
Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
 OpenVMS Technical Journal V9 

 

 

Simplifying Maintenance with DCL 
Bruce Claremont, Software Migration & OpenVMS Consultant 

 

Overview  
An important element of effective software application maintenance and a crucial component of job 
retention is expedient problem resolution. Key to resolving a problem is effective identification of its 
cause. A couple of decades ago I developed a standardized wrapper for OpenVMS DCL procedures 
that proved an effective assistant in locating processing problems. I have successfully deployed this 
code at many sites and continue to use it to this day. I offer it here as a means to ease the burden for 
those of you maintaining batch and interactive DCL processes in production environments.  

 

Introduction 
A key component to effective software maintenance is quick problem identification. OpenVMS users 
are fortunate in this regard in that DCL provides a nice set of commands to facilitate error capture and 
reporting. This document presents a DCL procedure template that demonstrates how to take 
advantage of those commands. You will also get a look at my basic coding philosophy, which is: 

• KISS (Keep It Simple Sweetie ;) 

• Be consistent 

• Use comments! 

DCL Procedure Template Overview 

The template is designed to be applied to new and existing procedures. The template is very simple 
and does not limit procedure functionality. It enforces structured programming techniques via a single 
point of entry and exit. It also enforces implementation of return status values and a standard error 
handling routine. 

Figure 1 presents the template in its entirety. Subsequent sections discuss the template components in 
detail. 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          1 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
Figure 1: DCL Procedure Template 

$ IF F$MODE() .EQS. "BATCH" THEN SET VERIFY !Always the first line! 
$!----------------------------------------- 
$! proc.COM 
$! procedure description 
$! Created:  id, mmm-yyyy 
$! Modified:  id, mmm-yyyy 
$! -  
$!------------------------------------------------------------------------------- 
$! STANDARD PROCEDURE INITIALIZATION SECTION 
$! 
$ _BATCH = 0 
$ IF F$MODE() .EQS. "BATCH" THEN _BATCH = 1 
$ _BELL[0,8] = %X7 
$ _STATUS = 1     !Return Status 
$ SAY := WRITE SYS$COMMAND 
$ ASK := READ SYS$COMMAND - 
 /END_OF_FILE=CANCEL_PROCEDURE - 
 /PROMPT=" 
$ ON ERROR THEN GOTO ERROR_TRAP  !Standard abort trapping. 
$ ON CONTROL_Y THEN GOTO ERROR_TRAP 
$ IF _BATCH THEN SAY = "!"   !If a batch process, convert info 
$!       messages to comments. 
$!------------------------------------------------------------------------------- 
$! PROCEDURE BODY 
 . 
 . 
 . 
$!------------------------------------------------------------------------------- 
$! STANDARD PROCEDURE TERMINATION CODE 
$! 
$ END_PROCEDURE: 
$! *** Procedure specific termination code goes here. *** 
$! 
$ EXIT '_STATUS' 
$! 
$ ERROR_TRAP: 
$! *** Procedure specific error handling code goes here. *** 
$! 
$ IF .NOT. _BATCH 
$   THEN 
$ CONT_PROMPT: 
$  SAY _BELL, "Procedure: ", F$ENVIRONMENT("PROCEDURE") 
$  ASK "Procedure aborted by a <Ctrl^Y> or error.  Enter 0 to continue: " _QST 
$  IF _QST .NES. "0" THEN GOTO CONT_PROMPT 
$  ENDIF 
$! 
$!------------------------------------------------------------------------------- 
$ CANCEL_PROCEDURE: 
$! STANDARD ABORT HANDLING CODE (Don't mess with this) 
$! 
$! If this is the primary procedure (depth=0) and it is a batch procedure, 
$! have it exit with an error status (2) if it has terminated abnormally. 
$! 
$ IF _BATCH .AND. F$ENVIRONMENT("DEPTH") .LE. 0 
$   THEN 
$  _STATUS = 2 
$   ELSE 
$  _STATUS = 3 
$  ENDIF 
$ GOTO END_PROCEDURE 
 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          2 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
Detailed Template Walk-Through 

The following sections provide a detailed walk-through of the DCL procedure template shown 
in Figure 1. The template components are explained, as is the reasoning behind them. 

Any template is only effective if it is associated with a set of rules. What follows are the DCL 
coding policies I enforce when using this template. They might seem restrictive at first glance, 
but they are actually quite simple and easy to live with. They provide a fringe benefit in that 
they encourage structured coding practices. 

Standardized Procedure Development Rules 

• No EXIT statements are permitted within the body of the procedure. Only one EXIT 
statement appears in any procedure and its location is pre-set in the termination code. 

• All procedure termination runs through the END_PROCEDURE section. 

• If the procedure is terminated abnormally for any reason, it must run through the 
ERROR_TRAP section. 

• If the procedure is cancelled for any reason, it must run through the 
CANCEL_PROCEDURE section. 

• Avoid using the following commands and lexical function: 

- SET NOVERIFY or F$VERIFY(0) 
I require that batch jobs create log files. You will find that government accountability 
mandates do too. Turning off verification prevents data from being written to the log 
files. 

- ON condition THEN CONTINUE 

If a procedure generates an error, it is required to report the problem. Continuing 
from an error condition without a notification event is not allowed. 

- SET NOON 

Do not use the SET NOON command to disable error trapping within a procedure. 
Its sole purpose is to reset error-trapping protocols in special circumstances. Any time 
the SET NOON command is used, it should be immediately followed by these two 
lines of code: 

$ ON ERROR THEN GOTO ERROR_TRAP  !Standard abort trapping. 
$ ON CONTROL_Y THEN GOTO ERROR_TRAP 

These commands preserve standard error trapping functionality in the procedure. 

• Use the ON condition commands with care. When special traps are created in 
procedures, ensure that they use the standard error routine to terminate the procedure. 
When the need for a special trap has passed, insert the following instruction: 

$ SET NOON 
$ ON ERROR THEN GOTO ERROR_TRAP  !Standard abort trapping. 
$ ON CONTROL_Y THEN GOTO ERROR_TRAP 

• An important aspect of the template's design is to capture and control procedure aborts. 
This is particularly important when using nested procedures (a procedure called by 
another procedure). To preserve exit control, all nested procedure calls should be 
immediately followed by this command line: 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          3 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
$ IF $STATUS .EQ. 3 THEN GOTO CANCEL_PROCEDURE 

Example: 

$ @PAYROLL:SINKORSWIM.COM 
$ IF $STATUS .EQ. 3 THEN GOTO CANCEL_PROCEDURE 

The IF $STATUS command line allows nested procedures that have generated an error 
to exit in a controlled fashion, preserving the error control capability. 

Procedure Initialization 

Now we will take a look at what I call the procedure initialization section. This is a short 
section of DCL code (a snippet in modern parlance) that goes at the beginning of each 
command procedure. It establishes a standard set of symbols and error control functions. 

Figure 2: Procedure Initialization Section 

$ IF F$MODE() .EQS. "BATCH" THEN SET VERIFY !Always the first line! 
$!----------------------------------------- 
$! proc.COM 
$! procedure description 
$! Created:   id, mmm-yyyy 
$! Modified:  id, mmm-yyyy 
$! -  
$!------------------------------------------------------------------------------- 
$! STANDARD PROCEDURE INITIALIZATION SECTION 
$! 
$ _BATCH = 0 
$ IF F$MODE() .EQS. "BATCH" THEN _BATCH = 1 
$ _BELL[0,8] = %X7 
$ _STATUS = 1     !Return Status 
$ SAY := WRITE SYS$COMMAND 
$ ASK := READ SYS$COMMAND - 
 /END_OF_FILE=CANCEL_PROCEDURE - 
 /PROMPT=" 
$ ON ERROR THEN GOTO ERROR_TRAP  !Standard abort trapping. 
$ ON CONTROL_Y THEN GOTO ERROR_TRAP 
$ IF _BATCH THEN SAY = "!"   !If a batch process, convert info 
$!       messages to comments. 
$!------------------------------------------------------------------------------- 
$! PROCEDURE BODY

• $ IF F$MODE() .EQS. "BATCH" THEN SET VERIFY 

In our coding polices, we state that batch procedures must always log the commands 
they execute. The F$MODE() lexical function on the template's first line ensures that the 
procedure will turn on verification if it is running in a batch process. If the procedure is 
being run interactively, it will preserve the verification mode in effect when it is executed. 
This line must always be the first line in the procedure. 

Why the insistence on having this as the first line? If some miscreant has disabled 
logging in a batch procedure that calls this one, ensuring that the mode is set to VERIFY 
in the first line guaranties that you will see the comment lines that follow in the resultant 
log file. These very nicely inform you what procedure is running which immensely 
simplifies process diagnostics. 

• Introductory Comments 

• Next comes a set of introductory comments. These include the procedure name, a brief 
description of the procedure's purpose, and creation and modification information. At 
Migration Specialties, we are firm believers in the judicious use of comments in code. In 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          4 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
fact, if you are employing coders that do not use comments, you should fire them and 
hire us. This isn't just a shameless marketing plug; it's sound business practice. Well-
commented code speeds problem assessment and resolution. 

•  Standard Symbols 

Now it's time to define our standard symbols. 

$ _BATCH = 0 
$ IF F$MODE() .EQS. "BATCH" THEN _BATCH = 1 
$ _BELL[0,8] = %X7 
$ _STATUS = 1    !Return Status 
$ SAY := WRITE SYS$COMMAND 
$ ASK := READ SYS$COMMAND - 
 /END_OF_FILE=CANCEL_PROCEDURE - 
 /PROMPT=" 

• _BATCH: Signifies the calling mode. 0 = Interactive; 1 = Batch. 

• _BELL: Symbolic representation of the control character (^G) that sounds a beep on a 
VT compatible terminal. 

• _STATUS: The _STATUS symbol is used to permit exiting of nested procedures in a 
controlled fashion when an error is encountered. 

• SAY: A symbolic representation of the command WRITE SYS$COMMAND. In other 
words, a shortcut. It is more common to see this shortcut defined as WRITE 
SYS$OUTPUT. I use SYS$COMMAND so output will appear on the display even if the 
procedure is executed with output redirected via the /OUTPUT qualifier. 

• ASK: A shortcut for an interactive READ command. Here SYS$COMMAND is used 
instead of SYS$INPUT to avoid problems with calls from nested procedures and batch 
procedures. 

Note the use of the /END_OF_FILE qualifier. Its usage tells the procedure to branch to 
the CANCEL_PROCEDURE label if a user enters a <Ctrl^Z> at an interactive prompt. 
<Ctrl^Z> is a common way to exit utilities in VMS, so using it in your procedures 
preserves operational continuity. Your users won't notice, and that's a good thing. 

Usage of both the SAY and ASK symbolic commands is demonstrated in the Error 
Trapping section later on in this document. 

So what's with the use of the underscore (_) as a symbol prefix? This is a technique I 
developed to avoid conflicts with existing symbols on client systems. For example, a 
client might be using a symbol called STATUS, and I do not want to confuse their 
STATUS symbol with mine, so I prefixed mine with an underscore; i.e., _STATUS. 

All right, so why didn't I prefix SAY and ASK with an underscore? It has been my 
experience that these are commonly used command symbols so making mine unique 
was not necessary. 

Ah ha! You have already seen room for improvement, haven't you? These commands 
could be placed in their own command procedure, defined as global instead of local 
symbols. Then all you would need to do is call this "setup" procedure to acquire all your 
standard symbol definitions. You are absolutely right and that is what I normally do. I 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          5 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
have declared these symbols inline for clarity in this article. Creating a standard setup 
configuration for command procedures is gist for another article.1

• ON ERROR & ON CONTROL_Y 

These commands are the heart of the error and abort control functionality the template 
provides. 

$ ON ERROR THEN GOTO ERROR_TRAP  !Standard abort trapping. 
$ ON CONTROL_Y THEN GOTO ERROR_TRAP 

Both ON ERROR and ON CONTROL_Y hand off process errors and user aborts (like 
entry of a <Ctrl^C>) to the label ERROR_TRAP. This turns control of the procedure over to 
the error trap routine, which ensures execution of problem notification and controlled exit 
routines. More details on these functions appear in the Error Trapping section. 

• Changing Output to Comments 

$ IF _BATCH THEN SAY = "!"  !If a batch process, convert info 
$!       messages to comments. 

This is a little trick I use to allow a procedure to be run interchangeably as an interactive 
or batch process. When run interactively, the text in the SAY lines is displayed on the 
user's terminal. When run as a batch job, the SAY lines appear in the log file as 
comments. Not using this technique does no harm, but the batch log files will be messier, 
which doesn't aid problem diagnosis. Remember this old adage that I just made up: 
cleanliness leads to clarity. 

That's it for the procedure initialization section. Once tailored to meet your specific 
requirements, the procedure initialization code should be identical for all production 
procedures. 

 

Procedure Body 

Between the procedure initialization and procedure termination sections lies the procedure 
body. Within the bounds of the coding rules listed at the beginning of this document, 
anything goes in the procedure body. Don't forget to comment your code; your job might 
depend upon it. 

Also, don't forget to include the following line after any nested procedure calls in the 
procedure body. The reason for this will be explained in the Canceling a Procedure section. 

$ IF $STATUS .EQ. 3 THEN GOTO CANCEL_PROCEDURE 

 

Procedure Termination Section 

Even shorter than the procedure initialization section, the procedure termination section serves as the 
common, and only, exit point for the procedure. 

Figure 3: Procedure Termination Section 

$!------------------------------------------------------------------------------- 
$! STANDARD PROCEDURE TERMINATION CODE (Modify with care) 

                                                 
1 If you think I'm getting rich by grinding out multiple articles for the HP Technical Journal, check out the pay scale for authors. We do it because 
we love OpenVMS and enjoy sharing information. 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          6 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
$! 
$ END_PROCEDURE: 
$! 
$! *** Any procedure specific termination code goes here. *** 
$! 
$ EXIT '_STATUS' 

This section of the template is where all procedure termination takes place. This is the only 
place in the procedure where an EXIT statement is allowed. Any code in the body of the 
procedure that exits normally should do so by executing a GOTO END_PROCEDURE 
command. 

Any special instructions that need to be executed prior to procedure termination should also 
appear in this section. For example, deletion of temporary work files could take place here 
as part of the procedure clean-up process. The code in this section is executed every time the 
procedure terminates, regardless of whether the termination is normal or abnormal, so be 
careful with any code added to this section. Abnormal terminations are discussed in the 
Error Trap and Canceling a Procedure sections. 

But wait! If you had a general set of wind-down commands you wanted to execute, wouldn't 
this be a great place to put the call to such a procedure? Absolutely! This is why 
standardized code is so useful. 

Note that the _STATUS value is passed to the calling procedure with the EXIT command. The 
_STATUS value will be read by the calling procedure as the standard system symbol 
$STATUS. This is how we let the calling procedure know the termination state of the nested 
procedure. Possible return status values are: 

1. Success 

2. Error 

3. Abnormal termination 

More on _STATUS code setting and usage appears in the Error! Reference source not 
found. section. 

 

Error Trapping 

Thus far, the template has primarily provided a standardized initialization and coding 
schema. Now we are getting into the sections that handle things when problems occur. 

Figure 4: Procedure Error Trapping Section 

$ ERROR_TRAP: 
$! *** Procedure specific error handling code goes here. *** 
$! 
$ IF .NOT. _BATCH 
$   THEN 
$ CONT_PROMPT: 
$  SAY _BELL, "Procedure: ", F$ENVIRONMENT("PROCEDURE") 
$  ASK "Procedure aborted by a <Ctrl^Y> or error.  Enter 0 to continue: " _QST 
$  IF _QST .NES. "0" THEN GOTO CONT_PROMPT 
$  ENDIF 

The ERROR_TRAP section provides a standard mechanism for capturing and reporting errors. 
This is where procedure control branches when an unexpected processing error occurs or a 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          7 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
user deliberately aborts a procedure. This is the target of the ON ERROR and ON 
CONTROL_Y commands in the initialization section. 

Any special recovery code that is not implemented in the body of the procedure can be 
placed immediately following the ERROR_TRAP label. The recommended coding standard is 
to implement specialized error trapping within the procedure body and then initiate 
termination by executing the GOTO ERROR_TRAP command. 

Using this template, interactive processes that encounter an error display an error message 
on the user’s screen and pause for user confirmation before terminating. The purpose of this 
is to preserve the original error message on the screen, allowing users to see and report the 
message. Forcing entry of a zero to continue prevents errors from being missed because the 
user pressed the <Return> key multiple times. 

This template does not demonstrate error logging and reporting for batch jobs. Adding this 
functionality is as simple as adding an ELSE clause to the IF .NOT. _BATCH statement. You 
will find a more comprehensive example in the article Using OpenVMS to Meet a Sarbanes-
Oxley Mandate, available at this link: 

http://www.migrationspecialties.com/pdf/Using%20OpenVMS%20to%20Meet%20a%20Sarbanes-
Oxley%20Mandate2.pdf 

 

Canceling a Procedure 

We have arrived at the final section of the template. The CANCEL_PROCEDURE label is where 
execution control is passed if: 

• A <Ctrl^Z> is used to terminate an ASK statement. 

• A nested procedure exits abnormally ($STATUS = 3). 

• The process stream needs to be cancelled immediately; i.e., a decision process in the 
body of the procedure executed a GOTO CANCEL_PROCEDURE statement. 

• An error or abort is processed via the error trap section. 

Figure 5: Procedure Cancellation Section 

$ CANCEL_PROCEDURE: 
$! STANDARD ABORT HANDLING CODE (Don't mess with this) 
$! 
$! If this is the primary procedure (depth=0) and it is a batch procedure, 
$! have it exit with an error status (2) if it has terminated abnormally. 
$! 
$ IF _BATCH .AND. F$ENVIRONMENT("DEPTH") .LE. 0 
$   THEN 
$  _STATUS = 2 
$   ELSE 
$  _STATUS = 3 
$  ENDIF 
$ GOTO END_PROCEDURE 

CAUTION: The next few paragraphs reference the template defined symbol _STATUS and 
the standard system return status symbol $STATUS. Pay attention to the symbol names, as 
distinguishing between the two symbols is important. 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          8 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
The procedure cancellation section's job is to ensure that nested procedures exit in a 
controlled fashion. This is where using the IF $STATUS check immediately after nested 
procedure calls comes into play: 

$ IF $STATUS .EQ. 3 THEN GOTO CANCEL_PROCEDURE 

If a nested procedure encounters an error or abort, it reports it, then exits with the standard 
system return status symbol $STATUS set to 3 via the _STATUS declaration in the EXIT 
statement ($ EXIT '_STATUS'). Setting $STATUS to 3 achieves two objectives: 

1. Setting $STATUS to an odd numeric value (3) allows the nested procedure to exit without 
generating another error. Setting $STATUS to 2 or another even value would generate 
an error in the calling procedure, resulting in another trip through the calling procedure 
ERROR_TRAP section. We want to avoid this, both for efficiency and to prevent further 
aggravating users. I know it can be hard, but we are here to serve and protect the users. 

2. The IF $STATUS check immediately following the nested procedure call queries the return 
status. If a 3 is returned, it signifies an abnormal termination initiated by the nested 
procedure. Control is immediately passed to the CANCEL_PROCEDURE label in the 
calling procedure.  

If this is an interactive procedure, that's the end of the decision process. The procedure stack 
will unwind, passing a return status of 3 up the line until the command line or calling menu is 
reached. 

In the case of a batch process, an additional check is needed. We want the batch process 
to exit with an error status so that the job information is retained via the /RETAIN=ERROR 
function of the queue manager. (You do have RETAIN=ERROR set on all your batch queues, 
right?!) Consequently, as the stack of nested batch procedures unwinds, each procedure in 
the stack uses the lexical function F$ENVIRONMENT("DEPTH") to determine if it was the first 
procedure called. When the first procedure is reached, _STATUS is set to 2 to force an error 
condition via the system symbol $STATUS when the primary procedure terminates. 

Well, you might ask, why not just blow up batch processes at the point the error occurred? 
You could. That is how most non-standardized procedures work. However, doing so 
prevents any automated clean-up from occurring, which adds to the time needed to recover 
from a problem, detracting from our goals of quick, efficient problem resolution. It also 
precludes using a standard template for both batch and interactive procedures, which by 
now you have come to realize is a really valuable tool. 

 

Conclusion 
That's it! Hard to believe such simple concepts took so many pages to explain. It just goes to show the 
power of a few well-placed DCL commands. I have found the use of the techniques described here to 
be extremely helpful in facilitating quick problem identification and resolution. I hope you find them 
equally useful. 

Your comments and feedback are welcome. Those attached to large denomination bills will get a 
quicker response. 

 

About the author: Bruce Claremont has been working with OpenVMS since 1983. He has 
extensive programming, project management, and system management experience. He founded 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          9 



Simplifying Maintenance with DCL - Bruce Claremont, Software Migration & OpenVMS Consultant 

 
Migration Specialties in 1992 and continues to deliver OpenVMS and application migration services 
along with CHARON-VAX and CHARON-AXP hardware emulation ports. More information about 
Migration Specialties products and services can be found at www.MigrationSpecialties.com. 
 

For more information  

For real world examples of DCL procedure templates, check out these two articles: 

• ODS-2/ISO-9660 CD Creation 

http://www.migrationspecialties.com/pdf/ODS-ISO.pdf 

• Using OpenVMS to Meet a Sarbanes-Oxley Mandate 

http://www.migrationspecialties.com/pdf/Using%20OpenVMS%20to%20Meet%20a%20Sarba
nes-Oxley%20Mandate2.pdf 

  

© 2005 Hewlett-Packard Development Company, L..P. The information 
contained herein is subject to change without notice. The only warranties for 
HP products and services are set forth in the express warranty statements 
accompanying such products and services. Nothing herein should be construed 
as constituting an additional warranty. HP shall not be liable for technical or 
editorial errors or omissions contained herein. 

© Copyright 2007 Hewlett-Packard Development Company, L.P.          10 


	Simplifying Maintenance with DCL
	Overview
	Introduction
	DCL Procedure Template Overview
	Detailed Template Walk-Through
	Standardized Procedure Development Rules

	Procedure Initialization
	Procedure Body
	Procedure Termination Section
	Error Trapping
	Canceling a Procedure

	Conclusion
	For more information


