
Web Services Integration Toolkit for
OpenVMS
API Reference Manual

Abstract
This manual provides information about the routines and API calls used in Web Services Integration Toolkit for OpenVMS.

Published: July 2012

© Copyright 2012 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft, Windows, Windows XP, Visual Basic, Visual C++, and Win32 are trademarks of Microsoft Corporation in the U.S. and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and/or other countries.

Contents
1 About this document...4

Intended audience..4
Conventions...4

2 Web Services Integration Toolkit...5
WSI$VMS_LOGIN..6
WSI$VMS_LOGOUT ...7
WSI$INVOKE..8
WSI$INIT..10
WSI$EXIT..11
WSI$START_SESSION...12
WSI$END_SESSION..13
WSI$ACMS_SIGN_IN..14
WSI$ACMS_SIGN_OUT...15
WSI$VMS_LOGIN..16
WSI$VMS_LOGOUT..17
WSI$INVOKE_DCL...18
WSI$GET_FILE...20

3 Support and other resources..22
HP encourages your comments ..22
Related information...22

Index...23

Contents 3

1 About this document
This manual provides information about the routines and API calls used in Web Services Integration
Toolkit (WSIT) for OpenVMS.

Intended audience
This manual is intended for developers and application programmers who want to use the WSIT
services for OpenVMS.

Conventions
The following conventions are used in this manual:

Bold type represents the introduction of a new term. It also represents the name of
an argument, an attribute, or a reason.

bold type

Uppercase type indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

UPPERCASE TYPE

In command format descriptions, parentheses indicate that you must enclose choices
in parentheses.

()

4 About this document

2Web Services Integration Toolkit
The Web Service Integration Toolkit (WSIT) for OpenVMS contains a collection of integration tools.
These tools are easy to use, highly extensible, and are based on open source standards and built
on open source technology. The toolkit can be used to call OpenVMS applications written in third
generation languages, such as C, BASIC, COBOL, FORTRAN, and Application Control and
Management System (ACMS) languages such as Java, Microsoft .NET, Java -RMI, JMS, and web
services.
The WSIT is focused on integrating at the application interface (API) level. It generates a JavaBean
wrapper for a supplied OpenVMS API. At runtime, you can specify whether the application must
run in the process of the caller (in-process) or in a separate process (out-of-process) managed by
the WSIT runtime.

5

WSI$VMS_LOGIN

The WSI$VMS_LOGIN routine enables the client to log into the system using the specified user name and password.

Format

unsigned int WSI$VMS_LOGIN sessionID, UserName, Password

C Prototype

unsigned int WSI$VMS_LOGIN (unsigned int sessionID, char *pUserName, char
*pPassword)

Description

The routine WSI$VMS_LOGIN accepts the sessionID, UserName, and Password as arguments
and passes these to the pVmsLogin routine. The pVmsLogin routine performs the required login
action. If the login UserName, Password, or sessionID values are invalid, then the LIB$SIGNAL
routine is started.
The Login Persona and the Login Home directory are reset and the error_status_ok message is
returned. If the login attempt is successful, only the error_status_ok message is returned.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit value corresponding to the sessionID in which the login action is performed.

UserName

*pUserNameOpenVMS usage:

Character — coded text stringType:

Read onlyAccess:

By referenceMechanism:

It is a 8-bit value corresponding to the UserName in which the login action is performed.

Password

*pPasswordOpenVMS usage:

Character — coded text stringType:

Read onlyAccess:

By referenceMechanism:

It is a 8-bit value corresponding to the Password in which the login action is performed.

6 Web Services Integration Toolkit

WSI$VMS_LOGOUT

The WSI$VMS_LOGOUT routine enables the client to log out of the system.

Format

unsigned int WSI$VMS_LOGOUT sessionID

C Prototype

unsigned int WSI$VMS_LOGOUT (unsigned int sessionID)

Description

The routine WSI$VMS_LOGOUT accepts the sessionID as an argument to logout a client from the
system. The routine resets the Login Persona and the Login Home directory corresponding to the
sessionID and assigns the value 0 and NULL to the Login Persona and the Login Home directory.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit value corresponding to the sessionID in which the logout action is performed.

WSI$VMS_LOGOUT 7

WSI$INVOKE

The WSI$INVOKE routine is the main dispatch method is WSIT.

Format

unsigned int WSI$INVOKE sessionID, MethodID, inLen, *pbInData, *pOutLen,
*ppbOutData

C Prototype

unsigned int WSI$INVOKE (unsigned int sessionID, int MethodID, intinLen,
MSGB *pbInData, int*pOutLen, MSGB **ppbOutData)

Description

The WSI$INVOKE routine checks for a valid login corresponding to the sessionID's persona. If the
sessionID value is invalid, then LIB$SIGNAL(SS$_INVLOGIN) is returned. Depending on the
MethodID passed as a parameter, the corresponding action is performed.
The following list of methods can be performed:
cmlLogin
cmlLogout
getFirstAppRoot
getNextAppRoot
findAppRoot
getFirstApplication
getNextApplication
findApplication
addApplication
removeApplication
getApplicationProperties
getApplicationConfiguration
setApplicationConfiguration
getFirstInstance
getNextInstance
findInstance
addInstance
removeInstance
getInstanceProperties
getInstanceConfiguration
restartApplication
restartInstance
clearCache
reloadCache
getTimeStamp
isTimeStampOld
setCmlAttributes
setEventLogTrimAttr
initEventList
getEventList
closeEventList
shutdownManager
startupManager
getManagerLogfile
getInstanceLogfile

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit value corresponding to the sessionID on which the action is performed.

8 Web Services Integration Toolkit

MethodID

MethodIDOpenVMS usage:

IntegerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit value used a parameter by the routines to start the corresponding MethodID .

inLen

inLenOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit value used as a parameter by the routines to call the corresponding MethodID.

pbInData

*pbInDataOpenVMS usage:

Pointer to characterType:

Read onlyAccess:

By referenceMechanism:

It is a 8-bit value used as a parameter by the routines to call the corresponding MethodID.

pOutLen

*pOutLenOpenVMS usage:

IntegerType:

Read onlyAccess:

By referenceMechanism:

It is a 32-bit value used as a parameter by the routines to call the corresponding MethodID.

ppbOutData

**ppbOutDataOpenVMS usage:

Pointer to characterType:

Read onlyAccess:

By referenceMechanism:

It is a 8-bit value used as a parameter by the routines to call the corresponding MethodID.

WSI$INVOKE 9

WSI$INIT

The WSI$INIT routine initializes the startup entry point for the application.

Format

unsigned int WSI$INIT *pAppBlock

C Prototype

unsigned int WSI$INIT(Application Context *pAppBlock)

Description

The WSI$INIT routine takes the Application Context as an input and initializes mailbox, assigns
a channel to the mailbox for delivery of messages, creates the lock for the application, passes the Init
call to the User's shareable and initializes the application.

Arguments

Application Context

*pAppBlockOpenVMS usage:

Application ContextType:

Read onlyAccess:

By referenceMechanism:

It is a structure value corresponding to the context of the application that is initiated by the WSIT server.

10 Web Services Integration Toolkit

WSI$EXIT

The WSI$EXIT routine shutdowns the entry point of the application.

Format

unsigned int WSI$EXIT

C Prototype

unsigned int WSI$EXIT()

Description

The WSI$EXIT routine takes the Application Context as an input and exits the application by
closing all the processes that are initialized by the WSI$INIT routine.

Arguments

There are no arguments for the WSI$EXIT routine.

WSI$EXIT 11

WSI$START_SESSION

The WSI$START_SESSION routine acts as the session startup entry point.

Format

unsigned int WSI$START_SESSION **pSessionID *pMemDispatch

C Prototype

unsigned int WSI$START_SESSION (internal_context_t **pSessionID, wsi$disp_t
*pMemDispatch)

Description

The WSI$START_SESSION routine takes the Application Context and Dispatch Pointer as
inputs and returns a status code to the caller. The routine passes the Start Session call to the User's
shareable. For the Start Session call, the WSI$START_SESSION routine calls the Application
Dispatch function, which includes the Session Management, Invocation, Inquiry, Memory
Management, and Transaction Management routines. After this, the WSI$START_SESSION
routine calls the Application Interface routine. These are the primary call points and all the
wrapped routines (ACMS Tasks, DCL Procedures, and Wrapped Files) are called through one
of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
The Manager application is notified that a client connection is started. To notify the Manager application,
a Send Connect Message routine is called where an I/O is queued in the Manager's mailbox.

Arguments

pSessionID

**pSessionIDOpenVMS usage:

MonitorContextType:

Read onlyAccess:

By referenceMechanism:

It is a structure value corresponding to the context of the application. The WSI$START_SESSION routine
gets the application information such as if the application is thread safe, the application name, a pointer
to the dispatch table, and if a transport is being used in the current deployment while using this
parameter.

pMemDispatch

*pMemDispatchOpenVMS usage:

wsi$disp_tType:

Read onlyAccess:

By referenceMechanism:

It is a structure value, that contains the Dispatch Pointers for the Helper function used by the
User Server Interface routine. The specific Helper functions are established by the WSIT server
or middle infrastructure, and then passed at the start of a session.

12 Web Services Integration Toolkit

WSI$END_SESSION

The WSI$END_SESSION routine closes the session.

Format

unsigned int WSI$END_SESSION sessionID

C Prototype

unsigned int WSI$END_SESSION (unsigned int sessionID)

Description

The WSI$END_SESSION routine terminates a client connection depending on the sessionID passed
as a parameter. The routine fetches the Monitor Context of the application whose sessionID is
provided. The routine passes the End Session call to the User's shareable. For this, the
WSI$END_SESSION routine calls the Application Dispatch function, which includes the Session
Management, Invocation, Inquiry, Memory Management, and Transaction Management
routines. After this, the WSI$END_SESSION routine calls the Application Interface routine.
These are the primary call points and all the wrapped routines (ACMS Tasks, DCL Procedures,
and Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end. Then
it terminates the session.
The Manager application is notified that a client connection is stopped. To notify the Manager
application, a Send Disconnect Message routine is called where an I/O is queued in the Manager's
mailbox. The WSI$DESTROY_SESSION_CONTEXT routine is passed as the sessionID parameter,
which frees the Application Context.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

WSI$END_SESSION 13

WSI$ACMS_SIGN_IN

The WSI$ACMS_SIGN_IN routine logs the client into the ACMS system, using the specified user name.

Format

unsigned int WSI$ACMS_SIGN_IN sessionID *pUserName

C Prototype

unsigned int WSI$ACMS_SIGN_IN (unsigned int sessionID, char *pUserName)

Description

The WSI$ACMS_SIGN_IN routine takes the sessionID and UserName as input and returns a status
code to the caller. The routine passes the Sign In Session call to the User's shareable. For
this, the WSI$ACMS_SIGN_IN routine calls the Application Dispatch function, which includes
the Session Management, Invocation, Inquiry, Memory Management, and Transaction
Management routines. After this, the WSI$ACMS_SIGN_IN routine calls the Application Interface
routine. These are the primary call points and all the wrapped routines (ACMS Tasks, DCL
Procedures, and Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
Depending on the user name provided, the Sign In Session is started.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

pUserName

*pUserNameOpenVMS usage:

Character — coded text stringType:

Read onlyAccess:

By referenceMechanism:

It is a pointer to a character array that consists of the user name for the Sign In Session.

14 Web Services Integration Toolkit

WSI$ACMS_SIGN_OUT

The WSI$ACMS_SIGN_OUT routine logs the client out of the ACMS system.

Format

unsigned int WSI$ACMS_SIGN_OUT sessionID

C Prototype

unsigned int WSI$ACMS_SIGN_OUT (unsigned int sessionID)

Description

The WSI$ACMS_SIGN_OUT routine takes the sessionID as an input and returns a status code to the
caller. The routine calls the Application Dispatch function, which includes the Session
Management, Invocation, Inquiry, Memory Management, and Transaction Management
routines. After this, the WSI$ACMS_SIGN_OUT routine calls the Application Interface routine.
These are the primary call points and all the wrapped routines (ACMS Tasks, DCL Procedures,
and Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
Depending on the sessionID provided, the application session is terminated.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

WSI$ACMS_SIGN_OUT 15

WSI$VMS_LOGIN

The WSI$VMS_LOGIN routine logs the client into the system using the specified user name and password.

Format

unsigned int WSI$VMS_LOGIN sessionID *pUserName *pPassword

C Prototype

unsigned int WSI$VMS_LOGIN (unsigned int sessionID, char*pUserName,
char*pPassword)

Description

The WSI$VMS_LOGIN routine takes the sessionID, UserName, and Password as inputs and returns
a status code to the caller. The routine passes the VMS Login Session call to the User's
shareable. The routine calls the Application Dispatch function, which includes the Session
Management, Invocation, Inquiry, Memory Management, and Transaction Management
routines. After this, the WSI$VMS_LOGIN routine calls the Application Interface routine. These
are the primary call points and all the wrapped routines (ACMS Tasks, DCL Procedures, and
Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
Depending on the UserName and the Password provided, the session is started and a status code is
returned to the caller.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

pUserName

*pUserNameOpenVMS usage:

Character — coded text stringType:

Read onlyAccess:

By referenceMechanism:

It is a pointer to a character array that consists of the user name for the Sign In Session.

pPassword

*pPasswordOpenVMS usage:

Character — coded text stringType:

Read onlyAccess:

By referenceMechanism:

It is a pointer to a character array that consists the password for the Sign In Session.

16 Web Services Integration Toolkit

WSI$VMS_LOGOUT

The WSI$VMS_LOGOUT routine logs the user out of the system.

Format

unsigned int WSI$VMS_LOGOUT sessionID

C Prototype

unsigned int WSI$VMS_LOGOUT (unsigned int sessionID)

Description

The WSI$VMS_LOGOUT routine takes the sessionID as an input and returns a status code to the
caller. The routine passes the VMS Logout Session call to the User's shareable. The routine
calls the Application Dispatch function, which includes the Session Management,
Invocation, Inquiry, Memory Management, and Transaction Management routines. After
this, the WSI$VMS_LOGOUT routine calls the Application Interface routine. These are the
primary call points and all the wrapped routines (ACMS Tasks, DCL Procedures, and Wrapped
Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
Depending on the sessionID provided, the VMS Session is stopped.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

WSI$VMS_LOGOUT 17

WSI$INVOKE_DCL

The WSI$INVOKE_DCL routine is the dispatch method for DCL procedures.

Format

unsigned int WSI$INVOKE_DCL sessionID *ctx *inBuf inLen *outLen **outBuf

C Prototype

unsigned int WSI$INVOKE_DCL (unsigned int sessionID, wsi$disp_t *ctx,
unsigned char *inBuf, int inLen, int *outLen, unsigned char **outBuf)

Description

The WSI$INVOKE_DCL routine takes the sessionID, Dispatch Pointer, Input Buffer, Input
Length, Output Length, and Output Buffer for the DCL session as inputs and returns a status
code to the caller. The routine calls the Application Dispatch function, which includes the Session
Management, Invocation, Inquiry, Memory Management, and Transaction Management
routines. After this, the WSI$INVOKE_DCL routine calls the Application Interface routine. These
are the primary call points and all the wrapped routines (ACMS Tasks, DCL Procedures, and
Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
The sessionID is used to fetch the Application Context. The Application Context along
with the Dispatch Pointer, Input Buffer, Input Length, Output Length, and Output
Buffer are passed to the RUNDCL routine to start the DCL session.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

ctx

*ctxOpenVMS usage:

wsi$disp_tType:

Read onlyAccess:

By referenceMechanism:

It is a structure value that contains the Dispatch Pointer for the Helper function used by the User
Server Interface routines. The specific Helper functions are established by the WSIT server or
middle infrastructure, and then passed at the start of a session.

inBuf

*inBufOpenVMS usage:

Unsigned characterType:

Read onlyAccess:

By referenceMechanism:

It is an unsigned character value that contains the information about the Input Buffer, which is
passed to the RUNDCL routine.

18 Web Services Integration Toolkit

outBuf

*outBufOpenVMS usage:

Unsigned characterType:

Read onlyAccess:

By referenceMechanism:

It is an unsigned character value that contains the information about the Output Buffer, which is
passed to the RUNDCL routine.

inLen

inLenOpenVMS usage:

IntegerType:

Read onlyAccess:

By valueMechanism:

It is an integer value that is used to determine the Input Length for the DCL session.

outLen

*outLenOpenVMS usage:

IntegerType:

Read onlyAccess:

By referenceMechanism:

It is an integer value that is used to determine the Output Length for the DCL session.

WSI$INVOKE_DCL 19

WSI$GET_FILE

The WSI$GET_FILE routine wraps up the text file along with the dispatch method.

Format

unsigned int WSI$GET_FILE sessionID fileID *ctx *outLen **outBuf

C Prototype

unsigned int WSI$GET_FILE (unsigned int sessionID, intfileID, wsi$disp_t
*ctx, int *outLen, unsigned char **outBuf)

Description

The WSI$GET_FILE routine takes the sessionID, File ID, Dispatch Pointer, Output Length,
and Output Buffer for dispatching a file and returns a status code to the caller. The routine passes
the Start Session call to the User's shareable. The routine calls the Application Dispatch
function, which includes the Session Management, Invocation, Inquiry, Memory Management,
and Transaction Management routines. After this, the WSI$GET_FILE routine calls the
Application Interface routine. These are the primary call points and all the wrapped routines
(ACMS Tasks, DCL Procedures, and Wrapped Files) are called through one of these entry points.
The routines are identified by a generated MethodID. In MethodID, the input parameters are passed
as an encoded stream, and an encoded output stream is produced that is decoded at the far end.
The sessionID is used to fetch the Application Context. The Application Context along
with the Dispatch Pointer, Output Length, and Output Buffer are passed to the GetFile
routine to dispatch the text file.

Arguments

sessionID

sessionIDOpenVMS usage:

Unsigned integerType:

Read onlyAccess:

By valueMechanism:

It is a 32-bit integer value that is used to identify the Application Context.

ctx

*ctxOpenVMS usage:

wsi$disp_tType:

Read onlyAccess:

By referenceMechanism:

It is a structure value that contains the Dispatch Pointers for the Helper functions used by the
User Server Interface routines. The specific Helper functions are established by the WSIT
server or middle infrastructure, and then passed at the start of a session.

outBuf

*outBufOpenVMS usage:

Unsigned characterType:

Read onlyAccess:

By referenceMechanism:

It is an unsigned character value that contains the information about the Output Buffer, which is
passed to the GetFile routine.

20 Web Services Integration Toolkit

outLen

*outLenOpenVMS usage:

IntegerType:

Read onlyAccess:

By referenceMechanism:

It is an integer value that is used to determine the Output Length for dispatching the text file.

WSI$GET_FILE 21

3 Support and other resources
HP encourages your comments

HP welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?
If you find any errors or have any other suggestions for improvement, please indicate the title of
the documentation and the chapter, section, and page number (if available). You can send comments
to us to:
openvmsdoc@hp.com

Related information
• Web Secure Integration Toolkit for OpenVMS Installation Guide and Release Notes:

nl

http://h71000.www7.hp.com/openvms/products/ips/wsit/wsit_doc.html
• Web Secure Integration Toolkit for OpenVMS Developer's Guide:

nl

http://h71000.www7.hp.com/openvms/products/ips/wsit/wsit_doc.html

22 Support and other resources

openvmsdoc@hp.com
http://h71000.www7.hp.com/openvms/products/ips/wsit/wsit_doc.html
http://h71000.www7.hp.com/openvms/products/ips/wsit/wsit_doc.html

Index

A
Application Context, 11
audience
application programmers, 4
developers, 4

C
Conventions
(), 4
bold type, 4
UPPERCASE TYPE, 4

M
Manager, 12

R
routine
Inquiry, 12
Invocation, 12
Memory Management, 12
Session Management, 12
Transaction Management, 12

W
WSI$ACMS_SIGN_IN, 14
WSI$ACMS_SIGN_OUT, 15
WSI$END_SESSION, 13
WSI$EXIT
Application Context, 11

WSI$GET_FILE, 20
WSI$INIT
Application Context, 10

WSI$INVOKE
dispatch method, 8
inLen, 9
MethodID, 9
pbInData, 9
pOutLen, 9
ppbOutData, 9
sessionID, 8

WSI$INVOKE_DCL, 18
WSI$START_SESSION
Application Context, 12
Application Dispatch, 12

WSI$VMS_LOGIN, 16
Password, 6
pVmsLogin, 6
sessionID, 6
UserName, 6

WSI$VMS_LOGOUT, 17
sessionID, 7

23

	Web Services Integration Toolkit for OpenVMS
	Contents
	1 About this document
	Intended audience
	Conventions

	2 Web Services Integration Toolkit
	WSI$VMS_LOGIN
	WSI$VMS_LOGOUT
	WSI$INVOKE
	WSI$INIT
	WSI$EXIT
	WSI$START_SESSION
	WSI$END_SESSION
	WSI$ACMS_SIGN_IN
	WSI$ACMS_SIGN_OUT
	WSI$VMS_LOGIN
	WSI$VMS_LOGOUT
	WSI$INVOKE_DCL
	WSI$GET_FILE

	3 Support and other resources
	HP encourages your comments
	Related information

	Index

