

CSWS_PHP for HP Secure Web Server
for OpenVMS Alpha (based on Apache)

Installation Guide and Release Notes

October 2003

CSWS_PHP V1.2
CPQ-AXPVMS-CSWS_PHP-V0102--1.PCSI-DCX-AXPEXE

CSWS_PHP V1.1
CPQ-AXPVMS-CSWS_PHP-V0101--1.PCSI-DCX-AXPEXE

Contents:

 what's new in version 1.2
 software prerequisites
 documentation
 downloading the kit
 expanding the kit
 installing CSWS_PHP for OpenVMS
 removing CSWS_PHP for OpenVMS
 using extensions
 ODBC extension
 OCI8 extension
 PHP sample scripts
 calendar
 info
 ODBC
 OpenVMS
 release notes
 PHP$ logical names changed to APACHE$ in version 1.2
 add logical names to PHP_SETUP.COM for extended file name support
 configuring CSWS_PHP not required
 PHP DNS functions supported only with TCP/IP Services for OpenVMS
 PHP LINK functions not supported

What's New in CSWS_PHP Version 1.2

� MySQL extension, which allows you to access MySQL database servers. More information about
MySQL can be found at http://www.mysql.com/.

� OpenVMS extension, which performs several functions such as converting filenames and showing
uptime. See the OpenVMS sample script for more information.

� Updated OpenSSL extension, based on HP SSL Version 1.1-A for OpenVMS.
� Based on PHP 4.3.2. (CSWS_PHP V1.1 was based on PHP 4.1.1, and CSWS_PHP V1.0 was

based on PHP 4.0.4PL1.)

Software Prerequisites

The CSWS_PHP kit requires that the following software is installed before you install CSWS_PHP:

 OpenVMS Alpha Version 7.2-2 or higher
 HP Secure Web Server Version 1.3 (or higher) for OpenVMS Alpha

Note: CSWS_PHP on OpenVMS Version 7.3-1 requires the VMS731_UPDATE or VMS731_ACRTL patch
available from http://ftp.support.compaq.com/patches/.new/openvms.shtml

Documentation

For more information about PHP, see http://www.php.net/.

Downloading the Kit

Download CSWS_PHP for HP Secure Web Server for OpenVMS Alpha self-extracting file from
http://h71000.www7.hp.com/openvms/products/ips/apache/csws_php.html

Make sure the file type of the saved file is .PCSI-DCX-AXPEXE.

Expanding the Kit

To expand the CSWS_PHP for OpenVMS Alpha self-extracting file, enter one of the following commands,
depending on the kit you download:

$ RUN CPQ-AXPVMS-CSWS_PHP-V0102--1.PCSI-DCX-AXPEXE
$ RUN CPQ-AXPVMS-CSWS_PHP-V0101--1.PCSI-DCX-AXPEXE

The system displays information about the file compression version, and help information about the
command syntax.

At the Decompress into (file specification): prompt, press return. The system expands
the file and names the decompressed file CPQ-AXPVMS-CSWS_PHP-V0102--1.PCSI or CPQ-AXPVMS-
CSWS_PHP-V0101--1.PCSI. Do not rename this file.

Installing CSWS_PHP for OpenVMS

Important: If you are upgrading from an earlier version of CSWS_PHP and you modified PHP.INI, copy the
file to another directory before you begin the installation. After the installation is complete, compare your old
PHP.INI with the newly installed version and modify the new file as necessary.

Before you install CSWS_PHP (or any optional module), shut down the Secure Web Server. You can
restart the server when the installation is complete.

To install the CSWS_PHP for HP Secure Web Server for OpenVMS Alpha kit, enter the following command.

Note: You must install the CSWS_PHP kit into the same device and directory where you installed HP
Secure Web Server for OpenVMS.

For example:

$ SHOW LOGICAL APACHE$ROOT
 "APACHE$ROOT" = "DISK1:[WEB_SERVER.APACHE.SPECIFIC.hostname.]
 = "APACHE$COMMON:"
1 "APACHE$COMMON" = "DISK1:[WEB_SERVER.APACHE.]

$ PRODUCT INSTALL CSWS_PHP/DESTINATION=DISK1:[WEB_SERVER]

For a description of the features you can request with the PRODUCT INSTALL command when starting an
installation such as running the IVP, purging files, and configuring the installation, see the POLYCENTER
Software Installation Utility User's Guide.

As the installation procedure for CSWS_PHP V1.2 progresses, the system displays the following
information. A similar log is displayed for CSWS_PHP V1.1.

The following product has been selected:

CPQ AXPVMS CSWS_PHP V1.2 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product
and for any products that may be installed to satisfy software
dependency requirements.

CPQ AXPVMS CSWS_PHP V1.2

 Hewlett-Packard Company & The Apache Software Foundation.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:
 CPQ AXPVMS CSWS_PHP V1.2 DISK1:[WEB_SERVER.]

Portion done: 0%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
 CPQ AXPVMS CSWS_PHP V1.2 Layered Product

CPQ AXPVMS CSWS_PHP V1.2

Post-installation tasks are required for PHP for OpenVMS.

The release notes give detailed directions.
This information is a brief checklist.

This installation modifies APACHE$ROOT:[CONF]HTTPD.CONF to
enable MOD_PHP. Check HTTPD.CONF for accuracy. The line
"Include /apache$root/conf/mod_php.conf" should be the only
difference. Also study the MOD_PHP configuration file
(APACHE$ROOT:[CONF]MOD_PHP.CONF) for options required for your
site.

The Apache server must be shut down and restarted to make these
changes to HTTPD.CONF file take place. Test that MOD_PHP
is working by accessing the sample script from a browser:

 http://<your web server host>/php/php_rules.php

Thank you for using Apache for OpenVMS.

After the installation is complete, start the Secure Web Server by entering the following command:

 $ @SYS$STARTUP:APACHE$STARTUP

Removing CSWS_PHP for HP Secure Web Server for OpenVMS

You can remove the CSWS_PHP kit by using the POLYCENTER Software Installation utility. The HP
Secure Web Server must be shut down before you remove CSWS_PHP.

To remove CSWS_PHP, enter the following commands:

 $ SET DEF APACHE$ROOT:[000000]
 $ @SYS$STARTUP:APACHE$SHUTDOWN
 $ PRODUCT REMOVE CSWS_PHP

The PRODUCT REMOVE command removes all files created by this installation. It also attempts to remove
the directories defined by this installation.

Using Extensions

CSWS_PHP V1.2 includes the extensions listed in the PHP.INI file shown below. There are two ways to
load a PHP extension: using the dl() function and using the PHP.INI file. These methods are as follows:

• The dl() function allows the loading of extensions within a PHP script if the
extension resides in the default extension_dir. Extension_dir is defined as
PHP_ROOT:[EXTENSIONS] directory
(APACHE$COMMON:[PHP.EXTENSIONS]).

• The PHP.INI file provided with the CSWS_PHP kit resides in the
PHP_ROOT:[000000] directory (APACHE$COMMON:[PHP]). PHP.INI contains
the extension statement to automatically load the extension for every PHP script
executed. To enable the loading of the extension for every PHP script,
uncomment the "extension=" statement as shown in the following example, and
restart the Secure Web Server.

 PHP.INI
 ;
 ; Uncomment for the automatic loading of extensions
 ;
 ;extension=php_bcmath.exe
 ;extension=php_bzip2.exe
 ;extension=php_calendar.exe
 ;extension=php_ctype.exe
 ;extension=php_dba.exe
 ;extension=php_exif.exe
 ;extension=php_ftp.exe
 ;extension=php_iconv.exe
 ;extension=php_ldap.exe
 ;extension=php_mhash.exe
 ;extension=php_mysql.exe
 ;extension=php_oci8.exe
 ;extension=php_odbc.exe
 ;extension=php_openssl.exe
 ;extension=php_openvms.exe
 ;extension=php_oracle.exe
 ;extension=php_pcre.exe
 ;extension=php_posix.exe
 ;extension=php_session.exe
 ;extension=php_sockets.exe
 ;extension=php_xml.exe
 ;extension=php_zip.exe
 ;extension=php_zlib.exe

ODBC Extension

The ODBC extension works with any ODBC V2.5 capable server. The ODBC.PHP script works with Attunity
Connect "On Platform" Package for OpenVMS Alpha using the RMS demo.

Add the following lines to the beginning of the APACHE$COMMON:[000000]LOGIN.COM file to enable the
script to work with Attunity Connect:

 $!
 $! Run the Attunity login if we find it
 $!
 $ IF F$SEARCH ("NAVROOT:[BIN]NAV_LOGIN.COM") .NES. ""
 $ THEN
 $ @NAVROOT:[BIN]NAV_LOGIN.COM
 $ DEFINE APACHE$ODBC_SHR ODNAVSHR
 $ DEFINE APACHE$ODBC_PFX NV
 $ ENDIF

The two logicals required to make the ODBC extension functional are APACHE$ODBC_SHR and
APACHE$ODBC_PFX. These logicals are defined as follows:

• APACHE$ODBC_SHR
This logical defines the ODBC shareable image to be used for the ODBC access.

• APACHE$ODBC_PFX
This logical defines, if needed, any ODBC API prefix.

OCI8 Extension

The OCI extension works with any Oracle 8 or 9 database server. Add the following lines to the beginning of
the file APACHE$COMMON:[000000]LOGIN.COM:

 $!
 $! Define the OCI extension logicals if we find the OCI client shareable
 $!
 $ IF F$SEARCH ("ORA_ROOT:[UTIL]ORACLIENT_V817.EXE") .NES. ""
 $ THEN
 $ DEFINE APACHE$OCI_SHR ORA_ROOT:[UTIL]ORACLIENT_V817.EXE
 $ ENDIF

The two logicals required to make the OCI8 extension functional are APACHE$OCI_SHR and
APACHE$OCI_PFX. These logicals are defined as follows:

• APACHE$OCI_SHR
This logical defines the OCI8 shareable image to be used for the OCI8 access.

• APACHE$OCI_PFX
This logical defines, if needed, any OCI8 API prefix.

Sample PHP Scripts

New PHP sample scripts are included in the CSWS_PHP V1.2 kit (calendar.php, info.php, odbc.php, and
php_openvms.php). These scripts demonstrate the use of the provided extensions.

 PHP_CALENDAR.PHP (Useful for Hebrew calendar in Unicode)

 <?php

 #
 # Load the calendar extension if needed
 #
 if (! extension_loaded ("calendar"))
 dl ("php_calendar");

 #
 # Display the header
 #
 echo " Testing the Calendar extension
\n";
 #
 # Test the calendar functions
 #
 $m = date("m", time());
 $d = date("d", time());
 $y = date("Y", time());
 $jd = GregorianToJD($m,$d,$y);
 echo "Gregorian month (abbr.): " . jdmonthname($jd, 0) . "
\n";
 echo "Gregorian month: " . jdmonthname($jd, 1) . "
\n";
 echo "Julian month (abbr.): " . jdmonthname($jd, 2) . "
\n";
 echo "Julian month: " . jdmonthname($jd, 3) . "
\n";
 echo "Jewish month: " . jdmonthname($jd, 4) . "
\n";
 $y = 1800;
 $jd = GregorianToJD($m,$d,$y);
 echo "French month: " . jdmonthname($jd, 5) . "
\n";

 ?>

 PHP_INFO.PHP

 <?php

 #
 # Display the header
 #
 echo " Testing the PHPINFO () function
\n";
 #
 # Test the PHPINFO () function
 #
 phpinfo (INFO_ALL);

 ?>

 PHP_ODBC.PHP

 <?php

 #
 # Load the ODBC extension if needed
 #
 if (! extension_loaded ("odbc"))
 dl ("odbc");

 #
 # Display the header
 #
 echo " Testing the ODBC extension
\n";

 #
 # Test the ODBC functions
 #
 $ctx = odbc_connect ("NAVDEMO", "", "");
 $cur = odbc_exec ($ctx, "select c_custkey, c_name from customer");
 odbc_result_all ($cur, "border=1 align='center'");
 $rc = odbc_free_result ($cur);
 odbc_close ($ctx);

 ?>

 PHP_OPENVMS.PHP

 <?php

 #
 # Load the OpenVMS extension if needed
 #
 if (! extension_loaded ("openvms"))
 dl ("php_openvms");

 #
 # Display the header
 #
 echo " Testing the OpenVMS extension
\n";

 #
 # Allow only errors to be reported
 #
 error_reporting (E_ERROR);

 #
 # Test the OpenVMS convert filename function
 #
 # openvms_cvt_filename (func_code, file_name)
 #
 # func_codes:
 # OPENVMS_CVT_VMS_TO_UNIX Convert vms filespec to unix filespec
 # OPENVMS_CVT_UNIX_TO_VMS Convert unix filespec to vms filespec
 #
 $VmsFn = "PHP_ROOT:[SCRIPTS]PHP_OPENVMS.PHP";
 $UnixFn = openvms_cvt_filename (OPENVMS_CVT_VMS_TO_UNIX, $VmsFn);
 if ($UnixFn === FALSE)
 echo "openvms_cvt_filename (OPENVMS_CVT_VMS_TO_UNIX, \"$VmsFn\") = " .
openvms_message (openvms_status ()) . "
\n";
 else
 echo "openvms_cvt_filename (OPENVMS_CVT_VMS_TO_UNIX, \"$VmsFn\") =
$UnixFn
\n";

 #
 # Test the OpenVMS getdvi function
 #
 # openvms_getdvi (item_code [,device_name])
 #
 # item_codes:
 # <item_code> Any Item code supported by F$GETDVI
 # "?" List of supported item codes
 # device_name: Defaults to "TT"
 #
 $item = "DISPLAY_DEVNAM";
 $val = openvms_getdvi ($item);
 if ($val === FALSE)
 echo "openvms_getdvi (\"$item\") = " . openvms_message (openvms_status ()) .
"
\n";
 else
 echo "openvms_getdvi (\"$item\") = $val
\n";

 #
 # Test the OpenVMS getjpi function
 #
 # openvms_getjpi (item_code [,proc_name][,pid])
 #
 # item_codes:
 # <item_code> Any Item code supported by F$GETJPI
 # "?" List of supported item codes
 # proc_name: Any process name
 # pid: Any process ID or -1 wild card
 #
 $item = "LAST_LOGIN_I";
 $val = openvms_getjpi ($item);

 if ($val === FALSE)
 echo "openvms_getjpi (\"$item\") = " . openvms_message (openvms_status ()) .
"
\n";
 else
 echo "openvms_getjpi (\"$item\") = $val
\n";

 #
 # Test the OpenVMS getsyi function
 #
 # openvms_getsyi (item_code [,node_name][,csid])
 #
 # item_codes:
 # <item_code> Any Item code supported by F$GETSYI
 # "?" List of supported item codes
 # node_name: Any node name
 # csid: Any cluster system ID or -1 wild card
 #
 $item = "BOOTTIME";
 $val = openvms_getsyi ($item, "", 0);
 if ($val === FALSE)
 echo "openvms_getsyi (\"$item\") = " . openvms_message (openvms_status ()) .
"
\n";
 else
 echo "openvms_getsyi (\"$item\") = $val
\n";

 #
 # Test the OpenVMS time function
 #
 # openvms_time ([millisecond_time])
 #
 $val = openvms_time ();
 if ($val === FALSE)
 echo "openvms_time () = " . openvms_message (openvms_status ()) . "
\n";
 else
 echo "openvms_time () = $val
\n";

 #
 # Test the OpenVMS uptime function
 #
 # openvms_uptime ()
 #
 $uptime = openvms_uptime ();
 if ($uptime === FALSE)
 echo "openvms_uptime () = " . openvms_message (openvms_status ()) . "
\n";
 else
 echo "openvms_uptime () = $uptime
\n";

 echo "
\n";

 #
 # Show the cluster info
 #
 ShowCluster ();

 #
 # Show the system info
 #
 ShowSystem ();

 #
 # Show Cluster
 #
 function ShowCluster ()
 {

 $SystemId = openvms_getsyi ("SCSSYSTEMID");
 $NodeName = openvms_getsyi ("NODENAME");
 $Time = strtok (openvms_time (), ".");

 echo "<pre>\n";
 $hdr = "View of Cluster from system ID $SystemId node: $NodeName";

 $pad = str_repeat (" ", 79 - (strlen ($hdr) + strlen ($Time)));
 echo $hdr . $pad . $Time . "\n";
 echo "+-----------------------------+\n";
 echo "| SYSTEMS | MEMBERS |\n";
 echo "|-------------------+---------|\n";
 echo "| NODE | SOFTWARE | STATUS |\n";
 echo "|--------+----------+---------|\n";

 $ctx = -1;
 while (1)
 {
 $csid = openvms_getsyi ("NODE_CSID", "", &$ctx);
 if ($csid === FALSE)
 {
 $status = openvms_status ();
 if ($status != 2560)
 echo openvms_message (openvms_status ()) . "
\n";
 break;
 }
 $NodeName = str_pad (openvms_getsyi ("NODENAME", "", $csid), 6, " ",
STR_PAD_RIGHT);
 $swtype = openvms_getsyi ("NODE_SWTYPE", "", $csid);
 $swvers = openvms_getsyi ("NODE_SWVERS", "", $csid);
 $software = str_pad ($swtype . $swvers, 8, " ", STR_PAD_RIGHT);
 if (strcasecmp (openvms_getsyi ("CLUSTER_MEMBER", "", $csid), "TRUE") == 0)
 $status = "MEMBER";
 else
 $status = " ";
 echo "| $NodeName | $software | $status |\n";
 }

 if (openvms_getsyi ("CLUSTER_NODES") == 0)
 {
 $NodeName = str_pad (openvms_getsyi ("NODENAME"), 6, " ", STR_PAD_RIGHT);
 $swtype = openvms_getsyi ("NODE_SWTYPE", "", $csid);
 $swvers = openvms_getsyi ("NODE_SWVERS", "", $csid);
 $software = str_pad ($swtype . $swvers, 8, " ", STR_PAD_RIGHT);
 if (strcasecmp (openvms_getsyi ("CLUSTER_MEMBER", "", $csid), "TRUE") == 0)
 $status = "MEMBER";
 else
 $status = " ";
 echo "| $NodeName | $software | $status |\n";
 }

 echo "+-----------------------------+\n";
 echo "</pre>\n";

 }

 #
 # Show System (Requires World Privilege)
 #
 function ShowSystem ()
 {

 $VmsVer = trim (openvms_getsyi ("VERSION"));
 $NodeName = openvms_getsyi ("NODENAME");
 $UpTime = trim (openvms_uptime ());
 $Time = openvms_time ();

 echo "<pre>\n";
 echo "OpenVMS $VmsVer on node $NodeName $Time Uptime $UpTime\n";
 echo " Pid Process Name State Pri I/O CPU Page flts Pages\n";
 $ctx = -1;
 while (1)
 {
 $pid = openvms_getjpi ("PID", "", &$ctx);
 if ($pid === FALSE)
 {
 $status = openvms_status ();
 if ($status != 2472)

 echo openvms_message (openvms_status ()) . "
\n";
 break;
 }
 $prcpid = str_pad ($pid, 8, " ", STR_PAD_RIGHT);
 $prcnam = str_pad (openvms_getjpi ("PRCNAM", "", $pid), 15, " ", STR_PAD_RIGHT);
 $state = str_pad (openvms_getjpi ("STATE", "", $pid), 5, " ", STR_PAD_RIGHT);
 $pri = str_pad (openvms_getjpi ("PRI", "", $pid), 3, " ", STR_PAD_LEFT);
 $io = openvms_getjpi ("DIRIO", "", $pid) + openvms_getjpi ("BUFIO", "", $pid);
 $io = str_pad ($io, 9, " ", STR_PAD_LEFT);
 $cputim = openvms_time (openvms_getjpi ("CPUTIM", "", $pid));
 $pagflts = str_pad (openvms_getjpi ("PAGEFLTS", "", $pid), 9, " ", STR_PAD_LEFT);

 $pages = openvms_getjpi ("GPGCNT", "", $pid) + openvms_getjpi ("PPGCNT", "",
$pid);

 $pages = $pages / (openvms_getsyi ("PAGE_SIZE") / 512);
 $pages = str_pad ($pages, 6, " ", STR_PAD_LEFT);
 $multithread = openvms_getjpi ("MULTITHREAD", "", $pid);
 $owner = openvms_getjpi ("OWNER", "", $pid);
 $mode = openvms_getjpi ("MODE", "", $pid);
 if ($multithread >= 1)
 $sts = "M";
 else
 $sts = " ";
 if ($owner != 0)
 $sts .= "S";
 else
 if (strcasecmp ($mode, "NETWORK") == 0)
 $sts .= "N";
 else
 if (strcasecmp ($mode, "BATCH") == 0)
 $sts .= "B";
 else
 $sts .= " ";
 echo "$prcpid $prcnam $state priio$cputim $pagflts $pages $sts\n";
 }
 echo "</pre>\n";

 }
 ?>

Release Notes

This section contains notes on the current release of CSWS_PHP.

• PHP$ logical names changed to APACHE$ in Version 1.2

In CSWS_PHP for HP Secure Web Server Version 1.2, the prefix of the PHP$
logical names was changed to APACHE$. This change allows other Secure Web
Server-based scripting languages (such as Perl) to use the database connectivity
features. The changed logical names are as follows:

 Old Logical Name New Logical Name
 (V1.0 and V1.1) (V1.2)

 PHP$ODBC_SHR APACHE$ODBC_SHR

 PHP$ODBC_PFX APACHE$ODBC_PFX

 PHP$OCI_SHR APACHE$OCI_SHR

 PHP$OCI_PFX APACHE$OCI_PFX

• Add logical names to PHP_SETUP.COM for extended file name support

If you are using CSWS_PHP alone or with HP Secure Web Server Version 1.3, and you
have ODS-5 files with extended file names such as grab_globals.lib.php (which has
multiple dots), the files will not be processed correctly.

To solve this problem, add the following logical definitions to the end of
PHP_SETUP.COM located in APACHE$COMMON:[000000]:

$ DEFINE /NoLog DECC$EFS_CASE_PRESERVE ENABLED
$ DEFINE /NoLog DECC$EFS_CASE_SPECIAL ENABLED
$ DEFINE /NoLog DECC$EFS_CHARSET ENABLED
$ DEFINE /NoLog DECC$FILE_SHARING ENABLED

Using the commands SET PROCESS/PARSE=EXTENDED and SET
PROCESS/PARSE=EXTENDED/CASE=SENSITIVE does not work in this situation.

• Configuring CSWS_PHP not required

During the installation, the file PHP_SETUP.COM is added to the APACHE$ROOT
directory, and an include for MOD_PHP.CONF is added to the end of HTTPD.CONF.
When you start the Secure Web Server, PHP_SETUP.COM is run and PHP is loaded into
the server. You do not need to configure CSWS_PHP.

• PHP DNS functions supported only with TCP/IP Services for OpenVMS

This version of CSWS_PHP supports the CHECKDNSRR and GETMXRR functions only
on systems using HP TCP/IP Services for OpenVMS. These functions may be supported
with other TCP/IP products in a future CSWS_PHP kit.

• PHP LINK functions not supported

This version of CSWS_PHP does not support the LINK, LINKINFO, SYMLINK, and
READLINK functions. These functions may be supported in a future CSWS_PHP kit.

-- end of file --

