
The Performance Data Collector for HP OpenVMS

TDC V2.2 Technical Overview

March 2006

© Copyright 2003-2006 Hewlett-Packard Development Company, L.P.

Contents
Background .. 4

Insufficient OpenVMS Data Providers.. 4
Multiple OpenVMS Data Collectors ... 4
Data Consumers ... 4
The Performance Data Collector for HP OpenVMS (TDC V2) ... 4

What is TDC V2? ... 5
TDC V2 is… .. 5
TDC V2 is not… .. 5
TDC V2 is targeted at… ... 5
TDC V2 is not targeted at… ... 5
TDC V2 is best-suited to…... 5

What are the principal TDC V2 Components? .. 6
TDC V2 Architectural Highlights ... 7

The architecture is “open”... 7
The architecture is “extensible” .. 7
Data can be provided “live” .. 7
Multiplatform support... 7

Basic Operations .. 7
Collection ... 7
Extraction ... 7

What are Processor Modules?... 9
Processor Module Capabilities.. 9
Processor Module Synchronization... 11
Other Processor Module Options .. 12

How does TDC V2 communicate with Processor Modules?.. 16
Global context structure.. 16
Private context structure ... 16
Public and Private data records ... 16
Processor Module invocations .. 17

Arguments passed... 17
Return values .. 17
Messaging and Event-Logging.. 18

What is a Client Application? ... 19
How does TDC V2 manage data? ... 21

Snapshots ... 21
Record Sets... 21
Data records ... 22
Organization... 22

Figures

Figure 1: Overview of interactions among TDC V2 components .. 8
Figure 2: Synchronization of calls to Processor Modules by TDC engine during a collection.... 15
Figure 3: Overview of the extraction process. ... 15
Figure 4: Client application interactions with TDC Engine ... 20
Figure 5: Data Organization and Access ... 23

Tables

Table 1: Processor Modules Supplied with TDC... 13

Hewlett-Packard Development Company. L.P.4

Background

Insufficient OpenVMS Data Providers
• OpenVMS delivers a set of System Services to provide system metrics
• OpenVMS System Services provide lots of useful information, but

o Don’t cover all aspects of system performance;
o Often provide data at too high a level;
o May lag behind OpenVMS functional and performance enhancements;
o Can be cumbersome to use.

Multiple OpenVMS Data Collectors
• Different projects have different data needs, often met by supplementing OpenVMS

System Services by:
o Using undocumented system APIs;
o Directly accessing system data structures.

• Potential problems:
o Changes to undocumented APIs
o Doing it “right” (e.g., synchronization, etc.)
o Reliability and validity of data
o Conflicts (e.g., IOPERFORM)
o Staying current
o Drag on engineering resources

Data Consumers
• May require multiple data collectors for all needed metrics
• Forced to wait for data collectors to add new metrics
• “Live” vs. “Stored” data

The Performance Data Collector for HP OpenVMS (TDC V2)
• Provides “raw” data, much of which is not available through OpenVMS System Services
• Tracks OpenVMS enhancements
• Documented API
• Reduces potential problems associated with data collection
• Can be extended by data consumers
• Supports both “live” and “stored” data

Hewlett-Packard Development Company. L.P.5

What is TDC V2?

TDC V2 is…
• A provider of system configuration and performance data for use by other software

applications.
• A “bulk” data provider, that allows programmers to request groups of performance-

related system metrics.
• A tool to manage the collection of system performance data.
• A tool to manage the extraction of data from a data file.
• A component to be integrated into software applications.

TDC V2 is not…
• A “system service” that offers programmers flexibility to request individual performance

metrics of interest
• A complete system performance analysis solution.
• A standalone application like MONITOR, T4, ECP, etc.

TDC V2 is targeted at…
• Developers of system performance-monitoring software.

TDC V2 is not targeted at…
• System managers.
• End users.

TDC V2 is best-suited to…
• Facilitate deployment and integration of system performance-analysis and performance-

management software applications.

Hewlett-Packard Development Company. L.P.6

What are the principal TDC V2 Components?

• An “Engine” that:
o Manages the collection of data and extraction of data from a file.
o Coordinates the activities of Processor Modules that collect and/or process system

data.
o Is fully accessible through a supported Application Programming Interface (API).

• A set of “Processor Modules” that:
o Perform data collection and/or extraction tasks, timing, file access, etc. using the

Engine’s API.
o Together, provide more than 1000 performance-related metrics.
o Can be extended…

§ In the field
§ By ISVs, etc.
§ By customers

• An Application that uses the Engine’s API to:
o Collect data and store it in a file;
o Extract data from a file;
o Convert data to various formats.

• A Software Developer’s Kit (SDK) that provides:
o A specification of the API;
o A description of metrics provided “out-of-the-box” by TDC;
o A Programmer’s Guide and this technical overview;
o Header files;
o Code samples.

Hewlett-Packard Development Company. L.P.7

TDC V2 Architectural Highlights

The architecture is “open”
The API can be used to control all aspects of a data collection or extraction operation, thereby
facilitating integration of the Engine and API-selectable PROCESSOR MODULEs into software
applications.

The architecture is “extensible”
The real work of collecting and processing data is performed by individual PROCESSOR
MODULEs under control of the TDC Engine. Processor Modules are loaded by the Engine at
run time, under control of the API. Thirty-five PROCESSOR MODULEs are provided with TDC
(see Table 1); the SDK allows third parties to develop and deploy additional PROCESSOR
MODULEs to collaborate in collecting and processing data.

Data can be provided “live”
The architecture separates the production and storage of data records. Once data records have
been produced, they can optionally be stored in a file for offline processing, but they can also be
directed “live” to other software through appropriate Processor Modules.

Multiplatform support
• OpenVMS Version 7.3-2, or Version 8.2 and later (Alpha systems)
• OpenVMS Version 8.2 and later (Integrity systems)

An overview of the TDC V2 architecture is provided in Figure 1, which shows the principal
components and their interactions.

Basic Operations

Collection
A collection process is the gathering and optional processing of data, followed by the
consumption of that data, typically, but not always, by writing it to a file.

Extraction
An extraction process is the retrieval and optional processing of data from a source other than the
OpenVMS operating system. The source will typically be a file created during a collection
process.

Hewlett-Packard Development Company. L.P.8

Figure 1: Overview of interactions among TDC V2 components

Client Application

TDC API - External Entry Points

TDC API - Callback Functions

Processor Module A

Processor Module B

Processor Module C

Call A

Call B

Call C

The TDC engine sequentially calls
the processor modules that have

been registered:

Each processor module returns a
status code back to the TDC

engine:

Status returned by A

Status returned by B

Status returned by C

TDC “Engine”

Hewlett-Packard Development Company. L.P.9

What are Processor Modules?

• The TDC Engine delegates responsibility for producing and processing data records to
Processor Modules.

• A Processor Module (PM) is a functional unit that performs some task of interest in the
context of collecting or processing system performance data.

• Processor Modules are typically packaged in shareable images. A shareable image that
contains one or more PMs is referred to as a processor module library.

• Processor Modules are loaded at runtime, via LIB$FIND_IMAGE_SYMBOL().
• A Processor Module presents itself to TDC, through a TDC-defined interface, as an

autonomous entity; while PMs packaged within a library are free to interact among
themselves “in the background,” each must be capable of independently interacting with
TDC.

Processor Module Capabilities
The TDC V2 architecture broadly defines a number of operational capabilities for Processor
Modules. An individual Processor Module specifies its actual capabilities after it has been loaded
by the TDC Engine. The capabilities specified by a Processor Module may be changed from one
operation to another.

The principal Processor Module capabilities defined and recognized by the TDC Engine are:

• PRODUCER: the Processor Module provides data records. The data records that it
provides can result from information it collects from the operating system, or they can
result from its processing of data records provided by other PMs. A producer PM can be
invoked during collection operations, and provides exactly one type of data record. 24
producer PMs are provided with TDC Version 2.2.

• CONSUMER: the Processor Module consumes data records. A consumer non-
destructively utilizes data records produced by other PMs.

Two consumers are provided with TDC Version 2.2:

• One (TDC_COLFIL) has responsibility for managing the storage of data in a
collection file for subsequent processing; it can be disabled to inhibit storage of the
data in a file.

• A second (TDC_TXTCVT) handles conversion of data to various text representations
(LIST, LISTALL: display data items in a snapshot/record set/data record/data item
listing, with identifying information for data items and data aggregates).

Several other consumers are provided in source-code form as a part of the TDC V2.2
SDK.

Hewlett-Packard Development Company. L.P.10

A consumer PM can perform other operations on the data records, perhaps enabling
“live” provision of data to other software: broadcasting data records over a network
connection; using them to update web pages or a system status display; otherwise feeding
them to another application, for example. Any number of consumers can be
simultaneously involved in either a collection or an extraction operation.

Because a consumer PM typically concerns itself only with the sets of data records made
available to it by the TDC Engine, it should function equally well whether participating
in a collection or in an extraction operation.

• TIMER: the Processor Module controls the timing of data collection activities. One
timer (TDC_TIMR) is provided with TDC; it can be overridden by a timer PM supplied
by you or by a third party. Exactly one timer must be active during a data-collection
process. A timer is optional during data-extraction operations; the TDC-provided timer
disables itself for data-extraction operations.

• FILTER: the Processor Module examines data records produced by one or more other
PMs, deciding which are useful and which can be discarded before being made available
to other PMs. No filters are provided with TDC, though any number of filters can be
active during either a collection or an extraction operation.

• EXTRACTOR: the Processor Module provides the ability to extract (read) data from a
file or other data source. Extractors are invoked by the TDC engine only during data-
extraction operations. One extractor is provided with TDC; it has responsibility for
reading data from the file created by the consumer PM provided with TDC (actually, one
PM – TDC_COLFIL – provides both functions). Generally, use of a file-building
consumer PM other than that provided with TDC implies the necessity of also providing
an extractor PM.

• GROUPER: the Processor Module forces the inclusion and loading of a set of other
PMs; it does not otherwise participate in collection or extraction processes. Three
groupers are provided for general use with TDC: DEFAULT, CLUSTER, and ALL;
several others are provided for use with specific applications.

• SUPPORTER: the Processor Module provides support services for one or more other
processor modules, generally in the nature of acquisition/initialization and tear-
down/release of shared resources. Supporters are not called during processing of
snapshots. Two supporters are provided with TDC: TDC_LWS and TDC_EXEC.

• MONITOR: the Processor Module monitors the state of collection and extraction
operations, generally for the purpose of making that information available to other
applications.

An individual Processor Module may provide a combination of the capabilities defined above, as
is the case with the default PM provided with TDC for creating (consumer capability) and
reading (extractor capability) files.

Hewlett-Packard Development Company. L.P.11

Processor Module Synchronization
The TDC V2 architecture defines a set of points at which the Engine can invoke a Processor
Module. All PMs are invoked prior to the start of a collection or extraction process, providing
them an opportunity to self-initialize; all PMs are also invoked at the end of a collection or
extraction process, providing them the opportunity to free resources.

The following invocation points are also defined by the architecture. After it has been loaded by
the Engine, a Processor Module may specify at which of the following synchronization points it
should be invoked:

• Pre-Baseline: A Processor Module which specifies pre-baseline synchronization will be
invoked before the Engine begins periodic data collections. This synchronization point,
applicable only to TIMERs and MONITORs, provides the ability to defer data collection
until a specified time. This synchronization point is not available during extraction
operations.

• Snapshot: A Processor Module which specifies snapshot synchronization will be invoked
as a part of each of the Engine’s periodic data collections. It is during these invocations
that a PRODUCER would actually provide data records based on its scanning of the
system hardware or software. During extraction operations, a processor module that
specifies snapshot synchronization will be called at each snapshot, after all of its data
records have been read and stored for the current snapshot (processor modules which
contributed no data records to the current snapshot will not be called). Relevant FILTER
PMs would also be invoked to filter data records provided by PRODUCERS.

• Snapshot-End: A Processor Module which specifies snapshot-end synchronization
would be invoked after all snapshot-synchronized PRODUCER PMs. Such a PM might
itself be a PRODUCER, which produces records derived from records produced by other
PMs. CONSUMER PMs would typically specify snapshot-end synchronization. During
extraction operations, a processor module that specifies snapshot-end synchronization
will be called at each snapshot, after all data records (of all types) have been read and
stored for the current snapshot (non-CONSUMER processor modules which contributed
no data records to the current snapshot will not be called).

• Collection-End: A Processor Module which specifies collection-end synchronization
would be invoked after all collection activities have completed, and the collection file, if
any, has been closed. A CONSUMER PM synchronized on collection-end might alert a
software application that a collection file is available for processing, or that it should
expect no more data to be sent to it from the PM.

A Processor Module may specify any combination of synchronization options. Figure 2 shows
the synchronization of PM invocations by the TDC Engine during a collection operation.

Hewlett-Packard Development Company. L.P.12

Extraction operations differ from collection operations in that an EXTRACTOR PM is invoked
to provide a single system snapshot; processor modules are then invoked to process that data, and
a TIMER PM, if present, is invoked to time extraction of the next system snapshot; a MONITOR
PM, if present, would be invoked at each step. Figure 3 shows the sequence of events during an
extraction operation.

Other Processor Module Options
A number of other options are available to assist Processor Modules in their tasks:

• A Processor Module can, after it has been loaded by the TDC Engine, specify that it has a
dependency on one or more other PMs. A FILTER does this, for example, to indicate the
types of records that it filters. The Engine uses dependency information to determine the
order in which PMs should be invoked.

• A Processor Module can, after it is loaded by the Engine, specify any system privileges
required for its use. The TDC Engine will not start an operation unless all privileges
specified by all PMs are enabled by the user (or by the client application that drives the
TDC Engine).

• The API allows Processor Modules to access the Engine through a set of callback
functions.

• A Processor Module can, by means of the API, examine or copy data records provided by
a different PM.

• A Processor Module can specify that it be invoked to reformat its data records as they are
read from a file during an extraction operation.

• A Processor Module can support “external calls.” An external call, placed through an API
callback function, allows one PM to invoke another, perhaps to provide some service not
otherwise available through the API. The TDC API does not specify the types of external
calls that can be made (that is a matter for agreement between the developers of the
calling and target PMs). Only a PM that, after having been loaded by the Engine,
specifies that it will accept external calls, is a potential target of an external call. A PM
that is the target of an external call is provided with information to identify the caller,
allowing it to screen external calls.

• A Processor Module can provide multiple views of its data records, sorted in various
ways, with appropriate search functions.

• A Processor Module that provides multiple data records at each snapshot can provide a
callback function to be used to match records from the current and previous snapshots
(the TDC Engine provides this matching capability on behalf of PMs that produce only
one record per snapshot).

Hewlett-Packard Development Company. L.P.13

• A Processor Module can provide a callback function that creates “delta” records whose
data items reflect differences between the corresponding data items from two raw data
records.

• A Processor Module can disable itself, if it discovers that it can no longer appropriately
perform its task, without necessarily affecting the operation of other PMs. Note that PMs
that have declared a dependency on the disabled PM will receive notification of its
changed state, and may, as a result, modify their own operational states.

• A Processor Module can use the API to request that an operation halt prematurely.

Table 1: Processor Modules Supplied with TDC

Name Purpose Data Items
[*: some items are arrays]

TDC_TIMR Default TIMER N/A
TDC_PDSC Manages processor modules N/A
TDC_DDSC Manages data descriptions provided by

producers.
N/A

TDC_TXTCVT Provides text conversions N/A
TDC_COLFIL Manages collection file N/A
TDC_COLHDR Collection parameters & system HW/OS

characteristics
45 HW/OS
characteristics; 17
collection parameters

TDC_COLHDR2 Supplementary system HW/OS characteristics 24 HW/OS characteristics
TDC_EXEC SUPPORTER, provides an interface to the

execlet that is used for some process and disk
data

N/A

TDC_LWS SUPPORTER, handles initialization and
cleanup of resources used be several other
processor modules.

N/A

DEFAULT GROUPER, forces collection of ADP, CPU,
CTL, DEV, DSK, FCP, MEM, NTI, PAR, PRO,
& SYS records

N/A

ALL GROUPER, forces collection of DEFAULT
records plus CLU, CVC, CPS, DLM, DTM,
GLX, INET, SRV, XFC, & XVC

N/A

CLUSTER GROUPER forces collection of CLU, CPS,
CVC, DLM, DTM, GLX, PAR, and SRV
records.

N/A

ADP Describes H/W adapters 14
CLU Describes VMSCLUSTER configuration 23
CPU Describes CPU utilization 20

Hewlett-Packard Development Company. L.P.14

CPUCFG Describes characteristics of CPUs 27
CPS Describes performance of Clusterwide Process

Services
10

CTL Describes I/O controllers & ports 5
CVC Describes VMSCLUSTER communications

(SCS)
19

DEV Fixed characteristics of storage devices 50
DLM Describes Distributed Lock Manager

performance
50

DSK Variable characteristics and performance of disk
devices

40

DTM Describes performance of the Distributed
Transaction Manager

37

FCP Describes FCP performance 34
GLX Describes resources used for Galaxy 11
INET Describes network software performance 146
MEM Describes memory utilization 34
NTI Describes network hardware performance 67
PAR Provides all SYSGEN parameter values 384
PGFL Describes page/swap-file utilization 19*
PRO Describes processes 88
SRV Describes server (MSCP and TMSCP)

performance
58

SYS Describes miscellaneous system metrics 75
XFC Describes cache performance 44*
XVC Describes volume-caching 37*

Hewlett-Packard Development Company. L.P.15

Figure 2: Synchronization of calls to Processor Modules by TDC engine during a collection.

Figure 3: Overview of the extraction process.

Hewlett-Packard Development Company. L.P.16

How does TDC V2 communicate with Processor Modules?

Global context structure
A global context structure stores all information relevant to the current data-collection or data-
extraction operation, including the inter-snapshot timer, the number of snapshots to be taken, the
start and end times for the collection, and various other options. The global context also contains
a pointer to a public data buffer and to the current and previous snapshots.

The public data buffer is used to pass data records between the TDC API and Processor
Modules.

The current snapshot represents data currently being collected to hand over to the consumer
PMs, and the previous snapshot represents the data most recently processed by those consumers.
A producer PM could generate “delta” records, representing the change in some set of metrics
between snapshots, by comparing corresponding records in the two available snapshots.

A pointer to the global context is provided to the Processor Module at each invocation.

Private context structure
A private context is created by the TDC Engine for each PM that is participating in an operation.
That private context is used to exchange PM-specific information between the Engine and the
Processor Module: required privileges, supported data formats, capabilities, synchronization
options, error codes, etc.

The private context contains a pointer for exclusive use of the Processor Module. The Processor
Module should generally use it to reserve a block of heap memory for its own global data, thus
avoiding the use of global variables, which would present a problem in a multi-threaded
implementation.

The private context also contains a pointer that can be used by the Processor Module in order to
share data with other processor modules.

Public and Private data records
The private context also contains a data buffer pointer. That will be used to exchange “private”
data records between the TDC Engine and the Processor Module.

Each PRODUCER Processor Module is responsible for exactly one type of data record. The data
record may, however, have two or more different representations.

The public form of the record is designed for efficient and convenient run-time access. That is
the form that is stored in snapshots and that is made available, through those snapshots, to other

Hewlett-Packard Development Company. L.P.17

Processor Modules. The public form of the record is passed between the Engine and the PM
through a pointer in the global context.

The optional private form of the record should be designed to conserve storage space in order to
minimize the disk footprint of a data collection file. It is passed between the Engine and PM
through a pointer in the private context. It is the responsibility of a PRODUCER PM that
supports both public and private data records to convert between the two formats.

Processor Module invocations

Arguments passed
The TDC Engine passes three arguments when calling a Processor Module:

• Pointer to the global context, which provides a “Do What” code from which the PM can
determine the actions expected of it at that call; other data provides the “global” context
in which the operation is occurring, and can be read, or sometimes modified, by the PM.
This argument is guaranteed to be non-NULL.

• Pointer to the PM’s private context, which provides access to context information
maintained by the PM, and by the TDC Engine on behalf of the PM. This argument is
guaranteed to be non-NULL.

• Pointer to a record set which represents a set of records of a particular type, usually the
data records maintained by the PM. This argument may be NULL.

A Processor Module which accepts “external” calls will receive an additional three arguments
during an external call:

• A pointer to a processor description record for the calling PM.

• A pointer to use to receive input arguments from that caller. The specific way in which
this pointer is used is not defined by the TDC architecture.

• A pointer to use to return output values to that caller. The specific way in which this
pointer is used is not defined by the TDC architecture.

Return values
A Processor Module returns one of a defined set of values as its return value at each invocation.
If the PM has encountered an unexpected condition during that invocation, it should
appropriately describe that condition using the set of status code items in its private context.

If a PM’s return value indicates a “fatal” error, the TDC Engine will, as quickly as is convenient,
begin to abort the current operation.

Hewlett-Packard Development Company. L.P.18

A PM should never call exit() or LIB$STOP() or signal a fatal condition, as those sorts of
abort actions might not allow the Engine to shut down properly, and the operating system could,
during a collection operation, be left in a non-optimal state (perhaps because data-collection
execlets may not be unloaded).

Messaging and Event-Logging
The TDC Engine provides for uniform reporting of “interesting” situations through a callback
function accessed through the global context.

A set of macros is defined, in TDC_COMMON.H, for use with that callback function. In
general, the following should be used; besides invoking the callback function, they will set
appropriate status values in the PM’s private context:

• TDC_SET_PCTX_FTLERR to report that the PM has encountered a fatal error. It is
appropriate to report a fatal error only when the situation is such that the TDC Engine
should be shut down, perhaps because the PM has detected that its data has been
compromised and that corruption of other elements of the TDC Engine’s address space is
a possibility. This will most often occur as a result of a programming error.

• TDC_SET_PCTX_ERROR to report that the PM has encountered an error. It is
appropriate to report an error when the PM decides that it cannot provide the services
expected of it, perhaps because the set of devices or software monitored by a
PRODUCER PM has gone offline. The macro will mark the PM as disabled.

• TDC_SET_PCTX_WARN to report a less severe condition, that should, nonetheless be
logged.

A set of macros in addition to those listed above provides for a more general messaging
capability, including the filtering of messages according to a “trace level” specified within the
global context.

A Processor Module should never generate output that would be visible to an end-user except
through the macros and callback function provided for that purpose.

Hewlett-Packard Development Company. L.P.19

What is a Client Application?

An application is an executable image that performs some set of tasks. A TDC Client
Application is an application that makes use of the TDC Engine, through its API, to perform
data-collection and/or –extraction tasks.

A Client Application might be something built specifically to use TDC to collect or read data, or
it might be an existing application to which the capability to interact with TDC has been added,
again for collecting or extracting data.

A Client Application can coordinate with Processor Modules (provided with the Client
Application) to better perform some task, or it can be entirely independent of any particular
Processor Modules, relying on those provided with TDC or made available by third parties.

TDC does not support direct interaction between Client Applications and Processor Modules, but
neither does it attempt to prevent such interactions. TDC does, however, support the ability to
include one Processor Module as a part of the client application executable image.

The TDC API provides the following principal functions for a Client Application:

• Initialize the API (TDC_INIT)

• Load processor modules (TDC_REGISTER)

• Prepare to start an operation (TDC_PREPARE)

• Start a read or collection operation (TDC_START) and run it to completion

• Read data from a collection file one snapshot at a time (TDC_READ_SNAPSHOT)

• Collect data one snapshot at a time (TDC_COLLECT_SNAPSHOT)

• Transfer control to the TDC Engine to run the current operation to completion after one
or more calls to TDC_READ_SNAPSHOT or TDC_COLLECT_SNAPSHOT
(TDC_CONTINUE)

• Retrieve information about the TDC execution environment (TDC_GET_INFO)

• End an operation (TDC_END)

• Shut down the API (TDC_FINISH)

• Other, more specialized, functions

The interaction between a client application and the TDC Engine is illustrated in Figure 4.

Hewlett-Packard Development Company. L.P.20

Client Application

TDC_INIT() TDC_REGISTER() TDC_PREPARE()

(1) (2) (3)

TDC_END()TDC_FINISH()

(5)

(6)

TDC_START()

TDC_READ_SNAPSHOT()

TDC_COLLECT_SNAPSHOT()

(OR 4B) Sequence of calls to TDC_READ_SNAPSHOT()

(OR 4C) Sequence of calls to TDC_COLLECT_SNAPSHOT()

(4A) Single call to TDC_START()

Figure 4: Client application interactions with TDC Engine

Hewlett-Packard Development Company. L.P.21

How does TDC V2 manage data?

Snapshots
During a data-collection operation, the TDC Engine periodically calls the set of loaded
PRODUCER Processor Modules to sample the state of the hardware and operating system. This
is a snapshot operation. As a result of a snapshot operation, each of the relevant PRODUCERs
will have created a set of data records collectively representing the state of monitored aspects of
the computer at that snapshot.

That set of data is aggregated into a snapshot data structure. A snapshot data structure has a
header, of type TDC_SnapshotHeader_t, through which the snapshot data can be accessed.

The TDC Engine’s global context contains a pointer to the “current” snapshot, the one most
recently created, at member TDC_CTX_CurrentSnapshot. It is that snapshot which PMs
will utilize to collect and later process the current data.

The global context also contains a pointer to the previous snapshot at member
TDC_CTX_PreviousSnapshot.

Snapshot structures can be copied using a callback function accessible through the global
context.

It is also possible for software to mark an ongoing interest in a particular snapshot to prevent its
being deleted. This is done by “reserving” the snapshot, and, later, “releasing” it. This
mechanism is more efficient than copying, as a snapshot can potentially contain a large number
of data records.

Record Sets
The snapshot structure contains pointers to record sets. A record set, accessed through a record
set header of type TDC_Set_t, contains all the data records of a particular type that were
created as a part of a snapshot operation. If there are 10 PRODUCER PMs participating in a
collection operation, the resulting snapshot is likely to contain 10 record sets, each contributed
by one of those PRODUCERs.

A record set represents all the records of a particular type that were generated during a single
snapshot operation. The record set header contains pointers to (the public forms of) those data
records. PRODUCER PMs will add data records to a snapshot by means of a callback function
accessed through the global context; adding records through other means is not supported and
may result in undesirable consequences, including corruption of a data file.

Because the most recent snapshots and their associated record sets are accessible through the
TDC Engine’s global context, they can be examined by any of the Processor Modules that are
currently loaded. They can also be examined by a Client Application.

Hewlett-Packard Development Company. L.P.22

It may at various times be desirable to have different views of a record set. This ability is
provided through a mechanism referred to as “cloning.” The TDC Engine’s global context
provides a pointer to a function that will clone a record set. During the process of cloning, the
record set header is copied, and the clone receives a set of pointers to the original data records
rather than pointers to copies of the records. The set of pointers in the clone record set can be
reordered in any way without affecting the original data records.

Data records
All records, including public and private data records, begin with a “record prefix” which serves
to identify the record type and other characteristics, including time of creation and size.

Ensuring that a record has the correct prefix data is primarily the responsibility of the Processor
Module responsible for that data record.

The TDC Engine assigns each PM a record ID value when the PM is loaded. The PM has to
insert that ID into the prefix of each record, whether public or private, that it produces. The PM
also has to track the size of each record, insuring that the size value in the prefix is correct. There
are some prefix flags that the PM can set or clear to describe the state of a record.

The TDC Engine will add an appropriate timestamp value to data records as they are inserted
into a snapshot, though that task can instead be handled by the PM.

Organization
Figure 5 shows the principal data structures and their inter-relationships. In general, data access
begins with a snapshot - typically the current snapshot, which is reached through a pointer within
the API’s global context. The snapshot header provides a pointer to an array of pointers to record
set headers, with one record set header per data record type represented within the snapshot.
Each record set header provides a pointer to an array of data pointers, with one data pointer per
data record.

Hewlett-Packard Development Company. L.P.23

TDC_SH_A_RecordSets

TDC_CTX_CurrentSnapshot

API Global Context
(TDC_CTX_t)

Snapshot Header
(TDC_SnapshotHeader_t)

TDC_SH_LU_RecTypesCount

NULL

Array of TDC_Set_t *

TDC_SET_A_DataPtr

TDC_SET_LU_RecordCount

TDC_Set_t
(one per record type)

Array of
TDC_RecordPrefix_t *

Data Records in Memory

Figure 5: Data Organization and Access

