the future. You may also need SYSNAM
or GRPNAM privilege to create the logical name associated with the mailbox in the appropriate
logical name table.

Permanent DCL-created mailboxes can be deleted using the DELETE/MAILBOX command. When all
channels are deassigned the mailbox will go away. Currently, there is no supported way to deassign
a channel to a DCL-created mailbox without logging out. Therefore, there is no supported way to
delete a temporary mailbox without logging out. We at BRUDEN-OSSG, of course, have a method to
get the channel deassigned.

Example 1. Viewing the Temporary and Permanent Logical Name Table
Assignments

© Copyright 2007 Hewlett-Packard Development Company, L.P. 4

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

$ show logical/table=lnm$system_directory *mail*

(LNM$SYSTEM_DIRECTORY)

 "LNM$PERMANENT_MAILBOX" = "LNM$SYSTEM"
 "LNM$TEMPORARY_MAILBOX" = "LNM$JOB"
$

When the mailbox has been created, the channel number assigned to the mailbox is returned to the
address passed as the second parameter to the sys$crembx system service. If multiple processes are
going to be accessing the same mailbox and one process is guaranteed to create the mailbox, the
rest of the processes can simply assign channels to the mailbox.

If the mailbox creator is not guaranteed to be a specific process, all processes can call the
sys$crembx system service. After the mailbox has been created, the sys$crembx system service
simply assigns a channel to the mailbox. Care should be taken to make sure that arguments to the
sys$crembx system service match for all users of the same mailbox. If one process sets the prmflg
(permanent flag) and another passes a zero for the argument, you end up creating two different
mailboxes (one permanent and one temporary). Additionally, parameters used to size the mailbox
and establish protections are assigned by the first process calling the service (the process that actually
creates the mailbox).

Mailbox Protections
Protection on a mailbox is set when the mailbox is created. The fifth argument to sys$crembx
identifies the protection mask. If the protection mask is 0, the template protection mask is used. This
mask defaults to allowing all access to all UIC categories. In the protection mask, bits <15:12>
identify world, bits <11:8> group, bits <7:4> owner, and bits <3:0> system access. The categories
for each mode are LPWR (Logical, Physical, Write, and, Read). Bits clear allow access. Bits set deny
access. Logical access is required for any other form of access. Physical access is ignored. A setting
of the hex value 0xF000 would allow all access for System, Owner, and Group, denying access for
the World category. The setting 0xF200 would write access for the Group category and all access for
the World category.

Example 2. Sample Call to sys$crembx Disabling World Access to a given Mailbox

/* Assign a channel to the mailbox. */
 status = sys$crembx(0,&mbx_chan,0,0,0xF000,0,&mbx,0,0);
 check(status);

Example 3. Viewing the Protections from the Mailbox Created in Example 2.

$ SHOW DEVICE MBA28282:/FULL

Device MBA28282:, device type local memory mailbox, is online, record-oriented
 device, shareable, mailbox device.

 Error count 0 Operations completed 0
 Owner process "" Owner UIC [JAVA,ELLIS]

© Copyright 2007 Hewlett-Packard Development Company, L.P. 5

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:RWPL,W
 Reference count 1 Default buffer size 256

$

In addition to the sys$crembx argument for protections, there is an IO$M_SETPROT function modifier
on the IO$_SETMODE function that accepts a protection mask on the P2 argument to the sys$qio
system service. You can also set up objects rights on your mailbox.

DCL-created mailboxes have protections assigned using the /PROTECTION qualifier on the
CREATE/MAILBOX command.

Read/Write Only Channels
Within a program you can force read-only or write-only access on a mailbox channel (similar to a
unidirectional pipe), using the flags CMB$M_READONLY or CMB$M_WRITEONLY (defined in
$CMBDEF/cmbdef.h) in the eighth argument to sys$crembx. If you are assigning a channel, the flags
AGN$M_READONLY or AGN$M_WRITEONLY can be used to restrict access. The restriction is only
in effect for I/O requests issued within a given application.

The closest equivalent to a sys$assign system service call from DCL is an OPEN command. The
CREATE/MAILBOX command does not implicitly perform an OPEN command. So, before processing
a mailbox, it must have been created by some process and must be opened by all processes
accessing the mailbox. DCL-created mailboxes support read-only mailboxes through the OPEN/READ
command, but not write-only mailboxes.

Mailbox Sizing
To understand sizing issues that relate to mailboxes we should take a different view of a mailbox.
When a mailbox is created, OpenVMS creates a data structure called a Unit Control Block (UCB) in
non-paged pool. The UCB has a specialized layout that supports mailbox operations. The UCB
maintains queues. There is a message queue for messages written to the mailbox. There is a reader
queue that tracks read I/O requests to the mailbox. The data structures queued to reader queue are
called I/O Requests Packets (IRPs).

The UCB also maintains queues to allow processes to be notified of unsolicited read or write
operations (read with no pending write or write with no pending read). Processes are notified of these
events through the delivery of an Asynchronous System Trap (AST), known as an attention AST. A
similar attention AST can be delivered when space becomes available in a full mailbox.

There are also queues that allow your process to be notified when a new read or write channel is
assigned to a mailbox.

The point of this discussion is that when you create a mailbox, regardless of how you size it, you are
only creating the UCB for the mailbox. The sizing parameters limit the use of non-paged pool space to
describe messages that are queued to the UCB. So, a more accurate view of a mailbox with three
write requests and no current read looks like figure 3. The "MBOX" headers describe the layout of
the message block. These symbolic offsets may not be available in earlier versions of OpenVMS. A
view of a mailbox with no active writes and one read looks like figure 4.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 6

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

UCB
MBOX MBOX MBOX

Message Message Message

F gure 3. Mailbox with three Pending Writes i

UCB

IRP

Figure 4. Mailbox with one Pending Read

When a mailbox is created, the third argument to sys$crembx is the maximum message size and the
fourth argument is the mailbox buffer quota. The maximum message size restricts the size of an
individual message that can be written to the mailbox. This setting can be used to set the size of the
input buffer by the reader. If this size is not specified, it is set by the system parameter
DEFMBXMXMSG. On the CREATE/MAILBOX command, the /MESSAGE_SIZE qualifier specifies the
maximum message size.

The buffer quota is effectively the "size" of the mailbox. It is the maximum number of bytes that can be
written to the mailbox. Setting a large buffer quota does not cause any space to be allocated from
non-paged pool. What it does do, is allow that many bytes to be potentially allocated from non-
paged pool to support mailbox writes. When an attempted write would cause a given mailbox to
exceed its buffer quota, the mailbox is considered full and the write will either stall or fail. On the
CREATE/MAILBOX command, the BUFFER_SIZE qualifier specifies the mailbox size.

If the buffer quota is not specified on the call to the sys$crembx system service, the setting for the
system parameter DEFMBXBUFQUO is used to size the mailbox. The maximum advertised setting for
this parameter is 64,000 bytes. You can override checks in SYSGEN and set the parameter to a
higher setting, if you are running V7.3-1 or greater. This should be done with great caution, as it will
affect the default size of all mailboxes that do not specify a non-zero buffer quota parameter on a call
to sys$crembx. You can alternatively, and more safely, set a buffer quota parameter larger than
64,000 bytes as a buffer quota parameter on mailbox creation for select mailboxes.

The key thing to keep in mind when setting larger buffer quota settings is that you do not exhaust non-
paged pool. If you are going with higher settings for buffer quotas, compensate with correspondingly
larger settings for the system parameters NPAGEDYN and NPAGEVIR.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 7

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

You can monitor mailbox space usage using the IO$_SENSEMODE function to the sys$qio system
service. This function receives no function dependent parameters (P1-P6). It returns the number of
messages queued to the mailbox in the iosb$w_bcnt field of the I/O status block. It returns the number
of message buffer bytes in the iosb$l_dev_depend field of the I/O status block. You can obtain the
buffer quota and remaining buffer using the DVI$_MAILBOX_INITIAL_QUOTA and
DVI$_MAILBOX_QUOTA items through the sys$getdvi system service. Example 4 shows a program
that obtains and displays information on mailbox usage. There is a sample SDA extension in the
SYS$EXAMPLES directory, named MBX$SDA.C, that you can build and obtain more complete
information on all mailboxes on the system. We will discuss troubleshooting full mailboxes later in this
article.

Example 4. Sample Program to Monitor Mailbox Usage

The following program is implemented as a foreign command. It accepts a
mailbox name and displays the number of outstanding messages queued to
the mailbox, the bytes in use, bytes available, and mailbox size.

$ type mbx_usage.c
// Sample program to display total and available mailbox space.
// Implemented as a foreign command. Mailbox name is passed in on the command
// line
// Author: Bruce Ellis, BRUDEN-OSSG
#include <stdio.h>
#include <starlet.h>
#include <dvidef.h>
#include <iodef.h>
#include <iledef.h>
#include <iosbdef.h>
#include <descrip.h>
#include <string.h>
#include <ssdef.h>
#include <efndef.h>
#define check(S) if(!((S)&1)) sys$exit(S)

#define MBX 1
#define EXPECTED_ARGS 2
int main(int argc, char **args)
{

 struct dsc$descriptor_s mbx_name;
 unsigned int mbx_size;
 unsigned int mbx_avail;
 ile3 dvi_list[] = {{sizeof(mbx_size),DVI$_MAILBOX_INITIAL_QUOTA,
 &mbx_size},
 {sizeof(mbx_avail),DVI$_MAILBOX_BUFFER_QUOTA,
 &mbx_avail}, {0,0}};
 iosb ios;
 int status;
 short chan;
// If we do not have a mailbox name, exit
 if(argc != EXPECTED_ARGS)
 {
 sys$exit(SS$_NOSUCHDEV);
 }
// Set up mailbox name descriptor

© Copyright 2007 Hewlett-Packard Development Company, L.P. 8

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 mbx_name.dsc$w_length = strlen(args[MBX]);
 mbx_name.dsc$a_pointer = args[MBX];

// Get mailbox information
 status = sys$getdvi(EFN$C_ENF,0,&mbx_name,dvi_list,&ios,0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
// Get more information from QIO
 status = sys$assign(&mbx_name,&chan,0,0,0);
 check(status);
 status = sys$qiow(0,chan,IO$_SENSEMODE,&ios,0,0,0,0,0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
// Display info.
 printf("Mailbox size: %d\nRemaining bytes in mailbox: %d\n",
 mbx_size,mbx_avail);
 printf("Number of messages in the mailbox: %hd\nNumber of message bytes: %d\n",
 ios.iosb$w_bcnt, ios.iosb$l_dev_depend);
 return(SS$_NORMAL);
}

$
Compile and link the program.
$ cc mbx_usage
$ link mbx_usage
Setup a foreign command symbol to run the program.
$ mbu== "syslogin:mbx_usage"
View a sample mailbox.
$ mbu MBA28605
Mailbox size: 100000
Remaining bytes in mailbox: 100000
Number of messages in the mailbox: 0
Number of message bytes: 0
$
Find OPCOM. Note: OPCOM reads from the mailbox MBA2:
$ show system/process=opcom
OpenVMS V8.3 on node ALPH40 18-NOV-2006 21:49:01.13 Uptime 55 02:47:35
 Pid Process Name State Pri I/O CPU Page flts Pages
20400410 OPCOM HIB 8 406 0 00:00:00.24 688 43
No current activity on MBA2:
$ mbu MBA2
Mailbox size: 65535
Remaining bytes in mailbox: 65535
Number of messages in the mailbox: 0
Number of message bytes: 0
Suspend OPCOM.
$ set process/suspend/id=20400410
Send some data to MBA2:
$ spawn/nowait request "Please service this request!!"
%DCL-S-SPAWNED, process ELLIS_14466 spawned
$ spawn/nowait request "Please service this request!!"
%DCL-S-SPAWNED, process ELLIS_28545 spawned
$ spawn/nowait request "Please service this request!!"
%DCL-S-SPAWNED, process ELLIS_19638 spawned
$ spawn/nowait request "Please service this request!!"
%DCL-S-SPAWNED, process ELLIS_16419 spawned
$ spawn/nowait request "Please service this request!!"
%DCL-S-SPAWNED, process ELLIS_48996 spawned
View OPCOM's mailbox. Note, the activity.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 9

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

$ mbu MBA2
Mailbox size: 65535
Remaining bytes in mailbox: 64907
The number of messages queued seems to be off by 1. Note: a user mode AST
has been queued to OPCOM to service the completion of the first request. The
AST could not be delivered because OPCOM was suspended. Therefore, the
first message has been pulled from the queue to be serviced, dropping the
message count by 1.
Number of messages in the mailbox: 4
Number of message bytes: 628
$
Resume OPCOM and clean out the mailbox.
$ set process/resume /id=20400410
$ mbu MBA2
Mailbox size: 65535
Remaining bytes in mailbox: 65535
Number of messages in the mailbox: 0
Number of message bytes: 0
$

Mailboxes and Quotas
When a temporary mailbox is created, the creating process has the buffer quota charged against its
buffered byte limit (BYTLM). In the case of permanent mailbox, no process is charged for the buffer
quota. Since the quota for the mailbox has been handled, individual I/O requests are not charged
against the job's BYTLM. However, for all sys$qio calls that do not use the IO$M_NOW function
modifier, the process' buffered I/O limit (BIOLM) is charged. Writes issued with the IO$M_NOW
modifier are not charged against the process's BIOLM, since they may persist beyond the life of the
program and possibly the process that issued them.

Mailbox Processing
As we mentioned earlier, mailboxes can be read and written using high-level language constructs, but
are more commonly read and written using sys$qio system service calls. If you are not familiar with
programming calls to sys$qio, you should invest some time reading the OpenVMS Programming
Concepts Manual. Common mistakes that beginners make when coding sys$qio calls include:

• Using a call to sys$qio, instead of using sys$qiow. The sys$qiow has an implicit wait until
the call has been serviced. Using sys$qio calls work fine, as long as you implement waits at
some point in your program, usually through a call to sys$synch. With no explicit or implicit
waits, messages are queued up to the mailbox, causing it to fill and the application to hang.

• Not passing and checking the I/O status block (IOSB) parameter. Status returned on the call
to sys$qio indicates whether the call was issued properly. It does not indicate whether the
I/O request completed properly. Completion status is returned in the low word of the IOSB
structure. This is described in the synchronization section of the OpenVMS Programming
Concepts Manual.

Reading Mailboxes
Mailboxes are read through sys$qio using one of the function codes: IO$_READVBLK,
IO$_READLBLK, or IO$_READPBLK. For mailboxes, there is no difference between the function codes.
The sys$qio system service provides a uniform interface to all devices. Other devices will give
different meaning to the three functions within the context of the device.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 10

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

When using one of the read functions, the input buffer is passed by address in the P1 parameter to
sys$qio. The size of the buffer is passed in the P2 parameter. The size should allow for the maximum
message size allowed for the mailbox. If the message size allowed on a read is smaller than the
amount of data written, a status of SS$_BUFFEROVF is returned in the IOSB status field. The data
beyond the end of the buffer is lost.

The actual number of bytes written to the mailbox may be less than the size of the read buffer. The
actual number of bytes written to the mailbox is returned in the iosb$w_bcnt field of the IOSB.

If the data in message buffers is larger than you are anticipating in the input buffer, you can preserve
the data in the message buffer using the function modifier IO$M_STREAM on the read. Subsequent
reads will pick up the remnant data in the message buffer.

When a read is posted on a mailbox, it will not complete until a corresponding write is issued. This
can cause the application to hang if there is no current writer. In many cases, this behavior is fine and
desired. In cases where the writer may have failed, this behavior may cause functional problems in
the application. There are several ways to deal with this potential problem, including:

• Using the function modifier IO$M_NOW with a read function. If there are no pending writes,
the read will complete immediately with a zero byte read. In my opinion, this is usually an
undesirable option. It causes convoluted and potentially poor performing code.

• Using the function modifier IO$M_WRITERCHECK with a read function. This request will
return a status of SS$_NOWRITER if there is no data in the mailbox and there are no write
channels assigned to the mailbox. This option only works if the channel assigned by the
process using it was assigned as a read-only channel. A variation of this method can be
implemented using IO$M_WRITERCHECK with an IO$_SENSEMODE function.

• Using the function modifier IO$M_WRITERWAIT with the IO$_SETMODE function. The event
flag set can be checked or an AST can be delivered to the process notifying it that there is a
write channel assigned. As in the last bullet, this method only works with unidirectional
mailboxes.

• Using a sys$setimr and an asynchronous sys$qio, then waiting for a "logical or" of the event
flags. You can use the sys$readef system service to determine whether the timer expired or
the read completed first and then process accordingly.

To determine whether a writer has completed a multi-write transmission, the cooperating processes
can use the IO$_WRITEOF function in the context of the writer, and the reader can check for a status
of SS$_ENDOFFILE in the IOSB.

On a read function, the device dependent field of the IOSB contains the process identification (PID) of
the writer, unless the writer is a system process.

DCL READ commands issued on mailboxes will read their contents and store them in symbols. Be
cautious of performing READ (and WRITE) commands interactively. They block execution of the
supervisor mode control Y AST.

Writing Mailboxes
Mailboxes can be written using the sys$qio function codes IO$_WRITEVBLK, IO$_WRITELBLK, or
IO$_WRITEPBLK. Just as on writes, these function codes have identical meanings. The write functions
support a IO$M_READERCHECK function modifier that operates in similar fashion to the
IO$M_WRITERCHECK on read functions.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 11

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Simple mailbox writes do not complete until a corresponding mailbox read is issued. A write to a
mailbox can be forced to complete using the function modifier IO$M_NOW. A message written with
this function modifier will be queued to a mailbox and control will be returned to the writer. As long
as the mailbox is not deleted, the message will stay in the mailbox until it is read. You need to take
caution that some process has a channel assigned to a temporary mailbox, or the mailbox will be
deleted when the writer program runs down.

The IO$M_NOW function modifier should be used with care to prevent possibly filling the mailbox.

To notify the reader that we are done transmitting data, you can send an "end of file" by using the
IO$_WRITEOF function code. The only effect of using this function is that a status value of
SS$_ENDOFFILE is returned to the reader's IOSB. This technique is an optional method to signal that
one stream of data is complete. The reader could terminate on detection of this status or could start
processing another stream.

On a write function, the device dependent field of the IOSB contains the PID of the reader of the
mailbox, except when the function modifier IO$M_NOW is used. In this case, the field contains 0, as
the mailbox has not necessarily been read by the time the write completes.

The DCL WRITE command can be used to write to a mailbox. The qualifier /NOWAIT implements the
function modifier IO$M_NOW on a WRITE.

When you issue a close on a DCL-created mailbox, there is effectively an IO$_WRITEOF function
performed.

Simple Mailbox Examples
At this point, it would probably be good to take a look at a couple of simple examples that use
mailboxes for communication. Example 5 illustrates a simple mailbox writer program. The program
reads strings from sys$input and sends them to the mailbox named DATA_MBX. When an end of file
is read from sys$input, a sys$qio is issued with a function of IO$_WRITEOF. Example 6 illustrates a
simple mailbox reader program. The program reads from the data mailbox and sends output to
sys$output until a write using the function code IO$_WRITEOF is detected. Example 6a is a DCL
version of examples 5 and 6.

The logical name LNM$TEMPORARY_MAILBOX is assigned to the logical name LNM$GROUP in user
mode. This practice allows the programs to be run from two different interactive sessions. Sample runs
of the programs are shown in each example. Note: the runs from the writer were run in parallel with
the reader.

Example 5. Simple Sample Mailbox Writer

$ type mailbox_writer.c
/*
 Simple mailbox writer. Reads lines from standard input until
 EOF and sends to a mailbox named DATA_MBX.

 Author: Bruce Ellis, BRUDEN-OSSG
*/
#include <starlet.h>
#include <iodef.h>
#include <ssdef.h>

© Copyright 2007 Hewlett-Packard Development Company, L.P. 12

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

#include <stdio.h>
#include <iosbdef.h>
#include <descrip.h>
#include <iledef.h>
#include <lnmdef.h>
#include <string.h>
#include <lib$routines.h>

#define MBX_PROT 0xF000
#define MAX_MSG 1024
#define BUF_QUO 60000
#define LIST_END 0
#define check(S) if(!((S)&1)) sys$exit(S)

int main(void)
{

 iosb ios;
 int status;

 $DESCRIPTOR(ptable,"LNM$PROCESS_DIRECTORY");
 $DESCRIPTOR(lnm,"LNM$TEMPORARY_MAILBOX");
 char equiv[] = "LNM$GROUP";
 ile3 lnm_items[] = {{strlen(equiv),LNM$_STRING,equiv},{LIST_END}};
 $DESCRIPTOR(mbx,"DATA_MBX");
 short chan;
 int efn;
 char in_buffer[BUFSIZ];
/* Create a logical name to allow the next temporary mailbox's name
 we create to be placed in the group logical name table.
*/
 status = sys$crelnm(0,&ptable,&lnm,0,lnm_items);
 check(status);
/* Create/assign a channel to the data mailbox. */
 status = sys$crembx(0,&chan,MAX_MSG,BUF_QUO,MBX_PROT,0,&mbx,0,0);
 check(status);
/* Get an available event flag number. */
 status = lib$get_ef(&efn);
 check(status);

/* Read from standard input and send to mailbox until EOF. */
 while(gets(in_buffer))
 {
 /* If input buffer is too large, abort. */
 if(strlen(in_buffer)>MAX_MSG)
 {
 sys$exit(SS$_BUFFEROVF);
 }
 status = sys$qiow(efn,chan,IO$_WRITEVBLK,&ios,0,0,
 in_buffer,strlen(in_buffer),0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
 }
/* Send an EOF to the mailbox. */
 status = sys$qiow(efn,chan,IO$_WRITEOF,&ios,0,0,
 0,0,0,0,0,0);
 check(status);
 check(ios.iosb$w_status);

 return(SS$_NORMAL);

© Copyright 2007 Hewlett-Packard Development Company, L.P. 13

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

}

$
$ cc mailbox_writer
$ link mailbox_writer
$ r mailbox_writer
Bruce Ellis was here
Welcome to Mailboxes from BRUDEN-OSSG
We have lot's of great guys and a great Guy on board.
Control-Z was entered on the next line.
 Exit
$

Example 6. Simple Sample Mailbox Reader

$ type mailbox_reader.c
/*
 Example of a simple mailbox reader.
 The program reads from a mailbox named DATA_MBX and
 displays the data on sys$output until the writer issues
 an IO$_WRITEOF function.

 Author: Bruce Ellis, BRUDEN-OSSG
*/

#include <starlet.h>
#include <iodef.h>
#include <ssdef.h>
#include <stdio.h>
#include <iosbdef.h>
#include <descrip.h>
#include <iledef.h>
#include <lnmdef.h>
#include <string.h>
#include <lib$routines.h>

#define MBX_PROT 0xF000
#define MAX_MSG 1024
#define BUF_QUO 60000
#define LIST_END 0
#define check(S) if(!((S)&1)) sys$exit(S)

int main(void)
{

 iosb ios;
 int status;

 $DESCRIPTOR(ptable,"LNM$PROCESS_DIRECTORY");
 $DESCRIPTOR(lnm,"LNM$TEMPORARY_MAILBOX");
 char equiv[] = "LNM$GROUP";
 ile3 lnm_items[] = {{strlen(equiv),LNM$_STRING,equiv},{LIST_END}};
 $DESCRIPTOR(mbx,"DATA_MBX");
 short chan;
 char buffer[MAX_MSG + 1];
 int efn;

© Copyright 2007 Hewlett-Packard Development Company, L.P. 14

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 int i;

/* Create a logical name to allow the next temporary mailbox's name
 we create to be placed in the group logical name table.
*/
 status = sys$crelnm(0,&ptable,&lnm,0,lnm_items);
 check(status);
/* Create/assign a channel to the listener mailbox. */
 status = sys$crembx(0,&chan,MAX_MSG,BUF_QUO,MBX_PROT,0,&mbx,0,0);
 check(status);
/* Get an available event flag number. */
 status = lib$get_ef(&efn);
 check(status);

 i=1;
/* Read and display until EOF. */
 do
 {
 status = sys$qiow(efn,chan,IO$_READVBLK,&ios,0,0,
 buffer,MAX_MSG,0,0,0,0);
 check(status);
 if(ios.iosb$w_status != SS$_ENDOFFILE)
 {
 check(ios.iosb$w_status);
 buffer[ios.iosb$w_bcnt] = '\0';
 printf("Message %08d: %s\n",i,buffer);
 i++;
 }
 } while(ios.iosb$w_status != SS$_ENDOFFILE);

 return(SS$_NORMAL);
}

$
$ cc mailbox_reader
$ link mailbox_reader
$ show logical data_mbx
 "DATA_MBX" = "MBA29808:" (LNM$GROUP_000042)
$ show device data_mbx/full

Device MBA29808:, device type local memory mailbox, is online, record-oriented
 device, shareable, mailbox device.

 Error count 0 Operations completed 0
 Owner process "" Owner UIC [JAVA,ELLIS]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:RWPL,W
 Reference count 1 Default buffer size 1024

$
$ r mailbox_reader
Message 00000001: Bruce Ellis was here
Message 00000002: Welcome to Mailboxes from BRUDEN-OSSG
Message 00000003: We have lot's of great guys and a great Guy on board.
$

Example 6a. Sample DCL Mailbox Writer and Reader

$

© Copyright 2007 Hewlett-Packard Development Company, L.P. 15

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

This is from session 1.
$
$ type temp_talker.com
$ on error then goto done
$ on control_y then goto done
$!
$!Create the logical name in the group logical name table.
$ define/table=lnm$process_directory lnm$temporary_mailbox lnm$group
$
$! create the temporary mailbox
$ create/mailbox/log bru_mbx
$
$!Go back to standard temporary mailbox logical names
$ define/table=lnm$process_directory lnm$temporary_mailbox lnm$group
$
$!Open the mailbox for write
$ open/write bmbx bru_mbx
$
$!Read from the keyboard and send to the mailbox until EOF
$ read_loop:
$ read/prompt="Message: "/end=done sys$command record
$ write/now bmbx record
$ goto read_loop
$ done:
$
$ close bmbx
$
$
$ @temp_talker
%CREATE-I-CREATED, MBA33594: created
%DCL-I-SUPERSEDE, previous value of LNM$TEMPORARY_MAILBOX has been superseded
Message: Bruce Ellis was here
Message: We would not have CREATE/MAILBOX
Message: without a wonderful "Guy" at
Message: BRUDEN-OSSG
Control-Z entered here.
Message: *EXIT*
$
The logical name and device name are still there.
$ show logical bru_mbx
 "BRU_MBX" = "MBA33594:" (LNM$GROUP_000042)
$ show device mba33594

Device Device Error
 Name Status Count
MBA33594: Online 0
$
$ deas_mbx==" $ SYS$SYSDEVICE:[ELLIS]DEAS_DCL_MBX_CHAN"
$ deas_mbx bru_mbx !This feature is not currently available.
The mailbox does not go away until ALL channels are deassigned.
$ show device mba33594

Device Device Error
 Name Status Count
MBA33594: Online 0
$
This is after the next session did the deassign.
$ show logical bru_mbx
%SHOW-S-NOTRAN, no translation for logical name BRU_MBX

© Copyright 2007 Hewlett-Packard Development Company, L.P. 16

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

$ show device mba33594
%SYSTEM-W-NOSUCHDEV, no such device available
$
**
This is from a separate session.

$ type temp_listener.com
$
$ on error then goto done
$ on control_y then goto done
$!
$!Create the logical name in the group logical name table.
$ define/table=lnm$process_directory lnm$temporary_mailbox lnm$group
$
$! create the temporary mailbox
$ create/mailbox/log bru_mbx
$
$!Go back to standard temporary mailbox logical names
$ define/table=lnm$process_directory lnm$temporary_mailbox lnm$group
$
$ i=1
$!Open the mailbox and read and echo until end of file
$ open/read bmbx bru_mbx
$ read_loop:
$ read/end=done bmbx record
$ write sys$output f$fao("Message !8ZL: !AS",i,record)
$ goto read_loop
$ done:
$ close bmbx
$
$ @temp_listener
%CREATE-I-CREATED, MBA33594: created
%DCL-I-SUPERSEDE, previous value of LNM$TEMPORARY_MAILBOX has been superseded
Message 00000001: Bruce Ellis was here
Message 00000001: We would not have CREATE/MAILBOX
Message 00000001: without a wonderful "Guy" at
Message 00000001: BRUDEN-OSSG
$
$
$ deas_mbx==" $ SYS$SYSDEVICE:[ELLIS]DEAS_DCL_MBX_CHAN"
$
$ show logical bru_mbx
 "BRU_MBX" = "MBA33594:" (LNM$GROUP_000042)
$ show device bru_mbx

Device Device Error
 Name Status Count
MBA33594: Online 0
$
$ deas_mbx bru_mbx !This feature is not currently available.
$ show logical bru_mbx
%SHOW-S-NOTRAN, no translation for logical name BRU_MBX
$ show device MBA33594:
%SYSTEM-W-NOSUCHDEV, no such device available
$

© Copyright 2007 Hewlett-Packard Development Company, L.P. 17

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Example 7 provides a variation on the mailbox reader that uses the IO$M_STREAM function modifier
on input. The same writer as example 5 was used in the sample run, with the same output provided.

Example 7. Sample Streaming Reads

$ type mailbox_streamer.c
/*
 Example of a simple mailbox reader.
 The program reads from a mailbox named DATA_MBX and
 displays the data on sys$output until the writer issues
 an IO$_WRITEOF function.

 Author: Bruce Ellis, BRUDEN-OSSG
*/

#include <starlet.h>
#include <iodef.h>
#include <ssdef.h>
#include <stdio.h>
#include <iosbdef.h>
#include <descrip.h>
#include <iledef.h>
#include <lnmdef.h>
#include <string.h>
#include <lib$routines.h>

#define MBX_PROT 0xF000
#define MAX_MSG 1024
#define BUF_QUO 60000
#define LIST_END 0
#define check(S) if(!((S)&1)) sys$exit(S)
Force 10 byte reads.
#define READ_SIZE 10

int main(void)
{

 iosb ios;
 int status;

 $DESCRIPTOR(ptable,"LNM$PROCESS_DIRECTORY");
 $DESCRIPTOR(lnm,"LNM$TEMPORARY_MAILBOX");
 char equiv[] = "LNM$GROUP";
 ile3 lnm_items[] = {{strlen(equiv),LNM$_STRING,equiv},{LIST_END}};
 $DESCRIPTOR(mbx,"DATA_MBX");
 short chan;
 char buffer[MAX_MSG + 1];
 int efn;
 int i;

/* Create a logical name to allow the next temporary mailbox's name
 we create to be placed in the group logical name table.
*/
 status = sys$crelnm(0,&ptable,&lnm,0,lnm_items);
 check(status);
/* Create/assign a channel to the listener mailbox. */
 status = sys$crembx(0,&chan,MAX_MSG,BUF_QUO,MBX_PROT,0,&mbx,0,0);

© Copyright 2007 Hewlett-Packard Development Company, L.P. 18

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 check(status);
/* Get an available event flag number. */
 status = lib$get_ef(&efn);
 check(status);

 i=1;
/* Read and display until EOF. */
 do
 {
Allow the data to be streamed.
 status = sys$qiow(efn,chan,IO$_READVBLK|IO$M_STREAM,&ios,0,0,
 buffer,READ_SIZE,0,0,0,0);
 check(status);
 if(ios.iosb$w_status != SS$_ENDOFFILE)
 {
 check(ios.iosb$w_status);
 buffer[ios.iosb$w_bcnt] = '\0';
 printf("Message %08d: %s\n",i,buffer);
 i++;
 }
 } while(ios.iosb$w_status != SS$_ENDOFFILE);

 return(SS$_NORMAL);
}

$
$ cc mailbox_streamer
$ link mailbox_streamer
The MAILBOX_WRITER program was run at the same time as the mailbox
streamer. The same data was entered when the program ran.
$ r mailbox_streamer
Note: each line is truncated at 10 bytes, but no data is lost.
Message 00000001: Bruce Elli
Message 00000002: s was here
Message 00000003: Welcome to
Message 00000004: Mailboxes
Message 00000005: from BRUD
Message 00000006: EN-OSSG
Message 00000007: We have lo
Message 00000008: t's of gre
Message 00000009: at guys an
Message 00000010: d a great
Message 00000011: Guy on boa
Message 00000012: rd.
$

Full Mailboxes

When a mailbox becomes full, two different actions can occur. By default, processes attempting to
write to a full mailbox will stall in the RWMBX variation of MWAIT state. It should be possible to
delete the process in current versions of OpenVMS. You may want, however, to investigate the cause
of the mailbox becoming full to prevent this behavior in the future.

The hang is intended to be a good behavior. The hope is that the mailbox will eventually be read and
the process will automatically be released from the stalled RWMBX scheduling state. Indeed, a poorly
designed mailbox reader that spends too much time processing data before performing the next
mailbox read can cause processes to bounce in and out of RWMBX state. In this case, you would like

© Copyright 2007 Hewlett-Packard Development Company, L.P. 19

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

to tune the reader application. If this is not a possible action, you can consider increasing the buffer
quota (BUFQUO) setting on the mailbox.

However, the mailbox reader may be stalled in an involuntary wait state, unable to read the mailbox.
It may also be the case that the reader has disappeared from the system entirely, due to some internal
failure in the application. Example 8 shows processes stalled in RWMBX wait state.

Example 8. Sample RWMBX Wait States

$ show sys/sub
OpenVMS V8.3 on node ALPH40 19-NOV-2006 20:17:26.91 Uptime 56 01:15:55
 Pid Process Name State Pri I/O CPU Page flts Pages
2040043B DTGREET LEF 4 814 0 00:00:01.44 590 692 S
20400D55 ELLIS_21769 RWAST 6 165 0 00:00:00.13 241 206 S
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_35375 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_36751 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_37285 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_27951 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_57898 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_36551 spawned
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_19782 spawned
$ sh sys/sub
OpenVMS V8.3 on node ALPH40 19-NOV-2006 20:17:40.95 Uptime 56 01:16:09
 Pid Process Name State Pri I/O CPU Page flts Pages
2040043B DTGREET LEF 4 814 0 00:00:01.44 590 692 S
20400D55 ELLIS_21769 RWAST 6 165 0 00:00:00.15 241 206 S
20400D8C ELLIS_35375 LEF 6 17 0 00:00:00.02 241 206 S
20400D8D ELLIS_36751 LEF 6 18 0 00:00:00.02 241 206 S
20400D8E ELLIS_37285 LEF 6 17 0 00:00:00.01 241 206 S
20400D8F ELLIS_27951 LEF 6 17 0 00:00:00.04 241 206 S
20400D90 ELLIS_57898 LEF 6 19 0 00:00:00.02 241 206 S
20400D91 ELLIS_36551 LEF 6 15 0 00:00:00.02 241 206 S
20400D92 ELLIS_19782 LEF 6 14 0 00:00:00.01 241 206 S
$ spawn/nowait r mbx_w
%DCL-S-SPAWNED, process ELLIS_32782 spawned
$ sh sys/sub
OpenVMS V8.3 on node ALPH40 19-NOV-2006 20:21:25.18 Uptime 56 01:19:53
 Pid Process Name State Pri I/O CPU Page flts Pages
2040043B DTGREET LEF 4 814 0 00:00:01.44 590 692 S
20400D55 ELLIS_21769 RWAST 6 165 0 00:00:00.15 241 206 S
20400D8C ELLIS_35375 RWMBX 6 144 0 00:00:00.02 241 206 S
20400D8D ELLIS_36751 RWMBX 6 128 0 00:00:00.02 241 206 S
20400D8E ELLIS_37285 RWMBX 6 143 0 00:00:00.01 241 206 S
20400D8F ELLIS_27951 RWMBX 6 131 0 00:00:00.04 241 206 S
20400D90 ELLIS_57898 RWMBX 6 145 0 00:00:00.02 241 206 S
20400D91 ELLIS_36551 RWMBX 6 143 0 00:00:00.02 241 206 S
20400D92 ELLIS_19782 RWMBX 6 142 0 00:00:00.01 241 206 S
20400D93 ELLIS_32782 RWMBX 6 12 0 00:00:00.01 241 206 S
$

© Copyright 2007 Hewlett-Packard Development Company, L.P. 20

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

It may also be the case that a race condition is entered under a heavy load, such that a system that
generally does not have processes stalling in RWAST state starts to see this state show up. The ideal
solution would be to locate the cause of the race condition and correct it. In some cases, it is cheaper
and faster to simply increase the size of the mailbox (BUFQUO).

Troubleshooting Full Mailbox Problems
The two most common problems associated with mailboxes are probably:
1. Processes stalling in RWMBX variation of MWAIT state due to a full mailbox.

2. Processes stalling in RWAST variation of MWAIT state due to exhaustion of buffered I/O limit
(BIOLM). This is most commonly caused by improper use of asynchronous sys$qio calls.

In this article we will address RWMBX issues.

When you find a process in RWMBX state, you will likely first want to know which mailbox the
process is attempting to write. In the System Dump Analyzer (SDA) you can get into the context of the
target process by issuing a SET PROCESS command. If the process has a channel assigned to one
mailbox, the process is pretty straightforward. You would just issue a SHOW PROCESS/CHANNEL
command.

If there are several channels assigned, you will need to determine which channel is associated with
the call to sys$qio. Once in the context of the stalled process, you can view the parameters passed to
the sys$qio system service by examining registers. The channel number of the device is passed as the
second parameter. On HP AlphaServer systems, you would examine register R17 to determine the
second parameter being passed to sys$qio. On an HP Integrity server system examine R33 to
determine the second parameter passed to sys$qio. The contents of the appropriate register will give
you the channel number for the full mailbox that the process is attempting to write.

You can next issue a SHOW PROCESS/CHANNEL command to determine which channels are
assigned by the process. The full mailbox should have a channel number that matches the
hexadecimal value that you obtained from the register.

Once you know the device name, you may want to map it to the logical name associated with the
mailbox. The UCB for the mailbox contains a pointer to the logical name associated with the mailbox.
You can format this address using a type of LNMB (Logical Name Block).

See Example 9 (AlphaServer) or Example 10 (Itanium server) for an illustration of these steps.

Example 9. Locating the Channel Number for a Write to a Full Mailbox (Alpha)

View one of the processes in RWMBX state.
SDA> show summary/process=ELLIS_55216

Current process summary

 Extended Indx Process name Username State Pri PCB/KTB PHD Wkset
-- PID -- ---- --------------- ------------ -- --- -------- -------- ------ -----
 20400D9F 019F ELLIS_55216 ELLIS RWMBX 6 823D08C0 84B74000 206
Set context to the target process.
SDA> set process ELLIS_55216

© Copyright 2007 Hewlett-Packard Development Company, L.P. 21

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Identify the channel associated with the QIO.
SDA> examine r17
R17: 00000000.000000D0 "Ð......."
Map the channel number to the mailbox device.
SDA> show process/channel

Process index: 019F Name: ELLIS_55216 Extended PID: 20400D9F
--

 Process active channels

Channel CCB Window Status Device/file accessed
------- --- ------ ------ --------------------
 0010 7FF7C000 00000000 1DGA642:
 0020 7FF7C020 8246F8C0 1DGA642:[ELLIS]MBX_W.EXE;7
 0030 7FF7C040 81F5D500 1DGA642:[VMS$COMMON.SYSEXE]DCL.EXE;1 (section file)
 0040 7FF7C060 00000000 TNA57:
 0050 7FF7C080 00000000 TNA57:
 0060 7FF7C0A0 81F4EA40 1DGA642:[VMS$COMMON.SYSLIB]DCLTABLES.EXE;775 (section file)
 0070 7FF7C0C0 81F4ECC0 1DGA642:[VMS$COMMON.SYSLIB]LIBOTS.EXE;1 (section file)
 0080 7FF7C0E0 81F53080 1DGA642:[VMS$COMMON.SYSLIB]DECC$SHR_EV56.EXE;1 (section file)
 0090 7FF7C100 81F52900 1DGA642:[VMS$COMMON.SYSLIB]DPML$SHR.EXE;1 (section file)
 00A0 7FF7C120 81F51140 1DGA642:[VMS$COMMON.SYSLIB]CMA$TIS_SHR.EXE;1 (section file)
 00B0 7FF7C140 81F4EC40 1DGA642:[VMS$COMMON.SYSLIB]LIBRTL.EXE;1 (section file)
 00C0 7FF7C160 00000000 TNA57:
 00D0 7FF7C180 00000000 Busy MBA30202:

 Total number of open channels : 13.
SDA>
View the mailbox I/O database information.
SDA> show device mba30202

I/O data structures

MBA30202 MBX UCB: 821362C0

Device status: 88000010 online,exfunc_supp,iopost_local
Characteristics: 0C150001 rec,shr,avl,mbx,idv,odv
 00000000
SUD Status 00000000

Owner UIC [000042,000042] Operation count 0 ORB address 823C7300
 PID 00000000 Error count 0 DDB address 81853780
Class/Type A0/01 Reference count 10 DDT address 818E3740
Def. buf. size 256 BOFF 00000000 SUD address 8246F6C0
DEVDEPEND 0000037C Byte count 00000000 CRB address 818537F0
The logical name block address is in the "LNM address field".
DEVDEPND2 00000000 SVAPTE 00000000 LNM address 85322870
DEVDEPND3 00000000 DEVSTS 00000002 I/O wait queue 82136378
FLCK index 0B
DLCK address 824A7980
Charge PID 00030183

 *** I/O request queue is empty ***
SDA> read sysdef
SDA> form 85322870/typ=lnmb
FFFFFFFF.85322870 LNMB$L_FLINK 850942B0
FFFFFFFF.85322874 LNMB$L_BLINK 853211D0
FFFFFFFF.85322878 LNMB$W_SIZE 0080

© Copyright 2007 Hewlett-Packard Development Company, L.P. 22

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

FFFFFFFF.8532287A LNMB$B_TYPE 40
FFFFFFFF.8532287B LNMB$B_PAD 00
FFFFFFFF.8532287C LNMB$L_ACMODE 00000003
FFFFFFFF.85322880 LNMB$L_TABLE 85322A08 LNM+00198
FFFFFFFF.85322884 LNMB$L_LNMX 853228A0 LNM+00030
FFFFFFFF.85322888 LNMB$L_FLAGS 00000000
 LNMB$R_BITS
 LNMB$R_FLAG_BITS
FFFFFFFF.8532288C LNMB$L_NAMELEN 00000009
FFFFFFFF.85322890 LNMB$T_NAME 42
View the mailbox logical name. The length of 9 identifies the characters for
the name. Everything beyond the first 9 characters, in this case, is garbage.
SDA> examine 85322890;9
30303430 325F4878 626D5F65 63757242 Bruce_mbxH_20400 FFFFFFFF.85322890
SDA>

Example 10. Locating the Channel Number for a Write to a Full Mailbox (IA64)

View one of the processes in RWMBX state.
SDA> show summary/proc=ELLIS_56220

Current process summary

 Extended Indx Process name Username State Pri PCB/KTB PHD Wkset
-- PID -- ---- --------------- ------------ ------- --- -------- -------- ------
 218004C6 00C6 ELLIS_56220 ELLIS RWMBX 6 8555BF00 8C12C000 265
Set context to the target process.
SDA> set proc ELLIS_56220
Identify the channel associated with the QIO.
SDA> examine r33
R33: 00000000.000000D0 "Ð......."
SDA>
Map the channel number to the mailbox device.
SDA> show process/channel

Process index: 00C6 Name: ELLIS_56220 Extended PID: 218004C6
--

 Process active channels

Channel CCB Window Status Device/file accessed
------- --- ------ ------ --------------------
 0010 7FF26000 00000000 1DGA242:
 0020 7FF26020 8555CA80 1DGA242:[ELLIS]MBX_W.EXE;2
 0030 7FF26040 853BC840 1DGA242:[VMS$COMMON.SYSEXE]DCL.EXE;1 (section file)
 0040 7FF26060 00000000 TNA3:
 0050 7FF26080 00000000 TNA3:
 0060 7FF260A0 853AF9C0 1DGA242:[VMS$COMMON.SYSLIB]DCLTABLES.EXE;381 (section file)
 0070 7FF260C0 853AFCC0 1DGA242:[VMS$COMMON.SYSLIB]LIBOTS.EXE;1 (section file)
 0080 7FF260E0 853B4140 1DGA242:[VMS$COMMON.SYSLIB]DECC$SHR.EXE;1 (section file)
 0090 7FF26100 853B37C0 1DGA242:[VMS$COMMON.SYSLIB]DPML$SHR.EXE;1 (section file)
 00A0 7FF26120 853B2040 1DGA242:[VMS$COMMON.SYSLIB]CMA$TIS_SHR.EXE;1 (section file)
 00B0 7FF26140 853AFB40 1DGA242:[VMS$COMMON.SYSLIB]LIBRTL.EXE;1 (section file)
 00C0 7FF26160 00000000 TNA3:
 00D0 7FF26180 00000000 Busy MBA6706:

© Copyright 2007 Hewlett-Packard Development Company, L.P. 23

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 Total number of open channels : 13.
SDA>
SDA>
View the mailbox I/O database information.
SDA> show device mba6706

I/O data structures

MBA6706 MBX UCB: 85417E80

Device status: 88000010 online,exfunc_supp,iopost_local
Characteristics: 0C150001 rec,shr,avl,mbx,idv,odv
 00000000
SUD Status 00000000

Owner UIC [000042,000042] Operation count 0 ORB address 8541E780
 PID 00000000 Error count 0 DDB address 841ADB80
Class/Type A0/01 Reference count 10 DDT address 84248B40
Def. buf. size 256 BOFF 00000000 SUD address 85265280
DEVDEPEND 0000037C Byte count 00000000 CRB address 841ADBF0
The logical name block address is in the "LNM address field".
DEVDEPND2 00000000 SVAPTE 00000000 LNM address 8D1A65E0
DEVDEPND3 00000000 DEVSTS 00000002 I/O wait queue 85417FB0
FLCK index 0B
DLCK address 85519CC0
Charge PID 000100BC

 *** I/O request queue is empty ***
SDA>
SDA> format 8D1A65E0/type=lnmb
FFFFFFFF.8D1A65E0 LNMB$L_FLINK 8CDCBCF0
FFFFFFFF.8D1A65E4 LNMB$L_BLINK 8D1A9EF0
FFFFFFFF.8D1A65E8 LNMB$W_SIZE 0070
FFFFFFFF.8D1A65EA LNMB$B_TYPE 40
FFFFFFFF.8D1A65EB LNMB$B_PAD 00
FFFFFFFF.8D1A65EC LNMB$L_ACMODE 00000003
FFFFFFFF.8D1A65F0 LNMB$L_TABLE 8D267A98
FFFFFFFF.8D1A65F4 LNMB$L_LNMX 8D1A6610 LNM+00030
FFFFFFFF.8D1A65F8 LNMB$L_FLAGS 00000000
 LNMB$R_BITS
 LNMB$R_FLAG_BITS
View the mailbox logical name. The length of 9 identifies the characters for
the name. Everything beyond the first 9 characters, in this case, is garbage.
FFFFFFFF.8D1A65FC LNMB$L_NAMELEN 00000009
FFFFFFFF.8D1A6600 LNMB$T_NAME 42
SDA> examine 8D1A6600;9
00000000 00000078 626D5F65 63757242 Bruce_mbx....... FFFFFFFF.8D1A6600
SDA>

The UCB for a mailbox device has fields that are of specific interest when troubleshooting full
mailboxes. The first two longwords in a mailbox UCB (UCBL_MB_MSGQFL / UCBL_MB_MSGQBL)
contain the message queue forward and backward links. You can walk these links and view the
messages queued to the mailbox. The symbol table file SYSDEF.STB contains MBOX symbol
definitions that help you interpret these fields. These symbol definitions are not available in older
versions of OpenVMS.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 24

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Fields that track read (UCB$L_MB_R_AST) and write (UCB$L_MB_W_AST) attention ASTs are after the
message queues and size and type fields. If the mailbox driver is currently servicing an I/O request,
the field UCB$L_IRP contains a pointer to the IRP.

Immediately after the base UCB, the mailbox driver maintains:

• Counts of read (UCB$L_MB_READERREFC) and write (UCB$L_MB_WRITERREFC) channels
that have been assigned to the mailbox.

• A reader queue for outstanding reads that have been queued to the mailbox.
(UCB$L_MB_READQFL/UCB$L_MB_READQBL)

• Queues for mailbox waits for write/read channels to be assigned.
(UCB$L_MB_WRITERWAITQFL/UCB$L_MB_WRITERWAITQBL and
UCB$L_MB_READERWAITQFL/ UCB$L_MB_READERWAITQBL)

• Queues for mailbox waits for all write/read channels to be deassigned.
(UCB$L_MB_NOWRITERWAITQFL/ UCB$L_MB_NOWRITERWAITQBL and
UCB$L_MB_NOREADERWAITQFL/ UCB$L_MB_NOREADERWAITQBL)

• A list of ACBs for process notification that mailbox room is available.
(UCB$L_MB_ROOM_NOTIFY)

• A pointer to the logical name block for the mailbox. (UCB$L_LOGADR)

• The available mailbox size. (UCB$L_MB_BUFQUO)

• The initial mailbox size (Initial BUFQUO). (UCB$L_MB_INIQUO)

After you issue a SHOW DEVICE command on the mailbox a symbol named UCB contains the
address of the UCB for the mailbox. To view relative elements on the message queue, you can issue
FORMAT @UCB commands. For each "@" character in the command you move forward to that
relative message, e.g., FORMAT @@@@UCB formats the fourth message in the message queue. To
determine the number of messages queued to the mailbox, issue the command VALIDATE QUEUE
UCB. Example 11 illustrates walking the message queue for a given mailbox. The example works the
same way on AlphaServer and Integrity server systems.

Example 11. Walking Mailbox Message Queues

View the first message on the message queue.
SDA> form @ucb
FFFFFFFF.854CFE80 MBOX_MSG$L_FLINK 8541FC80
 MBOX_MSG$PS_ADDR
FFFFFFFF.854CFE84 MBOX_MSG$L_BLINK 85417E80 UCB
 MBOX_MSG$PS_UVA32
FFFFFFFF.854CFE88 MBOX_MSG$W_MBZ 0000
FFFFFFFF.854CFE8A MBOX_MSG$B_TYPE 79
FFFFFFFF.854CFE8B MBOX_MSG$B_SUBTYPE 53
FFFFFFFF.854CFE8C MBOX_MSG$L_FUNCTION 00000020
FFFFFFFF.854CFE90 MBOX_MSG$PQ_UVA64 00000000.DEAD0001
FFFFFFFF.854CFE98 MBOX_MSG$L_SIZE 000000C0
FFFFFFFF.854CFE9C MBOX_MSG$L_IRP 85262E80
FFFFFFFF.854CFEA0 MBOX_MSG$L_NOREADERWAITQFL 00000000
FFFFFFFF.854CFEA4 MBOX_MSG$L_NOREADERWAITQBL 00000000
This is the internal process ID of the process that issued this message.
FFFFFFFF.854CFEA8 MBOX_MSG$L_PID 000100BE SYS$K_VERSION_16+0007E
FFFFFFFF.854CFEAC MBOX_MSG$L_DATASTART 854CFEB8
FFFFFFFF.854CFEB0 MBOX_MSG$W_DATASIZE 0070

© Copyright 2007 Hewlett-Packard Development Company, L.P. 25

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

FFFFFFFF.854CFEB2 MBOX_MSG$W_BUFQUOCHARGE 0001
FFFFFFFF.854CFEB4 MBOX_MSG$L_THREAD_PID 218004BE
 MBOX_MSG$C_LENGTH
Here is the message data.
FFFFFFFF.854CFEB8 MBOX_MSG$R_DATA 00005F53.494C4C45
SDA> examine 854CFEB8;70
65623430 30383132 00005F53 494C4C45 ELLIS_..218004be FFFFFFFF.854CFEB8
35383338 33323732 39303134 33303242 B203410927238385 FFFFFFFF.854CFEC8
39323930 33323936 37323330 35363936 6965032769230929 FFFFFFFF.854CFED8
33363534 31303532 37383732 39363138 8169278725014563 FFFFFFFF.854CFEE8
31383330 33363734 33323330 35383738 8785032347630381 FFFFFFFF.854CFEF8
35363138 35303730 31323930 33303734 4703092107058165 FFFFFFFF.854CFF08
31303136 33363734 33303134 39383738 8789410347636101 FFFFFFFF.854CFF18
SDA>
The next message in the queue.
SDA> form @@UCB
FFFFFFFF.8541FC80 MBOX_MSG$L_FLINK 854CE480
 MBOX_MSG$PS_ADDR
FFFFFFFF.8541FC84 MBOX_MSG$L_BLINK 854CFE80
 MBOX_MSG$PS_UVA32
FFFFFFFF.8541FC88 MBOX_MSG$W_MBZ 0000
FFFFFFFF.8541FC8A MBOX_MSG$B_TYPE 79
FFFFFFFF.8541FC8B MBOX_MSG$B_SUBTYPE 53
FFFFFFFF.8541FC8C MBOX_MSG$L_FUNCTION 00000020
FFFFFFFF.8541FC90 MBOX_MSG$PQ_UVA64 00000000.DEAD0001
FFFFFFFF.8541FC98 MBOX_MSG$L_SIZE 000000C0
FFFFFFFF.8541FC9C MBOX_MSG$L_IRP 85261E00
FFFFFFFF.8541FCA0 MBOX_MSG$L_NOREADERWAITQFL 00000000
FFFFFFFF.8541FCA4 MBOX_MSG$L_NOREADERWAITQBL 00000000
FFFFFFFF.8541FCA8 MBOX_MSG$L_PID 000100BF SYS$K_V
ERSION_16+0007F
FFFFFFFF.8541FCAC MBOX_MSG$L_DATASTART 8541FCB8
FFFFFFFF.8541FCB0 MBOX_MSG$W_DATASIZE 0070
FFFFFFFF.8541FCB2 MBOX_MSG$W_BUFQUOCHARGE 0001
FFFFFFFF.8541FCB4 MBOX_MSG$L_THREAD_PID 218004BF
 MBOX_MSG$C_LENGTH

FFFFFFFF.8541FCB8 MBOX_MSG$R_DATA 00005F53.494C4C45
The third message...
SDA> form @@@UCB
FFFFFFFF.854CE480 MBOX_MSG$L_FLINK 854C9140
 MBOX_MSG$PS_ADDR
FFFFFFFF.854CE484 MBOX_MSG$L_BLINK 8541FC80
 MBOX_MSG$PS_UVA32
FFFFFFFF.854CE488 MBOX_MSG$W_MBZ 0000
FFFFFFFF.854CE48A MBOX_MSG$B_TYPE 79
FFFFFFFF.854CE48B MBOX_MSG$B_SUBTYPE 53
FFFFFFFF.854CE48C MBOX_MSG$L_FUNCTION 00000020
FFFFFFFF.854CE490 MBOX_MSG$PQ_UVA64 00000000.DEAD0001
FFFFFFFF.854CE498 MBOX_MSG$L_SIZE 000000C0
FFFFFFFF.854CE49C MBOX_MSG$L_IRP 854D1640
FFFFFFFF.854CE4A0 MBOX_MSG$L_NOREADERWAITQFL 00000000
FFFFFFFF.854CE4A4 MBOX_MSG$L_NOREADERWAITQBL 00000000
FFFFFFFF.854CE4A8 MBOX_MSG$L_PID 000100C0 SYS$K_V
ERSION_16+00080
FFFFFFFF.854CE4AC MBOX_MSG$L_DATASTART 854CE4B8
FFFFFFFF.854CE4B0 MBOX_MSG$W_DATASIZE 0070
FFFFFFFF.854CE4B2 MBOX_MSG$W_BUFQUOCHARGE 0001
FFFFFFFF.854CE4B4 MBOX_MSG$L_THREAD_PID 218004C0

© Copyright 2007 Hewlett-Packard Development Company, L.P. 26

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 MBOX_MSG$C_LENGTH

FFFFFFFF.854CE4B8 MBOX_MSG$R_DATA 00005F53.494C4C45
Determine the number of messages queued to the mailbox.
SDA> validate queue ucb
Queue is complete, total of 892 elements in the queue
SDA>

Once you have determined how many messages are in the queue and which processes are sending
them, you will need to determine what happened to the mailbox reader. Is it hung in a resource wait
state? Has it encountered a race condition that caused it to ignore the mailbox? Has the process died
for some reason?

To identify where in the code the process has stalled, you can view call frames and walk back to the
source of the call. Doing so requires that you have access to link maps and machine code listings for
the program that the hung process was running.

On HP AlphaServer systems, the return address of the caller is stored in r26 when the sys$qio code is
entered. If a sys$qiow was called, that, in turn, made the call to sys$qio; you will need to view call
frames to locate the caller of sys$qiow. Once you know the return PC, you can take it to the map file
for the program and find the program section that contains the given PC. You would then subtract the
base address of the containing program section to determine the location counter for the machine
code that contains the return address from the call. The location counter can be taken to the listing file
to locate the machine code instruction for the return from the call.

From the return instruction, you can back up one instruction at a time in the listing file, looking for a
source line number. In a 132 column display, the source line number will be all the way to the right
and will have a ";" prefix in front of the source line number. This will get you to the source code and
you can determine what is happening in the context of the program. Example 12 illustrates mapping
the call back to the source in the sys$qio case on an AlphaServer system. Example 13 does the same
for the sys$qiow case on an AlphaServer system.

Example 12. Mapping the Return PC to Source for a Process in RWMBX (sys$qio
case on AlphaServer)

SDA> sh summary

Current process summary

 Extended Indx Process name Username State Pri PCB/KTB PHD Wkset
-- PID -- ---- --------------- ------------ ------- --- -------- -------- ------
 20400401 0001 SWAPPER SYSTEM HIB 16 818E5DC8 818E5800 0
 20400407 0007 CLUSTER_SERVER SYSTEM HIB 13 81DEE600 84B2C000 113
...
 2040043B 003B DTGREET SYSTEM LEF 4 81DB9640 84B2A000 692
 204008B8 00B8 TCPIP$BOOTP_1 TCPIP$BOOTP LEF 10 8223D1C0 84B62000 280
 20400DAD 01AD _TNA58: ELLIS CUR 002 6 8222F780 84B54000 659
 20400DC5 01C5 ELLIS_14353 ELLIS RWMBX 6 822EFC40 84B32000 206
 20400DC6 01C6 ELLIS_29302 ELLIS RWMBX 6 821D79C0 84B52000 206
 20400DC7 01C7 ELLIS_7240 ELLIS RWMBX 6 822E8200 84B58000 206
 20400DC8 01C8 ELLIS_61712 ELLIS RWMBX 6 821B1140 84B60000 206
 20400DC9 01C9 ELLIS_31360 ELLIS RWMBX 6 821D6CC0 84B64000 206
 20400DCA 01CA ELLIS_60365 ELLIS RWMBX 6 823D08C0 84B66000 210
SDA> set process/index=1c8
SDA> read/executive

© Copyright 2007 Hewlett-Packard Development Company, L.P. 27

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

View the call frames looking for a call to sys$qiow.
SDA> show call/summary

Call Frame Summary

There is no call frame for sys$qiow. Therefore, we will need to look for the
return PC in r26.

 Frame Type Frame Address Return PC Procedure Entry
-------------------- ----------------- ----------------- -----------------
Stack Frame 00000000.7AE09990 00000000.00020064 00000000.000200A0
SYS$K_VERSION_08+00080
Stack Frame 00000000.7AE09AA0 FFFFFFFF.80385CE4 00000000.00020000
SYS$K_VERSION_06
Stack Frame 00000000.7AE09B30 00000000.7AF6C058 FFFFFFFF.80385B50
SYS$IMGSTA_C
Stack Frame 00000000.7AE09BB0 00000000.7AF6BE88 00000000.7AF6BE9C DCL+81E9C
Cannot display further call frames (Bottom of stack)
SDA> examine r26
This is the return PC.
R26: 00000000.000202A4 "¤......."
Verify that the instruction preceding the return PC is a jump to subroutine
(JSR).
SDA> examine/inst 202a4-4
SYS$K_VERSION_08+00280: JSR R26,(R26)
SDA>
Determine the image that the process is running.
SDA> show summary/image/process= ELLIS_61712

Current process summary

 Extended Indx Process name Username State Pri PCB/KTB PHD Wkset
-- PID -- ---- --------------- ------------ ------- --- -------- -------- ------
 20400DC8 01C8 ELLIS_61712 ELLIS RWMBX 6 821B1140 84B60000 210
 1DGA642:[ELLIS]MBX_W.EXE;9
SDA> EXIT
$
View the map file, looking for the program section containing the PC.

$ type mbx_w.map
 19-NOV-2006 22:37 Linker A13-03 Page
1

 +------------------------+
 ! Object Module Synopsis !
 +------------------------+

Module Name Ident Bytes File Creation Date Creator
------- ----- ------------- ------- ---- ----- -----

MBX_W V1.0 2377 SYS$SYSDEVICE:[ELLIS]MBX_W.OBJ;7 19-NOV-2006 22:37 Compaq C V6.5-001

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module Name Base End Length Align Attributes
---------- ----------- ---- --- ------ ----- ----------
$LINK$ 00010000 000101BF 000001C0 (448.) OCTA4 NOPIC,CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 MBX_W 00010000 000101BF 000001C0 (448.) OCTA4
$LITERAL$ 000101C0 000101E4 00000025 (37.) OCTA4 PIC,CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 MBX_W 000101C0 000101E4 00000025 (37.) OCTA4
$READONLY$ 000101F0 000101FF 00000010 (16.) OCTA4 PIC,CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 MBX_W 000101F0 000101FF 00000010 (16.) OCTA4
CR_VALS 00010200 0001020F 00000010 (16.) OCTA4 NOPIC,OVR,REL,GBL,NOSHR,NOEXE,NOWRT,NOVEC, MOD

© Copyright 2007 Hewlett-Packard Development Company, L.P. 28

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 MBX_W 00010200 0001020F 00000010 (16.) OCTA4

Here is the Program Section containing the return PC. The base of the
program section is at 20000, so the offset into module MBX_W for the point of
the call is 202a0.
$CODE$ 00020000 0002072B 0000072C (1836.) OCTA4 PIC,CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD

 MBX_W 00020000 0002072B 0000072C (1836.) OCTA4
BSS 00030000 00030017 00000018 (24.) OCTA4 NOPIC,CON,REL,LCL,NOSHR,NOEXE, WRT,NOVEC,NOMOD
 MBX_W 00030000 00030017 00000018 (24.) OCTA4

...
$ edit mbx_w.lis
First search for the location counter 000002a0. We find it below, then back to
the source line number.
D3400089 0258 BSR R26, GEN_BUFF ; 021837

Source line number 21835 should be the location that the call to sys$qio was
made.
A7420078 025C LDQ R26, 120(R2) ; 021835
47E41410 0260 MOV 32, R16
47E70411 0264 MOV R7, R17
47E61412 0268 MOV 48, R18
B41E0000 026C STQ R0, (SP)
47EE1400 0270 MOV 112, R0
B7FE0010 0274 STQ R31, 16(SP)
227D0028 0278 LDA R19, mb_ios ; R19, 40(FP)
B41E0008 027C STQ R0, 8(SP)
B7FE0018 0280 STQ R31, 24(SP)
47FF0414 0284 CLR R20
47FF0415 0288 CLR R21
B7FE0020 028C STQ R31, 32(SP)
B7FE0028 0290 STQ R31, 40(SP)
47E19419 0294 MOV 12, R2
A7620080 0298 LDQ R27, 128(R2)
2FFE0000 029C UNOP
6B5A4000 02A0 JSR R26, SYS$QIO ; R26, R26
A742FFA8 02A4 LDQ R26, -88(R2) ; 021838
F0000004 02A8 BLBS R0, L$21
47E00410 02AC MOV R0, status ; R0, R16 ; 021835

Now we search for the source line.
 1 21823 /* Assign a channel to the mailbox. */
 1 21824 status = sys$crembx(0,&mbx_chan,0,0,0,0,&mbx,0,0);
 1 21825 check(status);
 1 21826
 1 21827 /* Write messages to the mailbox. */
 1 21828 for(i=0;i<500;i++)
 2 21829 {
 2 21830
 2 21831 stall = ten_ms * ((rand()%300)+1);
 2 21832 status = sys$setimr(TEFN,&stall,0,0,0);
 2 21833 check(status);
 2 21834 sys$waitfr(TEFN);

Here is the point of the call.
 2 21835 status = sys$qio(MEFN,mbx_chan,IO$_WRITEVBLK,
 2 21836 &mb_ios,0,0,
 2 21837 gen_buff(&mrec,&id,count++),sizeof(mrec),0,0,0,0);
 2 21838 check(status);
 2 21839 //check(mb_ios.iosb$w_status);
 1 21840 }
 1 21841 stall = ten_ms * 300*1000*100;

Example 13. Locating the Return PC for a Process in RWMBX (sys$qiow case on
AlphaServer)

© Copyright 2007 Hewlett-Packard Development Company, L.P. 29

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

In this case, the call to sys$qiow does show up in the call frames. Once we
have the return PC, the steps are the same as in example 12.
SDA> set proc/index=1ca
SDA> show call/summary

Call Frame Summary

 Frame Type Frame Address Return PC Procedure Entry
-------------------- ----------------- ----------------- -----------------
Stack Frame 00000000.7AE09930 00000000.000202A4 FFFFFFFF.80114BD0 SYS$QIOW_C
Stack Frame 00000000.7AE09990 00000000.00020064 00000000.000200A0 SYS$K_VERSION_08+00080
Stack Frame 00000000.7AE09AA0 FFFFFFFF.80385CE4 00000000.00020000 SYS$K_VERSION_06
Stack Frame 00000000.7AE09B30 00000000.7AF6C058 FFFFFFFF.80385B50 SYS$IMGSTA_C
Stack Frame 00000000.7AE09BB0 00000000.7AF6BE88 00000000.7AF6BE9C DCL+81E9C
Cannot display further call frames (Bottom of stack)
SDA>

Full mailboxes should be rare in a well-designed application. Hopefully, the steps above will help you
out in the rare case that you need to troubleshoot an RWMBX hang.

Designing Applications that Operate Asynchronously Using Mailboxes
For some, a picture is worth a thousand words. For others, seeing code in a complete application
helps clarify the concept. The following example illustrates most of the concepts described in this
article.

It is rare that an application uses mailboxes for the sole purpose of doing mailbox communication. To
illustrate operating asynchronously in an OpenVMS environment, we designed a series of functions
and programs to sample the Program Counter, the Buffered and Direct I/O counts for any given
application. This data, along with a time stamp, will be logged to a file.

The data will be captured by an Asynchronous System Trap (AST) routine that will be called based on
timer expiration. The data we are capturing could be used to profile the performance characteristics
of any application. This specific data is not as relevant as the design considerations. Note that the
same approach could be used to sample other forms of real-time data.

This example illustrates:
1. Requesting timers

2. AST routines

3. Local Event Flags

4. The "I/O" status block

5. Getting Job/Process information

6. Obtaining a time stamp

7. Using item list entries (ile3 structures)

8. Processing Mailboxes

9. Process creation

10.

 QIO Interface to the mailbox

 Creating Mailboxes

11.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 30

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

storage is avoided. This method improves the ability
 debug, maintain, and extend the application.

imize "noise" and "drift" in the main sampler process by creating a background
proc

ess.

• amples from the mailbox and write them to the log file, until an EOF is sent from the
parent.

ll mailbox I/O is processed asynchronously.

e file is synched in the background by the child process and the drift is reduced on the samples.

that may be logged in
n another terminal session. The listener can then display the data in real-time.

nts a problem. Normally, temporary mailbox names are

ntered into the job logical name table.

 UIC group. The

goes away when the images run down, so as to not
pact other images run by this process.

nnel
ssigned. So, the logger mailbox logical name still goes into the job logical name table.

e "shrug our shoulders" and try again next time. Similarly, the listener will abort if there
 no writer.

hen we are done the application design looks like figure 5.

From a design perspective, we attempt to maintain data encapsulation through the use of structures
that describe the context of operations, such as samples, files, I/O, etc. The structures are passed as
parameters to procedures and external/common
to

We attempt to min

ess that will:
• Create a temporary mailbox for communication with the parent proc

• Create the log file, whose name is passed from the parent process.

Accept s

A

Th

You may want to be able to view the data in real-time. The PC_LOGGER is designed to write the
samples to a "listener" mailbox. This mailbox can be read by a listener process
o

The listener process will be logged in separately from the process in which the sampler is being run.
Therefore, the mailbox logical name prese
e

In the listener and the logger the logical name LNM$TEMPORARY_MAILBOX is equated to
LNM$GROUP to make the mailbox logical name visible to other processes in the
logical name is placed in the logical name table LNM$PROCESS_DIRECTORY.
Since the logical name is created in user mode, it
im

It is important to note that the logical name is created AFTER the logger mailbox is created/cha
a

The listener mailbox is implemented as write-only by the logger and read-only by the listener. This
method allows us to simply send the message to the mailbox from the logger. If there is no reader
(listener), the mailbox write completes immediately with a status of SS$_NOREADER. When this status
is received, w
is

W

© Copyright 2007 Hewlett-Packard Development Company, L.P. 31

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 Main Program

init_sampler(&context,fname);

General Code
cleanup_sampler(&context);

int init_sampler(Sample_ctx *context, char *fname)
1) Verify that the sampler is not active, before making it active.
2) Set the initial timer to call an AST routine each second.
3) Create PC_LOGGER_MBX mailbox.
4) Create PC_LOGGER Process.
5) Send the file name to the PC_LOGGER.
6) Wait for an ACK that file has been created.

1) Cancel the sampler timer.
2) Write EOF to Logger Mailbox.
3) Mark the sampler inactive.

int cleanup_sampler(Sample_ctx *context)

Each second
OpenVMS calls
the AST routine

1) Resets the timer.
2) Grabs the PC.
3) Obtains timestamp.
4) Obtains BIO and DIO counts.
5) Writes the sample to the mailbox.

void sample_pc(Sample_ctx *context,unsigned int
 r0,unsigned int r1,unsigned int pc,unsigned int
 ps)

PC_LOGGER Process
1) Create/Assign a channel to the
PC_LOGGER_MBX maibox.
2) Create
LNM$TEMPORARY_MAILBOX logical
name in process directory.
3) Create/assign channel to listener
mailbox.
4) Read mailbox to determine the log
file name.
5) Create/open the log file.
6) If successful, send an ACK back.
7) Set a timer to synch the file every 5
seconds.
8) Post Asynch read to mailbox.
9) Go to sleep.
10) if awaken run down

Logger Mailbox AST Routine
1) Check completion status of
read.
2) If success and not EOF, write
to log and re-post asynchronous
read. Also, write to listener MBX.
3) If EOF, close the log, cancel
synch timer, and wake ourselves.

OpenVMS
calls the AST
routine when
mailbox read
completes.

Synch AST Routine
1) Synchs the file.
2) Resets the timer.

Each 5 seconds
OpenVMS calls
the AST routine

PC_LISTENER Process

1) Create LNM$TEMPORARY_MAILBOX logical
name in process directory.
2) Create/assign channel to listener mailbox.
3) Read listener mailbox.
4) If EOF, exit.
5) If no writer exit.
6) Else display on screen.

00000004: 1-SEP-2004 11:43:21.29 00030150 11483 6517
00000005: 1-SEP-2004 11:43:22.30 00030104 11484 6517

Figure 5. PC Sampler "System Design"

Example 14. The PC_SAMPLER Header File

$ type pc_sampler2.h
#include <stdio.h>
/*
 Context for our PC sampler.
 File pointer for where to write the data.
 Delta time for our sampling interval.
*/

typedef struct pc_sample_ctx
{
 __int64 delta;
 int c_pid;
 int sample_no;
 short mbx_chan;
} Sample_ctx;

/* Profile data */
typedef struct sample_data
{
 __int64 time_stamp;
 int pc;

© Copyright 2007 Hewlett-Packard Development Company, L.P. 32

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 int bio;
 int dio;
 int sample_no;
} Samp;
#define CPU_TIMER 1
int init_sampler(Sample_ctx *,char *);
void sample_pc(Sample_ctx *, unsigned int, unsigned int,
 unsigned int, unsigned int);
int cleanup_sampler(Sample_ctx *);

$
$

Example 15. PC Sampler Test and Stub Programs

$ type pc_tester2.c
#include <stdio.h>
#include <stdlib.h>

#include "pc_sampler2.h"
void stub(void);
int main(void)
{
 int i;
 Sample_ctx ctx;

 init_sampler(&ctx,"sample.data");

 for(i=0;i<1000000000;i++)
 {
 stub();
 }

 cleanup_sampler(&ctx);
}
$
$ type stub.c
void stub(void) {;}
$

Example 16. PC Sampler Routines

$ type pc_sampler3.c
/* Set of routines to sample program counters at
 1 second (CPU time) intervals and send the PC and time of
 sample to a logger process created by this routine.
*/
#include "pc_sampler2.h"
#include <starlet.h>
#include <stdio.h>
#include <ssdef.h>
#include <iodef.h>
#include <iosbdef.h>
#include <string.h>
#include <descrip.h>

© Copyright 2007 Hewlett-Packard Development Company, L.P. 33

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

#include <rmsdef.h>
#include <iledef.h>
#include <jpidef.h>
#define JPI_LISTEND 0
#define check(S) if(!((S)&1)) sys$exit(S)

/* Flag to indicate that the sample is active. */
static int active = 0;
/* Sample interval is a constant 1 second. */
static const __int64 sample_interval = -10000000;
#define BASE_PRI 4
#define MBX_EFN 32
#define ACK_SIZE 4
#define TERM_MAX 255

/*
 Initialize the PC Sampler:
 1) Verify that the sampler is not active, before making it active
 2) Set the initial timer.
 3) Create a mailbox.
 4) Create a child process to log messages.
*/
int init_sampler(Sample_ctx *context, char *fname)
{
 int status;
 $DESCRIPTOR(mbx_name,"PC_LOGGER_MBX");
 $DESCRIPTOR(image,"PC_LOGGER2");
 char ack_buffer[ACK_SIZE];
 iosb ios;
 char terminal[TERM_MAX+1];
 $DESCRIPTOR(term,terminal);
 ile3 term_list[] = {{TERM_MAX,JPI$_TERMINAL,terminal,
 &term.dsc$w_length},{0,0}};
/* If the sampler is already active, return a failure status,
 else make it active.
*/
 if(!active)
 {
 active = 1;
 }
 else
 {
 fprintf(stderr,"Sampler is already active.\n");
 }
/*
 Create the mailbox for communications with the child.
*/
 status = sys$crembx(0,&context->mbx_chan,0,0,0,0,&mbx_name,0,0);
 check(status);

/* Call SYS$GETJPI to obtain our terminal name. */
 status = sys$getjpiw(0,0,0,term_list,&ios,0,0);
 check(status);
 check(ios.iosb$w_status);

/* Create the child logger process. */
 status = sys$creprc(&context->c_pid,&image,0,&term,&term,
 0,0,&image,BASE_PRI,0,0,0,0,0,0);
 check(status);
/* Send the file name to the child. */

© Copyright 2007 Hewlett-Packard Development Company, L.P. 34

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 status = sys$qiow(MBX_EFN,context->mbx_chan,IO$_WRITEVBLK,&ios,
 0,0,fname,strlen(fname),0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
/* Read the same mailbox for an acknowledgment that the file was created
 properly.
*/
 status = sys$qiow(MBX_EFN,context->mbx_chan,IO$_READVBLK,&ios,
 0,0,ack_buffer,ACK_SIZE,0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
 ack_buffer[ios.iosb$w_bcnt] = '\0';

/* Make sure the child created the log file properly. If not, return
 error.
*/
 if(strcmp(ack_buffer,"ACK") != 0)
 {
 return(RMS$_FNF);
 }
/* Save collection interval in context block. */
 context->delta = sample_interval;
 context->sample_no = 0;
/* Set a timer for collections. */
 status = sys$setimr(0,&context->delta,sample_pc,context,CPU_TIMER);
 check(status);
}

/**********************************
 Sampler AST Routine.
 1) Grabs the PC.
 2) Writes the PC and a timestamp to collection log process
 through mailbox.
 3) Resets the timer.
**********************************/
void sample_pc(Sample_ctx *context,unsigned int r0,unsigned int r1,
 unsigned int pc,unsigned int ps)
{
 int wrt_cnt;
 static Samp sample;
 int status;
 ile3 jpi_items[] = {
 {sizeof(sample.bio),JPI$_BUFIO,
 &sample.bio},
 {sizeof(sample.dio),JPI$_DIRIO,
 &sample.dio},
 {0,JPI_LISTEND}
 };
 iosb ios;

/* Reset the timer. */
 status = sys$setimr(0,&context->delta,sample_pc,context,CPU_TIMER);
 check(status);
/* Save the sample PC. */
 sample.pc = pc;
/* Obtain a timestamp. */
 status = sys$gettim(&sample.time_stamp);
 check(status);
/* Call SYS$GETJPI to obtain our buffered and direct I/O counts. */
 status = sys$getjpiw(0,0,0,jpi_items,&ios,0,0);

© Copyright 2007 Hewlett-Packard Development Company, L.P. 35

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 check(status);
 check(ios.iosb$w_status);

/* Update and copy the sample number. */
 sample.sample_no = ++(context->sample_no);
/* Write our collection data to the log file. */
 status = sys$qiow(MBX_EFN,context->mbx_chan,IO$_WRITEVBLK|IO$M_NOW,
 &ios,0,0,
 &sample,sizeof(sample),0,0,0,0);
 check(status);
 check(ios.iosb$w_status);
}
/**********************************
 Cleanup the PC sampler by:
 1) Cancelling the sampler timer.
 2) Marking the sampler inactive.
 3) Sending EOF status to the child.
**********************************/
int cleanup_sampler(Sample_ctx *context)
{
 int status;
 iosb ios;
/* Cancel the timer. */
 status = sys$cantim(context,0);
 check(status);
/* Notify the logger to close the file. */
 status = sys$qiow(MBX_EFN,context->mbx_chan,IO$_WRITEOF,&ios,
 0,0,0,0,0,0,0,0);
 check(status);
 check(ios.iosb$w_status);

/* Mark the sampler inactive. */
 active = 0;
 return(status);
}
$

Example 17. PC_LOGGER Header File

Header file for the PC Sample logger.
$ type pc_logger.h
#include <stdio.h>
#include "pc_sampler2.h"
typedef struct mbx_context
{
 FILE *fp;
 Samp *samp_buffer;
 iosb ios;
 short chan;
} Mbx_ctx;
$

Example 18. PC_LOGGER Code

© Copyright 2007 Hewlett-Packard Development Company, L.P. 36

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

$ type pc_logger2.c
/*
 Program to accept PC_Sample data and write it
 to a log file.
 The logger will send the data to a listener.
*/
#include <starlet.h>
#include <iodef.h>
#include <stdio.h>
#include <iosbdef.h>
#include <descrip.h>
#include <iledef.h>
#include <lnmdef.h>
#include <cmbdef.h>
#include <string.h>
#include "pc_logger2.h"
#include <ssdef.h>
#define check(S) if(!((S)&1)) sys$exit(S)
#define LIST_END 0
#define MAX_FNAME 255
void synch_ast(Mbx_ctx *);
void mbx_ast(Mbx_ctx *);

int main(void)
{
 int status;
 Mbx_ctx ctx;
 Samp sample;
 char fname[MAX_FNAME+1];
 char nak[] = "NAK";
 char ack[] = "ACK";
 char *msg;
 __int64 synch_time = (__int64) -50000000;
 $DESCRIPTOR(mbx_name,"PC_LOGGER_MBX");
/* Descriptors to allow temporary mailbox names to be placed in the
 group logical name table.
*/
 $DESCRIPTOR(ptable,"LNM$PROCESS_DIRECTORY");
 $DESCRIPTOR(lnm,"LNM$TEMPORARY_MAILBOX");
 char equiv[] = "LNM$GROUP";
 ile3 lnm_items[] = {{strlen(equiv),LNM$_STRING,equiv},{LIST_END}};
 $DESCRIPTOR(l_mbx,"PC_LISTENER_MBX");

/* Create /assign a channel to a temporary mailbox for log data. */
 status = sys$crembx(0,&ctx.chan,0,0,0,0,&mbx_name,0,0);
 check(status);

/* Read the mailbox to determine the target (log) file name. */
 status = sys$qiow(0,ctx.chan,IO$_READVBLK,&ctx.ios,0,0,
 fname,MAX_FNAME,0,0,0,0);
 check(status);
 check(ctx.ios.iosb$w_status);
 fname[ctx.ios.iosb$w_bcnt] = '\0';
/* Open/create the file. */
 ctx.fp = fopen(fname,"w");

/* Send an ACK/NAK dependent on the creation status. */

© Copyright 2007 Hewlett-Packard Development Company, L.P. 37

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 if(!ctx.fp)
 {
 msg = nak;
 }
 else
 {
 msg = ack;
 }
 status = sys$qiow(0,ctx.chan,IO$_WRITEVBLK,&ctx.ios,0,0,
 msg,strlen(msg),0,0,0,0);
 check(status);
 check(ctx.ios.iosb$w_status);

/* Create a logical name to allow the next temporary mailbox's name
 we create to be placed in the group logical name table.
*/
 status = sys$crelnm(0,&ptable,&lnm,0,lnm_items);
 check(status);
/* Create/assign a channel to the listener mailbox. */
 status = sys$crembx(0,&ctx.l_chan,0,0,0,0,&l_mbx,CMB$M_WRITEONLY,0);
 check(status);

/* Set a timer for synching the file. */
 status = sys$setimr(0,&synch_time,synch_ast,&ctx,0);
 check(status);
/* set up shared context for the sample buffer. */
 ctx.samp_buffer = &sample;

/* Post an asynchronous read to the mailbox. */
 status = sys$qio(0,ctx.chan,IO$_READVBLK,&ctx.ios,mbx_ast,&ctx,
 ctx.samp_buffer,sizeof(*(ctx.samp_buffer)),0,0,0,0);
 check(status);

/* Go to sleep. */
 sys$hiber();

/* If we are waken, run down. */
 return(SS$_NORMAL);
}

/* AST routine to read the mailbox. */
#define EXP_OBJECTS_WRITTEN 1
void mbx_ast(Mbx_ctx *ctx)
{
 int write_cnt;
 int status;
/* Check to see if the qio completed properly. */

 switch(ctx->ios.iosb$w_status)
 {
 case SS$_ENDOFFILE:
 fclose(ctx->fp);
 status = sys$wake(0,0);
 check(status);
 status = sys$cantim(0,0);
 check(status);
 /* Send EOF to listener. */
 status = sys$qiow(0,ctx->l_chan,
 IO$_WRITEOF|IO$M_READERCHECK,
 &ctx->l_ios,0,0,

© Copyright 2007 Hewlett-Packard Development Company, L.P. 38

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 0,0,0,0,0,0);
 check(status);
 if(ctx->l_ios.iosb$w_status == SS$_NOREADER)
 {
 /* Ignore if no reader. */
 ;
 }
 else
 {
 check(ctx->l_ios.iosb$w_status);
 }

 break;

 default:
 check(ctx->ios.iosb$w_status);
 write_cnt = fwrite(ctx->samp_buffer,
 sizeof(*(ctx->samp_buffer)),
 1,ctx->fp);
 if(write_cnt != EXP_OBJECTS_WRITTEN)
 {
 fprintf(stderr,"Write error!\n");
 }
 /* Post another read to the mailbox. */
 status = sys$qio(0,ctx->chan,IO$_READVBLK,
 &ctx->ios,mbx_ast,ctx,
 ctx->samp_buffer,
 sizeof(*(ctx->samp_buffer)),0,0,0,0);
 check(status);
 /* Send buffer to listener. */
 status = sys$qiow(0,ctx->l_chan,
 IO$_WRITEVBLK|IO$M_READERCHECK,
 &ctx->l_ios,0,0,
 ctx->samp_buffer,
 sizeof(*(ctx->samp_buffer)),0,0,0,0);
 check(status);
 if(ctx->l_ios.iosb$w_status == SS$_NOREADER)
 {
 /* Ignore if no reader. */
 ;
 }
 else
 {
 check(ctx->l_ios.iosb$w_status);
 }
 break;
 }
}

#include <unistd.h>
/* AST routine to synch the file every 5 seconds. */
void synch_ast(Mbx_ctx *ctx)
{
 __int64 synch_time = -50000000;
 int status;

/* Synch the file. */
 fsync(fileno(ctx->fp));
/* Reset a timer for synching the file. */
 status = sys$setimr(0,&synch_time,synch_ast,ctx,0);

© Copyright 2007 Hewlett-Packard Development Company, L.P. 39

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 check(status);
}
$

Example 19. Code to Dump Samples

This code is implemented as a foreign command.
$
$ type dump_samples.c
/***
 Program to dump output from PC Sampler log file.
 Foreign comand setup by using the DCL command:
 $ PC_DUMP == "$dev[dir]DUMP_SAMPLES.EXE"
***/
#include <stdio.h>
#include <stdlib.h>
#include <descrip.h> // This is from SYS$LIBRARY:DECCRTLDEF.TLB
#include <starlet.h>
#include <ssdef.h>
#include "pc_sampler1.h"
#define EXPECTED_ARGS 2
#define NO_ARGS 1
#define FILE_ARG 1
#define TIME_STR_LEN 23
#define LINES_PER_PAGE 24
#define CMD_ARG 1
#define check(S) if(!((S)&1)) sys$exit(S)
/* Get parameter(s) from the command line. */
int main(int argc, char **args)
{

/* File pointer for the data file. */
 FILE *fp;
 int i;
/* Structure for the sample data. */
 Samp sample;
 int items_read;
 int status;
/* String to hold the text representation of the time stamp. */
 char time_str[TIME_STR_LEN+1];
 $DESCRIPTOR(time_dsc,time_str);
/* Process the command line argument(s). */
 switch(argc)
 {
 default:
 fprintf(stderr,"Bad command format!"
 "\nUse: PC_DUMP file-name\n");
 exit(SS$_INSFARG);
 break;
 case EXPECTED_ARGS:
 /* Open the data file. */
 fp = fopen(args[FILE_ARG],"r");
 if(!fp)
 {
 fprintf(stderr,"Bad input file name.\n");
 perror(args[CMD_ARG]);

© Copyright 2007 Hewlett-Packard Development Company, L.P. 40

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 exit(EXIT_FAILURE);
 }
 }
 i = 0;
/* Read until EOF or error and display the samples. */
 while((items_read = fread(&sample,sizeof(sample),1,fp)) == 1)
 {
 status = sys$asctim(&time_dsc.dsc$w_length,&time_dsc,
 &sample.time_stamp,0);
 check(status);
/* Convert the string returned to a C-style string. */
 time_str[time_dsc.dsc$w_length] = '\0';
/* Print a header after each 24 lines. */
 if(i%LINES_PER_PAGE == 0)
 {
 printf("%-8s %-23s %-8s %-10s %-10s\n",
 "Sample","Time of Sample","PC","BIO","DIO");
 printf("%-8s %-23s %-8s %-10s %-10s\n",
 "------","--------------","--","---","---");
 }
 printf("%08d: %23s %08x %10d %-10d\n",
 ++i,time_str,sample.pc,sample.bio,sample.dio);
 }
/* Make sure we hit the end of file. */
 if(feof(fp))
 {
 puts("***** No more data *****");
 }
 else
 {
 fprintf(stderr,"Error reading %s\n",args[FILE_ARG]);
 exit(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

$
$
$ cc dump_samples
$ link dump_samples
$
Define a foreign command for the sample dumper.
$ pc_dump == "SYSSYSDEVICE:[ELLIS.NASA]dump_samples"
$
Validate that the code generates an error when no sample file name is
provided.
$ pc_dump
Bad command format!
Use: PC_DUMP file-name
%SYSTEM-F-INSFARG, insufficient call arguments
$

© Copyright 2007 Hewlett-Packard Development Company, L.P. 41

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

Example 20. PC_LISTENER Code

$ type pc_listener.c
/*************************************
 PC_LISTENER
 listens to PC_LISTENER_MBX mailbox and displays samples.
 If no PC_LOGGER is active, aborts
*************************************/
#include <descrip.h>
#include <cmbdef.h>
#include <stdio.h>
#include <starlet.h>
#include <iosbdef.h>
#include <iodef.h>
#include <ssdef.h>
#include <lnmdef.h>
#include <iledef.h>
#include <string.h>
#define check(S) if(!((S)&1)) sys$exit(S)
#include "pc_sampler3.h"
#define TIME_STR_LEN 23
#define LIST_END 0
int main(void)
{
/* Mailbox name. */
 $DESCRIPTOR(mbx,"PC_LISTENER_MBX");
 int status;
 iosb ios;
 short chan;
 __int64 stall = (__int64) -20000000;
 Samp buffer;
/* String yo hold the text representation of the time stamp. */
 char time_str[TIME_STR_LEN+1];
 $DESCRIPTOR(time_dsc,time_str);
 $DESCRIPTOR(ptable,"LNM$PROCESS_DIRECTORY");
 $DESCRIPTOR(lnm,"LNM$TEMPORARY_MAILBOX");
 char equiv[] = "LNM$GROUP";
 ile3 lnm_items[] = {{strlen(equiv),LNM$_STRING,equiv},{LIST_END}};
/*
 Create a logical name to cause the mailbox name to be placed
 in the group logical name table.
*/
 status = sys$crelnm(0,&ptable,&lnm,0,lnm_items);
 check(status);
/* Create/assign a table to the mailbox. */
 status = sys$crembx(0,&chan,0,0,0,0,&mbx,CMB$M_READONLY,0);
 check(status);

/* Read the mailbox using SYS$QIO until EOF. */
 do
 {
 status = sys$qiow(0,chan,IO$_READVBLK|IO$M_WRITERCHECK,&ios,
 0,0,&buffer,sizeof(buffer),0,0,0,0);
 check(status);
 switch(ios.iosb$w_status)
 {
 case SS$_ENDOFFILE:

© Copyright 2007 Hewlett-Packard Development Company, L.P. 42

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

 puts("*** No more Data *** ");
 break;
 case SS$_NOWRITER:
 fprintf(stderr,"Logger is not active. "
 "Try again later.\n");
 sys$exit(SS$_NOLISTENER);
 break;
 default:
 check(ios.iosb$w_status);
/* Send the message to the screen. */
 status = sys$asctim(&time_dsc.dsc$w_length,
 &time_dsc,
 &buffer.time_stamp,0);
 check(status);
/* Convert the time string returned to a C-style string. */
 time_str[time_dsc.dsc$w_length] = '\0';
 printf("%08d: %23s %08x %10d %10d\n",
 buffer.sample_no,time_str,
 buffer.pc,buffer.bio,
 buffer.dio);
 }
 } while(ios.iosb$w_status != SS$_ENDOFFILE);
 return(SS$_NORMAL);
}

Example 21. Build Process

$
$ cc pc_tester
$ cc stub
$ cc pc_sampler3
$ link pc_tester,stub,pc_sampler3
$
$ cc pc_logger2
$ link pc_logger2
$
$ cc pc_listener
$ link pc_listener
$

Example 22. Sample Runs

$ r pc_tester
$ pc_dump sample.data
Sample Time of Sample PC BIO DIO
------ -------------- -- --- ---
00000001: 1-SEP-2004 23:39:00.33 000300f0 3013 4625
00000002: 1-SEP-2004 23:39:01.33 00030110 3014 4625
00000003: 1-SEP-2004 23:39:02.33 00030150 3015 4625
00000004: 1-SEP-2004 23:39:03.34 00030150 3016 4625
00000005: 1-SEP-2004 23:39:04.34 00030104 3017 4625
00000006: 1-SEP-2004 23:39:05.34 00030110 3018 4625

© Copyright 2007 Hewlett-Packard Development Company, L.P. 43

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

00000007: 1-SEP-2004 23:39:06.34 00030150 3019 4625
00000008: 1-SEP-2004 23:39:07.34 000300f0 3020 4625
00000009: 1-SEP-2004 23:39:08.36 00030150 3021 4625
00000010: 1-SEP-2004 23:39:09.36 00030100 3022 4625
00000011: 1-SEP-2004 23:39:10.36 00030110 3023 4625
00000012: 1-SEP-2004 23:39:11.36 00030150 3024 4625
00000013: 1-SEP-2004 23:39:12.36 00030110 3025 4625
00000014: 1-SEP-2004 23:39:13.36 00030104 3026 4625
***** No more data *****
$

The Listener is run independently from another terminal session and picks up the data as it comes in.

Example 23. Sample PC_LISTENER Runs

$ r pc_listener
00000010: 1-SEP-2004 23:39:09.36 00030100 3022 4625
00000011: 1-SEP-2004 23:39:10.36 00030110 3023 4625
00000012: 1-SEP-2004 23:39:11.36 00030150 3024 4625
00000013: 1-SEP-2004 23:39:12.36 00030110 3025 4625
00000014: 1-SEP-2004 23:39:13.36 00030104 3026 4625
*** No more Data ***
$
Sample run with the sampler inactive.
$ r pc_listener
Logger is not active. Try again later.
%SYSTEM-F-NOLISTENER, specified remote system process not listening
$
$ r pc_tester
$ pc_dump sample.data
Sample Time of Sample PC BIO DIO
------ -------------- -- --- ---
00000001: 1-SEP-2004 23:40:05.92 00030104 3113 4631
00000002: 1-SEP-2004 23:40:06.92 00030100 3114 4631
00000003: 1-SEP-2004 23:40:07.93 00030104 3115 4631
00000004: 1-SEP-2004 23:40:08.93 00030150 3116 4631
00000005: 1-SEP-2004 23:40:09.93 000300f0 3117 4631
00000006: 1-SEP-2004 23:40:10.93 00030150 3118 4631
00000007: 1-SEP-2004 23:40:11.94 000300f0 3119 4631
00000008: 1-SEP-2004 23:40:12.94 000300f0 3120 4631
00000009: 1-SEP-2004 23:40:13.94 00030150 3121 4631
00000010: 1-SEP-2004 23:40:14.94 00030100 3122 4631
00000011: 1-SEP-2004 23:40:15.94 000300f0 3123 4631
00000012: 1-SEP-2004 23:40:16.94 00030110 3124 4631
00000013: 1-SEP-2004 23:40:17.94 000300f0 3125 4631
00000014: 1-SEP-2004 23:40:18.95 00030150 3126 4631
***** No more data *****
$

Again, this is run from another session.

$ r pc_listener
00000007: 1-SEP-2004 23:40:11.94 000300f0 3119 4631
00000008: 1-SEP-2004 23:40:12.94 000300f0 3120 4631
00000009: 1-SEP-2004 23:40:13.94 00030150 3121 4631
00000010: 1-SEP-2004 23:40:14.94 00030100 3122 4631

© Copyright 2007 Hewlett-Packard Development Company, L.P. 44

OpenVMS Mailboxes: Concepts, Implementation, and Troubleshooting - Bruce Ellis, President,
BRUDEN-OSSG

00000011: 1-SEP-2004 23:40:15.94 000300f0 3123 4631
00000012: 1-SEP-2004 23:40:16.94 00030110 3124 4631
00000013: 1-SEP-2004 23:40:17.94 000300f0 3125 4631
00000014: 1-SEP-2004 23:40:18.95 00030150 3126 4631
*** No more Data ***
$

For more information
On Mailboxes go to: http://h71000.www7.hp.com/doc/os83_index.html
Consult the following Manuals:
HP OpenVMS I/O User's Reference Manual
HP OpenVMS Programming Concepts Manual
HP OpenVMS System Services Reference Manual

To contact the author send email to: Bruce.Ellis@BRUDEN.com

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

© Copyright 2007 Hewlett-Packard Development Company, L.P. 45

	OpenVMS Mailboxes: Concepts, Implementation, and Troubleshoo
	Overview
	Inter-process Synchronization and Communication
	Mailbox Concepts
	Mailbox Creation
	Temporary and Permanent Mailboxes
	Mailbox Protections
	Read/Write Only Channels
	Mailbox Sizing
	Mailboxes and Quotas

	Mailbox Processing
	Reading Mailboxes
	Writing Mailboxes

	Simple Mailbox Examples
	Example 6a. Sample DCL Mailbox Writer and Reader
	Full Mailboxes

	Troubleshooting Full Mailbox Problems
	Designing Applications that Operate Asynchronously Using Mai
	For more information

