
Presentation Manager
Programming Guide
Advanced Topics

Version 3

--------- - ------- - ---- - - ----------_ . -

Presentation Manager
Programming Guide
Advanced Topics

VAP!RIOn 3

--...- ------- - -------- - ---- - - -------------,-

Note --,

Before using this information and the product it supports, be sure to read the general
information under Appendix, "Notices" on page A-1.

First Edition (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM authorized reseller or
IBM marketing representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy, mOdify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: "© (your company name) (year). All rights reserved."

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures

Tables

About This Book
Who Should Read This Book
How This Book Is Organized
Prerequisite Publications
Related Publications

Presentation Manager Programming Guide - Advanced Topics

Chapter 1. Introduction

Chapter 2. Combination Box
About Combination-Box Controls

Combination-Box Styles ...
Combination-Box Notification Codes

Using Combination-Box Controls
Related Window Messages

CBM HILITE
CBM_ISLISTSHOWING
CBM _ SHOWLIST

Related Notification Message
WM _CONTROL (in Combination Boxes)

Summary

Chapter 3. Multiple-Line Entry Field Controls
About Multiple-Line Entry Field Controls

MLE Styles
M LE Notification Codes
MLE Text Editing
MLE Text Formatting
MLE Text Import and Export Operations
MLE Cut, Copy, and Paste Operations
MLE Search and Replace Operations
MLE Colors

Using Multiple-Line Entry Field Controls
Creating an MLE
Importing and Exporting MLE Text

Importing MLE Text
Exporting MLE Text

Searching MLE Text
Related Window Messages Received by an MLE Field Control

© Copyright IBM Corp. 1994

xix

xxiii

xxv
xxv
xxv
xxvi
xxvi

1-1

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-6
2-6
2-7

3-1
3-1
3-1
3-1
3-2
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-8

3-11
3-13

iii

MLM_CHARFROMLINE
MLM_CLEAR
MLM COPY .
MLM_CUT ..
MLM_DELETE
MLM_DISABLEREFRESH
MLM_ENABLEREFRESH
MLM EXPORT
MLM FORMAT
MLMJMPORT
MLMJNSERT
MLM_LlNEFROMCHAR
MLM PASTE
MLM_QUERYBACKCOLOR
MLM_QUERYCHANGED
MLM_ QUERYFIRSTCHAR
MLM_QUERYFONT '"
MLM_QUERYFORMATLINELENGTH
MLM_QUERYFORMATRECT
MLM_QUERYFORMATTEXTLENGTH
MLM_ QUERYIMPORTEXPORT
MLM_QUERYLINECOUNT
MLM_QUERYLINELENGTH
MLM_QUERYREADONLY
MLM_QUERYSEL '"
MLM_QUERYSELTEXT .
MLM_QUERYTABSTOP
MLM_QUERYTEXTCOLOR
MLM_QUERYTEXTLENGTH
MLM_QUERYTEXTLIMIT
MLM_QUERYUNDO
MLM_QUERYWRAP
MLM_RESETUNDO
MLM_SEARCH
MLM_SETBACKCOLOR
MLM SETCHANGED .
MLM_SETFIRSTCHAR
MLM_SETFONT
MLM_SETFORMATRECT
MLM_ SETIMPORTEXPORT
MLM_SETREADONLY
MLM SETSEL
MLM_SETTABSTOP
MLM_SETTEXTCOLOR
MLM_SETTEXTLIMIT
MLM_SETWRAP
MLM UNDO

Related Window Messages Sent by an MLE Field Control

iv PM Advanced Programming Guide

3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-23
3-23
3-24
3-24
3-25
3-26
3-26
3-27
3-27
3-28
3-28
3-29
3-30
3-31
3-32
3-32
3-33
3-33
3-34
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-38
3-40

WM_BUTTON1 DBLCLK
WM_BUTTON1 DOWN
WM BUTTON1UP
WM_CHAR
WM ENABLE
WM_MOUSEMOVE
WM_QUERYWINDOWPARAMS
WM_SETWINDOWPARAMS

Related Notification Message
WM_CONTROL (in Multiline Entry Fields)

Related Data Structures
MLECTLDATA '"
MLEMARGSTRUCT
MLEOVERFLOW
M LE_SEARCH DATA
WNDPARAMS

Summary

Chapter 4. Spin Button Controls
About Spin Button Controls
Using Spin Button Controls

Creating a Spin Button
Graphical User Interface Support for Spin Button Controls
Related Window Messages . . .

SPBM_OVERRIDESETLIMITS
SPBM_QUERYLIMITS
SPBM_QUERYVALUE
SPBM_SETARRAY
SPBM_SETCURRENTVALUE
SPBM_SETLIMITS
SPBM_SETMASTER
SPBM _ SETTEXTLIM IT
SPBM_SPINDOWN
SPBM_SPINUP

Related Notification Message
WM_CONTROL (in Spin Button Controls)

Related Data Structure
SPBCDATA

Summary

Chapter 5. Static Controls
About Static Controls .

Keyboard Focus ..
Static Control Handle
Static Control Styles
Default Static Control Performance

Using Static Controls
Including a Static Control in a Dialog Window

3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-46
3-48
3-48
3-54
3-54
3-55
3-56
3-57
3-58
3-59

4-1
4-1
4-2
4-2
4-4
4-5
4-5
4-5
4-6
4-8
4-8
4-9
4-9

4-10
4-10
4-11
4-12
4-12
4-14
4-14
4-15

5-1
5-1
5-1
5-1
5-1
5-2
5-4
5-4

Contents V

Including a Static Control in a Client Window
Related Functions

WinQuerySysPointer
WinSetWindowPos
WinSetWindowText
WinWindowFromlD

Related Window Messages
SM_QUERYHANDLE
SM_SETHANDLE
WM_CONTROL
WM_MATCHMNEMONIC
WM_PRESPARAMCHANGED
WM_QUERYCONVERTPOS

Summary

Chapter 6. Slider Controls
About Slider Controls ..

Linear Sliders
Linear Slider Styles

Circular Sliders
Circular Slider Styles

Using Slider Controls ...
Creating a Linear Slider
Retrieving Data for Selected Slider Values
Creating a Circular Slider
Circular Slider Sample

Graphical User Interface Support for Slider Controls
Slider Navigation Techniques

Pointing Device Support
Keyboard Support

Related Functions
WinCreateWindow
WinSendMsg
WinShowWindow

Related Window Messages
CSM_ QUERYINCREMENT
CSM_QUERYRADIUS
CSM_QUERYRANGE .
CSM_QUERYVALUE
CSM_SETBITMAPDATA
CSM_ SETINCREMENT
CSM_SETRANGE
CSM_SETVALUE
SLM_ADDDETENT
SLM_QUERYDETENTPOS
SLM_QUERYSCALETEXT
SLM _ QUERYSLIDERINFO
SLM _ QUERYTICKPOS

vi PM Advanced Programming Guide

5-6
5-9
5-9

5-10
5-12
5-13
5-14
5-14
5-14
5-15
5-16
5-16
5-17
5-18

6-1
6-1
6-1
6-2
6-5
6-6
6-8
6-8

6-11
6-12
6-13
6-18
6-18
6-18
6-19
6-20
6-20
6-21
6-22
6-23
6-23
6-23
6-24
6-24
6-25
6-25
6-26
6-27
6-27
6-28
6-29
6-30
6-31

SLM_QUERYTICKSIZE
SLM_REMOVEDETENT
SLM_SETSCALETEXT
SLM_SETSLIDERINFO
SLM_SETTICKSIZE ..
WM_PRESPARAMCHANGED (in Slider Controls)
WM_QUERYWINDOWPARAMS (in Slider Controls)
WM_SETWINDOWPARAMS (in Slider Controls)

Related Notification Messages
WM _CONTROL (in Circular Slider Controls)
WM _CONTROL (in Slider Controls)
WM_ CONTROLPOINTER
WM DRAWITEM

Related Data Structures
CSBITMAPDATA
SLDCDATA

Summary

Chapter 7. Value Set Controls
About Value Set Controls

Value Set Styles ...
Using Value Set Controls

Creating a Value Set
Retrieving Data for Selected Value Set Items
Arranging Value Set Items

Graphical User Interface Support for Value Set Controls
Value Set Navigation Techniques

Pointing Device Support
Keyboard Support

Enhancing Value Set Controls Performance and Effectiveness
Dynamic Resizing and Scrolling

Related Window Messages
VM_QUERYITEM
VM_QUERYITEMATTR
VM_QUERYMETRICS
VM_ QUERYSELECTEDITEM
VM_SELECTITEM .
VM_SETITEM
VM_SETITEMA TTR
VM_SETMETRICS
WM_PRESPARAMCHANGED (in Value Set Controls)
WM_QUERYWINDOWPARAMS (in Value Set Controls)
WM_SETWINDOWPARAMS (in Value Set Controls)
WM_SIZE

Related Notification Messages
WM_CONTROL (in Value Set Controls)
WM_DRAWITEM (in Value Set Controls)

Related Data Structures

6-32
6-32
6-33
6-34
6-36
6-37
6-37
6-39
6-41
6-41
6-42
6-43
6-43
6-45
6-45
6-45
6-47

7-1
7-1
7-2
7-6
7-6
7-8
7-9
7-9

7-10
7-10
7-10
7-11
7-11
7-12
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-20
7-22
7-23
7-23
7-24
7-25
7-25
7-26
7-28

Contents vii

VSCDATA
VSDRAGINFO
VSDRAGINIT
VSTEXT

Summary

Chapter 8. Container Controls
About Container Controls

Container Control Functionality
Container Items
Container Views

Icon View .
Name View
Text View .
Tree View
Details View

Using Container Controls
Creating a Container
Allocating Memory for Container Records
Allocating Memory for Container Columns
Inserting Container Records
Removing Container Records ...
Setting the Container Control Focus
Using Container Views
Changing a Container View

Graphical User Interface Support for Container Controls
Scrolling
Dynamic Scrolling
Selecting Container Items

Selection Types
Selection Techniques
Selection Mechanisms

Providing Emphasis
Using Direct Manipulation

Enhancing Container Controls Performance and Effectiveness
POSitioning Container Items

Scroll able Workspace Areas
Workspace and Work Area Origins

Specifying Space between Container Items
Providing Source Emphasis
Providing Target Emphasis
Specifying Deltas for Large Amounts of Data
Direct Editing of Text in a Container
Searching for Exact Text String Matches
Specifying Container Titles
Specifying Fonts and Colors
Drawing Container Items and Painting Backgrounds
Filtering Container Items

viii PM Advanced Programming Guide

7-28
7-29
7-29
7-30
7-32

8-1
8-1
8-1
8-2
8-2
8-3
8-5
8-7
8-8

8-11
8-14
8-14
8-16
8-17
8-17
8-20
8-21
8-21
8-22
8-22
8-22
8-23
8-23
8-24
8-24
8-25
8-25
8-27
8-27
8-27
8-28
8-29
8-29
8-30
8-30
8-31
8-31
8-33
8-33
8-35
8-35
8-36

Optimizing Container Memory Usage 8-36
Allocating Memory for when Using MINIRECORDCORE 8-37
Sharing Records among Multiple Containers 8-37
Invalidating Records Shared by Multiple Containers 8-37
Freeing Records Shared by Multiple Containers 8-37

Sample Code for Container Controls . 8-38
Container Application Sample Code 8-38

Related Window Messages 8-50
CM_ALLOCDETAILFIELDINFO 8-50
CM_ALLOCRECORD 8-50
CM_ARRANGE 8-51
CM_CLOSEEDIT 8-52
CM_COLLAPSETREE 8-53
CM_ERASERECORD 8-53
CM_EXPANDTREE . 8-54
CM _FI L TER 8-55
CM_FREEDETAILFIELDINFO 8-55
CM_FREERECORD 8-56
CM_HORZSCROLLSPLITWINDOW 8-57
CM_INSERTDETAILFIELDINFO 8-57
CMJNSERTRECORD 8-58
CMJNVALIDATEDETAILFIELDINFO 8-59
CMJ NVALI DATERECORD 8-59
CM_ OPENEDIT 8-61
CM_PAINTBACKGROUND 8-62
CM_QUERYCNRINFO 8-62
CM_QUERYDETAILFIELDINFO 8-63
CM_ QUERYDRAGIMAGE 8-64
CM_QUERYRECORD 8-65
CM_QUERYRECORDEMPHASIS 8-66
CM_QUERYRECORDFROMRECT 8-68
CM_QUERYRECORDINFO . 8-69
CM_QUERYRECORDRECT 8-69
CM_ QUERYVIEWPORTRECT 8-70
CM_REMOVEDETAILFIELDINFO 8-71
CM_REMOVERECORD 8-72
CM_SCROLLWINDOW 8-73
CM_SEARCHSTRING . 8-74
CM_SETCNRINFO 8-75
CM_SETRECORDEMPHASIS 8-77
CM_SORTRECORD 8-78
WM_PICKUP 8-79
WM_PRESPARAMCHANGED (in Container Controls) , 8-79

Related Notification Messages 8-81
WM_CONTROL (in Container Controls) 8-81
WM_DRAWITEM (in Container Controls) 8-82

Related Data Structures 8-85
COATE 8-85

Contents ix

CNRDRAGINFO ...
CNRDRAGINIT
CNRDRAWITEMINFO
CNREDITDATA
CNRINFO
CNRLAZYDRAGINFO
CTIME
FIELDINFO
FIELDINFOINSERT
MINIRECORDCORE
NOTIFYDELTA
NOTIFYRECORDEMPHASIS
NOTIFYRECORDENTER
NOTIFYSCROLL
OWNERBACKGROUND
OWNERITEM
QUERYRECFROMRECT
QUERYRECORDRECT
RECORDCORE
RECORDINSERT
SEARCHSTRING
TREEITEMDESC

Summary

Chapter 9. Notebook Controls
About Notebook Controls

Notebook Styles
Page Buttons
Status Line
Binding
Intersection of Back Pages
Major Tabs
Minor Tabs
Tab Shapes and Contents
Summary of Notebook Styles

Using Notebook Controls ..
Notebook Creation
Changing Notebook Styles
Inserting Notebook Pages

Major and Minor Tabs
Status Line

Setting and Querying Page Information
Associating Application Page Windows with Notebook Pages

Associating a Window with a Notebook Page
Associating a Dialog with a Notebook Page

Deleting Notebook Pages
Notebook Colors

Changing Colors Using WinSetPresParam

X PM Advanced Programming Guide

8-85
8-87
8-88
8-88
8-91
8-98
8-99

8-100
8-103
8-104
8-106
8-107
8-108
8-109
8-110
8-111
8-112
8-113
8-114
8-117
8-118
8-120
8-121

. 9-1
9-1
9-1
9-2
9-3
9-3
9-3
9-3
9-4
9-4
9-5
9-6
9-6
9-7
9-9
9-9

9-10
9-11
9-11
9-12
9-14
9-16
9-17
9-17

Changing Colors Using BKM_SETNOTEBOOKCOLORS
Graphical User Interface Support for Notebook Controls

Notebook Navigation Techniques
Pointing Device Support
Keyboard Support

Enhancing Notebook Controls Performance and Effectiveness
Dynamic Resizing and. Scrolling
Tab Painting and Positioning

Related Functions
WinlnvalidateRect
WinSetPresParam

Related Window Messages
BKM_CALCPAGERECT
BKM_DELETEPAGE
BKMJNSERTPAGE ..
BKM JNVALI DATETABS
BKM_QUERYPAGECOUNT
BKM_QUERYPAGEDATA
BKM_QUERYPAGEID ...
BKM_QUERYPAGEINFO .
BKM_QUERYPAGESTYLE
BKM_QUERYPAGEWINDOWHWND
BKM_QUERYSTATUSLINETEXT
BKM_ QUERYTABBITMAP
BKM_QUERYTABTEXT
BKM_SETDIMENSIONS
BKM_SETNOTEBOOKCOLORS
BKM_SETPAGEDATA
BKM_SETPAGEINFO
BKM _ SETPAGEWINDOWHWND
BKM_ SETSTATUSLINETEXT
BKM_SETT ABBITMAP
BKM_SETTABTEXT
BKM_TURNTOPAGE
WM_PRESPARAMCHANGED (in Notebook Controls)

Related Notification Messages
WM_ CONTROL (in Notebook Controls)
WM_DRAWITEM (in Notebook Controls)

Related Data Structures
BOOKTEXT
DELETENOTIFY .. .
PAGESELECTNOTIFY

Summary

Chapter 10. File Dialog Controls
About File Dialog Controls

Customizing the File Dialog
Using File Dialog Controls

9-18
9-19
9-19
9-20
9-22
9-24
9-24
9-24
9-26
9-26
9-27
9-29
9-29
9-30
9-31
9-32
9-33
9-34
9-34
9-36
9-36
9-37
9-38
9-38
9-39
9-40
9-41
9-42
9-43
9-43
9-44
9-45
9-45
9-46
9-47
9-48
9-48
9-49
9-51
9-51
9-52
9-52
9-54

10-1
10-1
10-2
10-2

Contents xi

Creating a File Dialog
Creating an Open Dialog
Creating a SaveAs Dialog

Graphical User Interface Support for File Dialog Controls
Name Field
File List Box
Directory List Box
Drive Field
Type Field
Standard Push Button and Default Action
Subclassing the Default File Dialog Procedure

Related Functions
WinDefFileDlgProc
WinFileDlg
WinFreeFileDlgList

Related Window Messages
FDM ERROR
FDM FILTER
FDM VALIDATE ..

Related Data Structure
FILEDLG

Summary

Chapter 11. Font Dialog Controls
About Font Dialog Controls ..

Customizing the Font Dialog
Using Font Dialog Controls ..

Creating a Font Dialog
Graphical User Interface Support for Font Dialog Controls

Name Field
Style Field
Size Field
Emphasis Group Box
Preview Area
Filter Check Box ..
Standard Push Button and Default Action
Subclassing the Default Font Dialog Procedure

Related Functions
WinDefFontDlgProc
WinFontDlg

Related Window Messages
FNTM FACENAMECHANGED
FNTM_FILTERLIST
FNTM _POINTSIZECHANGED
FNTM_STYLECHANGED
FNTM_UPDATEPREVIEW

Related Notification Message
WM_DRAWITEM (in Font Dialog)

xii PM Advanced Programming Guide

10-2
10-3
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-6
10-6
10-7
10-7
10-7
10-8
10-9
10-9

10-10
10-10
10-11
10-11
10-16

11-1
11-1
11-1
11-2
11-2
11-3
11-3
11-3
11-4
11-4
·11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-7
11-7
11-7
11-9
11-9

11-10
11-11
11-11

Related Data Structures
FACENAMEDESC
FATTRS
FONTDLG
STYLECHANGE

Summary

Chapter 12. Direct Manipulation
About Direct Manipulation

Application-Defined Drag Operations
Rendering Mechanism and Format

Non-Standard Rendering Mechanisms
Responsibilities of a Source Application
Responsibilites of a Target Application

Messages Sent to a Target Application
Response to Messages Sent to a Target Application

Two-Object Drag Operation
Conversation after the Drop
Canceling a Drag Operation
About Pickup and Drop

Data Structure Handling
Message Handling

About Rendering Mechanisms
OS/2 File Rendering Mechanism

Mechanism Name
Messages
Native Mechanism Actions .
Preventing a Target from Rendering an Item
Requesting the Source to Render the Item
Allocating and Freeing a DRAGTRANSFER Data Structure
Operation Specifics
Non-Native Mechanism Actions
Naming Conventions
Types

Print Rendering Mechanism
Mechanism Name
Messages
Native Mechanism Actions
Naming Conventions

Dynamic Data Exchange (DDE) Rendering Mechanism
Mechanism Name
Messages
Native Mechanism Actions
Operation Specifics
Non-Native Mechanism Actions
Naming Conventions
Types

Application-Defined Rendering Mechanisms

11-13
11-13
11-14
11-17
11-23
11-25

12-1
12-1
12-2
12-2
12-3
12-3
12-4
12-4
12-5
12-6
12-8
12-9
12-9

12-11
12-11
12-12
12-12
12-12
12-12
12-13
12-13
12-13
12-13
12-13
12-14
12-14
12-14
12-14
12-14
12-15
12-15
12-15
12-15
12-15
12-15
12-16
12-16
12-16
12-16
12-17
12-17

Contents xiii

Mechanism Name
Native Mechanism Actions
Naming Conventions ...
Performance Considerations

Using Direct Manipulation
Allocating Memory for the Drag Operation
Initializing DRAG ITEM Data Structure

Type
True Type
Rendering Mechanism and Format
Native Rendering Mechanism and Format
Suggested Name at Target
Container Name
Source Name
Sample Code for Initializing DRAG ITEM Data Structure

Initializing DRAGIMAGE Data Structure
Starting the Drag Operation
Responding to the DM_DRAGOVER Message

Providing Target Emphasis
Providing Customized Images

Responding to the DM_DRAGLEAVE Message
Responding to the DM_DROP Message
Exchanging Data

Performance Considerations
Using Pickup and Drop

Graphical User Interface Support for Direct Manipulation
Keyboard Augmentation

Sample Code for Direct Manipulation
Source Application Sample Code
Target Application Sample Code

Related Functions
DrgAcceptDroppedFiles
DrgAccessDraginfo
DrgAddStrHandle
DrgAllocDraginfo .
DrgAllocDragtransfer
DrgCancelLazyDrag
DrgDeleteDraginfoStrHandles
DrgDeleteStrHandle
DrgDrag
DrgDragFiles
DrgFreeDraginfo ..
DrgFreeDragtransfer
DrgGetPS
DrgLazyDrag
DrgLazyDrop
DrgPostTransferMsg
DrgPushDraginfo

xiv PM Advanced Programming Guide

12-17
12-17
12-17
12-17
12-18
12-18
12-18
12-18
12-19
12-19
12-20
12-20
12-20
12-20
12-21
12-21
12-22
12-22
12-24
12-25
12-25
12-25
12-27
12-29
12-29
12-31
12-31
12-32
12-32
12-42
12-51
12-51
12-52
12-52
12-53
12-54
12-54
12-55
12-56
12-56
12-57
12-59
12-59
12-60
12-60
12-61
12-62
12-63

DrgQueryDraginfoPtrFromDragitem
DrgQueryDraginfoPtrFromHwnd
DrgQueryDragitem .. .
DrgQueryDragitemCount
DrgQueryDragitemPtr
DrgQueryDragStatus
DrgQueryNativeRM F
DrgQueryNativeRM FLen
DrgQueryStrName ..
DrgQueryStrNameLen
DrgQueryTrueType
DrgQueryTrue TypeLen
DrgReallocDraglnfo
DrgReleasePS ...
DrgSendTransferMsg
DrgSetDraglmage
DrgSetDragitem
DrgSetDragPointer
DrgVerifyNativeRM F
DrgVerifyRMF
DrgVerifyTrue Type
DrgVerifyType
DrgVerifyTypeSet

Related Window Messages
DM_DISCARDOBJECT
DM_DRAGERROR
DM_DRAGFILECOMPLETE
DM_DRAGLEAVE
DM_DRAGOVER
DM_DRAGOVERNOTIFY
DM_DROP
DM_DROPHELP
DM_DROPNOTIFY
DM_EMPHASIZETARGET
DM_ENDCONVERSATION
DM_FILERENDERED
DM_PRINTOBJECT .. .
DM RENDER
DM_RENDERCOMPLETE
DM _ RENDERFI LE
DM RENDERPREPARE

Related Data Structures
DRAGIMAGE
DRAGINFO
DRAGITEM
DRAGTRANSFER

Summary

Contents

12-64
12-65
12-65
12-66
12-67
12-67
12-68
12-69
12-69
12-70
12-71
12-71
12-72
12-73
12-73
12-74
12-75
12-75
12-76
12-77
12-77
12-78
12-79
12-80
12-80
12-80
12-81
12-82
12-82
12-84
12-84
12-85
12-85
12-86
12-87
12-87
12-88
12-89
12-89
12-90
12-91
12-92
12-92
12-93
12-94
12-97
12-99

xv

Chapter 13. Hooks
About Hooks

Hook Lists
Hook Chains
Hook Types

Input Hook
Send-Message Hook
Message-Filter Hook
Journal-Record Hook
Journal-Playback Hook
Help Hook
Find-Word Hook
Codepage-Changed Hook

Using Hooks
Installing Hook Functions
Releasing Hook Functions

Freeing Memory
Recording and Playing Back Input Events

Sample Code for Hooks
Hooks Application Sample Code

Related Functions
MsgFilterHook
RegisterUserHook
WinCallMsgFilter
WindowDCHook
WinReleaseHook
WinSetHook
WinTrackRect

Related Data Structures
QMSG
SMHSTRUCT
SWP
TRACKINFO

Summary

Chapter 14. Dynamic Data Exchange
About Dynamic Data Exchange

Client and Server Interaction
DDE System Example ...
Applications, Topics, and Items
The System Topic ..
DDE Initiation
Shared-Memory Object
Transaction Status Flags
Transaction and Response Messages

Request and Poke Transactions .
Advise and Unadvise Transactions
Execute Transaction

xvi PM Advanced Programming Guide

13-1
13-1
13-1
13-2
13-2
13-2
13-3
13-4
13-5
13-6
13-6
13-8
13-9

13-10
13-10
13-11
13-12
13-13
13-14
13-14
13-24
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-32
13-32
13-33
13-34
13-35
13-38

14-1
14-1
14-1
14-1
14-5
14-5
14-6
14-8
14-9
14-9

14-10
14-10
14-12

DDE Termination
Unique Data Formats
Synchronization Rules
Language-Sensitive DDE Applications

Using Dynamic Data Exchange
Initiating a DDE Conversation
Creating a Shared-Memory Object for DDE
Sending a Positive Acknowledgment
Sending a Negative Acknowledgment
Performing a One-Time Data Transfer
Establishing a Permanent Data Link
Terminating a Permanant Link
Executing Commands in a Remote Application
Terminating a DDE Conversation

Sample Code for Dynamic Data Exchange
Client Application Sample Code
Server Application Sample Code

Related Functions
WinDdelnitiate .
WinDdePostMsg
WinDdeRespond

Related Window Messages
WM DDE ACK
WM DDE ADVISE
WM DDE DATA
WM _ DDE _ EXECUTE
WM DDE INITIATE .
WM_DDEJNITIATEACK
WM DDE POKE
WM_DDE_REQUEST .
WM DDE TERMINATE
WM DDE UNADVISE

Related Data Structures
CONVCONTEXT
DDEINIT ..
DDESTRUCT

Summary

Chapter 15. Atom Tables
About Atom Tables

System Atom Table
Private Atom Tables
Atom Types

String Atoms
I nt~ger Atoms

Atom Creation and Usage Count
Atom Deletion
Atom Queries

14-12
14-12
14-13
14-14
14-14
14-15
14-16
14-17
14-18
14-18
14-20
14-21
14-21
14-22
14-22
14-22
14-31
14-42
14-42
14-43
14-45
14-46
14-46
14-47
14-48
14-49
14-49
14-50
14-51
14-51
14-52
14-53
14-54
14-54
14-55
14-56
14-58

15-1
15-1
15-1
15-1
15-2
15-2
15-2
15-3
15-3
15-3

Contents xvii

Atom String Formats
Using Atom Tables

Creating Unique Window-Message Atoms
Creating DDE Formats and a Unique Clipboard Format

Related Functions
WinAddAtom
WinCreateAtomTable
WinDeleteAtom
WinDestroyAtomTable
WinFindAtom
WinQueryAtomLength
WinQueryAtomName
WinQueryAtomUsage
WinQuerySystemAtomTable
Win RegisterUserDatatype
WinRegisterUserMsg

Summary

Appendix. Notices
Trademarks
Double-Byte Character Set (DBCS)

Glossary
Glossary Listing

Index

xviii PM Advanced Programming Guide

15-4
15-4
15-4
15-5
15-8
15-8
15-8
15-9

15-10
15-10
15-11
15-11
15-12
15-13
15-13
15-14
15-16

A-1
A-1
A-1

X-1
X-1

X-29

Figures

2-1.
2-2.
2-3.
3-1.
3-2.
3-3.
3-4.
3-5.
4-1.
4-2.
5-1.
5-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.

8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.
8-17.

Combination-Box Example
Drop-Down Combination-Box Example
Drop-Down List-Box Example
Sample Code for Creating an MLE Using WinCreateWindow
Sample Code for Creating an MLE Using an MLE
Sample Code for Importing and Exporting Text
Sample Code for Exporting Text from an MLE Field
Sample Code for Searching MLE Text
Spin Button Example
Sample Code for Creating a Spin Button
Sample Code Using a Static Control in a Dialog Window
Sample Code Using a Static Control in a Client Window
Linear Slider Example
Circular Slider Example
Sample Code for Creating a Slider
Sample Code for Retrieving a Slider Value
Circular Slider CONTROL in a Dialog Resource
Sample Code Using WinCreateWindow to Create a Circular Slider
Sample Code for Adding a Circular Slider
Value Set Example . . .
Value Set with Bit Maps
Value Set with Colors
Value Set with Icons
Value Set with Text Strings
Value Set with Border
Value Set with Item Borders
Sample Code for Creating a Value Set
Sample Code for Retrieving Data for Value Set Items
Icon View with Items Positioned at Workspace Coordinates
Icon View when Items Are Arranged or Automatically Positioned
Non-Flowed Name View
Flowed Name View
Non-Flowed Text View .
Flowed Text View
Tree View Showing Root Level, Parent, and Child Items
Tree Icon View .
Tree Text View .
Tree Name View
Details View
Details View with Split Bar
Sample Code for Creating a Container
Sample Code for Allocating Memory for Container Records
Sample Code for Inserting Records into a Container
Sample Code for Removing Container Records .
Sample Code Showing How to Use WinSetFocus

© Copyright IBM Corp. 1994

2-1
2-2
2-3
3-6
3-6
3-8

3-10
3-12

4-1
4-2
5-4
5-7
6-1
6-5
6-9

6-12
6-12
6-13
6-13

7-1
7-2
7-3
7-3
7-4
7-4
7-5
7-6
7-8
8-4
8-5
8-6
8-6
8-7
8-8
8-9
8-9

8-10
8-11
8-12
8-14
8-15
8-17
8-18
8-20
8-21

xix

8-18.
8-19.
8-20.
8-21.
8-22.
8-23.
8-24.
8-25.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.

9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
10-1.
10-2.
11-1.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.

12-10.
12-11.
12-12.
12-13.
12-14.
12-15.

13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.

Sample Code for Changing a Container View
Selected-State and Unavailable-State Emphasis
Workspace X- and Y-Axes
Workspace Bounds
Non-Flowed Text View with Container Title
Split Details View with Container Title ...
Sample Code for Allocating Memory for Smaller Container Records
Sample Code for a Container Application
Notebook Example
Notebook Style and Placement of Major and Minor Tabs
Sample Code for Creating a Notebook
Default Notebook Style
Sample Code for Changing the Notebook Style
Notebook with Style Settings Changed
Sample Code for Inserting a Notebook Page
Calendar Inserted into an Application Page Window
Sample Code for Associating a Window with a Notebook Page
Dialog Used as an Application Page Window
Sample Code for Associating a Dialog with a Notebook Page
Sample Code for Deleting a Notebook Page
Sample Code for Changing the Color of the Notebook Outline
Sample Code for Changing the Color of the Major Tab Background
Notebook with Two Tab Scroll Buttons Displayed
Open Dialog Example
SaveAs Dialog Example
Font Dialog Example . .
Dragging Data to a Printer
Diagram Showing Sequence of Function and Message Flows
Diagram Showing Sequence of Message Flows
Pickup Mouse Icon, Popup Menu and Pickup Emphasis
Format to Use to Convey Multiple Types
String Handle Format
Sample Code for Initializing the DRAG ITEM Array
Sample Code for Initializing the DRAGIMAGE Data Structure
Sample Code for Starting the Drag Operation
Sample Code Showing the Target's Response to DM_DRAGOVER
Sample Code Showing the Drop of an Object on a Target
Sample Code Showing how the Target Checks the Rendering Mechanism
Sample Code for a Pickup and Drop Operation
Sample Code for a Source Application
Sample Code for a Target Application ...
Syntax for an Input-Hook Function
Syntax for a Send-Message Hook Function
Syntax for a Message-Filter Hook Function
Sample Code Calling WinCallMsgFilter Directly
Syntax for a Journal-Record Hook Function
Syntax for a Journal-Playback Hook Function
Syntax for a Help-Hook Function

xx PM Advanced Programming Guide

8-22
8-26
8-28
8-29
8-34
8-35
8-37
8-38

9-1
9-2
9-6
9-7
9-8
9-9

9-11
9-12
9-13
9-15
9-15
9-17
9-18
9-19
9-21
10-1
10-2
11-1
12-1
12-6
12-8

12-10
12-19
12-19
12-21
12-22
12-22
12-23
12-26
12-28
12-30
12-33
12-42

13-2
13-3
13-4
13-5
13-5
13-6
13-7

13-8.
13-9.

13-10.
13-11.
13-12.
13-13.
13-14.
13-15.
13-16.
13-17.
13-18.

14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
14-9.

14-10.
14-11.
14-12.
14-13.
14-14.
14-15.
14-16.
14-17.
14-18.

15-1.
15-2.

Fields to Specify when Focus Is FlO_CLIENT ..
Fields to Specify when Focus Is Not FlO_CLIENT
Fields to Specify when Processing WM_HELP
Syntax for a Find-Hook Function
Syntax for a Codepage-Changed Hook Function
Sample Code Installing a Hook into a Thread Message Queue
Sample Code Installing a Hook in a DLL
Sample Code Releasing a Hook from a Thread Message Queue
Sample Code Releasing a Hook from a DLL
Pseudocode Describing how to Play Back Recorded Functions
Sample Code for a Hook Application
Sample Spreadsheet Layout
Detailed DOE Example
DDEINIT Data Structure. . ..
Initiating a DOE Conversation
How Servers Respond to DDEJNITIATE Messages
How the Client Application Respond to a DOE Conversation
How the Server Determines the Acknowledgment to Send
How to Create a Shared-Memory Object
How to Send a Positive Acknowledgment
How to Send a Negative Acknowledgment
How to Perform a One-Time Data Transfer
How to Establish a Link
When the Link Is Established with DOE _FNODATA
How to Terminate a Permanent Link
How to Execute a Command
How to Terminate a DOE Conversation
Sample Code for a Client Application
Sample Code for a Server Application
Sample Code for Adding a Message String into the System Atom Table
Sample Code for Registering a Custom Format

13-7
13-8
13-8
13-9
13-9

13-10
13-11
13-12
13-13
13-13
13-15

14-2
14-3
14-6
14-7
14-7

14-15
14-15
14-16
14-18
14-18
14-19
14-20
14-21
14-21
14-22
14-22
14-23
14-32

15-5
15-6

Figures xxi

xxii PM Advanced Programming Guide

Tables

2-1.
2-2.
2-3.
2-4.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
4-1.
4-2.
4-3.
4-4.
5-1.
5-2.
5-3.
5-4.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

6-10.
6-11.

7-1.
7-2.
7-3.
7-4.
7-5.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
9-1.
9-2.
9-3.
9-4.

Combination-Box Control Styles
Combination-Box Control Window Messages
Combination-Box Control Notification Message
Combination-Box Control Notification Codes
MLE Styles
MLE Text Format
Window Messages Received by an MLE
Window Messages Sent by an MLE
MLE Notification Message
MLE Notification Codes
MLE Data Structures
Spin Button Control Window Messages
Spin Button Control Notification Message
Spin Button Control Notification Codes
Spin Button Control Data Structure
Static Control Styles
Static Control Messages Handled by the WC _STATIC Class
Static Control Functions
Static Control Window Messages
Linear Slider Control Styles
Circular Slider Control Styles
Linear Slider Control Functions
Linear Slider Control Window Messages
Linear Slider Control Notification Messages
Linear Slider Control Notification Codes .
Linear Slider Control Data Structure
Circular Slider Control Window Messages .
Circular Slider Control Notification Messages
Circular Slider Control Notification Codes
Circular Slider Control Data Structure
Value Set Control Functions
Value Set Control Window Messages
Value Set Control Notification Messages
Value Set Control Notification Codes
Value Set Control Data Structures .. .
Container Control Views
Differences between HECORDCORE and MINIRECORDCORE
Container Control Window Messages
Container Control Notification Messages
Container Control Notification Codes
Container Control Data Structures
Notebook Control Styles
Notebook Control Functions
Notebook Control Window Messages
Notebook Control Notification Messages

© Copyright IBM Corp. 1994

2-2
2-7
2-7
2-7
3-1
3-4

3-59
3-60
3-61
3-61
3-62
4-15
4-15
4-15
4-16
5-2
5-3

5-18
5-18

6-2
6-6

6-47
6-47
6-48
6-48
6-48
6-48
6-49
6-49
6-49
7-32
7-32
7-33
7-33
7-33
8-3

8-36
8-121
8-122
8-123
8-124

9-4
9-54
9-54
9-55

xxiii

9-5.
9-6.

10-1.
10-2.
10-3.
10-4.
11-1.
11-2.
11-3.
11-4.
11-5.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
13-1.
13-2.
13-3.
13-4.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
15-1.
15-2.

Notebook Control Notification Codes
Notebook Control Data Structures
File Dialog Control Functions
File Dialog Control Window Messages
File Dialog Control Data Structure
File Dialog Standard Controls
Font Dialog Control Functions
Font Dialog Control Window Messages
Font Dialog Control Notification Message
Font Dialog Control Data Structures
Font Dialog Standard Controls
Messages Sent to a Target Application
Target Responses to DM_DRAGOVER
Direct Manipulation Functions Used by the Source
Direct Manipulation Functions Used by the Target
Direct Manipulation Window Messages
Direct Manipulation Notification Code
Direct Manipulation Data Structures
Hook Constants
Hook Parameter Values (Message-Filter)
Hook Functions
Hook Data Structures
DDE System Topics
DDE Status Flags
DDE Data Formats
DDE Functions ..
DDE Window Messages
DDE Data Structures ..
Atom Table String Formats
Atom Table Functions

xxiv PM Advanced Programming Guide

9-56
9-56

10-16
10-16
10-16
10-17
11-25
11-25
11-25
11-25
11-26

12-4
12-5

12-99
12-99

12-101
12-102
12-102

13-1
13-4

13-38
13-38

14-5
14-9

14-13
14-58
14-58
14-59

15-4
15-16

About This Book

This book provides information and sample code to enable you to write applications that use
the Presentation Manager (PM) functions, messages and data structures in the application
programming interface of the OS/2 operating system.

Who Should Read This Book
This book is intended for application programmers who want to develop programs that use
the Presentation Manager programming interface. This guide introduces the advanced topics
of PM.

How This Book Is Organized
All chapters of this book, except the Introduction, are divided into nine main sections:

• About the topic

Covers advanced concepts, terminology, and general information about the topic.

• Using the topic

Introduces many of the functions, messages, data structures, and standard controls
related to the topic and provides examples in the form of sample code fragments.

• Graphical User Interface Support for the topic

Describes the navigation techniques (pointing device and keyboard support) used in the
topic.

• Enhancing the topic Performance and Effectiveness

Describes various enhancement techniques that enable you to fine-tune your
application's use of the topic.

• Functions

Provides details of the interfaces for the functions covered in the chapter topic.

• Window Messages

Provides details of the interfaces for the window messages related to the chapter topic.

• Notification Messages

Provides details of the interfaces for the notification messages described in the chapter
topic.

• Data Structures

Provides details of the data structures related to the chapter topic.

© Copyright IBM Corp. 1994 xxv

• Summary

Provides a brief description of each of the functions,!window messages, notification
messages, notification codes, data structures, and standard controls covered in the
chapter.

There are also sample applications available with the Developer's Toolkit for OS/2 Version 3.
You may find it useful to execute the samples and examine the C files, resource files,
makefiles, and other files provided by the toolkit.

For information on how to compile and link your programs, refer to the compiler publications
for the programming language you are using.

Prerequisite Publications
This guide is intended for application designers and programmers who are familiar with the
following:

• Information contained in the Control Program Programming Guide
• Information contained in the Presentation Manager Programming Guide - The Basics
• C Programming Language

Programming experience on a multitasking operating system also would be helpful.

Related Publications
The following diagram provides an overview of the OS/2 Version 3 Technical Library.

Books can be ordered by calling toll free 1-800-342-6672 weekdays between 8:00 a.m. and
8:00 p.m. (EST). In Canada, call 1-800-465-4234.

xxvi PM Advanced Programming Guide

OS/2 Warp, Version 8 Technical Library
825H-7118

Control Program Control Program Graphics

Programming Programming Programming

Guide Reference Interface

Programming

Guide

G25H-7101 G25H-7102 G25H-7106

Information MuHlmedia Multimedia

Presentation Application Programming

Facility Programming Reference

Programming Guide

Guide

G25H-7110 G25H-7112 G25H-7114

PresentatIon Presentation Prasentatlon

Manager Manager Manager

Progl'lllM1lng Programming Programming

Gulde- Guide- Reference

Advanced Topics The Basics

G25H-7104 G25H-7103 G25H-7105

REXX Tools Workplace

User's Reference Shell

Guide Programming

Guide

810G-6269 G25H-7111 G25H-7108

IBM Device Driver Publications for OS/2

Display

Device Driver

Reference

71G1896

Presentation

DrIver

Reference

1OG6267

Input/Output

Device Driver

Reference

71G1898

Printer

Device Driver

Reference

71G1895

MMPMi2

Device Driver

Reference

71G3678

Storage

Device Driver

Reference

71G1897

Graphics

Programming

Interface

Programming

Reference

G25H-7107

Multimedia

Subsystem

Programming

Guide

G25H-7113

REXX

Reference

810G-6268

Workplace

Shell

Programming

Reference

G25H-7109

Pen for OS/2

Device Driver

Reference

71G1899

Virtual

Device Driver

Reference

1 OG631 0

Physical

Device Driver

Reference

10G6266

About This Book xxvii

xxviii PM Advanced Programming Guide

Presentation Manager Programming Guide - Advanced
Topics

© Copyright IBM Corp. 1994

PM Advanced Programming Guide

Chapter 1. Introduction

Presentation Manager (PM*) provides a message-based, event-driven, graphical user
interface for the Operating System/2* (OS/2*) environment. The advanced features of PM
are:

• Atom tables
• Container controls
• Combination-box controls
• Direct Manipulation
• Dynamic data exchange
• File dialog controls
• Font dialog controls
• Hooks
• Multiple-line entry field controls
• Notebook controls
• Slider controls
• Spin button controls
• Static controls
• Value set controls.

PM enables programmers to build applications that conform to Systems Application
Architecture* (SAA*) guidelines. For more information on SAA requirements, see the
Systems Application Architecture: Common User Access* (CUA*) Guide to User Interface
Design and the Systems Application Architecture: Common User Access Advanced Interface
Design Reference.

The advanced concepts of PM are described as follows:

Atom Tables
An atom table is an operating system mechanism that an application uses to obtain unique,
system-wide identifiers to manage strings efficiently. An application places a string, called an
atom name, into an atom table and receives a 32-bit integer value, called an atom, that the
application can use to access that string. The application can use the system atom table or
a private atom table. The system atom table is available to all applications. When an
application places a string in the system atom table, any application that has the atom name
can obtain the atom by querying the system atom table. An application can use a private
atom table to efficiently manage a large number of strings that are used only within the
application. The strings in a private atom table, and the resulting atoms, are available only to
the application that created the table.

Combination-Box Controls
A combination box is two controls in one: an entry field and a list box. Combination-box
controls enable the user to enter data by typing in the entry field or by choosing a list in the
list box. The combination-box control automatically manages the interaction between the
entry field and the list box.

© Copyright IBM Corp. 1994 1-1

Container Controls
A container control provides a way for the user to group related objects for easy access and
retrieval. The container also provides the capability to display its contents in different views.
Each view presents different information about each object. The container control window
displays and processes the user's selection of objects. This control supports direct
manipulation of objects, enabling users to drag an object from a container window and drop it
on another object or container window.

Direct Manipulation
Direct manipulation is a protocol that enables the user to visually drag an object in a window
(the source object) and drop it on another object (the target object) in a window. This
causes an interaction, or data exhange, between two windows. The source and the target
can be the same window, different window within the same application, or windows belonging
to different applications.

Dynamic Data Exchange
The dynamic data exchange (DOE) protocol enables applications to access one another's
data. DOE uses PM messages and shared memory to pass data among applications. Data
is passed in a mutually-agreed-upon format. An application that receives a handle to a data
object will receive a message if the data changes. The application then can indicate, by way
of a message, if it wants the changed data to be sent to it, or it can end the exchange.

File Dialog Controls
File dialog controls request file names from users and perform file-name validation.
Applications initialize fields and filter strings, and can specify modal or modeless dialog
boxes and single or multiple-file selections.

Font Dialog Controls
Font dialog controls request font definitions from users, provide preview windows, and return
font family names, point size, type style, emphasis style, and other specifications.
Applications can specify modal or modeless dialogs, color selection, and single font
selection.

Hooks
A hook is a point in a system-defined function where an application can supply additional
code that the system processes as though it were part of the function. Many operating
system functions provide points where an application can hook in its own code to enhance or
override the default processing of the function. The OS/2 operating system contains many
types of hooks, and the system maintains a separate hook list for each type of hook
supported.

Multiple-Line Entry Field Controls
A multiple-line entry (MLE) field is a sophisticated control window that enables a user to view
and edit multiple lines of text. An MLE field control gives an application the text-editing
capabilities of a simple text editor. The application can create a multiple-line entry field by
using a function or by specifying the MLE statement in a dialog-window template in a
resource-definition file.

1-2 PM Advanced Programming Guide

Notebook Controls
The notebook control organizes access to multiple groups of controls. The overall
appearance of this control is a notebook. An application can dynamically insert or delete
pages, specify colors for different notebook areas, and resize parts of the notebook.

Slider Controls
A slider control displays a range of values and allows a user to set, display, or modify a
value by moving a slider arm. There are two types of sliders. The linear slider is
represented as a shaft along which the slider arm can be moved by the user to set a value.
The circular slider is represented as a dial with the slider arm shown as the radius of the dial.
Typically, linear sliders are used to easily set values that have familiar increments. The
circular slider control provides an analog user interface and emulates the controls of stereo
and video equipment. The application can specify different scales, sizes, and orientations for
its sliders. You can use both types of sliders in a window to create a user interface that
makes good use of available space and provides a familiar appearance to the user.

Spin Button Controls
A spin button control gives users quick access to a finite set of data by letting them select
from a scrollable ring of choices. You can also create multi-field spin buttons for those
applications in which users must select more than one value.

Static Controls
A static control is a simple text field, bit map, or icon that an application can use to label,
enclose, or separate other control windows. A static control does not accept user input or
send notification messages to its owner. The primary advantage of a static control is that it
provides a label or graphic that requires little attention from an application. At most, an
application might change the text or position of a static control.

Value Set Controls
A value set control enables a user to select one choice from a group of mutually exclusive
choices. A value set can use graphic images (bit maps or icons), as well as colors, text, and
numbers, to represent the items a user can select. Although text is supported, the purpose
of a value set control is to display choices as graphic images. The user can see the
selections instead of having to take time to read descriptions of the choices. The application
can specify different types of items, sizes, and orientations for its value sets.

Chapter 1. Introduction 1-3

1-4 PM Advanced Programming Guide

Chapter 2. Combination Box

A combination box is two controls in one: an entry field and a list box. This chapter
describes how to use combination-box controls, also called combination boxes and prompted
entry fields, to let the user choose and edit items from a list in PM applications.

About Combination-Box Controls
Combination-box controls enable the user to enter data by typing in the entry field or by
choosing from a list in the list box. Figure 2-1 shows an example of a combination box.

Figure 2-1. Combination-Box Example

A combination-box control automatically manages the interaction between the entry field and
the list box. For example, when the user chooses an item in the list box, the
combination-box control displays the text for that item in the entry field. Then, the user can
edit the text without affecting the item in the list box. When the user types a letter in the
entry field, the combination-box control scrolls the list box contents so that items beginning
with that letter become visible.

© Copyright IBM Corp. 1994 2-1

Combination-Box Styles
Table 2-1 shows the combination-box styles.

Table 2-1. Combination-Box Control Styles

Style Name Description

CBS_SIMPLE Creates a simple combination box that always displays its list box. The
user can enter and edit text in the entry field or choose items from the list
box.

CBS_DROP DOWN Creates a drop-down combination box that displays its list box only if the
user clicks the drop-down icon at the right end of the entry field. The
combination-box control hides the list box when the user clicks the icon a
second time. In a drop-down combination box, the user can enter and
edit text in the entry field or choose items from the list box.

CBS_DROPDOWNLIST Creates a drop-down-list combination box that is similar to the drop-down
combination box, except that the user can choose items only from the list
box. The user cannot enter or edit text in the entry field.

For combination boxes that have the CBS_DROPDOWN or CBS_DROPDOWNLIST styles,
an application can display the list by using the CBM_SHOWLIST message. Figure 2-2 and
Figure 2-3 on page 2-3 show an example of a drop-down combination box and a drop-down
list box, respectively.

Figure 2-2. Drop-Down Combination-Box Example

2-2 PM Advanced Programming Guide

Figure 2-3. Drop-Down List-Box Example

An application can determine whether the list is already showing by using the
CBM_ISLISTSHOWING message.

Applications also can use any of the entry-field (EM-.J and list-box (LM-.J messages with
combination boxes. Entry-field messages affect the entry field; list-box messages affect the
list box. For example, an application can use the LM_INSERTITEM message to insert items
into the list box.

Combination-Box Notification Codes
A combination-box control sends WM_CONTROL messages containing notification codes to
its parent window. These notification codes are similar to those sent by entry-field and
list-box controls. A combination-box control sends a notification codes to its owner window.

Using Combination-Box Controls
You can create a combination box by using WinCreateWindow or by specifying a
COMBOBOX statement in a dialog-window template in a resource file. When creating a
combination box using WinCreateWindow, you must specify the predefined class
WC_COMBOBOX. If you do not specify a style, the function uses the default styles
WS_GROUP, WS_TABSTOP, and WS_VISIBLE.

Chapter 2. Combination Box 2-3

Related Window Messages
This section covers the window messages that are related to combination-box controls.

CBM_HILITE
This message sets the highlighting state of the entry field control.

Parameters
param1

usHilite (USHORT)
Highlighting indicator.

TRUE Highlight the entry field control.
FALSE Do not highlight the entry field control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Changed indicator.

TRUE The highlighting state of the entry field has been changed.
FALSE The highlighting state of the entry field has not been changed.

CBM_ISLISTSHOWING
This message determines if the list box control is showing.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

2-4 PM Advanced Programming Guide

Returns
rc (BOOl)

Showing indicator.

TRUE
FALSE

The list box control is showing.
The list box control is not showing.

CBM_SHOWLIST
This message sets the showing state of the list box control.

Parameters
param1

usShowing (USHORT)
Showing indicator.

TRUE Show the list box control.
FALSE Do not show the list box control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOL)

Changed indicator.

TRUE
FALSE

The list box showing state has been changed.
The list box showing state has not been changed.

Chapter 2. Combination Box 2-5

Related Notification Message
This section covers the notification message that is related to combination-box controls.

WM_CONTROL (in Combination Boxes)
For the cause of this message, see "WM_CONTROL" on page 5-15.

Parameters
param1

usid (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

param2

CBN_EFCHANGE

CBN_EFSCROLL

CBN_LBSELECT
CBN_LBSCROLL
CBN SHOWLIST
CBN ENTER

The content of the entry field control has changed, and the
change has been displayed on the screen.
The entry field control cannot allocate the storage necessary
to accommodate window text of the length implied by the
EM_SETTEXTLIMIT message.
The entry field control is about to scroll horizontally. This can
happen in these circumstances:

• The application has issued a WinScroliWindow call.
• The content of the entry field control has changed.
• The caret has moved.

The entry field control must scroll to show the caret position.
An item in the list box control has been selected.
The list box is about to scroll.
The list box is about to be displayed.
The user has depressed the ENTER key or double clicked
(single clicked in the case of a drop-down list) on an item in
the list box control.

hwndcontrolspec (HWND)
Combination (combo) window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

2-6 PM Advanced Programming Guide

Summary
Following are tables that describe the OS/2 window messages, notification message, and
notification codes used with combination-box controls:

Table 2-2. Combination-Box Control Window Messages

Message Name Description

CBM_HILITE Sets the highlighting state of the entry field control.

CBM_ISLISTSHOWING Determines whether the list box control is showing.

CBM_SHOWLIST Sets the showing state of the list box control.

Table 2-3. Combination-Box Control Notification Message

Message Name Description

WM_CONTROL Occurs when a control has a significant event to notify to
its owner.

Table 2-4. Combination-Box Control Notification Codes

Code Name

CBN_EFCHANGE

CBN_EFSCROLL

CBN_ENTER

CBN_LBSCROLL

CBN_LBSELECT

CBN_SHOWLIST

Description

Indicates that the text in a combination-box entry field has
changed.

Indicates that the text in a combination-box entry field has
been scrolled.

Indicates that a combination-box item has been selected.

Indicates that a combination-box list has been scrolled.

Indicates that a combination-box list item has been
selected.

Indicates that the combination-box control cannot allocate
sufficient memory.

Indicates that a combination-box list has dropped down (is
visible).

Chapter 2. Combination Box 2-7

2-8 PM Advanced Programming Guide

Chapter 3. Multiple-Line Entry Field Controls

A multiple-line entry (MLE) field is a sophisticated control window that enables a user to view
and edit multiple lines of text. This chapter describes how to create and use multiple-line
entry field controls in PM applications.

About Multiple-Line Entry Field Controls
An MLE field control gives an application the text-editing capabilities of a simple text editor.
The application can create a multiple-line entry field by using WinCreateWindow or by
specifying the MLE statement in a dialog-window template in a resource-definition file.

MLE Styles
The style of an MLE field control determines how the MLE field appears and behaves. An
application can specify a combination of the styles listed in Table 3-1.

Table 3-1. MLE Styles

Style Name Description

MLS_BORDER Draws a border around the MLE field.

MLS_DISABLEUNDO Directs the MLE control not to allow undo actions.

MLS_HSCROLL Adds a horizontal scroll bar to the MLE field. The MLE control enables
this scroll bar whenever any line exceeds the width of the MLE field.

MLS_IGNORETAB Directs the MLE control to ignore the Tab key.

MLS_READONL Y Prevents the MLE field from accepting text from the user. This style is
useful for displaying lengthy static text in a client or dialog window.

MLS_ VSCROLL Adds a vertical scroll bar to the MLE field. The MLE control enables this
scroll bar whenever the number of lines exceeds the height of the MLE
field.

MLS_WORDWRAP Automatically breaks lines that are longer than the width of the MLE field.

MLE Notification Codes
An MLE field control sends WM_CONTROL messages containing notification codes to its
owner whenever certain events occur, for example, when the user or application tries to
insert too much text, or when the user uses the scroll bars. The owner window uses the
notification codes either to carry out custom operations for the MLE field or to respond to
errors.

The MLE field control sends the MLN_HSCROLL or MLN_ VSCROLL notification codes when
the user enables the scroll bars so that the application can monitor the visible contents of the
MLE field. The application also can monitor the contents of an MLE field by using the
MLM_QUERYFIRSTCHAR message, which specifies the offset of the character in the
upper-left corner of the MLE field. This represents the first MLE character that is visible to
the user. To provide an alternative way of scrolling the contents of an MLE field, an

© Copyright IBM Corp. 1994 3-1

application can move the character at the specified offset to the upper-left corner of an MLE
field using the MLM_SETFIRSTCHAR message.

The MLE field control sends an MLN_CHANGE notification code when the user changes the
text in some way. This notification code is especially useful when the MLE field is in a dialog
window, because the dialog procedure can use this code to determine whether it should
process the contents of the MLE field. If an application does not process MLN_CHANGE
notification codes, it can use the MLM_QUERYCHANGED message to determine whether
the user has made changes to the MLE text. The MLM_SETCHANGED message makes the
MLE field control send an MLN_CHANGE notification code with every event that occurs in
the MLE field, regardless of whether the user has changed anything. This code also can be
used to hide a change made by a user.

MLE Text Editing
An MLE field contains one or more lines of text. Each line consistsof one or more
characters and ends with one or more characters that represent the end of the line. The
end-of-line characters are determined by the format of the text.

The user can type text in an MLE field when the MLE field has the focus. The application
can insert text at any time by using the MLMJNSERT message and specifying the text as a
null-terminated string. The MLE field control inserts the text at the cursor position or
replaces the selected text.

The MLE field control entry mode, insert or overstrike, determines what happens when the
user inserts text. The user sets the entry mode by pressing the Insert key. The entry mode
alternates each time the user presses Insert. When overstrike mode is enabled, at least one
character is selected. This means that the MLMJNSERT message always replaces at least
one character. If insert mode is enabled, the MLMJNSERT message replaces only those
characters the user or application has selected. Otherwise, the MLE field makes room for
the inserted characters by moving existing characters to the right, starting at the cursor
position.

The cursor position, identified by a blinking bar, is specified as a character offset relative to
the beginning of the text. The user can set the cursor position by using the mouse or Arrow
keys to move the blinking bar. An application can set the cursor position by using the
MLM_SETSEL message, which directs the MLE field control to move the blinking bar to a
given character position. The MLM_SETSEL message also can set the selection.

The selection is one or more characters of text on which the MLE field control carries out an
operation, such as deleting or copying. The user selects text by pressing the Shift key while
moving the cursor or by pressing mouse button 1 while moving the mouse. The user also
can select a word in a block of text by double-clicking on the word. An application selects
text by using the MLM_SETSEL message to specify the cursor position and the anchor point.
The selection is all the text between the cursor position and the anchor point. If the cursor
pOSition and anchor point are equal, there is no selection. An application can retrieve the
cursor position, anchor point, or both, by using the MLM_QUERYSEL message.

3-2 PM Advanced Programming Guide

The user can delete characters, one at a time, by pressing the Delete key or the Backspace
key. Pressing the Delete key deletes the character to the right of the cursor; pressing the
Backspace key deletes the character to the left of the cursor and changes the cursor
position. An application can delete one or more characters by using the MLM_DELETE
message, which directs the MLE field control to delete a specified number of characters,
starting at the given position. This message does not change the cursor position. An
application can delete selected text by using the MLM_CLEAR message.

An application can reverse the previous operation by using the MLM_UNDO message, which
restores the MLE field to its previous state. This is a quick way to fix editing mistakes.
However, not all operations can be undone.

The application determines whether the previous operation can be undone by using the
MLM_QUERYUNDO message, which returns TRUE and indicates the type of operation that
can be undone. Using the MLM_RESETUNDO message, an application can prevent a
subsequent MLM_UNDO message from changing the state of an MLE field.

MLE Text Formatting
An application can retrieve the number of lines of text in an MLE field by using the
MLM_QUERYLINECOUNT message and can retrieve the number of characters in the MLE
field by using the MLM_QUERYTEXTLENGTH message. The amount of text and,
subsequently, the number of lines to be entered in an MLE field depend on the text limit. An
application sets the text limit by using the MLM_SETTEXTLIMIT message and determines
the current limit by using the MLM_QUERYTEXTLIMIT message. The user cannot set the
text limit. If the user types to the text limit, the MLE field control beeps and ignores any
subsequent keystrokes. If the application attempts to add text beyond the limit, the MLE field
control truncates the text.

An application can control the length of each line in an MLE field by enabling word wrapping.
When word wrapping is enabled, the MLE field control automatically breaks any line that is
longer than the width of the MLE field. An application can set word wrapping by using the
MLM_SETWRAP message, and it can determine whether the MLE field control is wrapping
text by using the MLM_QUERYWRAP message. Word wrapping is disabled by default
unless the application specifies the MLS_WORDWRAP style when creating the MLE field
control.

An application can set tab stops for an MLE control by using the MLM_SETTABSTOP
message. Tab stops specify the maximum width of a tab character. When the user or an
application inserts a tab character, the MLE field control expands the character so that it fills
the space between the cursor position and the next tab stop. The MLM_SETTABSTOP
message sets the distance (in pels) between tab stops, and the MLE field control provides as
many tab stops as necessary, no matter how long the line gets. An application can retrieve
the distance between tab stops using the MLM_QUERYTABSTOP message.

An application can use the MLM_SETFORMATRECT message to set the format rectangle
(MLE field). The format rectangle is used to set the horizontal and vertical limits for text.
The MLE control sends a notification message to the parent window of the MLE field if text
exceeds either of those limits. An application typically uses the format rectangle to provide

Chapter 3. Multiple-Line Entry Field Controls 3-3

its own word wrapping or other special text processing. An application can retrieve the
current format rectangle by using the MLM_QUERYFORMATRECT message.

An application can prevent the user's editing of the MLE field by setting the
MLS_READONLY style in WinCreateWindow or in the MLE statement in the
resource-definition file. The application also can set and query the read-only state by. using
the MLM_SETREADONLY and MLM_QUERYREADONLY messages, respectively.

An application can set the colors and font for an MLE field by using the
MLM_SETTEXTCOLOR, MLM_SETBACKCOLOR~ and MLM_SETFONT messages. These
messages affect all text in the MLE field. An MLE field cannot contain a mixture of fonts and
colors. An application can retrieve the current values for the colors and font by using the
MLM_QUERYTEXTCOLOR,MLM_QUERYBACKCOLOR,andMLM_QUERYFONT
messages.

To prevent scrolling within the MLE when the MLS_READONLY style bit is set, use the
MLM_DISABLEREFRESH message. The keyboard and mouse input can be enabled using
the MLM_ENABLEREFRESH message.

MLE Text Import and Export Operations
An application can copy text to and from an MLE field by importing and exporting. To import
text to an MLE field, an application can use the MLMJMPORT message, which copies text
from a buffer to the MLE field. To export text from an MLE field, the application can use the
MLM_EXPORT message, which copies text from the MLE field to a buffer. The application
uses the MLM_SETIMPORTEXPORT message to set the import and export buffers.

An application can import and export text in a variety of formats. A text format, set with the
MLM_FORMAT message, identifies which characters are used for the end-of-line characters.
An MLE field can have the text formats that are listed in Table 3-2.

Table 3-2. MLE Text Format

Format Name Description

MLFIE_CFTEXT Exported lines end with a carriage return/newline character pair (OxOD,
OxOA). Imported lines must end with a newline character, carriage
return/newline character pair, or newline/carriage return character pair.

MLFIE_NOTRANS Imported and exported lines end with a newline character (OxOA).

MLFIE_WINFMT For exported lines, the carriage return/newline character pair marks a
hard linebreak (a break entered by the user). Two carriage-return
characters and a newline character (OxOD, OxOD, OxOA) mark a soft
linebreak (a break inserted during word wrapping and not entered by the
user). For imported lines, the extra carriage~return in soft linebreak
characters is ignored.

The text format can affect the number of characters in a selection. To ensure that the export
buffer is large enough to hold exported text, an application can send the
MLM_QUERYFORMATLINELENGTH message. The application can send the

3-4 PM Advanced Programming Guide

MLM_QUERYFORMATTEXTLENGTH message to determine the number of bytes in the text
to be exported.

Each time an application inserts text in an MLE field, the MLE field control automatically
refreshes (repaints) the display by drawing the new text. When an application copies large
amounts of text to an MLE field, refreshing can be quite time-consuming, so the application
should disable the refresh state. The application disables the refresh state by sending the
MLM_DISABLEREFRESH message. After copying all the text, the application can restore
the refresh state by sending the MLM_ENABLEREFRESH message.

M LE Cut, Copy, and Paste Operations
The user can cut, copy, and paste text in an MLE field by using the Shift+Delete, Ctrl+lnsert,
and Shift+lnsert key combinations, respectively. An application-either by itself or in
response to the user-can cut, copy, and paste text by using the MLM_CUT, MLM_COPY,
and MLM_PASTE messages. The MLM_CUT and MLM_COPY messages copy the selected
text to the clipboard. The MLM_CUT message also deletes the text from the MLE field;
MLM_COPY does not. The MLM_PASTE message copies the text from the clipboard to the
current position in the MLE field, replacing any existing text with the copied text. An
application can delete the selected text without copying it to the clipboard by u~ing the
MLM_CLEAR message.

An application also can copy the selected text from an MLE field to a buffer by using the
MLM_QUERYSELTEXT message. This message does not affect the contents of the
clipboard.

MLE Search and Replace Operations
An application can search for a specified string within MLE field text by using the
MLM_SEARCH message, which searches for the string. The MLE field control returns TRUE
if the string is found. The cursor does not move to the string unless the message specifies
the MLFSEARCH_SELECTMATCH option.

An application also can use the MLM_SEARCH message to replace one string with another.
If the message specifies the MLFSEARCH_CHANGEALL option, the MLE field control
replaces all occurrences of the search string with the replacement string. Both the search
string and the replacement string must be specified in an MLE_SEARCHDATA data structure
passed with the message.

MLE Colors
MLE supports indexed colors (solid) only; it does not support dithered (RGB) colors. If an
RGB color is specified for the MLE, it is changed to the closest solid color representation.

Chapter 3. Multiple-Line Entry Field Controls 3-5

Using Multiple-Line Entry Field Controls
This section explains how to create an MLE field control by using WinCreateWindow and QY
specifying the MLE statement in a dialog template in a resource-definition file.

Creating an MLE
The sample code illustrated in Figure 3-1 shows how to create an MLE by using
WinCreateWindow.

HWND hwndParent;
HWND hwndMLE;

hwndMLE = WinCreateWindow(
hwndParent, /*Parent window
WC_MLE, /* Window class
"Test", /*Initialtext

WS_VISIBLE I
MLS~B6RDER,
100,100,
100,100,
hwndPar~nt,
HWND_TOP,
MLE_WINDOW_ID,
NULL,
NULL);

I*Window·Style*!
!*Windows,tyle */
/* x andy· positions */
!*'Width and·he;ght *!
!*.Ownerwindow */
/* Top of z-orqer */
/* Iden~ffier '.. *!
1* Cont rol .•• cIa ta*!
!*Presparam */

Figure 3-1. Sample Code for Creating an MLE Using WinCreateWindow

It also is common to create an MLE field control by using an MLE statement in a
dialog-window template in a resource file, as shown in the code fragment illustrated in
Figure 3-2.

MLE lUI,

IOD _MLETEXT ,
110,10, 50,
WS_VISIBLE .1
MLS~BOROER ·1
MLS_WORDWRAP

Figure 3-2. Sample Code for Creating an MLE Using an MLE

The predefined class for an MLE control is WC_MLE. If you do not specify a style for the
MLE control, the default styles used are MLS_BORDER, WS_GROUP, and WS_TABSTOP.

3-6 PM Advanced Programming Guide

Importing and Exporting MLE Text
Importing and exporting MLE text takes place through a buffer. An import operation copies
text from the buffer to the MLE field; an export operation copies text from the MLE to the
buffer. Before an application can import or export MLE text, it must send an
MLM_SETIMPORTEXPORT message to the MLE field control, specifying the address and
size of the buffer.

The maximum size of import/export buffer is 64K. Once the data is into the buffer, the data
is manipulated (verified for carriage returns, line feeds and so forth), and is finally placed in
the MLE's memory.

Importing MLE Text
To import text, an application sends the MLMJMPORT message to the MLE field control.
This message requires two parameters: plOffset and cbCopy. The plOffset parameter is a
pointer to a variable that specifies the position in the MLE field where the text from the buffer
is to be placed. The position is an offset from the beginning of the MLE text, that is, the
number of characters from the beginning of the MLE text. If plOffset points to a variable that
equals -1, the MLE field control places the text starting at the current cursor position. On
return, this variable contains the offset to the first character beyond the imported text. The
cbCopy parameter of the MLM_IMPORT message points to a variable that specifies the
number of bytes to import.

The following criterias apply when importing MLE text:

• If the text ends by a line feed (LF), the import logic generates a blank line.

• If the text ends by a carriage return (CR), MLE prevents a line break (LB) but flags the
condition.

• If the plOffset field points to the current cursor position (-1) and the import text contains
a LF:

- If the MLE text is imported before the text being edited, then the cursor does not
move and the text being edited is shifted down to make room for the text being
imported.

- If the MLE text is imported after the text being edited, then the cursor does not
move and the text being imported is inserted starting at the current cursor position.

• If the plOffset field points to the current cursor position (-1) and the import text does not
contain a LF:

- If the MLE text is imported before the text being edited, then the cursor does not
move and the text being edited is shifted to the right to make room for the text being
imported.

- If the MLE text is imported after the text being edited, then the cursor does not
move and the text being imported is inserted starting at the current cursor position.

Chapter 3. Multiple-Line Entry Field Controls 3-7

Exporting MLE Text
Before using the MLM_EXPORT message the number of characters to export needs to be
determined. The MLM_QUERYFORMATTEXTLENGTH message is used to determine the
number of characters to be copied from the MLE to the buffer (including LF and CR) and to
allocate the room in the buffer. MLM_EXPORT is then used to export the MLE text into the
buffer.

Note: The MLM_QUERYTEXTLENGTH message does not consider the CR and LF
characters as the MLM_QUERYFORMATTEXTLENGTH message does.

The sample code illustrated in Figure 3-3 reads text from a file to a buffer, then imports the
text to an MLE field.

HWND hwndMte;
CHAR siMl~Buf[5f2];
IPT lOffset =B;
PSZ pszTextFile;
HFlLE hf;
ULONGGbCopied;
ULONGulActton;
ULONGcbBytesRead;

1* . Ze.roM fill.· the ...• buffer .U$ i n~ memset t 8. ·.··C · ••. fun~time.fu n~tt{)n·*l
memset (szMl eBuf ~.0,'5i Feof~szMleBuf)J; . .

Figure 3""3 (Part 1 of 2). Sample Code for Importing and Exporting Text

3-8 PM Advanced Programming Guide

/* Set the MLE import-export buffer */
Wi nSendMsg(hwndMle,

MLM SETIMPORTEXPORT,
MPFROMP(szMleBuf),
MPFROMSHORT{(USHORT) sizeof(szMleBuf»);

/**/
/* Read the text from the file to the buffer, */
/* then import it to the MlE. */
/**/

do {
DosRead(hf,

szMleBuf,
sizeof(szMleBuf),
&cbBytesRead);

cbCopied = (ULONG) WinSendMsg(hwndMle,

} while (cbCopied);

/* Close the file */
DosClose(hf);

MlM IMPORT,
MPFROMP{ &lQffset),
MPFROMP(&cbBytesRead»;

Figure 3-3 (Part 2 of 2). Sample Code for Importing and Exporting Text

To export MLE text, an application sends the MLM_EXPORT message to the MLE control.
Like MLM-,MPORT, the MLM_EXPORT message takes the plOffset and cbCopy
parameters. The plOffset parameter is a pointer to a variable that specifies the offset to the
first character to export. A value of -1 specifies the current cursor position. On return, the
variable contains the offset to the first character in the MLE field not copied to the buffer.
The cbCopy parameter is a pointer to a variable that specifies the number of bytes to export.
On return, this variable equals 0 if the number of characters actually copied does not exceed
the number specified to be copied. The sample code illustrated in Figure 3-4 on page 3-10
shows how to export text from an MLE field, then store the text in a file.

Chapter 3. Multiple-Line Entry Field Controls 3-9

Figure 3-4 (Part 1 of 2). Sample Code for Exporting Text from an MLE Field

3-1 0 PM Advanced Programming Guide

/* Find out how much text is in the MLE */
cbCopy = (ULONG) WinSendMsg(hwndMle,

MLM QUERYFORMATTEXTLENGTH,
MPFROMLONG(lOffset) ,
MPFROMLONG«-l»);

/* Copy the MLE text to the buffer */
cbCopied = (ULONG) WinSendMsg(hwndMle,

MLMEXPORT,
MPFROMP(&lOffset) ,
MPFROMP(&cbCopy»;

/*Writethe con~ents of the buffer to the file */
DosWri te (hf,

szMleBuf,
sizeof(szMleBuf) ,
&cbBytesWritten);

/* Close the file */
DosClose(hf);

Figure 3-4 (Part 2 of 2). Sample Code for Exporting Text from an MLE Field

Searching MLE Text
An application uses the MLM_SEARCH message and the MLE_SEARCHDATA data
structure to search for strings in MLE text. The first parameter of the MLM_SEARCH
message is an array of flags that specify the style of the search. The application can set the
MLFSEARCH_CASESENSITIVE flag if a case-sensitive search is required. If the application
sets the MLFSEARCH_SELECTMATCH flag, the MLE field control highlights a matching
string and, if necessary, scrolls the string into view. An application can use the
MLFSEARCH_CHANGEALL flag to replace every occurrence of the string with the string
specified in the pchReplace member of the MLE_SEARCHDATA data structure.

The second parameter of the MLM_SEARCH message is a pointer to an
MLE_SEARCHDATA data structure that contains information required to perform the search
operation. This data structure includes a pointer to the string and, if the
MLFSEARCH_CHANGEALL flag is set in the MLM_SEARCH message, a pointer to the
replacement string. The iptStart and iptStop members specify the starting and ending
positions of the search. These positions are specified as offsets from the beginning of the
MLE field. A value of -1 in the iptStart member causes the search to start at the current
cursor position. A negative value in the iptStop member causes the search to end at the end
of the MLE field. If a matching string is found, the MLE field control returns the length of the
string in the cchFound member.

The following code fragment uses an entry field to obtain a search string from the user, then
searches an MLE field for an occurrence of the string. The search begins at the current
cursor position and ends at the end of the MLE text. When the

Chapter 3. Multiple-Line Entry Field Controls 3-11

MLFSEARCH_SELECTMATCH flag is specified, the MLE field control highlights a matching
string and scrolls it into view.

The sample code illustrated in Figure 3-5 shows how to search MLE text.

!*Fi 11
mlesrch.cb
mlesrch.pthFihd
mlesrch.pchReplace ..
mlesrch.cthFind
mlesrch. cC'hRepl aCe =
mlesrch,iptStart
mlesrch .iptStop

Figure 3-5. Sample Code for Searching MLE Text

3 .. 12 PM Advanced Programming Guide

Related Window Messages Received by an MLE Field Control
This section covers the window messages received by a mutliple-line entry field control.

MLM_ CHARFROMLINE
This message returns the first insertion point on a given line.

Parameters
param1

ILineNum (LONG)
Line number of interest.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
iptFirst (IPT)

First insertion point on line.

MLM_CLEAR
This message clears the current selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulClear (ULONG)

Number of bytes deleted, counted in CF _TEXT format.

Chapter 3. Multiple-Line Entry Field Controls 3-13

MLM_COPY
This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCopy (ULONG)

Number of bytes transferred, counted in CF _TEXT format.

MLM_CUT
This message copies the text that forms the current selection to the clipboard and then
deletes it from the MLE control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCopy (Ul.ONG)

Number of bytes transferred, counted in CF _TEXT format.

3-14 PM Advanced Programming Guide

MLM DELETE
This message deletes text.

Parameters
param1

iptBegin (IPT)
Starting point of deletion.

param2

ulDel (UlONG)
Number of bytes to delete.

Returns
ulSuccess (UlONG)

Number of bytes successfully deleted.

MLM_DISABLEREFRESH
This message disables screen refresh.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

Chapter 3. Multiple-Line Entry Field Controls 3-15

MLM_ENABLEREFRESH
This message enables screen refresh.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be o.

o Reserved value, O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

MLM EXPORT

Successful completion
An error occurred.

This message exports text to a buffer.

Parameters
param1

pBegin (PIPT)
Starting point.

Updated to follow the last character exported.

param2

peopy (PUlONG)
Number of bytes being exported.

Decremented by the number of bytes actually exported.

Returns
ulSuccess (UlONG)

Number of bytes successfully exported.

3-16 PM Advanced Programming Guide

MLM_FORMAT
This message sets the format to be used for buffer importing and exporting.

Parameters
param1

usFormat (USHORT)
Format to be used for import and export.

param2

MLFIE_CFTEXT Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NULL character signals the end of the data.

MLFIE_NOTRANS Uses LF for line delineation, and guarantees that any text
imported into the MLE in this format can be recovered in
exactly the same form on export.

MLFIE_WINFMT (Windows MLE format.) On import, recognizes CR LF as
denoting hard line-breaks, and ignores the sequence CR
CR LF. On export, uses CR LF to denote a hard line-break
and CR CR LF to denote a soft line-break caused by
word-wrapping.

ulReserved (ULONG)
Reserved value, should be O.

Returns
usFormat (USHORT)

Previous format value.

MLM_IMPORT
This message imports text from a buffer.

Parameters
param1

pBegin (PIPT)
Insertion point.

Updated to insertion point following last insert.

Chapter 3. Multiple-Line Entry Field Controls 3-17

param2

ulCopy (ULONG)
Number of bytes in buffer.

Returns
ulSuccess (ULONG)

Number of bytes successfully inserted.

MLM_INSERT
This message deletes the current selection and replaces it with a text string.

Parameters
param1

pchText (PCHAR)
Null-terminated text string.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulCount (ULONG)

Number of bytes actually inserted.

MLM LINEFROMCHAR
This message returns the line number corresponding to a given insertion point.

Parameters
param1

iptFirst (IPT)
Insertion point of interest.

param2

ulReserved (ULONG)
Reserved value, should be o.

3-18 PM Advanced Programming Guide

Returns
ILineNum (LONG)

Line number of insertion point.

MLM PASTE
This message replaces the text that forms the current selection, with text from the clipboard.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCopy (ULONG)

Number of bytes transferred, counted in. CF TEXT format.

MLM_QUERYBACKCOLOR
This message queries the background color.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IColor (LONG)

Text color.

Chapter 3. Multiple-Line Entry Field Controls 3-19

MLM_QUERYCHANGED
This message queries the changed flag.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Current changed status.

TRUE
FALSE

Text has changed since the last time that the change flag was cleared.
Text has not changed since the last time that the change flag was cleared.

MLM_QUERYFIRSTCHAR
This message queries the first visible character.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
iptFVC (IPT)

First visible character.

3-20 PM Advanced Programming Guide

MLM_QUERYFONT
This message queries which font is in use.

Parameters
param1

pFattrs (PFATTRS)
Font attribute structure.

param2

ulReserved (UlONG)
ReseNed value, should be O.

Returns
rc (BOOl)

System font indicator.

TRUE The system font is in use.
FALSE The system font is not in use.

MLM_QUERYFORMATLINELENGTH
This message returns the number of bytes to end of line after formatting has been applied.

Parameters
param1

iptStart (IPT)
Insertion point to count from.

param2

ulReserved (UlONG)
ReseNed value, should be O.

Returns
iptLine (lPT)

Count of bytes to end of line.

Chapter 3. Multiple-Line Entry Field Controls 3-21

MLM_QUERYFORMATRECT
This message queries the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
Format dimensions.

The size of the current limiting dimensions.

param2

flFlags (ULONG)
Flags governing interpretation of dimensions.

An array of MLFFMTRECT _ * flags defined under the flFlags field of the
MLM_SETFORMATRECT message.

Returns
ulReserved (ULONG)

Reserved value.

MLM_QUERYFORMATTEXTLENGTH
This message returns the length of a specified range of characters after the current
formatting has been applied.

Parameters
param1

iptStart (IPT)
Insertion point to start from.

param2

ulScan (ULONG)
Number of characters to convert to bytes.

OxFFFFFFFF Convert until end of line
other Convert specified number of characters.

Returns
ulText (ULONG)

Count of bytes in text after formatting.

3-22 PM Advanced Programming Guide

MLM_QUERYIMPORTEXPORT
This message queries the current transfer buffer.

Parameters
param1

Buff (PVOID *)
Transfer buffer.

param2

pulLength (PULONG)
Size of transfer buffer in bytes.

Returns
rc (ULONG)

Success indicator.

TRUE Successful completion.
FALSE Error occurred.

MLM_QUERYLINECOUNT
This message queries the number of lines of text.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulLines (ULONG)

The number of lines of text.

Chapter 3. Multiple-Line Entry Field Controls 3-23

MLM_QUERYUNELENGTH
This message returns the number of bytes between a given insertion point and the end of
line.

Parameters
param1

iptStart (lPT)
Insertion point to count from.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
iptLine (I PT)

Count of bytes to end of line.

MLM_QUERYREADONLY
This message queries the read-only mode.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Current read-only status.

TRUE Read-only mode is set.
FALSE Read-only mode is cleared.

3-24 PM Advanced Programming Guide

MLM_QUERYSEL
This message returns the location of the selection.

Parameters
param1

usQueryMode (USHORT)
Query Mode.

param2

MLFQS_MINMAXSEL Return both minimum and maximum points of selection in
a format compatible with the EM_QUERYSEL message.

MLFQS_MINSEL Return minimum insertion point of selection.

MLFQS_MAXSEL Return maximum insertion point of selection.

MLFQS_ANCHORSEL Return anchor point of selection.

MLFQS_CURSORSEL Return cursor point of selection.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sMinSel (SHORT)
Minimum insertion point of selection.

This value is rounded down to 65 535, if necessary.

ReturnCode contains sMinSel and sMaxSel for a usQueryMode of
MLFQS_MINMAXSEL.

sMaxSel (SHORT)
Maximum insertion point of selection.

This value is rounded down to 65 535 if necessary.

ReturnCode contains sMinSel and sMaxSel for a usQueryMode of
MLFQS_MINMAXSEL.

ipt (IPT)
Requested insertion point.

ReturnCode contains ipt for a usQueryMode of MLFQS_MINSEL,
MLFQS_MAXSEL, MLFQS_ANCHORSEL, or MLFQS_CURSORSEL.

Chapter 3. Multiple-Line Entry Field Controls 3-25

MLM_QUERYSELTEXT
This message copies the currently selected text into a buffer.

Parameters
param1

pchBuff (PCHAR)
Character buffer for text string.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulCount (ULONG)

Number of bytes to put into text string.

MLM_QUERYTABSTOP
This message queries the &pel. interval at which tab stops are placed.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
pixTabset (PIX)

Tab width in &pel.s.

< a An error occurred.
Other The &pel. interval at which tab stops are placed.

3-26 PM Advanced Programming Guide

MLM_QUERYTEXTCOLOR
This message queries the text color.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
IColor (LONG)

Text color.

MLM_QUERYTEXTLENGTH
This message returns the number of characters in the text.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
iptText (IPT)

Count of text in bytes.

Chapter 3. Multiple-Line Entry Field Controls 3-27

MLM_QUERYTEXTLIMIT
This message queries the maximum number of bytes that a multi-line entry field control can
contain.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ISize (LONG)

Maximum number of bytes allowed in the MLE.

MLM_QUERYUNDO
This message queries the undo or redo operations that are possible.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

3-28 PM Advanced Programming Guide

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

o
WM CHAR

MLM_SETFONT

M LM_SETTEXTCO LOR

MLM_CUT

MLM_PASTE

MLM_CLEAR

rc (BOOL)
Undo or redo indicator.

An undo or redo operation is not possible.

A WM_CHAR message, or messages for a simple string
of keystrokes, can be undone or redone.

A MLM_SETFONT message can be undone or redone.

A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

A MLM_CUT message can be undone or redone.

A MLM_PASTE message can be undone or redone.

A MLM_CLEAR message can be undone or redone.

TRUE
FALSE

An undo is possible.
A redo is possible.

MLM_QUERYWRAP
This message queries the wrap flag.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Wrap flag.

TRUE
FALSE

Word-wrap enabled
Word-wrap disabled.

Chapter 3. Multiple-Line Entry Field Controls 3-29

MLM RESETUNDO
This message resets the undo state to indicate that no undo operations are possible.

Parameters
param1

ulReserved (ULONG)
ReseNed value, should be O.

param2

ulReserved (ULONG)
ReseNed value, should be O.

Returns
ReturnCode

usOperation (USHORT)
Operation that can be undone or redone.

o An undo or redo operation is not possible.

WM CHAR A WM_CHAR message, or messages for a simple string
of keystrokes, can be undone or redone.

MLM_SETFONT A MLM_SETFONT message can be undone or redone.

MLM_SETTEXTCOLOR A MLM_SETTEXTCOLOR message can be undone or
redone for both background and foreground color.

MLM CUT A MLM_CUT message can be undone or redone.

MLM PASTE A MLM_PASTE message can be undone or redone.

MLM CLEAR A MLM_CLEAR message can be undone or redone.

rc (BOOL)
Undo or redo indicator.

TRUE
FALSE

An undo is possible.
A redo is possible.

3-30 PM Advanced Programming Guide

MLM_SEARCH
This message searches for a specified text string.

Parameters
param1

ulStyle (ULONG)
Style flags.

MLFSEARCH_CASESENSITIVE If set, only exact matches are considered a
successful match. If not set, any
case-combination of the correct characters in
the correct sequence is considered a successful
match.

MLFSEARCH_SELECTMATCH

MLFSEARCH_CHANGEALL

param2

pse (PMLE_SEARCHDATA)
Search specification structure.

Returns
rc (BOOL)

Success indicator.

TRUE The search was successful.
FALSE The search was unsuccessful.

If set, the MLE selects the text and scrolls it into
view when found, just as if the application had
sent an MLM_SETSEL message. This is not
done if MLFSEARCH_CHANGEALL is also
indicated.

Using the MLE_SEARCHDATA structure
specified in pse, all occurrences of pchFind are
found, searching from iptStart to iptStop, and
replacing them with pchReplace. If this style is
selected, the cchFound field has no meaning,
and the iptStart value points to the place where
the search stopped, or is the same as iptStop
because the search has not been stopped at
any of the found strings. The current cursor
location is not moved. However, any existing
selection is deselected.

Chapter 3. Multiple-Line Entry Field Controls 3-31

MLM SETBACKCOLOR
This message sets the background color.

Parameters
param1

IColor (lONG)
Color.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
IOldColor (lONG)

Color previously used.

MLM SETCHANGED
This message sets or clears the changed flag.

Parameters
param1

usChangedNew (USHORT)
Value to set changed flag to.

TRUE
FALSE

Changed flag set.
Changed flag cleared.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Changed status before message was processed.

TRUE
FALSE

Text has changed since the last time that the change flag was cleared.
Text has not changed since the last time that the change flag was cleared.

3-32 PM Advanced Programming Guide

MLM_SETFIRSTCHAR
This message sets the first visible character.

Parameters
param1

iptFVC (IPT)
Insertion point to place in top left-hand corner.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Successful completion
An error occurred.

MLM_SETFONT
This message sets a font.

Parameters
param1

pFattrs (PFATTRS)
Font attribute structure.

NULL The system font is set.
other The specified font is set.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

The font was successfully set.
An error occurred.

Chapter 3. Multiple-Line Entry Field Controls 3-33

MLM_SETFORMATRECT
This message sets the format dimensions and mode.

Parameters
param1

pFormatRect (PPOINTL)
New format dimensions.

param2

NULL A null value sets both dimensions to the current window size.

other The structure is a pair of LONGs designating the diagonally-opposite corner
of the rectangle, assuming 0,0 for the first. Therefore, they are the width
and height in &pel.s of the format rectangle. These dimensions are used as
the word-wrap and text-size limiting boundaries. Negative values for either
dimension cause the MLE to substitute the current window size (the MLE
window rectangle minus margins).

If the rectangle specified has either, or both, of the limits set, and the size is
inadequate to contain the text, rc is set to FALSE and the rectangle
dimensions are replaced with the overflow amounts.

flFlags (ULONG)
Flags governing interpretation of dimensions.

MLFFMTRECT_MATCHWINDOW The dimensions of the format rectangle are
always to be kept the same as the window
size minus the margins. This causes the MLE
implicitly to do a MLM _ SETFORMATRECT
each time the window is resized, and
effectively causes any other dimensions to be
ignored. Resizing of the window can cause
this setting to be automatically negated (see
MLN_OVERFLOW).

MLFFMTRECT_LlMITHORZ The width of any line in theMLE cannot
exceed the given horizontal dimension.' If
word'-wrap is on, this limit has no effect.
Word-wrap can result in trailing blanks beyond
the right limit. These do not cause an overflow
notification.

MLFFMTRECT LlMITVERT The vertical height of the total text, as
displayed, is limited to that which fits totally
within the vertical dimension of the format
rectangle.

3-34 PM Advanced Programming Guide

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE An error occurred.

MLM SETIMPORTEXPORT
This message sets the current transfer buffer.

Parameters
param1

pBuff (PCHAR)
Transfer buffer.

param2

ulLength (UlONG)
Size of transfer buffer in bytes.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
An error occurred.

MLM SETREADONL Y
This message sets or clears read-only mode.

Parameters
param1

usReadOnly (USHORT)
New read-only value.

param2

TRUE
FALSE

Read-only mode set.
Read-only mode cleared.

ulReserved (UlONG)
Reserved value, should be O.

Chapter 3. Multiple-Line Entry Field Controls 3-35

Returns
rc (BOOl)

Previous read-only value.

TRUE
FALSE

MLM_SETSEL

Read-only mode was set.
Read-only mode was cleared.

This message sets a selection.

Parameters
param1

iptAnchor (IPT)
Insertion point for new anchor point.

param2

iptCursor (IPT)
Insertion pOint for new cursor point.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Selection successfully set
An error occurred.

MLM_SETTABSTOP
This message sets the &pel. interval at which tab stops are placed.

Parameters
param1

pixTab (PIX)
&Pel. interval for tab stops.

param2

ulReserved (UlONG)
Reserved value, should be O.

3-36 PM Advanced Programming Guide

Returns
pixTabset (PIX)

Success indicator.

< 0 An error occurred.
Other The value to which the width was set.

MLM_SETTEXTCOLOR
This message sets the text color.

Parameters
param1

IColor (LONG)
Color.

param2

ulReserved (ULONG)
Heserved value, should be O.

Returns
IOldColor (LONG)

Color previously used.

MLM_SETTEXTLIMIT
This message sets the maximum number of bytes that a multi-line entry field control can
contain.

Parameters
param1

ISize (LONG)
Maximum number of characters in MLFIE_NOTRANS format.

param2

ulReserved (ULONG)
Reserved value, should be O.

Chapter 3. Multiple-Line Entry Field Controls 3-37

Returns
ulFit (UlONG)

Success indicator.

o Successful completion. Current text fits within the new limit.
Other The number of bytes by which the current text exceeds the proposed limit. The

limit is not changed.

MLM_SETWRAP
This message sets the wrap flag.

Parameters
param1

usWrap (USHORT)
New value for wrap flag.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

MLM_UNDO

Successful completion
An error occurred.

This message performs any available undo operation.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

3-38 PM Advanced Programming Guide

Returns
rc (USHORT)

Success indicator.

TRUE
FALSE

An undo operation was performed.
No undo operation was performed.

Chapter 3. Multiple-Line Entry Field Controls 3-39

Related Window Messages Sent by an MLE Field Control
This section covers the window messages sent by a mutliple-line entry field control.

WM_BUTTON1 DBLCLK
This message occurs when the operator presses button 1 of the pointing device twice within
a specified time, as detailed below.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see WM_HITTEST.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOL)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

3-40 PM Advanced Programming Guide

WM_BUTTON1 DOWN
This message occurs when the operator presses pointer button one.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see WM_HITTEST.

fsflags (USHORn
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 3. Multiple-Line Entry Field Controls 3-41

WM BUTTON1UP
This message occurs when the operator releases button 1 of the pointing device.

Parameters
param1

ptspointerpos (POINTS) .

param2

Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see 'WM_HITTEST.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

3-42 PM Advanced Programming Guide

WM CHAR
This message is sent when an operator presses a key.

Parameters
param1

fsfla9S (USHORT)
Keyboard control codes.

KC_CHAR

KC_SCANCODE

KC VIRTUALKEY

Indicates that usch value is valid.

Indicates that ucscancode is valid.

Generally, this is set in all WM_CHAR messages generated
from actual operator input. However, if the message has
been generated by an application that has issued the
WinSetHook function to filter keystrokes, or posted to the
application queue, this may not be set.

Indicates that usvk is valid.

Normally usvk should be given precedence when processing
the message.

Note: For those using hooks, when this bit is set,
KC _ SCANCODE should usually be set as well.

KC_KEYUP The event is a key-up transition; otherwise it is a down
transition.

KC PREVDOWN The key has been previously down; otherwise it has been
previously up.

KC DEADKEY The character code is a dead key. The application is
responsible for displaying the glyph for the dead key without
advancing the cursor.

KC_COMPOSITE The character code is formed by combining the current key
with the previous dead key.

KCJNVALIDCOMP The character code is not a valid combination with the
preceding dead key. The application is responsible for
advancing the cursor past the dead-key glyph and then, if the
current character is not a space, sounding the alarm and
displaying the new character code.

KC_LONEKEY Indicates if the key is pressed and released without any other
keys being pressed or released between the time the key
goes down and up.

KC_SHIFT The SHIFT state is active when key press or release
occurred.

KC ALT The ALT state is active when key press or release occurred.

Chapter 3. Multiple-Line Entry Field Controls 3-43

KC CTRl

ucrepeat (UCHAR)
Repeat count.

ucscancode (UCHAR)
Hardware scan code.

The CTRl state was active when key press or release
occurred.

A keyboard-generated value that identifies the keyboard event. This is the raw scan
code, not the translated scan code.

param2

usch (USHORT)
Character code.

The character value translation of the keyboard event resulting from the current
code page that would apply if the CTRl or Al T keys were not depressed.

usvk (USHORT)
Virtual key codes.

A virtual key value translation of the keyboard event resulting from the virtual key
code table. The low-order byte contains the vk value, and the high-order byte is
always set to zero by the standard translate table.

D This value applies if fsf/ags does not contain KC_VIRTUAlKEY.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

WM ENABLE

Message processed
Message ignored.

This message notifies a windows of a change to its enable state.

Parameters
param1

usnewenabledstate (USHORT)
New enabled state indicator.

TRUE The window was set to the enabled state.
FALSE The window was set to the disabled state.

3-44 PM Advanced Programming Guide

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
ulReserved (UlONG)

Reserved value, should be O.

WM_MOUSEMOVE
This message occurs when the pointing device pointer moves.

Parameters
param1

sxMouse (SHORT)
&Pdev. x-coordinate.

syMouse (SHORT)
&Pdev. y-coordinate.

param2

uswHitTest (USHORT)
Message result.

Zero A pointing device capture is currently in progress
Other The result of the WM_HITTEST message.

1s11a9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

The window procedure did process the message.
The window procedure did not process the message.

Chapter 3. Multiple-Line Entry Field Controls 3-45

WM_QUERYWINDOWPARAMS
This message occurs when an application queries the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

param2

This points to a window parameter structure; see "WNDPARAMS" on page 3-58.

The valid values of fsStatus are WPM_CCHTEXT, WPM_TEXT,
WPM _ CBCTlDATA, and WPM _ CTlDAT A.

The flags in fsStatus are cleared as each item is processed. If the call is
successful, fsStatus is O. If any item has not been processed, the flag for that item
is still set.

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

WM SETWINDOWPARAMS
This message occurs when an application sets or changes the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see "WNDPARAMS" on page 3-58.

The valid values of fsStatus are WPM_TEXT and WPM_CTlDATA.

3-46 PM Advanced Programming Guide

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful operation
Error occurred.

Chapter 3. Multiple-Line Entry Field Controls 3-47

Related Notification Message
This section covers the notification message that is related to multiple-line entry field
controls.

WM_ CONTROL (in Multiline Entry Fields)
For the cause of this message, see "WM _CONTROL" on page 5-15.

Parameters
param1

usid (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

MLN_ TEXTOVERFLOW A key stroke causes the amount of text to exceed
the limit on the number of bytes of data (refer to
MLM_SETTEXTLlMIT). The parameter contains the
number of bytes of data which would not fit within
the current text limit. For character key strokes this
can be 1 or 2 (OBCS). For Shift+lns (paste) it can
be any amount up to the paste limit.

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as deleting existing textor raising
the limit) and the WM _CHAR (in Multiline Entry
Fields) should be reprocessed as if just entered.

MLN PIXHORZOVERFLOW A key stroke causes the size of the display bit map
to exceed the horizontal limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of &pel,s that would not fit
within the current text limit.

3-48 PM Advanced Programming Guide

The default rc of FALSE causes the default error
handling, which is to ignore the key stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as changing to a smaller font or
raising the limit) and the WM _CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

MLN_PIXVERTOVERFLOW A key stroke causes the size of the display bit map
to exceed the vertical,limit of the format rectangle
(refer to MLM_SETFORMATRECT). The parameter
contains the number of &pel,s that would not fit
within the current text limit.

MLN_OVERFLOW

MLN_HSCROLL

MLN_UNDOOVERFLOW

The default rc of FALSE causes the default error
handling, which is to ignore the key'stroke, and
beep.

An rc of TRUE implies that corrective action has
been taken (such as changing to a smaller font or
raising the limit) and the WM_CHAR (in Multiline
Entry Fields) should be reprocessed as if just
entered.

An action other than entry of a key stroke causes a
condition involving the text limit or format rectangle
limit, such that either the limit becomes inadequate
to contain the text or the text exceeds the limit.

This can be caused by:

MLM_SETWRAP
MLM_SETTABSTOP
MLM_SETFONT
MLMJMPORT
MLM_PASTE
MLM_CUT
MLM_UNDO
MLM_DELETE
WM_SIZE.

Indicates that the MLE has completed a scrolling
calculation and is about to update the display
accordingly. All queries return values as if the
scrolling were complete. However, no scrolling
action is visible on the user interface.

Indicates that the MLE has completed a scrolling
calculation and is about to update the display
accordingly. All queries return values as if the
scrolling were complete. However, no scrolling
action is visible on the user interface.

Signals that the text has changed. This notification
is sent whenever any text change occurs.

Signals that the text change operation, which could
normally be undone, cannot be undone because the
amount of text involved exceeds the undo capability.
This includes text entry, deletion, cutting, and
pasting.

Chapter 3. Multiple-Line Entry Field Controls 3-49

MLN_CLPBDFAIL

MLN_MEMERROR

MLN_KILLFOCUS

MLN_SEARCHPAUSE

3-50 PM Advanced Programming Guide

Signals that a clipboard operation failed.

Signals that the required storage cannot be
obtained. The action that results in the increased
storage requirement fails.

Sent whenever the MLE window receives the input
focus.

Sent whenever the MLE window loses the input
focus.

Whenever the user moves the mouse into the left,
right top, or bottom margins, this message is sent to
the owner of the window.

If the owner returns an rc of TRUE, the mouse
move is assumed to have been processed by the
owner and no further action neec;l be taken.

If the owner returns an rc of FALSE, the MLE
performs a default action appropriate to each
different mouse action.

The exceptions to this are all mouse messages that
occur after a button-down inside the margin, until
and including the matching button-up. Conceptually
the drag (button-down until button-up) is a single
macro event. Therefore, if FALSE is returned for a
button-down event, no further margin notifications
are given until after the drag has ended (button-up).

Note: If the application receives a notification of
button-down in the margin and processes it,
it must capture the mouse until the button-up
event.

This notification is sent periodically by the MLE,
while an MLM_SEARCH message is being
processed, to give an application the opportunity to
stop excessively long searches, and to provide
search progress information. The owner window
can respond either with TRUE or FALSE. FALSE
causes the MLE to continue searching; TRUE
causes the MLE to stop the search immediately.
For further information, see MLM_SEARCH

param2

ulOver (ULONG)
Number of bytes that do not fit.

param2 contains ulOver for a usnotifycode of MLN_TEXTOVERFLOW.

pixOver (PIX)
Linear distance of overflow in &pel.s.

param2 contains pixOver for a usnotifycode of MLN_PIXHORZOVERFLOW or
MLN_PIXVERTOVERFLOW.

pErrlnfo (POVERFLOW)
Overflow error information structure.

param2 contains pErrlnfo for a usnotifycode of MLN_OVERFLOW.

The afErrlnd field of the MLEOVERFLOW structure can take one or more of the
following values:

M LFEFR_ RESIZE The window is resized, and the format rectangle is tied to
the window size and limited either horizontally, vertically,
or both. The implicit changeof the format rectangle to the
new size does not contain the text. The format rectangle
is made static at the previous size, and the
MLESFR_MATCHWINDOW style is turned off until set
again by the application. This is done in response to a
WM_SIZE message, and therefore the multi-line entry
field does not forward the return value from this
notification message.

MLFEFR TABSTOP A tab stop location change is requested, and the text is
limited either horizontally, vertically, or both. Changing
the tab stops causes the text to exceed the limit. The tab
stop change is rejected.

MLFEFR_FONT A font change is requested, and the text is limited either
horizontally, vertically, or both. Changing the font causes
the text to exceed the limit. The font change is rejected.

MLFEFR_WORDWRAP The word-wrap state is requested to be changed, and the
text is limited either horizontally, vertically, or both.
Wrapping the text differently exceeds the limit, and the
request is rejected. This happens in situations where the
horizontal limit is not set, there are lines exceeding it, and
word-wrap is being changed from off to on, such that it
creates soft line breaks resulting in increased vertical size.
This happens if word-wrap is being changed from on to
off, and there is at least one line created by a soft
line-break, such that when that line-break is removed, the
full line (up to the hard line break) exceeds the horizontal
limit.

Chapter 3. Multiple-Line Entry Field Controls 3-51

MLFEFR TEXT Text is changed by MLMJMPORT, MLM_PASTE,
MLM_CUT,MLM_UNDO,orMLM_DELETE,andthetext
is limited either horizontally, vertically, or both within the
format rectangle. The change causes the text to exceed
the format rectangle in a dimension that is limited. For
example, Delete and EOL joins text from two lines into
one line long enough to exceed the horizontal limit.

MLFETL_TEXTBYTES Text is changed by MLMJMPORT MLM_PASTE, or
MLM_UNDO, and the text is limited to a maximum
number of bytes. The change causes the text to exceed
that maximum.

ulErrlnd (ULONG)
Clipboard fail flag.

param2 contains ulErrlnd for a usnotifycode of MLN_CLPBDFAIL.

MLFCPBD _ TOOMUCHTEXT
MLFCPBD CLPBDERROR

pmrg (PMARGSTRUCT)
Margin structure.

Text amount exceeds clipboard capacity
A clipboard error occurred.

param2 contains pmrg for a usnotifycode of MLN_MARGIN.

The left and right margins are defined as going all the way to the top and bottom
such that the top and bottom margins are contained between them. Therefore, the
corners are included in the sides.

usMouMsg contains the mouse message that signals the event.

iptNear contains the insertion point of the nearest point in the text. For situations
where the nearest location is beyond the end of a line, the insertion point for the
end of the line is returned. (The EOL character is considered to be beyond the end
of the line.)

iptSearchedTo (IPT)
Current insertion point of search.

param2 contains iptSearchedTo for a usnotifycode of MLN_SEARCHPAUSE.

ulReserved (ULONG)
Reserved value, should be O.

param2 contains ulReserved for a usnotifycode of MLN_HSCROLL,
MLN_VSCROLL, MLN_CHANGE, MLN_UNDOOVERFLOW, MLN_MEMERROR,
MLN_SETFOCUS, or MLN-,-KILLFOCUS.

3·52 PM Advanced Programming Guide

Returns
ReturnCode

rc (BOOL)
Action taken by application.

ReturnCode contains rc for a usnotifycode of MLN_TEXTOVERFLOW,
MLN_PIXHORZOVERFLOW, MLN_PIXVERTOVERFLOW, MLN_MARGIN, or
MLN_ SEARCHPAUSE.

TRUE The multiline entry field control assumes that appropriate action has been
taken by the application. Appropriate action depends on the MLN_ *
notification code, and is documented under the usnotifycode field.

FALSE The multiline entry field control assumes that the application has ignored
this WM_CONTROL (in Multiline Entry Fields) message, and takes action
appropriate to the MLN_* notification code, as documented under the .
usnotifycode field.

ulReserved (ULONG)
Reserved value, should be O.

ReturnCode contains ulReserved for a usnotifycode of MLN_OVERFLOW,
MLN_HSCROLL,MLN_VSCROLL,MLN_CHANGE,MLN_UNDOOVERFLOW,
MLN_CLPBDFAIL, MLN_MEMERROR, MLN_SETFOCUS, or MLN_KILLFOCUS.

Chapter 3. Multiple-Line Entry Field Controls 3-53

Related Data Structures
This section covers the data structures that are related to multiple-line entry field controls.

MLECTLDATA
Multiline entry-field (MLE) control data structure.

Syntax

typedM struct ·'MlEClLDATA·{
USHORT cbell Data; .
USHORT afI~Forrnat;
ULONG cchText;
IPT iptAnchor;
IPT iptCursor;
LONG cxFormat;
LONG cyFQrmat;
ULONG afFQrmatFlags;

IMLECTLOATA;

Fields
cbCtlData (USHORT)

Length of control data in bytes.

aflEFormat (USHORT)
Import/export format.

This sets the initial import/export format. Setting this value via control data is considered
identical to setting it through the MLM_FORMAT message. The same constants apply
here. The default is MLE_CFTEXT.

cchText (ULONG)
Text limit.

The maximum amount of text allowed in the MLE. This value is interpreted identically to
the parameter of MLM_SETTEXTLIMIT. A negative value indicates that the length is
considered unbounded.

iptAnchor (I PT)
Selection anchor pOint.

iptCursor (IPT)
Selection cursor point.

The iptAnchor and iptCursor parameters identify the beginning and ending pOints,
respectively, of the selection. These values may range from a through the length of the
text. The default is 0,0 and can be indicated by entering 0,0.

3-54 PM Advanced Programming Guide

cxFormat (LONG)
Formatting-rectangle width in &pel.s.

cyFormat (LONG)
Formatting-rectangle height in &pel.s.

The cxFormat and cyFormat parameters identify the dimensions in &pel.s of the
formatting rectangle, as can be set by the MLM_SETFORMATRECT message. These
values are considered identical to the two fields in the format rectangle structure
referenced in that message, and the interpretation of the values in these fields is
governed by the afFormatFlags field.

The default is the window size in both dimensions, and can be indicated by 0 values.

afFormatFlags (ULONG)
Format flags.

These flags govern the interpretation of the cxFormat and cyFormat fields, just as in the
MLM_SETFORMATRECT message. The flag values defined there are also valid in this
field. The default is unlimited in both directions, and is of varying size to match the
window size.

MLEMARGSTRUCT
Multiline entry-field margin information.

Syntax

typedef struct _MlEMARGSTRUCT {
USHORT afMargins;
USHORT usMouMsg;
IPT iptNear;
} MlEMARGSTRUCT;

typedef MlEMARGSTRUCT *PMARGSTRUCT;

Fields
afMargins (USHORT)

Margin in which the event occurred.

The left and right margins are defined as including the corners at the top and bottom,
and the top and bottom margins are contained between them. Therefore, the corners
are included in the sides.

MLFMARGIN_LEFT
MLFMARGIN_RIGHT
MLFMARGIN_ TOP
MLFMARGIN_BOTTOM

Chapter 3. Multiple-Line Entry Field Controls 3-55

usMouMsg (USHORT)
Message identity of the original mouse event.

iptNear (I PT)
Insertion point nearest to the margin event.

MLEOVERFLOW
Overflow error structure for multiline entry field.

Syntax

typedef struct _MLEOV£RFLOW{
ULONG afErrInd;
LONG nBytesOver;
LONG pixHorzQver;
LONG· pixVertOver;
} .• MLEOVERFLOW;

Fields
afErrlnd (ULONG)

One or more EFR _ * flags.

nBytesOver (LONG)
Number of bytes over the limit.

pixHorzOver (LONG)
Number of &pel,s over the horizontal limit.

pixVertOver (LONG)
Number of &pel,s over the vertical limit.

3-56 PM Advanced Programming Guide

MLE_SEARCHDATA
Search structure for multiline entry field.

Syntax

typedef struct _SEARCH {
USHORT cb;
PCHAR pchFind;
PCHAR pchReplace;
SHORT cchFind;
SHORT cchReplace;
IPT iptStart;
IPT iptStop;
USHORT cchFound;
} MlE_SEARCHDATA;

typedef MlE_SEARCHDATA *PMLE~SEARCHDATA;

Fields
cb (USHORT)

Size of structure.

pchFind (PCHAR)
String to search for.

pchReplace (PCHAR)
String to replace with.

cchFind (SHORT)
Length of pchFind string.

cchReplace (SHORT)
Length of pchReplace string.

iptStart (lPT)
Point at which to start search, or point where string was found.

Non-negative Point at which to start search.
Negative Start search from current cursor location.

iptStop (I PT)
Point at which to stop search.

Non-negative
Negative

Point at which to stop search.
Stop search at end of text.

cchFound (USHORT)
Length of string found at iptStart.

Chapter 3. Multiple-Line Entry Field Controls 3-57

WNDPARAMS
Window parameters.

Syntax

Fields
fsStatus (ULONG)

Window parameter selection.

Identifies the window parameters that are to be set or queried:

WPM _ CBCTLDATA
WPM_ CCHTEXT
WPM_CTLDATA
WPM_PRESPARAMS
WPM TEXT

cchText (ULONG)
Length of window text.

pszText (PSZ)
Window text.

cbPresParams (ULONG)

Window control data length
Window text length
Window control data
Presentation parameters
Window text.

Length of presentation parameters.

pPresParams (PVOID)
Presentation parameters.

cbCtlData (ULONG)
Length of window class specific data.

pCtlData (PVOID)
Window class specific data.

3-58 PM Advanced Programming Guide

Summary
Following are tables that describe the OS/2 window messages, notification message,
notification codes, and data structures used with multiple-line entry field control:

Table 3-3 (Page 1 of 2). Window Messages Received by an MLE

Message Name Description

MLM_CHARFROMLINE Returns the first insertion point on a given line.

MLM_CLEAR Clears the current selection.

MLM_COPY Copies the current selection to the clipboard.

MLM_CUT Copies the text that forms the current selection to the
clipboard, then deletes the text from the MLE field control.

MLM_DELETE Deletes text.

MLM_DISABLEREFRESH Disables screen refresh.

MLM_ENABLEREFRESH Enables screen refresh.

MLM_EXPORT Exports text to a buffer.

MLM_FORMAT Sets the format to be used for buffer importing and
exporting.

MLM_IMPORT Imports text from a buffer.

MLM_INSERT Deletes the current selection and replaces it with a text
string.

MLM_LlNEFROMCHAR Returns the line number corresponding to a given
insertion point.

MLM_PASTE Replaces the text that forms the current selection with text
from the clipboard.

MLM_QUERYBACKCOLOR Queries the background color.

MLM_QUERYCHANGED Queries the changed flag.

MLM_QUERYFIRSTCHAR Queries the first visible character.

MLM_QUERYFONT Queries which font is in use.

MLM_QUERYFORMATLINELENGTH Returns the number of bytes to end of line after formatting
is applied.

MLM_QUERYFORMATRECT Queries the format dimensions and mode.

MLM_QUERYFORMATTEXTLENGTH Returns the length of a specified range of characters after
the current formatting is applied.

MLM_QUERYIMPORTEXPORT Queries the current transfer buffer.

MLM_QUERYLINECOUNT Queries the number of lines of text.

MLM_QUERYLINELENGTH Returns the number of bytes between a given insertion
point and the end of line.

MLM_QUERYREADONL Y Queries the read-only mode.

MLM_QUERYSEL Returns the location of the selection.

Chapter 3. Multiple-Line Entry Field Controls 3-59

Table 3-3 (Page 2 of 2). Window Messages Received by an MLE

Message Name

MLM_QUERYSELTEXT

MLM_QUERYTABSTOP

MLM_QUERYTEXTCOLOR

MLM_QUERYTEXTLENGTH

MLM_ QUERYTEXTLIMIT

MLM_QUERYUNDO

MLM_QUERYWRAP

MLM_RESETUNDO

MLM_SEARCH

MLM_SETBACKCOLOR

MLM_SETCHANGED

MLM_SETFIRSTCHAR

MLM_SETFONT

MLM_SETFORMATRECT

MLM_SETIMPORTEXPORT

MLM_SETREADONLY

MLM_SETSEL

MLM_SETTABSTOP

MLM_SETTEXTCOLOR

MLM_SETTEXTLIMIT

MLM_SETWRAP

MLM_UNDO

Description

Copies the currently selected text into a buffer.

Queries the pel interval at which tab stops are placed.

Queries the text color.

Returns the number of characters in the text.

Queries the maximum number of bytes that a multiple-line
entry field control can contain.

Queries the possible undo or redo operations.

Queries the wrap flag.

Resets the undo state to indicate the no undo operations
are possible.

Searches for a specified text string.

Sets the background color.

Sets or clears the changed flag.

Sets the first visible character.

Sets a font.

Sets the format dimensions and mode.

Sets the current transfer buffer.

Sets or clears read-only mode.

Sets a selection.

Sets the pel interval at which tab stops are placed.

Sets the text color.

Sets the maximum number of bytes that a multiple-line
entry field control can contain.

Sets the wrap flag.

Performs any available undo operations.

Table 3-4 (Page 1 of 2). Window Messages Sent by an MLE

Message Name Description

WM_BUTTON1 DBLCLK Occurs when the user presses mouse button 1 twice
within a specified time.

WM_BUTTON1 DOWN Occurs when the user presses mouse button 1.

WM_BUTTON1 UP Occurs when the user releases mouse button 1.

WM_CHAR Sent when the user presses a key.

WM_ENABLE Sets the state of the MLE field.

WM_MOUSEMOVE Occurs when the pointing device pointer moves.

3-60 PM Advanced Programming Guide

Table 3-4 (Page 2 of 2). Window Messages Sent by an MLE

Message Name Description

WM_QUERYWINDOWPARAMS Occurs when an application queries the entry field control
window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the entry
field control window parameters.

Table 3-5. MLE Notification Message

Message Name

WM_CONTROL

Table 3-6. MLE Notification Codes

Code Name

MLN_CLPBDFAIL

MLN_HSCROLL

MLN_KILLFOCUS

MLN_MARGIN

MLN_PIXHORZOVERFLOW

MLN_PIXVERTOVERFLOW

MLN_SEARCHPAUSE

MLN_SETFOCUS

MLN_ TEXTOVERFLOW

MLN_UNDOOVERFLOW

Description

Occurs when an MLE field control has a significant event
to notify to its owner.

Description

Indicates that the contents of the MLE field have
changed.

Indicates that a clipboard operation failed.

Indicates that the MLE text is about to scroll horizontally.

Indicates that the MLE field lost the input focus.

Indicates that the mouse moved across the MLE field
margin.

Indicates that the MLE field control cannot allocate
enough memory to perform the requested operation.

Indicates that the specified MLE operation would overflow
the field's text limit or the format rectangle.

Indicates that the user entered more text than could fit
horizontally in the MLE field.

Indicates that the user entered more text than could fit
vertically in the MLE field.

Indicates that the MLE field control paused during a
search operation initiated by an MLM_SEARCH message.

Indicates that the MLE field received the input focus.

Indicates that the user or application attempted to exceed
the text limit of the MLE field.

Indicates that the MLE field control cannot undo a text
change because the undo operation involves too much
text.

Indicates that the MLE text is about to scroll vertically.

Chapter 3. Multiple-Line Entry Field Controls 3-61

Table 3-7. MLE Data Structures

Data Structure Name Description

MLECTLDATA MLE field control data structure.

MLEMARGSTRUCT MLE field margin information data structure.

MLEOVERFLOW MLE field overflow error data structure.

MLE_SEARCHDATA MLE field search data structure.

WNDPARAMS Window parameters data structure.

3-62 PM Advanced Programming Guide

Chapter 4. Spin Button Controls

A spin button control (WC_SPINBUTTON window class) is a visual component that gives
users quick access to a finite set of data by letting them select from a scrollable ring of
choices. Because the user can see only one item at a time, a spin button should be used
only with data that is intuitively related, such as a list of the months of the year, or an
alphabetic list of cities or states. This chapter explains when and how to use spin buttons in
PM applications.

About Spin Button Controls
A spin button consists of at least one spin field that is a single-line entry (SLE) field, and up
and down arrows that are stacked on top of one another. These arrows are positioned to the
right of the SLE field. Figure 4-1 shows an example of spin button.

Spin button

Figure 4-1. Spin Button Example

You can create multi-field spin buttons for those applications in which users must select more
than one value. For example, in setting a date, the spin button control can provide individual
fields for setting the month, day, and year. The first spin field in the spin button could
contain a list of months; the second, a list of numbers; and the third, a list of years.

The application uses a multi-field spin button by creating one master component that
contains a spin field and the spin arrows, and servant components that contain only spin
fields. The spin buttons are created at component initialization. The servant components
are passed a handle to the master component in a message. When a servant spin field has
the focus, it is spun by the arrows in the master component.

The list of values in a spin button entry field can be an array of data or a list of consecutive
integers, defined by an upper and a lower limit.

© Copyright IBM Corp. 1994 4-1

Using Spin Button Controls
This section describes how to create a spin button control.

Creating a Spin Button
A spin button is created as a public window class by using WinCreateWindow, with a class
style of WC_SPINBUTTON and a window style of WS_ VISIBLE. These are joined with any
of the spin button style flags by using a logical OR (I). The spin button style flags let you
specify:

• Character input restrictions (none, numeric, read-only)
• Presentation of the data in the spin field (left-justified, right-justified, centered)
• Presence or absence of a border around the spin field
• Spin speed
• Zero-padding of numeric spin fields.

The placement and width of the spin button component are specified as parameters in
WinCreateWindow.

The upper and lower limits of numeric fields, the value array pointer for arrays of strings, and
the initial value in the spin field are all set by messages sent from the application to the
component.

You can destroy the spin button component window using WinDestroyWindow when finished.
The component handle that was returned when the spin button was created is the input
parameter to WinDestroyWindow. The sample code illustrated in Figure 4-2 shows an
example of how to create a spin button.

UlONG
HWND

ulSpinStyle;
hwndSpin;

I*Spi n Button style
1* Spin Buttonw; ndow handle

*1
*f

I**"'*************"'*~****"'*******************************"If********,,,*****l
/* Set the.SPBS~*stYlefla~s. ..' '.' ~/
1**/
ul SpinStyle::; SPBS MASTER I 1* Spin b.uttonhas its own *1

1* buttons, *1
1* and it only . holcis numbers * 1
!* that '. arei.rightjustified ~ * 1
/*and .. it sBinsfasterdas. *1
1* the arrows are held down *1

SPBSN\JMERICPNLY I·
SPBS:JUSTRIGBT I
SPBSFASTSPIN;

Figure 4-2 (Part 1 of 2). Sample Code for Creating a Spin Button

4-2 PM Advanced Programming Guide

/**/
/* Create the Spin Button control window. */
/* The handle of the window is returned in hwndSpin. */
/**/
hwndSpin = WinCreateWindow (

hwndClient,
WC SPINBUTTON,
(PSZ)NULL,
ulSpinStyle,

(LONG) 10,
(LONG) 10,
(LONG) 150,
(LONG) 50,
hwndClient,
HWND_TOP,
10 SPINBUTTON,
(PV01O) NULL
(PVOID) NULL);

/* Parent window handle */
/* Spin Button window class name */
/* No window text */
/* Spin Button styles variable */

/* X coordinate
/* Y coordinate
/* Window width
/* Window height
/* Owner window handle
/* Sibling window handle
/* Spin Button control window
/* No control data structure
/* No presentation parameters

*/
*/
*/
*/
*/
*/

10 */
*/
*/

/**:"**t*:*********************:************:************:******************/
/*' Set the 1 imits of theSpi'n Buttoncontrohsincei t has a style */
/* ofSPBS NUMERICONLY. */
/********;:;**/
WinSel'ldMsg (hwndSpin, /* Spin Button window handle */

SPBM SETLIMITS, /* Set 1 imits message */
(MPARAM) 1000, /* Spin Button maximum setting */
(MPARAM) 0); !*Spin Button minimum setting */

/**/
>t~Sett~~il1tt;ar value ofthe$pinButton •. '. '. . . '.'' . .'. . */

1**/
WirlSel1dM~g (hwndSpin~ /* Spi n B.uttonwindow handle */

, SPBM'SETCURRENTVALUE, /*Set curre.ntvalue message */
(MPARAM) 100, /*Spin Button initial value */
(MPARAM) NOLL) ; /*ReserVed value */

It**~*;**~***********'************~*'k***********~************************/
1*· Because 1111 items have been set,makethecontrQl'visible. */
1.'k****,***:**~i*i;**'Ir*,****r****:**i;~********:****,****,***********************1
Win$OOWWinQ9w (hwndSpin; 1* Spin Button window handle . */

T~UE) 1* Make the wlndow visible *1

Figure 4-2 (Part 2 of 2). Sample Code for Creating a Spin Button

Chapter 4. Spin Button Controls 4-3

Graphical User Interface Support for Spin Button Controls
Users can interact with the spin button using either the keyboard or a pOinting device, such
as a mouse, as follows:

• Using the select button (button 1) on the pointing device, users first give focus to the
spin field they want to change, and then click on either the Up Arrow or Down Arrow
until the value they want is displayed in the spin field.

• Using a keyboard, users press the:

- Up Arrow and Down Arrow keys to see the choices

- Left Arrow and Right Arrow keys to move the cursor left and right within a spin field

- Home and End keys to move the cursor to the first and last characters in a spin
field

- Tab and Shift+ Tab keys to move the input focus from one field to another in
multi-field spin buttons.

Users can view the values in a spin field one at a time, or they can rapidly scroll a list by
keeping either the Up or Down Arrow keys pressed. When a spin button is not read-only,
users can advance quickly to the value they want to set in a spin field by typing over the
value currently displayed.

4-4 PM Advanced Programming Guide

Related Window Messages
This section covers the window messages that are related to spin button controls.

SPBM_OVERRIDESETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUpLimit (lONG)
Upper limit.

param2

ILowLimit (lONG)
lower limit.

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

SPBM_QUERYLIMITS
This message enables an application to query the limits of a numeric spin field.

Parameters
param1

plUpLimit (PlONG)
Pointer to a LONG that will receive the returned upper limit.

param2

plLowLimit (PlONG)
Pointer to a lONG that will receive the returned lower limit.

Chapter 4. Spin Button Controls 4-5

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

SPBM_QUERYVALUE
This message causes the component to show the value in the spin field.

Parameters
param1

pStorage (PVOID)

param2

Place for returned value.

A place for the returned value. This value is either the address of a string or the
address of a long variable.

If the usBufSize is 0, param 1 is assumed to be an address of a long variable.

If param1 is Other, it is assumed to be an address of a string.

NUll Causes the spin button to process the reset or update as specified, but it
will not try to return a value to the application.

Other The address where the value is returned.

usBufSize (USHORT)
Buffer size.

If usBufSize is too small to return all of the text, the spin button returns as much of
the text as it can.

o The spin button assumes that param1 is the address of a long variable. If
the data in the spin button is spinning between an upper and lower limit,
the current value is passed· back in the variable.

If the data in the spin button is in an array, the index of the current array
value (or last valid value) is passed back in the variable.

Other The spin button assumes that param1 is the address of a string. The
information passed back in the string is dependent upon the flags in the
usValue parameter.

4-6 PM Advanced Programming Guide

usValue (USHORT)
Update/reset value.

Controls how the spin field is updated.

SPBQ_UPDATEIFVALID Update the contents of the spin field if the value is valid.
This is the default.

Specifying this flag on a query will not update the
contents of the spin field if it is exactly the same as an
item in the spin button list.

If an item in the list is Monday, specifying
SPBQ_UPDATEIFVALID updates the spin field contents
when MONDAY, monday, or mONDAY are typed, but
not when Monday is typed. This prevents recursion if
the application checks for the validity each time a
SPBN_CHANGE message is sent from the component.

SPBQ_AlWAYSUPDATE Update the contents of the spin field if the value is valid.
Reset the contents of the spin field to the last valid
value if the field contains data that is not valid.

If the spin button is spinning numbers between an upper
and a lower limit, and the content of the spin field is a
valid number that is out of range, the spin button does
not reset itself to the last valid value. It sets the current
position at the upper limit when the out-of-range number
specified is above the upper limit. It sets the current
position at the lower limit when the out-of-range number
is below the lower limit.

When the current value is changed, the return of the
query message is still FALSE.

SPBQ_DONOTUPDATE Do not update the contents of the spin field, even if the
value is valid.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

Chapter 4. Spin Button Controls 4-7

SPBM SETARRAY
This message causes the component to set or reset the array of data.

Parameters
param1

pStrl (PSZ)
Pointer to the new array of values.

param2

usltems (USHORT)
Number of items in the array.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

SPBM_SETCURRENTVALUE
This message causes the component to set or reset the current numeric value or array
index.

Parameters
param1

IValue (lONG)
Array value or index.

Current value or index of array.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

4-8 PM Advanced Programming Guide

SPBM SETLIMITS
This message causes the component to set or reset numeric limits.

Parameters
param1

IUpLimit (lONG)
Upper limit.

param2

ILowLimit (lONG)
lower limit.

rc (Baal)
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

SPBM_SETMASTER
This message causes the component to identify its master.

Parameters
param1

hwnd (HWNO)
Handle of master component.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (Baal)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 4. Spin Button Controls 4-9

SPBM_SETTEXTLIMIT
This message sets the maximum number of characters allowed in a spin field.

Parameters
param1

usLimit (USHORT)
Character limit.

Number of characters to allow.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

SPBM_SPINDOWN
This message causes the component to show the previous value (spin backward).

Parameters
param1

ulltem (UlONG)
Number of values to spin down.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

4-10 PM Advanced Programming Guide

SPBM_SPINUP
This message causes the component to show the next value (spin forward).

Parameters
param1

ulltem (UlONG)
Number of values to spin up.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 4. Spin Button Controls 4-11

Related Notification Message
This section covers the notification message that is related to spin button controls.

WM_CONTROL (in Spin Button Controls)
For the cause of this message, see "WM_CONTROL" on page 5-15.

Parameters
param1

id (USHORT)
Identity of the spin button component window.

notifycode (USHORT)

param2

Notification code.

SPBN UPARROW Tells the application that the Up Arrow was clicked on, or
the Up Arrow key was pressed.

SPBN DOWNARROW Tells the application that the Down Arrow was clicked on,
or the Down Arrow key was pressed.

SPBN SETFOCUS Tells the application which spin field was selected.

SPBN KILLFOCUS Tells the application when the spin field loses focus.

SPBN ENDSPIN Tells the application that the user released the select
button or one of the arrow keys while spinning a button.

SPBN_CHANGE Tells the application that the contents of the spin field
changed.

hwnd (HWND)
Window handle.

The interpretation of this handle is dependent upon the following notification codes:

• SPBN_UPARROW, SPBN_DOWNARROW, and SPBN_ENDSPIN.

The param2 parameter is the handle to the currently selected spin field in a
particular master-servant setup. If either the Up or Down Arrow is clicked on
and none of a spin button's servants are currently selected, the master will
return a handle to itself.

• SPBN _ SETFOCUS

The param2 parameter is the handle of the currently selected spin field.

This message tells the application which spin field is selected.

4-12 PM Advanced Programming Guide

• SPBN_KILLFOCUS

The param2 parameter is NULLHANDLE if the spin field loses focus or no spin
field is currently selected.

This message tells the application when a spin field loses focus.

Note: Both SPBN_KILLFOCUS and SPBN_SETFOCUS are set independently.
You must check this message only when the application does not
specify a master-servant relationship.

• SPBN CHANGE

The param2 parameter is the handle of the spin button in which the spin field
text changed.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 4. Spin Button Controls 4-13

Related Data Structure
This section covers the data structure that is related to spin button controls.

SPBCDATA
Spin Button control data structure.

Syntax

typedef struct SPBCDATA {
ULONG cbsize;
ULONG ul TextLimi tj
LONG 1 LowerL i.mi t;
LONG 1 UpperL imi t;
ULONG idMasterSpb;
PVOID pHWXCtlData;
} SPBCDATA;

The SPBCDATA structure is used in WinCreateWindow's pCt/Data parameter.

When using this structure the SPBM_SETLIMITS, SPBM_SETTEXTLIMIT, and
SPBM_SETMASTER messages do not need to be specified.

• u/TextLimit and /LowerLimitreplace SPBM_SETLIMITS.
• /UpperLimit replaces SPBfV1_SETTEXTLIMIT.
• idMasterSpb replaces SPBM_SETMASTER.

Fields
cbSize (ULONG)

Size of control block.

ulTextLimit (ULONG)
Entryfield text limit.

ILowerLimit (LONG)
Spin lower limit (numeric only).

IUpperLimit (LONG)
Spin upper limit (numeric only).

idMasterSpb (ULONG)
ID of the servant's master spinbutton.

pHWXCtlData (PVOID)
Reserved for Pen Ct/Data.

4-14 PM Advanced Programming Guide

Summary
Following are tables that describe the OS/2 window messages, notification message,
notification codes, and data structure used with spin button controls:

Table 4-1. Spin Button Control Window Messages

Message Name

SPBM_ OVERRIDESETLIMITS

SPBM_ QUERYLIMITS

SPBM_QUERYVALUE

SPBM_SETARRAY

SPBM_SETCURRENTVALUE

SPBM_SETLIMITS

SPBM_SETMASTER

SPBM_SETTEXTLIMIT

SPBM_SPINDOWN

Description

Causes the component to set or reset numeric limits.

Enables an application to query the limits of a numeric
spin field.

Causes the component to show the value in the spin field.

Causes the component to set or reset the array of data.

Causes the component to set or reset the current numeric
value or array index.

Causes the component to set or reset numeric limits.

Causes the component to identify its master.

Sets the maximum number of characters allowed in a spin
field.

Causes the component to show the previous value (spin
backward).

Causes the component to show the next value (spin
forward).

Table 4-2. Spin Button Control Notification Message

Message Name Description

WM_CONTROL Occurs when the spin button control has a significant
event to notify to its owner.

Table 4-3. Spin Button Control Notification Codes

Code Name Description

SPBN_CHANGE Sent when the contents of the spin field change.

SPBN_DOWNARROW Sent when the Down Arrow button is clicked on or the
Down Arrow key is pressed.

SPBN_ENDSPIN Sent when the user releases the select button or one of
the arrow keys while spinning a button.

SPBN_KILLFOCUS Sent when the spin field loses the focus.

SPBN_SETFOCUS Sent when the spin field is selected.

SPBN_UPARROW Sent when the Up Arrow button is clicked on or the Up
Arrow key is pressed.

Chapter 4. Spin Button Controls 4-15

Table 4-4. Spin Button Control Data Structure

Data Structure Name Description

SPBCDATA Spin button data structure.

4-16 PM f-dvanced Programming Guide

Chapter 5. Static Controls

A static control is a simple text field, bit map, or icon that an application can use to label,
enclose, or separate other control windows. This chapter describes how to create and use
static controls in PM applications.

About Static Controls
Unlike the other types of control windows, a static control does not accept user input or send
notification messages to its owner. The primary advantage of a static control is that it
provides a label or graphic that requires little attention from an application. At most, an
application might change the text or position of a static control.

Keyboard Focus
A static control never accepts the keyboard focus. When a static control receives a
WM_SETFOCUS message, or when a user clicks the static control, the system advances the
focus to the next sibling window that is not a static control. If the control has no siblings, the
system gives the focus to the owner of the static control.

Static Control Handle
Every static control is associated with a 32-bit data field. A static control with the
SS_BITMAP or SS_ICON style uses this field to store the handle of the bit map or icon that
it displays. An application can obtain that handle by sending the SM_QUERYHANDLE
message to the control. An application can replace the bit map or icon by sending the
SM_SETHANDLE message to the control, specifying a valid icon or bit map handle.
Changing the handle causes the system to redraw the control.

For a non-icon or non-bit map static control, the data field is available for application-defined
data and has no effect on the appearance of the control.

An application can retrieve the data field of a static control window by calling
WinWindowFromlD, using the handle of the owner and the window identifier of the static
control. The static control window identifier is specified in either the dialog-window template
or WinCreateWindow.

Static Control Styles
A static control has style bits that determine whether the control displays text, draws a simple
box containing text, displays an icon or a bit map, or shows a framed or unframed colored
box. Applications can specify a combination of the styles listed in Table 5-1 on page 5-2 for
a static control.

© Copyright IBM Corp. 1994 5-1

Table 5-1. Static Control Styles

Style Name

SS_BKGNDFRAME

SS_BKGNDRECT

SS_FGNDFRAME

SS_FGNDRECT

SS_GROUPBOX

SS_HALFTONEFRAME

SS_HALFTONERECT

SS_ICON

SS_SYSICON

SS_TEXT

Description

Draws a bit map. The bit map resource must be provided
in the resource-definition file. To include the bit map in a
dialog window, the resource identifier must be specified in
the text parameter of the CONTROL statement in the
resource definition file. To include the bit map in a
non-dialog window, the ASCII representation of the
identifier must be specified in the pszName parameter of
WinCreateWindow, that is, the first byte of the pszName
parameter must be the cross-hatch character (#), and the
remaining text must be the ASCII representation of the
identifier, for example, #125.

Creates a box whose frame has the background color.

Creates a rectangle filled with the background color.

Creates a box whose frame has the foreground color.

Creates a rectangle filled with the foreground color.

Creates a box whose upper-right corner contains control
text. This style is useful for enclosing groups of radio
buttons or check boxes in a box.

Creates a box whose frame has halftone shading.

Creates a box filled with halftone shading.

Draws an icon. The resource identifier for the icon
resource is determined the same way as the SS _BITMAP
style. The icon resource must be in the
resource-definition file.

Draws a system-pointer icon. The resource identifier for
the system-pointer resource is determined the same way
as the SS_BITMAP style. To display this system pointer,
the system calls WinQuerySysPointer with the specified
identifier.

Creates a box with formatted text. An application can
combine various formatting options with this style to
produce formatted text in the boundaries of the control.
The formatting flags are the same as those used for
Win DrawText.

Default Static Control Performance
The messages specifically handled by the predefined static control class (We_STATIC) are
listed in Table 5-2 on page 5-3.

5-2 PM Advanced Programming Guide

Table 5-2. Static Control Messages Handled by the WC_STATIC Class

Message Name

SM_QUERYHANDLE

SM_SETHANDLE

WM_ADJUSTWINDOWPOS

WM_MATCHMNEMONIC

WM_MOUSEMOVE

WM_PAINT

WM_ QUERYDLGCODE

WM_QUERYWINDOWPARAMS

WM_SETFOCUS

WM_SETWINDOWPARAMS

Description

Returns the handle associated with the static control
window.

Sets the handle associated with the static control and
invalidates the control window, forcing it to be redrawn.

Adjusts the SWP data structure so that the new window
size matches the bit map, icon, or system-pointer
dimensions associated with the static control.

Sets the text for a static-text control. Loads the bit map or
icon resource for the bit map or icon static control.
Returns TRUE if the resource cannot be loaded.

Frees the text for a static-text control. Destroys the bit
map or icon for a bit map or icon static control. The icon
for a system-pointer static control is not destroyed
because it belongs to the system.

Invalidates the entire static control window, forcing it to be
redrawn.

Returns the value HT _TRANSPARENT for the following
static-control styles:

• SS_BKGNDFRAME
• SS_BKGNDRECT
• SS_FGNDFRAME
• SS_FGNDRECT
• SS_GROUPBOX
• SS_HALFTONEFRAME
• SS_HALFTONERECT.

For other styles, this message returns the result of
WinDefWindowProc.

Returns TRUE if the mnemonic passed in the mpl
parameter matches the mnemonic in the control-window
text.

Sets the mouse pointer to the arrow pointer and returns
TRUE.

Draws the static control based on its style attributes.

Returns the predefined constant DLGC_STATIC.

Returns the requested window parameters.

Sets the focus to the next sibling window that can accept
the focus; or if no such sibling exists, sets the focus to the
parent window.

Allows the text to be set (static-text controls only).

Chapter 5. Static Controls 5-3

Using Static Controls
This section explains how to perform the following tasks:

• Include a static control in a dialog window
• Include a static control in a client window.

Including a Static Control in a Dialog Window
To include a static control in a dialog window, you must define the control in a dialog-window
template in a resource-definition file. The resource-definition file illustrated in Figure 5-1
creates a dialog window that contains a static-text control and three static-icon controls.

DLGTEMPLATEIDD_TOOLDLG LOADONCALLMOVEABLE
BEGIN

DIALOG 11,11,

BEGIN

IDO_TOOLOLG,
114~ 53, 161, 127,

, FS_NOBYTEALIGN
FS-,OLGBOROER
WS-,VISIBLE
WS_SAVEBITS

CTE,XT IISelect a tool",
IDS TEXT,

.49, -110, 56,8,
SS .. JEXT I
OT_CENTER'I
OT_TOP I
WSGROUP I
WS_VISIBLE

AUTORAOIOBUTTON"Pa i ntbr!J~h",
,. IDB_BRUSH~

63,< 87,61, :1O,
WS_JABSTOP I
WS_GROUP I
WS~VISIBLE

Figure 5-1 (Part 1 of 3). Sample Code Using a Static Control in a Dialog Window

5-4 PM Advanced Programming Guide

AUTORADIOBUTTON IISc;ssorsll,
IDB ... SCISSORS,
63,64,69, 19,
WS.;}ABSTOP I
WS_VISIBLE

AUTORADIOBUTTON IIEraser ll
,

IDB_ERASER,
65,39~ 43, 19,
WS_TABSTOP I
WS_YISIBLE

ICON> IDI~BRUSH,
IDI BRUSHICON,
33,-84, 22, 16,
WS_GROUP I
WS_VISIBLE

ICON WI_SCISSORS,
IDJ~SCISSORSICON,
33,69, 22, .16,
W~LGR()UP··I
WS_VISIBLE

ICON IDI_ERASER,
IDI_ERASERICON,
33, 36, 22, 16,
WS:...GROUpl
WS;...VISIBLE

PUSHBUTTON 1I0KII
,

DID OK,
19,12,38, 13,

WS .3. A. B. S1"O. P .. /. WS GROUP
WS_VlSIBLE

Figure 5-1 (Part 2 of 3). Sample Code Using a Static Control in a Dialog Window

Chapter 5. Static Controls 5-5

END
END

Figure 5-1 (Part 3 0(3). Sample Code Using a Static Control in a Dialog Window

Including a Static Control in a Client Window
An application can include a static control in a non-dialog window by calling
WinCreateWindow with the window class WC _STATIC. The flStyle parameter to
WinCreateWindow defines the appearance of the control.

The sample code illustrated in Figure 5-2 on page 5-7 creates a static-text control whose
size and position are based on the size of the client window and the metrics for the current
font.

5-6 PM Advanced Programming Guide

#define lD_TITLES

HWND hWnd,hwndStatic,hwndClient;
HPS hps;
RECTL rcl;
FONTMETRlCS fm;
ULONG ulTitl eLen;
CHAR -szTitle[]= "Static TextControls";

1* Obtain the size of the c1 ient window */
WinQueryWindowRect(hwnd, &rcl);

/* Obtain a pres-entation space handle and */
/* the metric$ for the current font */
hps :; WinBeginPaint(hwnd, (HPS) NULL, (PRECTL) NULL);
GpiQueryFontMetrics(hps, sizeof(FONTMETRICS), &fm);

/* Obtain the size of the static control text string */
ul Ti tl eLen = (ULONG) strl en(szTitl e);

1*~Createthestaticcontrol. Base the size and _ */
/* position on the size of the client window and */
/* themetrics of the current font. */

hwndStatic = WinCreateWindow(
hwndClient,
WC STATIC,
szTitle,
WSVISIBLE
SS-rEXT.
DT:VCENTER
DT_CENTER,

/* Parent window
/*Window class
/* Window text
/* M~keit visible
/~ Static-texttontrol
/* Center text vert.
!*Center text hori z ~

Figure 5-2 (Part 1 of 2). Sample Code Using a Static Control in a Client Window

Chapter 5. Static Controls 5-7

Figure 5-2 (Part 2 of 2). Sample Code Using a Static Control in a Client Window

If your application creates a static control with the 88JCON or 88_BITMAP style, make sure
that the resource identifier specified in the pszName parameter corresponds to an icon or a
bit map resource in the resource-definition file. If there is no resource, the application cannot
create the static control.

5-8 PM Advanced Programming Guide

Related Functions
This section covers the functions that are related to static controls.

WinQuerySysPointer
This function returns the system-pointer handle.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinQuerySysPointer (HWND hwndDeskTop, lONG IIdentifier,
BOOl fCopy)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

IIdentifier (LONG) - input
System-pointer identifier.

SPTR_ARROW
SPTR_TEXT
SPTR WAIT
SPTR SIZE
SPTR MOVE
SPTR SIZENWSE
SPTR_SIZENESW
SPTR_SIZEWE
SPTR _ SIZENS
SPTR_APPICON
SPTR-,CONINFORMATION
SPTR-,CONQUESICON
SPTR_ICONERROR
SPTR ICONWARNING
SPTR -' LLEGAL
SPTR_FILE
SPTR_MULTFILE
SPTR_FOLDER
SPTR_PROGRAM

Arrow pointer
Text I-beam pointer
Hourglass pointer
Size pointer
Move pointer
Downward-sloping, double-headed arrow pointer
Upward-sloping, double-headed arrow pointer
Horizontal, double-headed arrow pointer
Vertical, double-headed arrow pointer
Standard application icon pOinter
Information icon pointer
Question mark icon pointer
Exclamation mark icon pointer
Warning icon pointer
Illegal operation icon pointer
Single file icon pointer
Multiple files icon pointer
Folder icon pointer
Application program icon pointer

Chapter 5. Static Controls 5-9

fCopy (BOOl) - input
Copy indicator.

TRUE Create a copy of the default system pointer and return its handle. Specify this
value if the system pointer is to be modified. The application should destroy
the copy of the pOinter created. This can be done by using the
WinDestroyPointer function.

FALSE Return the handle of the current system pointer.

Returns
hptrPointer (HPOINTER) - returns

Pointer handle.

WinSetWindowPos
This function allows the general positioning of a window.

Note: Messages may be received from other processes or threads during the processing of
this function.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowPos (HWND hwnd, HWND hwndlnsertBehind, lONG x,
lONG y, lONG ex, lONG ey, UlONG fl)

Parameters
hwnd (HWND) - input

Window handle.

hwndlnsertBehind (HWND) - input
Relative window-placement order.

HWND_TOP
HWND _BOTTOM
Other

x (lONG) - input

Place hwnd on top of all siblings
Place hwnd behind all siblings
Identifies the sibling window behind which hwnd is to be placed.

Window position, x-coordinate.

y (lONG) - input
Window position, y-coordinate.

5-10 PM Advanced Programming Guide

ex (LONG) - input
Window size.

ey (LONG) - input
Window size.

fl (ULONG) - input
Window-positioning options.

SWP_SIZE

SWP MOVE

SWP ZORDER

SWP SHOW

SWP HIDE

SWP NOREDRAW

SWP NOADJUST

SWP ACTIVATE

Change the window size.

Change the window x,y position.

Change the relative window placement.

Show the window.

Hide the window.

Changes are not redrawn.

Do not send a WM_ADJUSTWINDOWPOS message before
moving or sizing.

Activate the hwnd window if it is a frame window. This indicator
has no effect on other windows.

The frame window is made the topmost window, unless
SWP _ZORDER is specified also in which instance the
hwndlnsertBehind window is used.

SWP _DEACTIVATE Deactivate the hwnd window if it is a frame window. This

SWP _MINIMIZE

SWP MAXIMIZE

indicator has no effect on other windows.

The frame window is made the bottommost window, unless
SWP _ZORDER is specified, in which instance the
hwndlnsertBehind window is used.

Minimize the window. This indicator has no effect if the window
is in a minimized state, and is also mutually exclusive with
SWP _MAXIMIZE and SWP _RESTORE.

Maximize the window. This indicator has no effect if the window
is in a maximized state, and is also mutually exclusive with
SWP _MINIMIZE and SWP _RESTORE.

Chapter 5. Static Controls 5-11

SWP _RESTORE

Returns
rc (BOOl) - returns

Repositioning indicator.

Restore the window. This indicator has no effect if the window is
in its normal state, and is also mutually exclusive with
SWP _MINIMIZE andSWP _MAXIMIZE.

The position and size of the window in its normal state is
remembered in its window words when it is first maximized or
minimized, although these values can be altered by use of the
WinSetWindowUShort function.

The window is restored to the position and size remembered in
its window words, unless the SWP _MOVE or SWP _SIZE
indicators are set. These indicators cause the position and size
values specified in this function to be used.

TRUE
FALSE

Window successfully repositioned
Window not successfully repositioned.

WinSetWindowText
This function sets the window text for a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowText (HWND hwnd, PSZ pszString)

Parameters
hwnd (HWND) - input

Window handle.

pszString (PSZ) - input
Window text.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Te.xt updated
Error occurred.

5-12 PM Advanced Programming Guide

WinWindowFromlD
This function returns the handle of the child window with the specified identity.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinWindowFromlD (HWND hwndParent, ULONG id)

Parameters
hwndParent (HWND) - input

Parent-window handle.

id (ULONG) - input
Identity of the child window.

Returns
hwnd (HWND) - returns

Window handle.

NULLHANDLE No child window of the specified identity exists
Other Child-window handle.

Chapter 5. Static Controls 5-13

Related Window Messages
This section covers the window messages that are related to static controls.

SM_QUERYHANDLE
This message returns the icon or bit-map handle of a static control.

Parameters
param1

ulReserved (ULONG)
ReseNed value, should be O.

param2

ulReserved (ULONG)
ReseNed value, should be O.

Returns
hbmHandle (HBITMAP)

Icon or bit-map handle of the static control.

NULLHANDLE No icon or bit-map handle of the static control exists, or an error
occurred.

Other Icon or bit-map handle of the static control.

SM_SETHANDLE
This message sets the icon or bit-map handle of a static control.

Parameters
param1

hbmHandle (HBITMAP)

param2

Icon or bit-map handle of a static control.

This is an icon handle when sent to a control with a style of SS-,CON or
88_8Y8ICON, and a bit-map handle when sent to a control with a style of
S8 BITMAP.

ulReserved (ULONG)
ReseNed value, should be O.

5-14 PM Advanced Programming Guide

Returns
hbmHandle (HBITMAP)

Icon or bit-map handle of the static control.

NULLHANDLE No icon or bit-map handle of the static control exists, or an error
occurred.

Other Icon or bit-map handle of the static control.

WM CONTROL
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

id (U8HORT)
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity of an
item in a dialog template.

usnotifycode (U8HORT)
Notify code.

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of the control.
For details, refer to the section describing that control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 5. Static Controls 5-15

WM MATCHMNEMONIC
This message is sent by the dialog box to a control winddw to determine whether a typed
character matches a mnemonic in its window text.

Parameters
param1

usmatch (USHORT)
Match character.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Match indicator.

TRUE Mnemonic found
FALSE Mnemonic not found, or an error occurred.

WM PRESPARAMCHANGED
This message is sent when a presentation parameter is set or removed dynamically from a
window instance using the WinSetPresParam or WinRemovePresParam functions. It is also
sent to all windows owned by the window whose presentation parameter was changed.

Parameters
param1

idAttrType (UlONG)
Presentation parameter attribute identity.

param2

ulReserved· (UlONG)
Reserved value, should be O.

Returns
ulReserved (UlONG)

Reserved value, should be O.

5-16 PM Advanced Programming Guide

WM_QUERYCONVERTPOS
This message is sent by an application to determine whether it is appropriate to begin
conversion of OBCS characters.

Parameters
param1

pCursorPos (PRECTL)
Cursor position.

If usCode = QCP _CONVERT, pCursorPos should be updated to contain the position
of the cursor in the window receiving this message. The position is specified as a
rectangle in screen coordinates.

If usCode = QCP _NOCONVERT, pCursorPos should not be updated.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usCode (USHORT)

Conversion code.

QCP _CONVERT Conversion may be performed for the window with the input
focus, pCursorPos has been updated to contain the position of
the cursor.

QCP _NOCONVERT Conversion should not be performed, the window with the input
focus cannot receive OBCS characters, pCursorPos has not
been updated.

Chapter 5. Static Controls 5-17

Summary
Following are tables that describe the functions and window messages used with static
controls:

Table 5-3. Static Control Functions

Function Name Description

WinQuerySysPointer Returns the system pointer handle.

WinSetWindowPos Allows the general positioning of a window.

WinSetWindowText Sets the window text for a specified window.

WinWindowFromlD Returns the handle of the child window with the specified
identity.

Table 5-4. Static Control Window Messages

Message Name Description

SM_QUERYHANDLE Returns the icon or bit map handle of a static control.

SM_SETHANDLE Sets the icon or bit map handle of a static control.

WM_CONTROL Occurs when a control has a significant event to notify to
its owner.

WM_MATCHMNEMONIC Sent by the dialog box to a control window to determine
whether a typed character matches a mnemonic in its
window text.

WM_PRESPARAMCHANGED Sent when a presentation parameter is set or removed
dynamically from a window instance using the
WinSetPresParam or WinRemovePresParam functions.
is also sent to all windows owned by the window whose
presentation parameter was changed.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of OBCS characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the static control
window procedure window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the static
control window procedure window parameters.

5-18 PM Advanced Programming Guide

It

Chapter 6. Slider Controls

A slider control is a visual component that displays a range of values and allows a user to
set, display, or modify a value by moving a slider arm. There are two types of sliders:

• The linear slider is represented as a shaft along which the slider arm can be moved by
the user to set a value.

• The circular slider is represented as a dial with the slider arm shown as the radius of the
dial.

This chapter explains how to use each of these slider controls in PM applications.

About Slider Controls
This section covers linear and circular slider controls. Linear sliders are used to set values
that have familiar increments. Circular sliders, although different in appearance from linear
sliders, provide much the same function. Both types of sliders can be used in a window to
create a user interface.

Linear Sliders
Typically, linear sliders are used to easily set values that have familiar increments, such as
feet, inches, degrees, and decibels. They also can be used for other purposes when
immediate feedback is required, such as blending colors or showing a task's percentage of
completion. For example, an application might let a user mix and match color shades by
moving a slider arm, or a read-only slider could show how much of a task is complete by
filling in the slider shaft as the task progresses. These are just a few examples of the ways
in which sliders can be used. Figure 6-1 shows an example of a slider used to set a decibel
value.

Decibel Range

Detent------.
o 10 20 30 40 50

Tick Mark---~...~W.~"W~www ... Lr..M~--- Slider Buttons

Slider Arm Slider Shaft

Figure 6-1. Linear Slider Example

The slider arm shows the value currently set by its position on the slider shaft. The user
selects slider values by changing the location of the slider arm.

© Copyright IBM Corp. 1994 6-1

A tick mark indicates an incremental value in a slider scale. A detent, which is similar to a
tick mark, also represents a value on the scale. However,a detent can be placed anywhere
along the slider scale, rather than only in specific increments, and can be selected.

The appearance of a slider and the user interaction with a slider are similar to that of a scroll
bar. However, these two controls are not interchangeable because each has a unique
purpose. A scroll bar scrolls information into view that is outside a window's work area, while
the slider is used to set, display, or modify that information, whether it is in or out of the work
area.

Although linear sliders usually use values that have familiar increments, text also can be
used. However, if the text is too long it can overlap the text displayed on the next tick mark
or detent. Also, if the text on the far edge markers is too long, some of the text will not be
displayed on screen. To prevent this use one of the following:

• Smaller font
• Shorter text values
• Static controls.

The slider can be customized to meet varying application requirements, while providing a
user interface component that can be used easily to develop products that conform to the
Systems Application Architecture (SAA) Common User Access (CUA) user interface
guidelines. The application can specify different scales, sizes, and orientations for its sliders,
but the underlying function of the control remains the same. For a complete description of
CUA sliders, refer to the SAA CUA Guide to User Interface Design and the SAA CUA
Advanced Interface Design Reference.

Linear Slider Styles
Slider control styles are set when a slider window is created. Table 6-1 describes linear
slider control styles. If no styles are specified, defaults are used as indicated in the table.

Table 6-1 (Page 1 of 3). Linear Slider Control Styles

Style Name

SLS_BUTTONSBOTTOM

SLS _BUTTONSLEFT

SLS_BUTTONSRIGHT

6-2 PM Advanced Programming Guide

Description

Positions the slider at the bottom of the slider window.
Valid only for horizontal sliders.

Specifies that the optional slider buttons are to be used
and places them at the bottom of the slider shaft. The
buttons move the slider arm by one position, up or down,
in the direction selected. Valid only for vertical sliders.

Specifies that the optional slider buttons are to be used
and places them to the left of the slider shaft. The
buttons move the slider arm by one position, left or right,
in the direction selected. Valid only for horizontal sliders.

Specifies that the optional slider buttons are to be used
and places them to the right of the slider shaft. The
buttons move the slider arm by one position, left or right,
in the direction selected. Valid only for horizontal sliders.

Table 6-1 (Page 2 of 3). Linear Slider Control Styles

Style Name

SLS_BUTTONSTOP

SLS_HOMEBOTTOM

SLS_HOMERIGHT

SLS_HORIZONTAL

SLS_OWNERDRAW

SLS_PRIMARYSCALE2

SLS_RIBBONSTRIP

Description

Specifies that the optional slider buttons are to be used
'and places them at the top of the slider shaft. The
buttons move the slider arm by one position, up or down,
in the direction selected. Valid only for vertical sliders.

Centers the slider within the slider window. This is the
default position of the slider.

Specifies the slider arm's home position. The bottom of
the slider is used as the base value for incrementing.
Valid only for vertical sliders.

Specifies the slider arm's home position. The left edge is
used as the base value for incrementing. This is the
default for horizontal sliders and is valid only for horizontal
sliders.

Specifies the slider arm's home position. The right edge
is used as the base value for incrementing. Valid only for
horizontal sliders.

Specifies the slider arm's home position. The top of the
slider is used as the base value for incrementing. Valid
only for vertical sliders.

Positions the slider horizontally. The slider arm can move
left and right on the slider shaft. A scale can be placed
on top of the slider shaft, below the slider shaft, or in both
places. This is the default orientation of the slider.

Positions the slider at the left edge of the slider window.
Valid only for vertical sliders.

Notifies the application whenever the slider shaft, the
ribbon strip, the slider arm, and the slider background are
to be drawn.

Determines the location of the scale on the slider shaft by
using increment and spacing specified for scale 1 as the
incremental value for positioning the slider arm. Scale 1
is displayed above the slider shaft of a horizontal slider
and to the right of the slider shaft of a vertical slider. This
is the default for a slider.

Determines the location of the scale on the slider shaft by
using increment and spacing specified for scale 2 as the
incremental value for positioning the slider arm. Scale 2
is displayed below the slider shaft of a horizontal slider
and to the left of the slider shaft of a vertical slider.

Creates a read-only slider, which presents information to
the user but allows no interaction with the user.

Fills, as the slider arm moves, the slider shaft between
the home position and the slider arm with a color value
different from slider shaft color, similar to mercury in a
thermometer.

Chapter 6. Slider Controls 6-3

Table 6-1 (Page 3 of 3): Linear Slider Control Styles

Style Name Description

SLS_RIGHT Positions the slider at the right edge of the slider window.
Valid only for vertical sliders.

SLS_SNAPTOINCREMENT Causes the slider arm, when positioned between two
values, to be positioned to the nearest value and redrawn
at that position.

SLS_TOP Positions the slider at the top of the slider window. Valid
only for horizontal sliders.

SLS_ VERTICAL Positions the slider vertically. The slider arm can move
up and down the slider shaft. A scale can be placed on
the left side of the slider shaft, on the right side of the
slider shaft, or in both places.

More on Linear Slider Styles
This section summarizes information in the table and provides additional information on some
of the styles.

Slider Orientation
The slider's orientation is determined by specifying SLS_HORIZONTAL or SLS_ VERTICAL.
The default orientation is horizontal, with the slider arm moving left and right on the shaft.

Slider Positioning
The slider's positioning within the slider window is determined by specifying SLS _CENTER,
SLS_BOTTOM, SLS_TOP, SLS_LEFT, or SLS_RIGHT. The default positioning is centered
in the slider window.

Slider Scale Location
The location of the scale on the slider shaft is determined by specifying
SLS_PRIMARYSCALE1 or SLS_PRIMARYSCALE2. The default is to use the increment and
spacing specified for scale 1 as the incremental value for positioning the slider arm. Scale 1
is displayed above the slider shaft of a horizontal slider and to the right of the slider shaft of
a vertical slider.

Slider Arm Home Position
The slider arm's home position is determined by specifying SLS_HOMELEFT,
SLS_HOMERIGHT, SLS_HOMEBOTTOM, or SLS_HOMETOP. The default is
SLS_HOMELEFT for horizontal sliders and SLS_HOMEBOTTOM for vertical sliders.

Slider Buttons Location
The location of the slider buttons, if used, is determined by specifying SLS_BUTTONSLEFT,
SLS_BUTTONSRIGHT, SLS_BUTTONSBOTTOM, or SLS_BUTTONSTOP. If you do not
specify one of these styles, or if conflicting styles are specified, slider buttons are not
included in the slider control.

6-4 PM Advanced Programming Guide

Other Styles
If SLS_SNAPTOINCREMENT is specified and the slider arm is moved to a position between
two values on the slider scale, it is positioned on the nearest value and redrawn at that
position. If this style is not specified, the slider arm remains at the position to which it is
moved.

SLS_READONLY creates a read-only slider. This means the user cannot interact with the
slider. It is simply used as to present a quantity to the user, such as the percentage of
completion of an ongoing task. Visual differences for a read-only slider include a narrow
slider arm, no slider buttons, and no detents.

The SLS_RIBBONSTRIP style allows movement of the slider arm to cause the slider shaft
between home position and the slider arm to be filled with a color value that is different from
the slider shaft color, similar to mercury in a thermometer.

If SLS_OWNERDRAW is specified, the application is notified whenever the slider shaft, the
ribbon strip, the slider arm, and the slider background are to be drawn.

Circular Sliders
The circular slider, although different in appearance from the linear slider, provides much the
same function. The circular slider control provides an analog user interface and emulates
the controls of stereo and video equipment. Because the circular slider takes up less space
on the screen, it may be more practical to use in cases where you might want to have
several controls in the same window. You may want to use both types of sliders in a window
to create a user interface that makes good use of available space and proviges a familiar
appearance to the user. Figure 6-2 shows an example of a circular slider used to set the
volume.

Tick Mark Slider Arm

Slider Buttons Dial Value

Figure 6-2. Circular Slider Example

The slider arm shows the value currently set by its position on the slider dial. Figure 6-2
shows the slider arm as the radius on the dial. The slider arm can also be represented as a
small circular thumb on the dial rather than a line. The user selects slider values by
changing the location of the slider arm on the dial. Outside the perimeter of the dial is a
circular scale with tick marks representing incremental values the slider arm can point to. Its
values can be tracked by pointing to any area on the dial and pressing the select button
while moving the mouse on the desktop.

Chapter 6. Slider Controls 6-5

The circular slider can have a set of buttons, one to the left and the other to the right of the
scroll range, similar to the buttons found on the linear slider, that can be used to modify the
value shown on the slider.

The minus sign on the left button and plus sign on the right button can be replaced with
other symbols. For example, you might want to use a left arrow and a right arrow instead of
the minus and plus signs.

Another option of the circular slider is to have a window, in the center of the dial, that
displays the value of the dial in scrollable numeric text.

The appearance and functionality of the circular slider are controlled by the circular slider
control styles specified. These style bits are summarized in the section that follows.

Circular Slider Styles
Circular slider control style bits control the appearance and behavior of the slider. Table 6-2
describes circular slider control styles.

Table 6-2. Circular Slider Control Styles

Style Name

CSS_CIRCULARVALUE

CSS_MIDPOINT

CSS_NOBUTTON

CSS_NONUMBER

CSS_NOTEXT

CSS_POINTSELECT

CSS_PROPORTIONALTICKS

More on Circular Slider Styles

Description

Extends the scroll range of the dial to 360 degrees.
When this style is set, CSS_NONUMBER and
CSS_NOBUTTON styles automatically are set.

Draws a circular thumb, rather than a line, for the value
indicator.

Enlarges the mid-point and end-point tick marks.

Prevents the display of the + and - value buttons.

Prevents the display of a scrollable numeric value on the
dial indicating the dial's value.

Prevents the display of a window title beneath the dial.

Enables tracking of the dial's value with the mouse.

Enables the length of the tick marks to be calculated as a
percentage of the dial's radius.

This section provides information on some of the styles.

Circular Slider Buttons
The circular slider has a set of buttons, one to the left and the other to the right of the scroll
range. These buttons are similar to the buttons found on the linear slider. When selected,
they modify the value of the circular slider in oppOSing ways. If you decide you do not want
to display these buttons as part of your circular slider, specify the style CSS_NOBUTTON.

The bit maps that show a minus sign (-) on the left button and a plus sign (+) on the right
button can be replaced. For example, you might want to use a left arrow (--) and a right
arrow (-). To set the bit map data for the replacement bit maps, the owner window must

6-6 PM Advanced Programming Guide

send the CSM _ SETBITMAPDATA control message. The optimal size for the button bit maps
is 10xtO pels.

Window Title
Centered beneath the dial of the circular slider is a rectangular text field that contains the title
of the window. To prevent the display of this feature, specify CSS_NOTEXT.

Dial Value Window
Another option of the circular slider is a window, in the center of the dial, that displays the
value of the dial in scrollable numeric text. To prevent the display of this window, specify
CSS_NONUMBER.

360-Degree Scale
You can choose a scale of 360 degrees for your slider with CSS_360. Setting this style
causes the CSS_NOBUTTON and CSS_NONUMBER styles to be set automatically. The
CSS_NONUMBER style prevents the value indicator from corrupting the dial value. A
360-degree circular slider is displayed without the bit maps for the plus and minus buttons.

Tracking Modes for Direct Manipulation
There are two tracking modes used for direct manipulation of the circular slider: scrolling the
dial and point selection.

The default tracking behavior is scrolling, where the dial position of the slider is changed
gradually. For example, by holding down the select mouse button while the pointer is
positioned on the indicator line of the dial, you can move the mouse and cause the dial to
rotate. This gradual changing of the dial value might be desirable for a volume control.

If the CSS_POINTSELECT style is specified for the circular slider, the position of the dial is
changed immediately to a point on the scale that has been selected by the mouse. Point
selection allows value changes to occur immediately.

Sizing Tick Marks
When a low-resolution display is being used, or in situations where the circular slider must be
made very small, the length of the tick marks can be sized proportionately to allow effective
sizing of the circular slider. Specifying the CSS_PROPORTIONAL TICKS style causes the
length of the tick marks to be calculated as a percentage of the dial's radius. This style does
not adversely affect the size of the push buttons and bit-map graphics an application might
provide.

Chapter 6. Slider Controls 6-7

Using Slider Controls
This section explains how to use sliders in your PM applications. It covers:

• Creating a linear slider
• Retrieving data for selected slider values
• Creating a circular slider.

Code samples are provided.

Creating a Linear Slider
Before the slider is created, a temporary SLDCDATA data structure is allocated, and
variables are specified for the slider control window handle and slider style. The SLDCDATA
data structure is allocated so that the scale increments and spacing of the slider can be
specified.

The slider style variable enables the application to specify style bits, SLS _ * values, that are
used to customize the slider.

You create a slider by using the WC_SLlDER window class name in the ClassName
parameter of WinCreateWindow call. The handle of the slider control window is returned in
the slider window variable.

After the slider is created, but before it is made visible, the application can set other slider
control characteristics, such as:

• Size and placement of tick marks
• Text above one or more tick marks
• One or more detents
• Initial slider arm position.

The settings in the preceding list are just a few that an application can specify. Slider control
messages are used to specify these settings.

Figure 6-1 on page 6-1 shows how the linear slider created by the sample code in
Figure 6-3 on page 6-9 would appear, except for the Decibel Range text string. The code
that inserts this static text string is separate from the code used to create a slider window
and, therefore, is not included here. The main components of the slider are labeled.

6-8 PM Advanced Programming Guide

SLDCDATA sldcData; 1* SLDCDATA data structure
1* Text strings variable CHAR szTickText{5};

USHORT idx; 1* Counter for setting text
1* strings

HWND
ULONG

hwndSlider;
ulSliderStyle;

1* Slider window handle
1* Slider styles

1**1
1* Initi~lize the parameters in the data structure. *1
1 ************************************'********************************** 1
sldcData.cbSize = s;zeof(SLDCDATA); 1* Size of SLDCDATA structure *1
sldcData.usScalellncrements = 6; 1* Number of increments *1
sl~cData.usScalelSpacing = 0; 1* Use 0 to have slider calculate *1

1* spacing *1

1**1
1* Set the SLS * style flags to the default values, plus slider *1
1* buttons right. *1
1***~****************I
ulSliderStyle = SLS_HORIZONTAL I 1* Slider is horizontal *1

SLS..;,.CENTER I !* Slider shaft centered in *1
1* slider window *1

SLS_HOMELEFT 1* Home position is left edge of *1
1* slider *1

SLS_PRIMARYSCALEl 1* Scale is displayed above *1
1* slider shaft *1

SLS_BUTTONSRIGHT; 1* Slider buttons at right end of *1
1* slider *1

1**!
1* Create the slider control window. */
1* The handle of the window is returned in hwndSl ider. *1
1**1
hwndSlider=WinCreateWindow(

hwndClient, /*Parent window handle *1
WCSLIDER; 1* Slider window class name *1

. (PSZ)NULL, 1* No window text *1
ulSliderStyle, I*Sl iderstylesvariable *1

Figure 6-3 (Part 1 of 3). Sample Code for Creating a Slider

Chapter 6. Slider Controls 6-9

:(SHQ~iJ·.le~'·',
(~HbR;r):le,'
,{SHQ.RTjrl!j0""~',,,

rSHo.~T,)8~",'
hwndClienl,
, HWND TOP,
ID"'S'[IDERi
&sldcData$
rpVOIDr~ULl};

/*W ... cbb~d:i:,n~te'
"·I~XFO.~~dj~ate. ,',:

1'l1.:.Wi.ndo\!!,~id~.~'" •• '
,tt. Wip~o~:hetg~t, ',', '.'"",":"".""',.",:. " :
/*O~ner:win4ow:'~aridl~
1.* Sib ling~jrid?w :,.rapdle
1*,Slider'cQntrolw1ndow to
1* Control "',.data."",s~ruct.ure
!* Nopresentation.,p,aram~teY's

"-"',:",::',', ',', ,,"",' "','"." ,>:> <""'::',',,' ",":,',
1~*************~*'11****,**,*~~*~***~~*****t**~~****~~**~',~.,~****~''11*~*~*'11***.*i
I*Settickmarksat$ev~ralplac:e$onthe,sl;dershaftusingthe ,,*/"

/~prill)aryscale. , ' '" . "",':i .""," .• '.""" ,.,,:, ,', ,".: .• "".,.", "'.', .. """",.,' ",,"',""""'" ,,' ,.'", , ','" ",u,*1 "
1*****'I1********'I1********'I1***'I1***'I1'11*******"*****~'I1*'I1********"*'I1**'I1'11**~****1
WjnS~ndMsg(hwndSlider,' 1* Slider window handle ' *1

SLM_SE1TICKSIZE, 1* Message for setting tick mark *1
1* size. *1

A~ tributef or.'.sett i. ng ',", all
marks.tq<thesame'~'ize "
n~a\Y:tick·"marks 6 .• pf;~.lSlOng
Reserved. value '

;"""""""'" ",>.,'>:,", ,,', "'.,,",', '< ',.',."'.,,, ".","".,',,' :':,','" ",.:.:""""".',',.,'
/ *****'***~**********'1r**t****'11******'j(****;*~~*******"**~~*~~****.**~******/ '. "
/'11 Set textabovethet:i ck marks. ' *1·
lir********'1<******'f****'****"u**'11**1
for (; dx==.0; Jdx<;::5;i dX+4:) 1* Countfroll) 0t05'111

, . . . '.':: ". . -:". '. : : ". ". ~

{
itoa(10*idx,szTickText, SeT textaf i ncrernents

Wi hSe.hdMsg(hwl1dSlicfe.hi ..
SLM ... SE:rSCALETEXT,

'MPFRQ~SHORt(·;d~}, •................
MPt'ROMPSZ(szIickText});··

l*.· .. STider .. wind6w11andle •....•.•.•.•...
1*,~es.sa~ef()r<set,tJng •. text
l*;slider · .. scale
1'1< Jextstri. ng c()unter
1*< .. Text to put9nsHder$¢al~

1**'I1**'I1*~**'I1~**c'l1***'I1******'**'I1****'****~~****'I1'11**"f"****.*'I1'I1**~*~*,**'11~*~.****l
1*.·Set··.detents between.two.·pf·.t~~t;ck··marksorlthe·.sltder shaft.. , .. *!
l-k*~**~~~******'*~****~*~****'I1'j(****'**~**'I1******:*****.********~***********j ..
WtnS~ndMsg{~wndS]i~~r~ /*Sl.i.derwindowhandle. *!

SLM ... ADDOETE~T, . 'Ii; Messagefor .• a~dingdet~nts •. t() •. ·*1 '
. (* asliderscale'••.•. '> */

MeFROMSHORT($}~· 1'11. Putad~tent · •. · •• 5 pt;el sf~Qm· .• home*c(
NUtL}; /'I1Reserv~dvalue ·*1

Figure 6-3 (Part 2 of 3). Sample Code for Creating a Slider

6-1 0 PM Advanced Programming Guide

WinSendMsg(hwndSlider t
SLM_ADDDETENT,

MPFROMSHORT(25)t

NULL) ;

/* Slider window handle
/* Message for adding detents
/* slider scale
/* Put a detent 25 pixels from
/* home
/* Reserved value

/**/
/* Set the slider arm position to the 1st increment on the scale. */
/**/
WinS~ndMsg(hwndSlider, /* Slider window handle */

SLM SETSLIDERINFO, /* Message for setting slider */
- /* attributes */

MPFROM2SHORT(
SMA SLIDERARMPOSITION t /* Modify slider arm position */
SMA-INCREMENTVALUE), /* Use an increment value */

MPFROMSHORT(l»; /* Value to use is 1st */
/* increment */

/**/
/* Since all .items have been set, make the control vi si bl e. */
/**/
WinShowWindow(hwndSlider t /* Slider window handle */

TRUE); /* Make the window visible */

Figure 6-3 (Part 3 of 3). Sample Code for Creating a Slider

Retrieving Data for Selected Slider Values
To retrieve data represented by a slider value, specify a variable for the current position of
the slider arm. Then, use the SLM_QUERYSLIDERINFO message to retrieve information
about the current slider arm position in increment coordinates. The code fragment in
Figure 6-4 on page 6-12 shows how to retrieve data for a selected slider value.

Chapter 6. Slider Controls 6-11

ulValue=
hwndSlider,
SLM_QUERYSLIDERINFO.~

MPFROM2SHORT(
SMA·SLIDERARMPOSITION,
SMA-1NCREMENTVALUE),

NULL);

Figure 6-4. Sample Code for Retrieving a Slider Value

Creating a Circular Slider
The circular slider PM window class WC _ CIRCULARSLIDER is similar to the window class
of a linear slider or a scroll bar. This window class must be registered with
WinRegisterCircularSlider before you can create a circular slider. A circular slider can be
created by a CONTROL statement in a dialog resource, as shown in Figure 6-5.

CONTROL II-Balance",
10 BALANCEC$,
H); 50,60;60,
WC tIRCULARSLIDER,
WS =TABSTOp· .. 1
WS_VISI~~~ J
CSS~POINTsELECr

Figure 6-5. Circular Slider CONTROL in a Dialog Resource

A circular slider also can be created by specifying the WC_CIRCULARSLIDER window class
name as a parameter of the WinCreateWindow call, as shown in the sample code illustrated
in Figure 6-6 on page 6-13.

6-12 PM Advanced Programming Guide

hwndCS = WinCreateWindow (hwndClient,
WC_CIRCULARSLIDER,
II-Balance ll

,

WS_VISIBLE I
WS_TABSTOP I
CSS_POINTSELECT,
0,0,0,0,
hwndClient,
HWND_TOP,
ID_BALANCECS,
NULL,
NULL);

/* Parent handle */
/* Class name */
/* Window text */

/* Coordinates */
/* Owner handle */
/* Z-order */
/* Window ID */
/* Control data */
/* Presparam */

Figure 6-6. Sample Code Using WinCreateWindow to Create a Circular Slider

Circular Slider Sample
The sample code illustrated in Figure 6-7 shows a complete example for adding a circular
slider.

#define INCL_WIN

#include <os2.h>
#include IIcircle.h"

/* Procedure Prototype */
MRESULT EXPENTRY MyWindowProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2);
MRESULT EXPENTRY MainProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2);

/* Global Variables */
HAB hab;
HMQ hmq;
QMSG qmsg;
HWND hwndFrame;
ULONG flCreate;
HWND hwndClient;

Figure 6-7 (Part 1 of 5). Sample Code for Adding a Circular Slider

Chapter 6. Slider Controls 6-13

INT main(VOID)
,{

hab = WinInittalize(0);
hmq = WinCreateMsgQueue(hab,0);

flCreate = FCFSYSMENU
FCF =S'IZEBO'RDER
FCF _TITLEBAR
FCF_MENU
FCF_MINMAX
FCF_SHELLPOSITION
FCF _TASKLIST;

hwndFrame =W;nCreateStdWindow(HWND_DESKTOP,
WS VlSIBLE,
&flCr~at~it
IIClient",
UMyDial ll

,

0t, 0,

/* Convert
Wi nSetPo;

WinQuerySysPoi

WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

/* Beep when done */
DosBeep(750,500);
return(0);

MAIN FRAME,
&hwndCl tent);

Figure 6-7 (Part 2 of 5). Sample Code for Adding a Circular Slider

6-14 PM Advanced Programming Guide

MRESULT EXPENTRY MainProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2)
{

HPS hps;
static HWND hwndCirc;
SWP swp;
switch(msg)

case WM CLOSE:
WinpostMsg(hwnd,WM QUIT,0L,0L);
return «MRESULT)NULL);

case WM COMMAND:
/* Exit option was selected in the menu bar */
switch(SHORTIFROMMP(mpl»
{

case IDM FILEEXIT:
WinPostMsg(hwnd,WM QUIT,0L,0L);
return «MRESULT)NULL);

return «MRESULT)NULL);

case WM CONTROL:
/* Process circular slider notification messages */
if (SHORTlFROMMP (mpl) == ID_DIAL)
{

switch (SHORT2FROMMP(mpl»
{
/* Notification codes can be specified here */

}

/* Default processing for other control window ids */
return (WinDefWindowProc(hwnd,msg,mpl,mp2»;

Figure 6-7 (Part 3 of 5). Sample Code for Adding a Circular Slider

Chapter 6. Slider Controls 6-15

caseWMCREATE:
Ii< Create circ'Ul~~ slidercohtrol'*J
hwndCirc = Wi nCreateWindow(hwnd ,

WC CJRCULARSUOER,
"MyOialWfndowu ~
WS,-VISIBLE,
0~0, 9, 0, I*Pdstt1on & size */
hwnd, 1 * cli ent window */
HWND~JOP,
IO DIAL,
NULL,NULL);

1* Specify range of v.alues for circular slider */
WinSendMsg (hwndCirc,

CSM 'SETRANGE,
MPFROMLONG(0L),
MPFROMLONG(100l»;

I*Speci fy scroll & tick mark increments *1
WinSendMsg (hwndCirc,

CSM SETINCREMENT,
MPFROMLONG(10L),
MPFROMLONG(2L);

1* Set initial value *1
WinSendMsg (hwndCirc,

CSM SETVALUE,
'MPFROMLONG(S0L),
NULL);

return (MRESULT) FALSE;

Figure 6-7 (Part 4 of 5). Sample Code for Adding a Circular Slider

6-16 PM Advanced Programming Guide

case WM SIZE:
/* The frame window has changed in size */
/* Recalculate size of circular slider */
WinQueryWindowPos(hwnd,&swp);
WinSetWindowPos{hwndCirc,

HWND_TOP,
0, 0,
swp.cx,
swp.cy,
SWP_MOVE I
SWP_SIZE);

return (MRESULT)NULL;

case WM PAINT:
hps-= WinBeginPsint(hwnd,0,NULL);
WinEndPaint(hps);
return (MRESULT)NULL;

default:
return (WinDefWindowProc(hwnd,msg,mpl,mp2));

Figure 6-7 (Part 5 of 5). Sample Code for Adding a Circular Slider

Chapter 6. Slider Controls 6-17

Graphical User Interface Support for Slider Controls
This section describes the support the slider control provides for graphical user interfaces
(GUls). Except where noted, this support conforms to the guidelines in the SAA eUA
Advanced Interface Design Reference. .

Since slider values all are mutually exclusive,' only one of them can be selected at a time.
Therefore, the only type of selection supported by the slider control is single selection.

Note: If more than one slider window is open, selecting values in one slider window has no
effect on the values selected in any other slider window. For linear sliders, a black
square is drawn in the center of the slider arm to show which slider control window
has the focus.

An initial value is selected when the slider control is first displayed. If the application does
not provide the initial selection for a linear slider (using the SLM_SETSLIDERINFO message)
to position the slider arm, the value at the home position is selected automatically. The
home position is the end of the slider that contains the lowest value on the scale.

Slider Navigation Techniques
The slider control supports the use of pointing devices and the keyboard for selecting values.

POinting Device Support
A user can select slider values with a pointing device. The CUA guidelines defines mouse
button 1 (the select button) as the button for selecting values, and button 2 (the drag button)
for dragging the slider arm to a value. These definitions also apply to the same buttons on
any other pointing device, such as a joystick.

The select button and drag button can be used in conjunction with the following slider
components to select slider values:

• Slider arm

Moving the pointer over the slider arm, then pressing and holding the select or drag
buttons while moving the pointer, causes the slider arm to move in the direction the
pointer is moving. When the button, is released, the value closest to the slider arm
position becomes the selected value.

• Slider shaft

Clicking the select button when the pointer is over the slider shaft causes the slider arm
to move one increment in the direction of the pointer. For linear sliders, increments are
determined by the initial values passed for the primary scale specified
(SLS_PRIMARYSCALE1 or SLS_PRIMARYSCALE2) when the slider is created.

Clicking the drag button when the pointer is over the slider shaft causes the slider arm to
move to the pointer's location.

• Slider buttons

Clicking the select button when the pointer is over a slider button causes the slider arm
to move one increment in the direction the arrow on the slider button is pointing.

6-18 PM Advanced Programming Guide

Slider buttons are optional. If used, two slider buttons are available to the user. The
arrows on top of the slider buttons point to opposite ends of the slider. Both slider
buttons are positioned at the same end of the slider.

For linear sliders, slider buttons are enabled by specifying the appropriate SLS_* value
when the slider control window is created. For horizontal sliders, you can specify either
SLS_BUTTONSLEFT or SLS_BUTTONSRIGHT. For vertical sliders, you can specify
either SLS _ BUTTONSBOTTOM or SLS _ BUTTONSTOP. The default is no slider
buttons. If more than one of these style bits is specified, no slider buttons are enabled.

• Detents

A detent is similar to a tick mark on a linear slider scale because it represents a value
on the scale. However, unlike a tick mark, a detent can be placed anywhere along the
slider scale instead of in specific increments.

A detent can be selected by moving the pointer over it and pressing the select button on
the pointing device. When this happens, the slider arm moves to the position on the
slider shaft indicated by the detent.

Keyboard Support
A user can select a value by using the navigation keys to move the slider arm to the value or
by typing a value in an entry field, if one is provided by the application, to change the slider
arm position. The following list describes these methods of selecting slider values:

• Values can be selected using the Up, Down, Left, and Right Arrow keys to move the
slider arm one increment at a time. The Up and Down Arrow keys are enabled for
vertical sliders, and the Right and Left Arrow keys are enabled for horizontal sliders. If
no tick mark exists on the scale in the requested direction, the slider arm does not
move.

If an Arrow key is pressed in conjunction with the Shift key, the slider arm moves to the
next detent instead of the next tick mark. If no detent exists on the scale in the
requested direction, the slider arm does not move.

• The Home and End keys can be used to select the lowest and highest values,
respectively, in the scale. If the Ctrl key is pressed in combination with the Home or
End keys, the result is the same as pressing only the Home or End keys.

• The application can provide an optional entry field for the slider control. The entry field
is a separate control, but it can work in conjunction with the slider control.

If the application provides an entry field for the slider control window, it must be
implemented as follows:

- The user must be allowed to type a value into the entry field.

- If the typed value is within the range of the slider scale, the slider arm moves to that
value as soon as the value is typed.

- No other action, such as pressing the Enter key, is required.

Chapter 6. Slider Controls 6-19

Related Functions
This section covers the functions that are related to slider controls.

WinCreateWindow
This function creates a new window of class pszClass and returns hwnd.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinCreateWindow (HWND hwndParent, PSZ pszClass, PSZ pszName,
ULONG flStyle, LONG x, LONG y, LONG ex, LONG ey,
HWND hwndOwner, HWND hwndlnsertBehind,

Parameters
hwndParent (HWNO) - input

Parent-window handle.

pszClass (PSZ) - input
Registered-class name.

pszName (PSZ) - input
Window text.

flStyle (ULONG) - input
Window style.

x (LONG) - input

ULONG id, PVOID pCtlData, PVOID pPresParams)

x-coordinate of window position.

Y (LONG) - input
y-coordinate of window position.

ex (LONG) - input
Width of window, in window coordinates.

ey (LONG) - input
Height of window, in window coordinates.

hwndOwner (HWNO) - input
Owner-window handle.

hwndlnsertBehind (HWNO) - input
Sibling-window handle.

6-20 PM Advanced Programming Guide

id (ULONG) - input
Window identifier.

pCtlData (PVOID) - input
Pointer to control data.

pPresParams (PVOID) - input
Presentation parameters.

Returns
hwnd (HWND) - returns

Window handle.

NULLHANDLE Error occurred
Other Window handle.

WinSendMsg
This function sends a message with identity ulMsgid to hwnd, passing mpParam1 and
mpParam2 as the parameters to the window.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMaN section */

#include <os2.h>

MRESUL T WinSendMsg (HWND hwnd, ULONG ulMsgid, MPARAM mpParam1,
MPARAM mpParam2)

Parameters
hwnd (HWND) - input

Window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
mresReply (MRESUL T) - returns

Message-return data.

Chapter 6. Slider Controls 6-21

WinShowWindow
This function sets the visibility state of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BeOl WinShowWindow (HWND hwnd, BOOl fNewVisibility)

Parameters
hwnd (HWND) - input

Window handle.

fNewVisibility (BOOl) - input
New visibility state.

TRUE Set window state visible
FALSE Set window state invisible.

Returns
rc (BOOl) - returns

Visibility changed indicator.

TRUE
FALSE

Window visibility successfully changed
Window visibility not successfully changed.

6-22 PM Advanced Programming Guide

Related Window Messages
This section covers the window messages that are related to linear and circular slider
controls.

CSM_ QUERVINCREMENT
This message queries the increments used to scroll the value and draw the tick marks.

Parameters
param1

Scrollincre (PUSHORT)
The increment value added or subtracted for the value of the control when scrolling.

p~ram2

Ticklncr (PUSHORT)
The increment value used to draw the tick marks.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Errors occurred.

CSM_ QUERVRADIUS
This message queries the current radius of the circular slider.

Parameters
param1

uRadius (PUSHORT)
The radius of the circular slider.

param2

ulReserved (ULONG)
Reserved value.

Chapter 6. Slider Controls 6-23

Returns
rc (ULONG)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

CSM_QUERYRANGE
This message queries the value range of the control.

Parameters
param1

pLow (PSHORT)
The low range value.

param2

pHigh (PSHORT)
The high range value.

Returns
rc (ULONG)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

CSM_QUERYVALUE
This message queries the value of the control.

Parameters
param1

pValue (PSHORT)
The value of the control.

param2

ulReserved (ULONG)
Reserved value .

. 6-24 PM Advanced Programming Guide

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

CSM_SETBITMAPDATA
This message is used to change the bit maps for the plus and minus buttons. For example,
you might want to use left or right arrows. The optimal size for these bit maps is 10 x 10
pels.

Parameters
param1

pCSBitmapData (PCSBITMAPDATA)
The structure defining button bit maps.

param2

ulReserved (ULONG)
Reserved value.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

CSM SETINCREMENT
This message sets the scroll and tick mark increments of the control.

Parameters
param1

usScrollincr (USHORT)
Scroll increment.

This is the number by which the current value is incremented or decremented when
one of the circular slider control button is selected.

Chapter 6. Slider Controls 6-25

param2

usTicklncr (USHORT)
Tick mark increment.

This represents the number of tick marks to "skip" before drawing tick marks around
the circular slider.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

CSM_SETRANGE
This message sets the range of values which the control sends to the application via
CSN_TRACKING and CSN_CHANGE messages.

Parameters
param1

Low (SHORT)
The minimum value of the circular slider.

param2

High (SHORT)
The maximum value of the circular slider.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

6-26 PM Advanced Programming Guide

CSM_SETVALUE
This message sets the current value of the circular slider control.

Parameters
param1

Value (SHORT)
The new value to which to set the circular slider.

param2

ulReserved (ULONG)
Reserved value.

Returns
rc (ULONG)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

SLM_ADDDETENT
This message places a detent along the slider shaft at the position specified on the primary
scale. A detent is an indicator that represents a predefined value for a quantity. It does not
have to correspond to an increment of the slider.

Parameters
param1

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulDetentld (ULONG)

Detent 10.

Chapter 6. Slider Controls 6-27

SLM_QUERYDETENTPOS
This message queries for the current position of a detent.

Parameters
param1

ulDetentld (ULONG)
Detent ID.

Unique detent identifier, which indicates the position to be returned.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usDetentPos (USHORT)
Detent position.

Number of pixels the detent is positioned from home.

>= 0 Number of pixels the detent is positioned
from home.

SLDERRJNVALlD_PARAMETERS An error occurred. The WinGetLastError
function may return the following error:

fDetentLocation (USHORT)
Scale.

PMERRJ NVALI D_PARAMETERS.

The scale along which the detent is located. One of the following:

SMA_SCALE 1
SMA_SCALE2

Detent position is along scale 1.
Detent position is along scale 2.

6-28 PM Advanced Programming Guide

SLM_QUERYSCALETEXT
This message queries for the text associated with a tick mark for the primary scale and
copies that text into a buffer.

Parameters
param1

usTickNum (USHORT)
Tick location.

Tick location to query for the text.

usBufLen (USHORT)
Buffer length.

Length of the buffer to copy the text into. The buffer size should include space for
the null termination character.

param2

pTickText (PSZ)
Pointer to the buffer into which to place the text string for the tick mark.

Returns
sTextLen (SHORT)

Count of bytes.

>= 0 Length of the text string, excluding the null
termination character.

SLDERRJNVALlD_PARAMETERS An error occurred. The WinGetLastError function
may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF_RANGE.

Chapter 6. Slider Controls 6-29

SLM_QUERYSLIDERINFO
This message queries the current position or dimensions of a key component of the slider.
The information returned and its format depends on the type of information requested.

Parameters
param1

uslnfoType (USHORT)
Information attribute.

Attribute that identifies the requested information. It can be one of the following:

SMA_SHAFTDIMENSIONS Queries for the length and breadth of the slider
shaft.

SMA_SHAFTPOSITION Queries for the X-, y-position of the lower-left
corner of the slider shaft.

SMA_SLlDERARMDIMENSIONS Queries for the length and breadth of the slider
arm.

SMA_SLlDERARMPOSITION Queries for the position of the slider arm. The
position can be returned either as an increment
position or a range value.

usArmPosType (USHORT)
Format attribute.

param2

Attribute that identifies the format in which the information should be returned if the
slider arm position is requested. This value is ignored for all other queries and is
one of the following:

SMA_RANG EVALUE The value returned represents the number of pixels
between the home position and the current arm
position in the low order byte. The high order byte
represents the pixel count of the entire range of the
slider control.

SMAJNCREMENTVALUE The value returned represents an increment position
using the primary scale.

ulReserved (ULONG)
Reserved value, should be o.

Returns
ullnfo (ULONG)

Return information.

6-30 PM Advanced Programming Guide

SLM_ QUERYTICKPOS
This message queries for the current position of a tick mark for the primary scale. This
represents where the tick mark would be located. The tick mark does not have to have a
size (that is, to be visible) to use this message.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the position.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

xTickPos (USHORT)
X-coordinate.

X-coordinate of the pOint that represents the position of the tick mark. It is the
starting position of the tick mark and represents the end of the tick mark closest to
the slider shaft.

yTickPos (USHORT)
Y -coordinate.

Y -coordinate of the point that represents the position of the tick mark. It is the
starting position of the tick mark and represents the end of the tick mark closest to
the slider shaft.

If NULL is returned in either parameter, an error occurred. The WinGetLastError
function may return the following error:

Chapter 6. . Slider Controls 6-31

SLM_QUERYTICKSIZE
This message queries for the size of a tick mark for the primary scale. All tick marks default
to a size of 0 (invisible) if not set by the application with the SLM_SETTICKSIZE message.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Specifies the tick mark location to query for the size.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
usTickSize (USHORT)

Tick mark length.

SLM_REMOVEDETENT
This message removes a previously specified detent. A detent is an indicator that represents
a predefined value for a quantity and does not have to correspond to an increment of the
slider.

Parameters
param1

ulDetentld (ULONG)
Detent 10.

Unique detent identifier for the detent that is to be removed from the slider.

param2

ulReserved (ULONG)
Reserved value, should be O.

6-32 PM Advanced Programming Guide

Returns
rc (BOOl)

Success indicator.

TRUE Detent was successfully removed.

FALSE An error occurred. The WinGetlastError function may return the following
error:

PMERRJNVALlD_PARAMETERS.

SLM_SETSCALETEXT
This message sets text above a tick mark for the primary scale. A tick mark does not have
to be visible to have text set above it. The text is centered on the tick mark.

Parameters
param1

usTlckNum (USHORT)
Tick mark location.

Specifies the tick mark location that is to have the text placed with it.

param2

pTickText (PSZ)
Pointer to the text that is to be drawn at the position specified.

If this value is NUll, no text is drawn.

Returns
rc (BOOl)

Success indicator.

TRUE Text was successfully added to the scale.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF _RANGE.

Chapter 6. Slider Controls 6-33

SLM_SETSLIDERINFO
This message sets the current position or dimensions of a key component of the slider. The
component to be changed is indicated by one parameter and the new value is placed in the
other.

Parameters
param1

uslnfoType (USHORT)
Component attribute.

Identifies the slider component that is to be modified. Specify one of the following:

SMA_SHAFTDIMENSIONS Sets the width (for vertical sliders) or height (for
horizontal sliders) of the slider shaft.

SMA_SHAFTPOSITION Sets the X-, y-position of the lower-left corner of
the slider shaft in the slider window.

SMA_SLlDERARMDIMENSIONS Sets the width and height of the slider arm.

SMA_SLlDERARMPOSITION Sets the position of the slider arm. This value
can be specified either as an increment position
or a range value.

usArmPosType (USHORT)
Format attribute.

parm2

Identifies the format in which the information should be interpreted by the slider if
setting the slider arm position is requested. This value is a reserved field for other
set requests. The format is one of the following:

SMA_RANG EVALUE Number of pixels between the home position and the
current arm position.

SMA_INCREMENTVALUE Increment position using the primary scale.

ullnfo (ULONG)
New value.

New value to change the slider component to. The format of the information
depends on the component being changed and is indicated by the SMA_* message
attribute or attributes that are set.

• If the SMA_SHAFTDIMENSIONS attribute is set, the ullnfo parameter is as
follows:

usShaftBreadth (USHORT)
Width (for vertical sliders) or height (for horizontal sliders) the slider shaft
should be set to, in pixels. This is the breadth the shaft should be.

6-34 PM Advanced Programming Guide

Returns
rc (BOOl)

• If the SMA_SHAFTPOSITION attribute is set, the ullnfo parameter is as follows:

xShaftCoord (USHORT)
X-coordinate to set the position of the shaft to within the slider window.
This value is expressed in window coordinates and represents the lower-left
corner of the shaft.

yShaftCoord (USHORT)
V-coordinate to set the position of the shaft to within the slider window.
This value is expressed in window coordinates and represents the lower-left
corner of the shaft.

• If the SMA_SLlDERARMDIMENSIONS attribute is set, the ullnfo parameter is
as follows:

usArmLength (USHORT)
Length of the slider arm, in. pixels. This is the width of the arm for
horizontal sliders and the height of the arm for vertical sliders.

usArmBreadth (USHORT)
Breadth of the slider arm, in pixels. This is the height of the arm for
horizontal sliders and the width of the arm for vertical sliders.

• If the SMA_SLlDERARMPOSITION and SMA_RANGEVALUE attributes are
set, the ullnfo parameter is as follows:

usArmPos (USHORT)
Number of pixels to be set from home to the slider arm.

• If the SMA_SLlDERARMPOSITION and SMAJNCREMENTVALUE attributes
are set, the ullnfo parameter is as follows:

uslncrementPos (USHORT)
Increment value which corresponds to the position the slider arm should be
set to.

Success indicator.

TRUE Slider component was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT _OF_RANGE.

Chapter 6. Slider Controls 6-35

SLM_ SETTICKSIZE
This message sets the size of a tick mark for the primary scale. All tick marks are initially
set to a size of 0 (invisible). Each tick mark along a scale can be set to the size desired.

Parameters
param1

usTickNum (USHORT)
Tick mark location.

Tick mark location whose size is to be changed. If the SMA_SETAllTICKS
attribute is specified for this parameter, all tick marks on the primary scale are set to
the size specified.

usTickSize (USHORT)
Tick mark length.

length of the tick mark, in pixels. If set to 0, the tick mark will not be drawn.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE

FALSE

Tick mark position was successfully set.

An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_HEAP _MAX_SIZE_REACHED
• PMERR_PARAMETER_OUT_OF _RANGE.

6 ... 36 PM Advanced Programming Guide

WM_PRESPARAMCHANGED (in Slider Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

Presentation parameter attribute identity. The following presentation parameters are
initialized by the slider control. The initial value of each is shown in the following
list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Slider background color; used for entire control as the background. This color
is initialized to SYSCLR_WINDOW.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, must be O.

WM_QUERYWINDOWPARAMS (in Slider Controls)
For the cause of this message, see WM_QUERYWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)
Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Chapter 6. Slider Controls 6-37

param2

Identifies the window parameters that are to be set or queried. Valid values for
the slider control are:

WPM_CBCTlDATA Window control data length.
WPM _ CTlDATA Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is O. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
length of the window text.

text (PSZ)
Window text.

presparams/ength (USHORT)
length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
length of window class-specific data.

ctldata (PVOID)
Window class-specific data.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

6-38 PM Advanced Programming Guid~

WM_SETWINDOWPARAMS (in Slider Controls)
For the cause of this message, see WM_SETWINDOWPARAMS.

Parameters
param1

pwndparams (PWNDPARAMS)

param2

Pointer to a WNDPARAMS window parameter structure.

This structure contains:

status (USHORT)
Window parameter selection.

Identifies the window parameters that are to be set or queried. The valid value
for the slider control is:

WPM_CTLDATA Window control data.

The flags in the status field are cleared as each item is processed. If the call is
successful, the status field is O. If any item has not been processed, the flag for
that item is still set.

length (USHORT)
Length of the window text.

text (PSZ)
Window text.

presparamslength (USHORT)
Length of presentation parameters.

presparams (PVOID)
Presentation parameters.

ctldatalength (USHORT)
Length of window class-specific data.

ctldata (PVOI D)
Window class-specific data.

ulReserved (ULONG)
Reserved value, should be O.

Chapter 6. Slider Controls 6-39

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful operation
Error occurred.

6-40 PM Advanced Programming Guide

Related Notification Messages
This section covers the notification messages that are related to linear and circular slider
controls.

WM_CONTROL (in Circular Slider Controls)
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

uslD (USHORT)
Control-window identity.

The identity of the circular slider that generated the notification.

usnotifycode (USHORT)
Notification code.

The notification codes that indicate what action has occurred.

CSN_SETFOCUS

CSN_CHANGED

This code returns a Boolean indicating
whether the circular slider control sending
the notification message is gaining or
losing the focus.

param2 contains TRUE if the control is
gaining the· focus.

This code is sent to notify the application
that the circular slider value has been
changed.

param2 contains the new value of the
circular slider.

This code is sent to notify the application
that the circular slider is being tracked by
the mouse.

param2 contain the inter-media value of
the circular slider.

Inter-media values are not necessarily
contiguous.

CSN_QUERYBACKGROUNDCOLOR This code gives the application the
opportunity to set the background color of
the circular slider. CLR_ * or SYSCLR_*
values can be returned for the background
color.

param2 is NULL.

Chapter 6. Slider Controls 6-41

param2

ulnotifyspec (ULONG)
Notify control-specific information.

Returns
ulReserved (ULONG)

Reserved value.

WM_CONTROL (in Slider Controls)
For the cause of this message, see WM_CONTROL.

Parameters
param1

id (USHORT)
Slider control identity.

notifycode (USHORT)
Notification code.

The slider control uses these notification codes:

param2

SLN_CHANGE
SLN_KILLFOCUS
SLN _ SETFOCUS
SLN_SLlDERTRACK

The slider arm position has changed.
The slider control is losing the focus.
The slider control is receiving the focus.
The slider arm is being dragged, but has not been released.

notifyinfo (ULONG)
Control-specific information.

When the value of the notifycode parameter is SLN _CHANGE or
SLN_SLlDERTRACK, this value is the new arm position, expressed as the number
of pixels from the home position.

Otherwise, this value is the window handle (HWND) of the slider control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

6-42 PM Advanced Programming Guide

WM_ CONTROLPOINTER
This message is sent to a owner window of a control when the pointing device pointer moves
over the control window, allowing the owner to set the pointing device pointer.

Parameters
param1

usidCtl (USHORT)
Control identifier.

param2

hptrNew (HPOINTER)
Handle of the pointing device pointer that the control is to use.

Returns
hptrRet (HPOINTER)

Returned pointing device-pointer handle that is then used by the control.

WM_DRAWITEM
This notification is sent to the owner of a control each time an item is to be drawn.

Parameters
param1

idldentity (USHORT)
Window identifier.

The window identity of the control sending this notification message.

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of control. For
details of each control type, refer to the appropriate section.

Chapter 6. Slider Controls 6-43

Returns
rc (BOOL)

Item-drawn indicator.

TRUE
FALSE

The owner has drawn the item, and so the control does not draw it.
If the item contains text and the owner does not draw the item, the owner
returns this value and the control draws the item.

6-44 PM Advanced Programming Guide

Related Data Structures
This section covers the data structures that are related to linear and circular slider controls.

CSBITMAPDATA
This is the bit-map data structure for the circular slider buttons.

Syntax

typede.f struct _CSBITMAPDATA {
HBITMAP hbmLeftUp;
HBITMAP hbmLeftDown;
HBITMAP hmbRightUp;
HBITMAP hbmRightDown;
} CSBITMAPDATA;

typedef CSBITMAPDATA *PCSBITMAPDATA;

Fields
hbmLeftUp (HBITMAP)

Handle to the "up" position bit map for the button on the left.

hbmLeftDown (HBITMAP)
Handle to "down" position bit map for the button on the left.

hmbRightUp (HBITMAP)
Handle to the "up" position bit map for the button on the right.

hbmRightDown (HBITMAP)
Handle to the "down" position bit map for the button on the right.

SLDCDATA
Slider control data structure.

Syntax

Chapter 6. Slider Controls 6-45

Fields
cbSize (ULONG)

Data length.

Length of the control data in bytes.

usScale11ncrements (USHORT)
Scale increments.

The number of increments to set for the slider control. This number represents the
range of values that can be selected within the slider when the SLS_PRIMARYSCALE1
style bit is specified.

usScale1 Spacing (USHORT)
Scale spacing.

The spacing between increments, expressed in pixels. It represents the unit that is the
smallest division of the scale when the SLS_PRIMARYSCALE1 style bit is specified. If
o is specified, the slider automatically calculates the spacing based on the window size
and the number of increments specified.

usScale21ncrements (USHORT)
Alternate scale increments.

An alternate number of increments to set for the slider control. This number represents
the range of values that can be selected within the slider when the
SLS_PRIMARYSCALE2 style bit is specified.

usScale2Spacing (USHORT)
Alternate scale spacing.

An alternate spacing between increments, expressed in pixels. It represents the unit
that is the smallest division of the scale when the SLS_PRIMARYSCALE2 style bit is
specified. If 0 is specified, the slider automatically calculates the spacing based on the
window size and the number of increments specified.

6-46 PM Advanced Programming Guide

Summary
Following are tables that describe the OS/2 functions, window messages, notification
messages, notification codes, and data structure used with (linear and circular) slider
controls:

Table 6-3. Linear Slider Control Functions

Function Name Description

WinCreateWindow Creates a window.

WinSendMsg Sends a message with identity Msgid to hwnd.

WinShowWindow Sets the visibility state of a window.

Table 6-4. Linear Slider Control Window Messages

Message Name

SLM_ADDDETENT

SLM_QUERYDETENTPOS

SLM_QUERYSCALETEXT

SLM_ QUERYSLIDERINFO

SLM_ QUERYTICKPOS

SLM_ QUERYTICKSIZE

SLM_REMOVEDETENT

SLM_SETSCALETEXT

SLM_SETSLIDERINFO

SLM_SETTICKSIZE

WM_CHAR

WM_PRESPARAMCHANGED

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

Description

Places a detent along the slider shaft at the position
specified on the primary scale.

Queries for the current position of a detent.

Queries for the text associated with a tick mark for the
primary scale and copies that text into a buffer.

Queries the current position or dimensions of a key
component of the slider.

Queries for the current position of a tick mark for the
primary scale.

Queries for the size of a tick mark for the primary scale.

Removes a previously specified detent.

Sets text above a tick mark for the primary scale.

Sets the current position or dimensions of a key
component of the slider.

Sets the size of a tick mark for the primary scale.

Occurs when the user presses a key.

Sent when a presentation parameter is set or removed
dynamically from a window instance.

Occurs when an application queries the window
parameters.

Occurs when an application sets or changes the window
parameters.

Chapter 6. Slider Controls 6-47

Table 6-5. Linear Slider Control Notification Messages

Message Name Description

WM_CONTROL Occurs when the linear slider control has a significant
event to notify to its owner.

WM_CONTROLPOINTER Sent to the owner window of the linear slider control when
the pointing device pointer moves over the slider control
window, enabling the owner window to set the pointer.

WM_DRAWITEM Sent to the owner of the slider control each time an item
is to be drawn.

Table 6-6. Linear Slider Control Notification Codes

Code Name Description

SLN_CHANGE Sent when the slider arm position has changed.

SLN_KILLFOCUS Sent when the slider control is losing the focus.

SLN_SETFOCUS Sent when the slider control is receiving the focus.

SLN _ SLiDERTRACK Sent when the slider arm is being dragged, but it has not
been released.

Table 6-7. Linear Slider Control Data Structure

Data Structure Name Description

SLDCDATA Slider control data structure.

Table 6-8 (Page 1 of 2). Circular Slider Control Window Messages

Message Name

CSM_ QUERYINCREMENT

CSM_ QUERYRADIUS

CSM_QUERYRANGE

CSM_QUERYVALUE

CSM_SETBITMAPDATA

CSM_SETINCREMENT

CSM_SETRANGE

CSM_SETVALUE

WM_CHAR

6-48 PM Advanced Programming Guide

Description

Queries the increments used to scroll the value and to
draw the tick marks.

Queries the current radius of the circular slider.

Queries the range of values for the circular slider scale.

Queries the current value of the circular slider.

Replaces the bit maps used for the plus and minus
buttons. The optimal size for these bit maps is 1 Ox1 0
pels.

Sets the scroll and tick-mark increments of the circular
slider.

Sets the range of values for the circular slider scale.

Sets the current value of the circular slider.

Occurs when the user presses a key.

Note: The keystrokes processed by a circular slider
control are the left and right arrows only.

Table 6-8 (Page 2 of 2). Circular Slider Control Window Messages

Message Name Description

WM_PRESPARAMCHANGED Sent when a presentation parameter is set or removed
dynamically from a window instance.

WM_QUERYWINDOWPARAMS Occurs when an application queries the window
parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the window
parameters.

Table 6-9. Circular Slider Control Notification Messages

Message Name Description

WM_CONTROL Occurs when the circular slider control has a significant
event to notify to its owner.

WM_CONTROLPOINTER Sent to the owner window of the circular slider control
when the pointing device pointer moves over the slider
control window, enabling the owner window to set the
pointer.

Table 6-10. Circular Slider Control Notification Codes

Code Name Description

CSN_CHANGED The value of the slider is changed.

CSN_QUERYBACKGROUNDCOLOR The circular slider is about to be painted.

CSN_SETFOCUS The circular slider is gaining the input focus.

CSN_ TRACKING The value of the slider is being tracked by the mouse.

Table 6-11. Circular Slider Control Data Structure

Data Structure Name Description

CSBITMAPDATA Bit-map data structure for the circular slider control.

Chapter 6. Slider Controls 6-49

6-50 PM Advanced Programming Guide

Chapter 7. Value Set Controls

A value set control (WC_ VALUESET window class), like a radio button, is a visual
component that enables a user to select one choice from a group of mutually exclusive
choices. However, unlike radio buttons, a value set can use graphic images (bit maps or
icons), as well as colors, text, and numbers, to represent the items a user can select. This
chapter presents the basics about value set controls and tells you how to create and use
them in PM applications.

About Value Set Controls
Even though text is supported, the purpose of a value set control is to display choices as
graphic images for faster selection. The user can see the selections instead of having to
take time to read descriptions of the choices. Using graphic images in a value set also lets
you conserve space on the display screen. For example, if you want to let a user choose
from a variety of patterns, you can present those patterns as value set choices, as shown in
Figure 7-1, instead of providing a list of radio buttons with a description of each pattern.

Figure 7-1. Value Set Example

If long strings of data are to be displayed as choices, radio buttons should be used.
However, for small sets of numeric or textual information, you can use either a value set or
radio buttons.

The value set is customizable to meet varying application requirements, while providing a
user interface component that can be used easily to develop products that conform to the
Common User Access (CUA) user interface guidelines. The application can specify different
types of items, sizes, and orientations for its value sets, but the underlying function of the
control remains the same. For a complete description of CUA value sets, refer to the SAA
eUA Guide to User Interface Design and the SAA eUA Advanced Interface Design
Reference.

© Copyright IBM Corp. 1994 7-1

Value Set Styles
Value set control window styles are set when a value set window is created.

• Set one of the following styles when creating a value set control window. You can
override these styles by specifying VIA_BITMAP, VIA_ICON, VIA_TEXT, VIA_RGB, or
VIA_COLORINDEX attributes for individual value set items.

VS_BITMAP The attribute for each value set item is set to the VIA_BITMAP
value set item attribute, which means the value set treats each
item as a bit map unless otherwise specified. This is the
default. Figure 7-2 provides an example of a value set with bit
maps.

g
~II

~
..... _ .. _.-

Figure 7-2. Value Set with Bit Maps

VS_ COLORINDEX The attribute for each value set item is set to the
VIA_COLORINDEX value set item attribute, which means the
value set treats each item as an index into the logical color
table unless otherwise specified. This style is most often used
when the colors currently available are adequate. Figure 7-3
on page 7-3 provides an example of a value set with colors.

7 -2 PM Advanced Programming Guide

Color

D

Figure 7-3. Value Set with Colors

'"Wool

OOD

The attribute for each value set item is set to the VIAJCON
value set item attribute, which means the value set treats each
item as an icon unless otherwise specified. Figure 7-4 provides
an example of a value set with icons.

Figure 7-4. Value Set with Icons

The attribute for each value set item is set to the VIA_RGB
value set item attribute, which means the value set treats each
item as a RGB color value unless otherwise specified. This
style is most often used when you need to create new colors.
Figure 7-3 provides an example of a value set with colors.

The attribute for each value set item is set to the VIA_TEXT
value set item attribute, which means the value set treats each
item as a text string unless otherwise specified. Figure 7-.5 on
page 7-4 provides an example of a value set with text strings.

Chapter 7. Value Set Controls 7-3

feet

Yards

Millimeters

Centimeters

Meters

Figure 7-5. Value Set with Text Strings

• Specify one or more of the following optional window styles, if desired, by using an OR
operator (I) to combine them with the style specified from the preceding list:

VS_BORDER The value set draws a thin border around itself to delineate the
control. Figure 7-6 provides an example of a value set with a
border.

Figure 7-6. Value Set with Border

VS_ITEMBORDER The value set draws a thin border around each item to
delineate it from other items.

Note: The VS JTEMBORDER style is useful for items that are
hard to see, such as faint colors or patterns. Figure 7-7
on page 7-5 provides an example of a value set with
item borders.

7 -4 PM Advanced Programming Guide

[lIJ1l " ·0Jj !•...........

Figure 7-7. Value Set with Item Borders

VS_RIGHTTOLEFT

The application is notified whenever the background of the
value set window is to be painted.

The value set interprets column orientation as right-to-Ieft,
instead of the default left-to-right arrangement. This means
columns are numbered from right-to-Ieft with the rightmost
column being 1 and counting up as you move left. Home is the
rightmost column and end is the leftmost column.

There is no visible difference between a value set ordered
left-to-right and a value set ordered right-to-Ieft. Therefore, if
your application uses multiple value sets, the ordering of the
items should be consistent in each value set to avoid confusing
the user.

Note: The VS_RIGHTTOLEFT style is used on creation of the
control. Changing this style after creation causes
unexpected results.

VS_SCALEBITMAPS The value set automatically scales bit maps to the size of the
cell. If this style is not used, each bit map is centered in its cell.
Also, if the cell is smaller than the bit map, the bit map is
clipped to the size of the cell.

Chapter 7. Value Set Controls 7-5

Using Value Set Controls
This section provides information that will enable you to create and use a value set control
effectively.

Creating a Value Set
You create a value set by using the WC_ VALUESET window class name in the ClassName
parameter of WinCreateWindow call.

Before the value set is created, a temporary VSCDATA data structure is allocated so that the
number of rows and columns of the value set can be specified.

Also, VS_* values are specified in the ulValueSetStyle variable so that the value set can be
customized. The sample code illustrated in Figure 7-8 shows the creation of a value set.

Figure 7-8 (Part 1 of 3). Sample Code for Creating a Value Set

7 -6 PM Advanced Programming Guide

/**/
/*Create the value set control window. */
/* The handle of the window is returned in hwndValueSet~ */
/**/
hwndValueSet = WinCreateWindow(

hwndClient,
WC VALUESET,
(PSZ) NULL,
ulValueSetStyle,
(SHORT) 18.
(SHORT) 18,

(SHORT) 388,
(SHORT) 28e,
hwndClient,
HWND_TOP,
ID_VALUESET,
&vscData,
(PVOID)NULL);

/* Parent window handle
/* Value set class name
/* No window text
/* Value set styles
/* x coordinate
/* Y coordinate

/* Window width
/* Window height
/* Owner window handle
/* Z-order position
/* Value set window ID
/* Control data structure
/* No presentation parameters

/**/
/*Set the color value for each item in each<row and column. */
/**/
WinSendMsg(hwndValueS~t, /* Value set window handle */

VM SETITEM, /* Message for setting items' */
MPFROM2SHORT(1,1), /* Set item in row 1. column 1 */
MPFROMLONG(8x88FF8888»; /* to the color red. */

WinS~ndMsg(hwndValueSet. /* <Value set window handle */
VMSETITEM, /* Message for setting items */
MPFROM2SHOIH(1,2), /* Set item in rowl, column 2 *l
MPFROMLONG(8x8e88FF8e»; /* to the color green. < */

WinSendMsg(hwndValueSet. /* Value set window handle *!
VMSETITEM, /* Message for setting items */
MPFROM2SHORT(1,J}, /* Set item in row 1, column 3 <*/
MPFROMLONG (8xG0GGeGFF»; !* to the color blue. * /

Figure 7-8 (Part 2 of 3). Sample Code for Creating a Value Set

Chapter 7. Value Set Controls 7-7

Figure 7-8 (Part 3 of 3). Sample Code for Creating a Value Set

Retrieving Data for Selected Value Set Items
The next step is to be able to retrieve the data represented by a value set item. To do this,
variables are specified for combined row and column index values, item attributes, and item
information. Then the VM_QUERYSELECTEDITEM, VM_QUERYITEMATTR, and
VM_QUERYITEM messages are used to retrieve the index values, attributes, and data. The
sample code in Figure 7-9 shows how data for selected value set items is retrieved.

Figure 7-9 (Part 1 of 2). Sample Code for Retrieving Data for Value Set Items

7 -8 PM Advanced Programming Guide

/**1
1* Determine the type of item that was selected. This message is *1
.!* only to determine how to interpret item data when a value set *1
1* contains different types of items. *1
1**1
usltemAttr = (USHORT)WinSendMsg(

hwndValueSet, 1* Value set window handle *1
VMQUERYITEMATTR, 1* Message for querying item attribute *1
MPFROMLONG(LllIdx), 1* Rowand column of selected item *1
NULL)i 1* Reserved v~lue *1

1**1
I 1* Getlhe information about the selected (non-textual) item. *1

1* IfyoQ are dealing with text, you need to allocate a buffer *1
/* for the text string. */
1**/
ulltemData= (ULONG)WinSendMsg(

hwndValueSet, 1* Value set window handle *1
VM QUERYITEM, 1* Message for querying an item *1
MPFROMLONG(ulldx), 1* Rowand column of selected item *1
NULL); 1* Set to NULL because the item is not *1

/* a text item *1
Figure 7-9 (Part 2 of 2). Sample Code for Retrieving Data for Value Set Items

Arranging Value Set Items
The application defines the arrangement of value set items; they can be arranged in one or
more rows, columns, or both. Items are placed from left to right in rows and from top to
bottom in columns. The application can change the number of rows and columns at any
time.

The number of items that can be displayed depends on the number of items that fit into the
spaces provided by the defined rows and columns. If the number of items exceeds the
number of spaces, the excess items are not displayed.

You can change the composition of a value set by specifying new items. The new items
either can be added to the value set or can replace existing items.

Graphical User Interface Support for Value Set Controls
This section describes the support the value set control provides for graphical user interfaces
(GUls). Except where noted, this support conforms to the guidelines in the SAA CUA
Advanced Interface Design Reference.

The GUI support provided by the value set control consists of Navigating to and selecting
value set items.

Chapter 7. Value Set Controls 7-9

Value Set Navigation Techniqu-es
Since all value set items are mutually exclusive, only one of them can be selected at a time.
Therefore, the only type of selection supported by the value set control is single selection.

Note: If more than one value set window is open, navigating to and selecting items in one
value set window has no affect on the items displayed in any other value set window.

An initial choice is selected when the value set control is first displayed. If the application
does not provide the initial selection by using the VM_SELECTITEM message, the choice in
row 1, column 1 is selected automatically.

The value set control supports the use of a pointing device, such as a mouse, and the
keyboard for navigating to and selecting items, except for items that are dimmed on the
screen. This dimming of items is called unavailable-state emphasis and indicates that the
items cannot be selected. However, the selection cursor, a dotted outline that usually
indicates that an item can be selected, can be moved to unavailable items so that a user can
press F1 to determine why they cannot be selected. The following sections describe the
pointing device and keyboard support for the value set control.

Pointing Device Support
A user can use a pointing device to select value set items. The SAA eUA Guide to User
Interface Design defines mouse button 1, the select button, to be used'for selecting items.
This definition also applies to the same button on any other pointing device.

An item can be selected by moving the pOinter of the pointing device to the item and clicking
the select button. When this happens, a black box is drawn around the item to show that it
has been selected. The black box is called selected-state emphasis. In addition, the
selection cursor is drawn inside the black box.

Keyboard Support
The value set control supports automatic selection, which means that an available item is
selected when the selection cursor is moved to that item. The item is given selected-state
emphasis as soon as the selection cursor is moved to it. No further action, such as pressing
the spacebar, is required. The same black box and dotted outline are used, for
selected-state emphasis and the selection cursor respectively, as when an item is selected
with a pointing device.

A user can navigate to and select an item by using either the navigation keys or mnemonic
selection to move the selection cursor to the item, as described in the following list:

• Items can be selected using the Up, Down, Left, and Right Arrow keys to move the
selection cursor from one item to another.

• The Home and End keys can be used to select the leftmost and rightmost items,
respectively, in the current row. If the Ctrl key is pressed in combination with the Home
or End key, the item in the top row· and the leftmost column, or the item in the bottom
row and the rightmost column, respectively, is selected.

7 -10 PM Advanced Programming Guide

Note: The preceding description assumes that the current style of the value set window
is left-to-right. However, if the VS_RIGHTTOLEFT style bit is set, the directions
described for the Home, End, Ctrl+Home, and Ctrl+End keys in the preceding
paragraph are reversed.

• The PgUp key can be used to select the item in the top row that is directly above the
current position of the selection cursor. The PgDn key can be used to select the item in
the bottom row that is directly below the current position of the selection cursor. If the
space in the top or bottom row directly above or below the current cursor position is
blank, the cursor moves to the blank space.

• Another keyboard method of selecting items is mnemonic selection. A user performs
mnemonic selection by pressing a character key that corresponds to an underlined
character. Coding a tilde n before a text character in the item causes that character to
be underlined and activates it as a mnemonic selection character. When this happens,
the selection cursor is moved to the item that contains the underlined character, and that
item is selected.

Enhancing Value Set Controls Performance and Effectiveness
This section provides dynamic resizing and scrolling to enable you to fine-tune a value set
control.

Dynamic Resizing and Scrolling
The value set control supports dynamic resizing if the application sends the WM_SIZE
message to a value set window. This means that the value set control automatically
recalculates the size of the items when either the user or the application changes the size of
the value set window.

If the value set window's size is decreased so that the window is not large enough to display
all of the items the value set contains, the items are clipped. If scroll bars are desired to
allow the clipped information to be scrolled into view, they must be provided by the
application.

Chapter 7. Value Set Controls 7-11

Related Window Messages
This section covers the window messages that are related to value set controls.

VM_QUERYITEM
This message queries the contents of the item indicated by the values of the usRow and
us Column fields. The information returned is interpreted based on the attribute of the item.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item to be queried. Rows have a value from 1 to the value of the
usRowCount field. This value, which is the total number of rows in the value set, is
specified in the VSCDATA data structure when the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the item to be queried. Columns have a value from 1 to the value
of the usColumnCount field. This value, which is the total number of columns in the
value set, is specified in the VSCDATA data structure when the value set control is
created.

pvsText (PVSTEXT)
Pointer to a VSTEXT data structure or NULL.

If the attribute of the item to query is VIA_TEXT, the value of the param2 parameter
is the same as the value of the pvsText field. For all other attributes, the param2
parameter is reserved and should be set to a NULL value.

. See "VSTEXT" on page 7-30 for definitions of this structure's fields as they apply to
the VM_ QUERYITEM message.

Returns
ulltemld (ULONG)

Item information.

7 -12 PM Advanced Programming Guide

VM_QUERYITEMATTR
This message queries the attribute or attributes of the item indicated by the values of the
usRow and usColumn fields.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the item for which the attribute or attributes are queried. Rows have a
value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDAT A data structure when
the value set control is created.

usColumn (USHORT)
Column index.

Column index of the item for which the attribute or attributes are queried. Columns
have a value from 1 to the value of the us Column Count field. This value, which is
the total number of columns in the value set, is specified in the VSCDATA data
structure when the value set control is created.

param2

uIReserved(ULONG)
Reserved value, should be o.

Returns
usltemAttr (USHORT)

Item information.

Chapter 7. Value Set Controls 7 -13

VM_QUERYMETRICS
This message queries for the current size of each value set item or for the spacing between
items. The value returned is either the width and height of one item, or the spacing between
items.

Parameters
param1

fMetric (USHORT)
Control metric.

param2

Control metric to be queried with this message. This can be either of the following:

VMA-,TEMSIZE If this message attribute is set, the width and height of each
item (in pixels) are returned in the usltemWidth and
usltemHeight parameters, respectively.

VMA-,TEMSPACING If this message attribute is set, the horizontal and vertical
spacing between items (in pixels) is returned in the
usHorzltemSpacing parameter and in the
us VertltemSpacing parameter, respeCtively.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulMetric (ULONG)

Metric value queried for.

VSERR-,NVALlD_PARAMETERS

>= 0

An error occurred. The WinGetLastError function may return the following error:

PM ERR-' NVALI D_PARAM ETERS.

This value depends on the VMA_* attribute set in the param1 parameter.

• If the VMA-,TEMSIZE attribute is set, the following is returned:

usltemWidth (USHORT)
Width of one value set item, in pixels.

usltemHeight (USHORT)
Height of one value set item, in pixels.

7 -14 PM Advanced Programming Guide

• If the VMAJTEMSPACING attribute is set, the following is returned:

usHorzltemSpacing (USHORT)
Amount of horizontal space allocated between each value set item, in
pixels. This number does not include the space needed for selected-state
and target emphasis, and for the selection cursor, because the emphasis
and cursor space is automatically allocated by the value set control. The
default space amount is O.

usVertltemSpacing (USHORT)
Amount of vertical space allocated between each value set item, in pixels.
This number does not include the space needed for selected-state and
target emphasis, and for the selection cursor, because the emphasis and
cursor space is automatically allocated by the value set control. The
default space amount is O.

VM_QUERYSELECTEDITEM
This message queries for the currently selected value set item indicated by the values of the
usRow and usColumn fields.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

usRow (USHORT)
Row index.

Row index of the currently selected value set item. Rows have a value from 1 to
the value of the usRowCount field. This value, which is the total number of rows in
the value set, is specified in the VSCDATA data structure when the value set control
is created.

Chapter 7. Value Set Controls 7 -15

usColumn (USHORT)
Column index.

Column index of the currently selected value set item. Columns have a value from
1 to the value of the usColumnCount field. This value, which is the total number of
columns in the value set, is specified in the VSCDATA data structure when the
value set control is created.

VM SELECTITEM
This message selects the value set item indicated by the values of the usRow and us Column
parameters. When a new item is selected, the previously selected item is deselected.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item to select. Rows have a value from 1 to the value of
the usRowCount field. This value, which is the total number of rows in the value
set, is specified in the VSCDAT A data structure when the value set control is
created.

usColumn (USHORT)
Column index.

param2

Column index of the value set item to select. Columns have a value from 1 to the
value of the usColumnCount field. This value, which is the total number of columns
in the value set, is specified in the VSCDATA data structure when the value set
control is created.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Item was successfully selected.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR INVALID PARAMETERS - -
• PMERR_PARAMETER_OUT _OF_RANGE.

7 -16 PM Advanced Programming Guide

VM SETITEM
This message specifies the type of information that will be contained by a value set item.
This item is indicated by the values of the usRow and us Column fields. Each value set item
can contain a different type of information. The value set interprets the information set for
the item based on the attribute of the item. Value set items that are not set (blank items) are
drawn using the background color of the value set.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which information is being specified. Rows have
a value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDATA data structure when
the value set control is created.

usColumn (USHORT)
Column index.

param2

Column index of the value set item for which information is being specified.
Columns have a value from 1 to the value of the usColumnCount field. This value,
which is the total number of columns in the value set, is specified in the VSCDATA
data structure when the value set control is created.

ulltemld (ULONG)
Item information.

This value depends on the VIA_* attribute set for the item.

• If the VIA_TEXT attribute is specified, the ulltemld field is as follows:

pszltem (PSZ)
Pointer to a null terminated string containing the text to be placed in the
item. If NULL is passed in, the item is blank.

• If the VIA_BITMAP attribute is specified, the ulltemld field is as follows:

hbmltem (HBITMAP)
Handle to a bit map that is to be drawn in the item indicated by the param 1
parameter .. If NULLHANDLE is passed in, the item will be blank.

• If the VIAJCON attribute is specified, the ulltemld field is as follows:

hptltem (HPOINTER)
Handle to the icon that is to be drawn in the item indicated by the param 1
parameter. If NULLHANDLE is passed in, the item is blank.

Chapter 7. Value Set Controls 7 -17

Returns
rc (BOOl)

• If the VIA_RGB attribute is specified, the uJltemld field is as follows:

rgbltem (UlONG)
Color value to be drawn in the item indicated by the param 1 parameter. If
an invalid value is passed in (a value greater than OxOOFFFFFF), the item is
blank. Each color value is a 4-byte integer with a value of:

(R * 65536) + (G * 256) + B

where:

R Red intensity value
G Green intensity value
B Blue intensity value.

• If the VIA_COlORINDEX attribute is specified, the uJltemld field is as follows:

ulColorlndex (UlONG)
Index of the color in the logical color table to be drawn in the item indicated
by the param 1 parameter.

Success indicator.

TRUE Item was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

VM SETITEMATTR
This message sets the attribute or attributes of the item indicated by the values of the usRow
and us Column parameters.

Parameters
param1

usRow (USHORT)
Row index.

Row index of the value set item for which attributes are being specified. Rows have
a value from 1 to the value of the usRowCount field. This value, which is the total
number of rows in the value set, is specified in the VSCDATA data structure when
the value set control is created.

7 -18 PM Advanced Programming Guide

usColumn (USHORT)
Column index.

param2

Column index of the value set item for which attributes are being specified.
Columns have a value from 1 to the value of the usColumnCount field. This value,
which is the total number of columns in the value set, is specified in the VSCDATA
data structure when the value set control is created.

usltemAttr (USHORT)
Item attributes.

Attribute or attributes of the item to be set or reset based on the value of the fSet
field. These attributes can be as follows:

• One of the following attributes can be set:

VIA BITMAP

VIA_COLORINDEX

VIA_ICON

VIA RGB

VIA TEXT

If this attribute is set, the item is a bit map. This is the
default.

If this attribute is set, the item is an index into the
logical color table.

If this attribute is set, the item is an icon.

If this attribute is set, the item is a color entry.

If this attribute is set, the item is a text string.

• In addition, one or more of the following attributes can be set:

VIA_DISABLED If this attribute is set, the item cannot be selected and
is displayed with unavailable-state emphasis, if
possible. Unavailable text items are always displayed
with unavailable-state emphasis, according to CUA
guidelines; for items displayed as color, bit maps, and
icons, it is the application's responsibility to determine
the best way to show that these items are unavailable,
if possible.

VIA DRAGGABLE

VIA_DROPONABLE

VIA_OWNERDRAW

The selection cursor can be moved to an unavailable
item by using either the keyboard navigation keys or a
pointing device. This allows a user to press the F1
key to find out why that item cannot be selected.

If this attribute is set, the item can be the source of a
direct manipulation action.

If this attribute is set, the item can be the target of a
direct manipulation action.

If this attribute is set, a paint notification message is
sent whenever this item needs painting.

Chapter 7. Value Set Controls 7-19

fSet (USHORT)
Set or reset flag.

TRUE Set the attribute of the indicated item.

FALSE Turn off the attribute of the indicated item.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Attribute or attributes were set successfully.
An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT_OF _RANGE.

VM_SETMETRICS
This message sets the size of each item in the value set control, the spacing between items,
or both.

Parameters
param1

fMetric (USHORT)
Units of measurement.

Unit or units of measurement that are to be set for the value set control. This can
be either of the following:

VMA JTEMSIZE If this message attribute is set, the width and height of each
item is set using the values of the usltemWidth and
usltemHeight parameters, respectively.

VMAJTEMSPACING If this message attribute is set, the horizontal and vertical
spacing between each item is set using the values of the
usHorzltemSpacing and usVertltemSpacing parameters,
respectively.

7 -20 PM Advanced Programming Guide

param2

ulltemld (UlONG)
Item information.

This value depends on the VMA_* attribute set for the message.

Returns
rc (BOOl)

• If the VMAJTEMSIZE attribute is specified, the ulltemld field is as follows:

usltemWidth (USHORT)
Width to be set for each value set item, in pixels. The number of pixels
specified cannot be less than 2.

usltemHeight (USHORT)
Height to be set for each value set item, in pixels. The number of pixels
specified cannot be less than 2.

• If the VMAJTEMSPACING attribute is specified, ulltemld field is as follows:

usHorzltemSpacing (USHORT)
Amount of horizontal space to be set between each value set item, in
pixels. This number does not include the space needed for selected-state
and target emphasis, and for the selection cursor, because the emphasis
and cursor space is automatically set by the value set control. The default
spacing is O.

usVertltemSpacing (USHORT)
Amount of vertical space to be set between each value set item, in pixels.
This number does not include the space needed for selected-state and
target emphasis, and for the selection cursor, because the emphasis and
cursor space is automatically set by the value set control. The default
spacing is O.

Success indicator.

TRUE Item size or spacing was successfully set.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_PARAMETER_OUT _OF_RANGE.

Chapter 7. Value Set Controls 7-21

WM_PRESPARAMCHANGED (in Value Set Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Attribute type.

param2

Presentation parameter attribute identity. The following presentation parameters are
initialized by the value set control. The initial value of each is shown in the following
list:

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Item foreground color; used when displaying text and bit maps. This color is
initialized to SYSCLR_WINDOWTEXT.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Value set background color; used for entire control as the background. This
color is initialized to SYSCLR_WINDOW.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Selection color; this is the color used for selected-state arid target emphasis.
This color is initialized to SYSCLR_HILITEBACKGROUND.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Value set and item border color. This color is initialized to
SYSCLR_WINDOWFRAME.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

7 -22 PM Advanced Programming Guide

WM QUERYWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see WM_QUERYWINDOWPARAMS.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer to a WNDPARAMS window parameter structure.

See WNDPARAMS for descriptions of the default fields. For a value set, the valid
values for the fsStatus field are WPM_CBCTlDATA and WPM_CTlDATA.

The flags in the fsStatus field are cleared as each item is processed. If the call is
successful, the fsStatus field is NULL. If any item has not been processed, the flag
for that item is still set.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (Baal)

Success indicator.

TRUE Successful operation.
FALSE Error occurred.

WM_SETWINDOWPARAMS (in Value Set Controls)
For the cause of this message, see WM_SETWINDOWPARAMS.

Parameters
param1

wndparams (PWNDPARAMS)
Pointer to a WNDPARAMS structure.

See WNDPARAMS for descriptions of the fields. For a value set, the valid value of
the fsStatus field is WPM_CTlDATA.

Chapter 7. Value Set Controls 7-23

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

WM_SIZE

Successful operation
Error occurred.

This message occurs when a window changes its size.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

Returns
ulReserved (UlONG)

Reserved value, should be O.

7 -24 PM Advanced Programming Guide

Related Notification Messages
This section covers the notification messages that are related to value set controls.

WM_CONTROL (in Value Set Controls)
For the cause of this message, see WM_CONTROL.

Parameters
param1

id (USHORT)
Value set control identity.

notifycode (USHORT)
Notify code.

The value set control uses these notification codes:

VN_DRAGLEAVE The value set receives a DM_DRAGLEAVE message.

VN_DRAGOVER The value set receives a DM_DRAGOVER message.

VN_DROP The value set receives a DM_DROP message. The
VN_DROP notification code is sent only when an item is
dropped on an item that has the VIA_DROPONABLE attribute.

VN_DROPHELP The value set receives a DM_DROPHELP message.

VN_ENTER The user presses the Enter key while the value set window
has the focus or double-clicks the select button while the
pointer is over an item in the value set.

VN_HELP The value set receives a WM_HELP message.

VNJNITDRAG The drag button was pressed and the pointer was moved while
the pointer was over the value set control. The VNJNITDRAG
notification code is sent only for items that have the
VIA_DRAGGABLE attribute.

VN_KILLFOCUS The value set is losing the focus.

VN_SELECT An item in the value set has been selected and is given
selected-state emphasis.

VN_SETFOCUS The value set receives the focus.

Chapter 7. Value Set Controls 7 -25

param2

notifyinfo (ULONG)
Control-specific information.

When the value of the notifycode parameter is VN_DRAGOVER, VN_DRAGLEAVE,
VN_DROP, or VN_DROPHELP, this parameter is a pointer to a VSDRAGINFO
structure.

When the value of the notifycode parameter is VN-,NITDRAG, this parameter is a
pOinter to a VSDRAGINIT structure.

When the value of the notifycode parameter is VN_ENTER, VN_HELP, or
VN_SELECT, this parameter contains the row and column of the selection cursor.
The low-order word contains the row index, and the high-order word contains the
column index.

Otherwise, this parameter is the window handle (HWND) of the value set control.

Returns
ulReserved (ULONG)

Reserved value, should be O.

WM_DRAWITEM (in Value Set Controls)
This notification message is sent to the owner of a value set control each time an item that
has the VIA_OWNERDRAW attribute is to be drawn, or when the background of a value set
window that has the VS_OWNERDRAW style bit is to be drawn.

Parameters
param1

id (USHORT)
Window identifier.

The window identifier of the value set control sending this notification message.

param2

powneritem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields that apply to the
value set control. See OWNERITEM for the default field values.

hwnd (HWND)
Value set window handle.

hps (HPS)
Presentation-space handle.

7 -26 PM Advanced Programming Guide

fsState (UlONG)
Value set window style flags. See "Value Set Styles" on page 7-2 for
descriptions of these style flags.

fsAttribute (UlONG)
Item attribute flags for the indexed item. See "VM_SETITEMATTR" on
page 7-18 for descriptions of these attribute flags.

fsStateOld (UlONG)
ReseNed.

fsAttributeOld (UlONG)
ReseNed.

rcl/tem (RECTl)
Item rectangle to be drawn in window coordinates.

idltem (lONG)
Identity of component to be drawn.

VDA_BACKGROUND

VDA_SURROUNDING

VDAJTEMBACKGROUND

VDA ITEM

Specifies that a part of the value set
background is to be drawn.

Specifies that a part of the area surrounding
the value set is to be drawn.

Specifies that the background of an item is to
be drawn.

Specifies that an entire item is to be drawn.

hltem (UlONG)

Returns
rc (BOOl)

If the value of the identity parameter is VDA_ITEMBACKGROUND or
VDAJTEM, this is the current row and column index of the item to be drawn.
The low-order word contains the row index, and the high-order word contains
the column index. Otherwise, this is reseNed.

Item-drawn indicator.

TRUE
FALSE

The owner draws the component.
If the owner does not draw the component, the owner returns this value and
the value set control draws the component.

Chapter 7. Value Set Controls 7-27

Related Data Structures
This section covers the data structures that are related to value set controls.

VSCDATA
Structure that contains information about the value set control.

Syntax

typedef strucf ':,¥SCDATA.{
ULONG cbSi~e;
USHORT usRowCount;
USHORT usCol umnCount;' .
} VSCDATA;

typedef VSCoAtA. *PVSCDATA;

Fields
cbSize (ULONG)

Data length.

Length of the control data in bytes.

usRowCou~~SHORn

Number of rows.

The number of rows in the value set control. The minimum number of rows is 1 and the
maximum number of rows is 65,535.

usColumnCount (USHORT)
Number of columns.

The number of columns in the value set control. The minimum number of columns is 1
and the maximum number of columns is 65,535.

7 -28 PM Advanced Programming Guide

VSDRAGINFO
Structure that contains information about direct manipulation actions that occur over the
value set control.

Syntax

typedef struct;.;,;VSDRAGINFO ;{
PDRAGINFO pDraglnfo;
US HORT usRow;
USHORT usCo 1 unm;
} . VSORAGINFO;

typedefVSDRAGINFO *PVSDRAGINFO;

Fields
pDraglnfo (PDRAGINFO)

Pointer to a DRAGINFO structure.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action occurred.

VSDRAGINIT
Structure that contains information that is used to initialize a direct manipulation action over
the value set control.

Syntax

Chapter 7. Value Set Controls 7 -29

Fields
hwnd (HWND)

Value set window handle.

Window handle of the value set control.

x (LONG)
X-coordinate.

X-coordinate of the pOinting device pointer in desktop coordinates.

y (LONG)
V-coordinate.

V-coordinate of the pointing device pointer in desktop coordinates.

ex (LONG)
X-offset.

X-offset from the hot spot of the pointing device pointer, in pels, to the item origin. The
item origin is the lower left corner of the item.

ey (LONG)
V-offset.

V-offset from the hot spot of the pointing device pointer, in pels, to the item origin. The
item origin is the lower left corner of the item.

usRow (USHORT)
Row index.

The index of the row over which the direct manipulation action occurred.

usColumn (USHORT)
Column index.

The index of the column over which the direct manipulation action occurred.

VSTEXT
Value set text structure. This structure is used with the VM_QUERYITEM message only.
See "VM_QUERYITEM" on page 7-12 for information about that message.

Syntax

7 -30 PM Advanced Programming Guide

Fields
pszltemText (PSZ)

Pointer to a buffer to copy the string into.

ulBufLen (ULONG)
Buffer size.

Size of the buffer pointed to by the pszltemText field.

Chapter 7. Value Set Controls 7-31

Summary
Following are tables that describe the OS/2 functions, window messages, notification
messages, notification codes, and data structures used with value set controls:

Table 7-1. Value Set Control Functions

Function Name Description

WinCreateWindow Creates a new window.

WinSendMsg Sends a message to a window.

WinShowWindow Sets the visibility state of a window.

Table 7-2. Value Set Control Window Messages

Message Name

VM_QUERYITEM

VM_ QUERYITEMA TTR

VM_ QUERYMETRICS

VM_ QUERYSELECTEDITEM

VM_SELECTITEM

VM_SETITEMA TTR

VM_SETMETRICS

WM_CHAR

WM_PRESPARAMCHANGED

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

7 -32 PM Advanced Programming Guide

Description

Queries the contents of the item indicated by the row and
column values.

Queries the attributes of the item indicated by the row and
column values.

Queries the current size of each value set item or the
spacing between items.

Queries for the currently selected value set item indicated
by the row and column values.

Selects the value set item indicated by the row and
column values.

Specifies the type of information that will be contained by
a value set item.

Sets the attributes of the item indicated by the row and
column values.

Sets the size of each item in the value set control, the
spacing between items, or both.

Occurs when the user presses a key.

Sent when a presentation parameter is set or removed
dynamically from a window instance.

Occurs when an application queries the window
parameters.

Occurs when an application sets or changes the window
parameters.

Occurs when a window changes its size.

Table 7-3. Value Set Control Notification Messages

Message Name Description

WM_CONTROL Occurs when the value set control has a significant event
to notify to its owner.

WM_CONTROLPOINTER Sent to the owner window of the value set control when
the pointing device pOinter moves over the value set
control window, enabling the pointer to be set.

WM_DRAWITEM Sent to the owner of the value set control each time an
item is to be drawn.

Table 7-4. Value Set Control Notification Codes

Code Name

VN_HELP

VN_INITDRAG

VN_KILLFOCUS

VN_SELECT

VN_SETFOCUS

Description

Sent when the value set receives a DM_DRAGLEAVE
message.

Sent when the value set receives a DM _ DRAGOVER
message.

Sent when the value set receives a DM_DROPHELP
message.

Sent when the value set receives a DM_DROPHELP
message.

Sent when the user presses the Enter key while the value
set window has the focus, or when the user double-clicks
the select button while the pointer is over an item In the
value set control.

Sent when the value set receives a WM_HELP message.

Sent when the drag button is pressed and the pointer is
moved while over the value set control.

Sent when the value set loses the focus.

Sent when an item in .the value set is selected and given
selected-state emphasis.

Sent when the value set receives the focus.

Table 7-5. Value Set Control Data Structures

Data Structure Name Description

VSCDATA Contains information about the value set control.

VSDRAGINFO Contains information about direct manipulation actions
that occur over the value set control.

VSDRAGINIT Contains information that is used to initialize a direct
manipulation action over the value set control.

VSTEXT Contains value set text. Used only with the
VM_QUERYITEM message.

Chapter 7. Value Set Controls 7-33

7 -34 PM Advanced Programming Guide

Chapter 8. Container Controls

A container control (WC_CONTAINER window class) is a visual component that holds
objects. It provides a powerful and flexible component for easily developing products that
conform to the Common User Access (CUA) user interface guidelines. This chapter
describes the container control component and how to use it in PM applications.

About Container Controls
A container can display objects in various formats and views. Generally speaking, each view
displays different information .about each object. If a container's data is too large for the
window's work area, scrolling mechanisms are enabled. The CUA direct manipulation
protocol is fully supported, thereby enabling a user to visually drag an object in a container
window and drop it on another object or container window. Containers are an integral
component of the CUA user interface.

Container Control Functionality
The container control provides multiple views of a container's contents, such as Icon, Name,
Text, Tree, and Details views. The container control lets you change container views quickly
and easily, display each view with a different font, or vertically split the Details view into two
parts so that a user can widen one part to see more information.

Graphical user interface (GUI) support is part of the container control. GUI support allows:

• Direct manipulation
• Multiple selection types: single, extended, and multiple selections.
• Multiple selection techniques: marquee, swipe, and first-letter selection.
• Multiple selection mechanisms: mouse button 1, mouse button 2, and keyboard

augmentation.
• Multiple forms of emphasis: selected-state, unavailable-state, in-use, and target

emphasis.
• Scrolling when a container's work area is not large enough for all the container items to

be visible
• Dynamic scrolling to provide visible feedback to show the movement of the container

items relative to the position of the scroll box.

The container control supports various data types, such as icons or bit maps for the Icon,
Name, Tree, and Details views. In the Details view, this includes the ability to use icons or
bit maps in column headings as well as in the columns themselves. The container control
also supports text in the following situations:

• For container titles in all views
• Beneath icons or bit maps in the Icon view
• To the right of icons or bit maps in the Name and Tree views
• For any column or column heading in the Details view
• For container items in the Text view
• For container items in the Details view, text in date, time, and number format.

© Copyright IBM Corp. 1994 8-1

The container control provides a variety of options for enhancing the performance of the
container:

• Direct editing of container control text
• Blank text fields in all views
• Ownerdraw, which enables an application, rather than the container control, to draw the

container items
• Automatic reposition mode which is used in the Icon view. The container control

provides an automatic reposition mode that repositions the items as a result of inserting,
removing, sorting, filtering items, or changing window or font size.

• Arrange message mode that arranges overlapping icons or bit maps so they no longer
overlap

• Data caching to efficiently remove items from and insert items into a container as they
scroll in and out of view

• Methods for sharing records among multiple containers
• Memory usage optimization.

Container Items
Container items can be anything that your application or a user might store in a container.
Examples are executable programs, word processing files, graphic images, and database
records.

Container item data is stored in the RECORDCORE and MINIRECORDCORE data
structures. Both the application and the container have access to the data stored in these
records.

The application must allocate memory for each record by using the CM_ALLOCRECORD
message.

The maximum number of records is limited only by the amount of memory in the user's
computer. The container control does not limit the number of records that a container can
have.

Container Views
When a user opens a container, the contents of that container are displayed in a window. A
container window can present various views of its contents, and each view can provide
different information about its container items. Table 8-1 on page 8-3 describes the views
the container control provides.

8-2 PM Advanced Programming Guide

Table 8-1. Container Control Views

View Type

Icon view

Name view

Text view

Tree view

Details view

Contents Displayed

Displays either icons or bit maps, with text beneath the icons or bit maps,
to represent container items. These are called icon/text or bit-map/text
pairs. Each icon/text or bit-map/text pair represents one container item.
This is the default view.

Displays either icons or bit maps, with text to the right of the icons or bit
maps, to represent container items. These are called icon/text or
bit-map/text pairs. Each icon/text or bit-map/text pair represents one
container item.

Displays a simple text list to represent container items.

Displays a hierarchical view of the container items. Three types of Tree
views are available: Tree text, Tree icon, and Tree name.

Displays detailed information about each container item. The same type
of data is displayed for each container item, arranged in columns. The
data in each column can consist of an icon or bit map, text, numbers,
dates, or times.

If a text string is not specified for a view in a place where a text string could be used, a blank
space is used as a placeholder. For example, if a text string is not placed beneath an icon
in the Icon view, a blank space is inserted just as though the text string were there. If this
blank space is not a read-only field, the user can put text into the space by editing it directly.

Icon View
The Icon view (CV JCON attribute) displays icon/text pairs or bit-map/text pairs to represent
container items; this is the default view. CV _ICON is an attribute of the CNRINFO data
structure's flWindowAttr field.

In the Icon view, icon/text pairs and bit-map/text pairs are icons and bit maps, respectively,
with one or more lines of text displayed below each icon or bit map. Each line can contain
one or more text characters, which are centered below the icon or bit map. The container
control does not limit the number of lines or the number of characters in each line.

Generally, the icon or bit map contains an image that depicts the type of container item that
it represents. For example, an icon or bit map that represents a bar chart might contain an
image of a bar chart.

Because the container control does not support both icons and bit maps in the same view,
an application must specify which are used by setting either the CA_DRAWICON attribute or
the CA_DRAWBITMAP attribute in the flWindowAttr field of the CNRINFO data structure.
The default is the CA_DRAWICON attribute. The size of the icon or bit map can be
specified in the slBitmapOrlcon field of the CNRINFO data structure.

Chapter 8. Container Controls 8-3

In the Icon view, container items are positioned according to x- and y-coordinate positions.
These are called workspace coordinates. You can supply these coordinates for each
container item by using the ptJ/con field of the RECORDCORE data structure. Figure 8-1
provides an example of the Icon view with various x- and y- coordinates specified in the
ptllcon field.

Sales Te:-:t

Sales Reports
1980-1990

~

Ja
Install

Figure 8-1. Icon View with Items Positioned at Workspace Coordinates

If you do not specify x- and y-coordinate positions, the container control places the icons or
bit maps at (0,0). However, your application can arrange the icons or bit maps either by
sending the CM_ARRANGE message or by setting the CCS_AUTOPOSITION style bit when
creating a container. With both of these methods, the container items are arranged in rows,
and any coordinates specified in the ptllcon field are ignored. As they are arranged each
ptllcon is updated with its new location.

The container items fill the topmost row until the width of the work area is reached. The
items then wrap to form another row immediately below the filled row. This process is
repeated until all the container items are positioned in rows. Default spacing is implemented
according to the guidelines for the CUA user interface.

If the CCS_AUTOPOSITION style bit is set and the container is displaying the Icon view,
container items are arranged automatically, without the CM~RRANGE message being sent,
when:

• The window size changes
• Container items are inserted, removed, sorted, invalidated, or filtered
• The font or font size changes.

In all of these cases, container items are arranged the same as when the CM_ARRANGE
message is sent. The CCS_AUTOPOSITION style bit is valid only when it is used with the
Icon view.

8-4 PM Advanced Programming Guide

If the CM_ARRANGE message is issued and the container control is not currently displaying
the Icon view, the container items are still arranged logically. Nothing changes in the current
view; the arrangement of the container items is not visible until the user switches to the Icon
view. Figure 8~2 shows an example of the container after a CM_ARRANGE message was
sent, or if the container was created with the CCS _ AUTO POSITION style bit set.

Sales Chart

r.·~.F·.·:·:~·:.~F:.·:".@;.·l·
j~

Sales Text

l~~~':
~~M

Sales Reports
1980-1990

Sales Reports Host Connect Install
1991

Figure 8-2. Icon View when Items Are Arranged or Automatically Positioned

Name View
The Name view (CV _NAME attribute) displays icon/text or bit-map/text pairs to represent
container items. CV _NAME is an attribute of the CNRINFO data structure's flWindowAttr
field.

In the Name view, icon/text pairs and bit-map/text pairs are icons and bit maps, respectively,
.,With one or more lines of text displayed to the right of each icon or bit map. Each line can
contain one or more text characters, which are left-justified. The container control does not
limit the number of lines or the number of characters in each line.

The container control offers the option of flowing or not flowing the container items in the
Name view. To flow container items means to dynamically arrange them in columns.

Non-Flowed Name View
If the container items are not flowed, the icon/text or bit-map/text pairs are placed in a single
column in the leftmost portion of the work area, as shown in Figure 8-3 on page 8-6.

Chapter 8. Container Controls 8-5

Sales Text

Sales Reports
1980-1990

Figure 8-3. Non-Flowed Name View

Flowed Name View
If the container items are flowed (CV _NAME I CV _FLOW), the container appears as shown
in Figure 8-4. In this case, the container items fill the leftmost column until the depth of the
work area is reached. The items then wrap to form another column immediately to the right
of the filled column. This process is repeated until all of the container items are positioned in
columns.

The width of each column is determined by the widest text string within the column. The
height of the work area is determined by the size of the window.

[2:) Sales Text Host Connect

~
Sales Reports !D§'

!~ Install 1 980-1 990 f>:..w.<-)

. : .: ..

Figure 8-4. Flowed Name View

8-6 PM Advanced Programming Guide

Text View
The Text view (CV _TEXT attribute) displays one or more lines of text to represent container
items. CV _TEXT is an attribute of the CNRINFO data structure's flWindowAttr field.

Each line can contain one or more text characters, which are left-justified. The container
control does not limit the number of lines or the number of characters in each line.

The container control offers the option of flowing or not flowing the container items in the
Text view.

Non-Flowed Text View
If the text strings are not flowed, the text for each container item is placed in a single column
in the leftmost portion of the work area, as shown in Figure 8-S.

Sales Text

Sales Reports
1980·1990

Sales Reports
1991

Host Connect

Install

Figure 8-5. Non-Flowed Text View

Flowed Text View
If the text strings are flowed (CV _TEXT I CV _FLOW), the container appears as shown in
Figure 8-6 on page 8-8. In this case, the text strings fill the leftmost column until the depth
of the work area is reached. The text strings then wrap to form another column immediately
to the right of the filled column. This process is repeated until all the text strings are
positioned in columns.

The width of each column is determined by the widest text string within the column. The
height of the work area is determined by the size of the window.

Chapter 8. Container Controls 8-7

Sales Text

Sales Reports
1980-1990

Sales Reports
1991

Host Connect

Install

Print Manager

Sales Report
January 1991

Figure 8-6. Flowed Text View

Tree View
The Tree view (CV_TREE attribute) displays container items arranged hierarchically.
CV _TREE is an attribute of the CNRINFO data structure's flWindowAttr field.

The leftmost items displayed in the Tree view are at the root level and are the same items
displayed in all the other container views. Items that contain other items are called parent
items. The items that a parent item contains are called child items and can be displayed
only in the Tree view. Child items that contain other items serve a dual role: they are the
children of their parent item, but they are parent items as well, with children of their own. For
example, a parent item might be a book that contains individual child items for its chapters or
a folder that contains several reports. The chapters or reports, in turn, could be parent items
that contain their own children, such as the major sections of a chapter or report.

If the child items of a parent item are not displayed, the parent item can be Expanded to
display them as a new branch in the Tree view. Once a parent item has been expanded, it
can be Collapsed to remove its child items from the display.

You can use the cxTreelndent and cxTreeUne fields of the CNRINFO data structure to
specify the number of pels that a new branch is to be indented horizontally, and the width of
the lines that are used to connect branches of the tree. These lines are displayed only if the
CA_ TREELINE attribute is specified in the flWindowAttr field.

The Tree view has three different types: Tree icon view, Tree text view, and Tree name view.
If CV _TREE is specified, the Tree icon view is the default view. If neither CV JCON,
CV_TEXT, or CV_NAME are specified, CVJCON is assumed. Figure 8-7 on page 8-9
shows an example of the Tree icon view with root level, parent, and child items.

8-8 PM Advanced Programming Guide

Sales Text

Sales Reports
1990-1990

t---- G1F~1 S.ales Repor~
,','!"O: 1980

lifill.C.11 Sales Repats
~''';;;; . 1981

Root level Item

Root level Parent Item

Root level Parent Item

Child Items

Figure 8-7. Tree View Showing Root Level, Parent, and Child Items

Tree Icon View and Tree Text View
The Tree icon and Tree text views are identical in every aspect except their appearance on
the screen. Container items in the Tree icon view (CV _TREE I CV -'CON) are displayed as
either icon/text pairs or bit-map/text pairs. The items are drawn as icons or bit maps with
one or more lines of text displayed to the right of each icon or bit map. Figure 8-8 shows an
example of the Tree icon view with the default Expanded and Collapsed bit maps.

Collapsed
Bit Map

Expanded
Bit Map

Sales Te:-:t

Sales Reports
1980-1990

1----- CJ. H!rI!) Sales Reports ::::. 1980

1---__ [.!:!!!::]l~.· Sales Reports :::::::::: 1981

Figure 8-8. Tree Icon View

Root Level Item

Ro ot Leve I Pare nt Item
Collapsed

Ro ot Leve I Parent Ite m
Expanded

Child Items

Container items in the Tree text view (CV _TREE I CV _TEXT) are displayed as text strings.
In both views, the container control does not limit the number of lines of text or the number

Chapter 8. Container Controls 8-9

of characters in each line. Figure 8-9 provides an example of the Tree text view, again
showing the default Expanded and Collapsed bit maps.

Sales Reports
1980·1990

I--__ s ales Reports
1980

1----- Sales Reports
1981

Figure 8-9. Tree Text View

In the Tree icon and Tree text views, a parent item is expanded by selecting the Collapsed
icon/bit map, which is displayed to the left of the parent item.

The Collapsed icon/bit map should contain some visible indication that the item can be
expanded. The default Collapsed bit map that is provided by the container control uses a
plus sign (+) to indicate that more items, the children of this parent, can be added to the
view.

When the child items of a parent item are displayed, the Collapsed icon/bit map to the left of
that parent item changes to an Expanded icon/bit map. Just as the Collapsed icon/bit map
provides a visible indication that an item can be expanded, so should the Expanded icon/bit
map indicate that an item can be collapsed. The default Expanded bit map provided by the
container control uses a minus sign (-) to indicate that the child items of this parent can be
subtracted from the view. If any of the child items have children of their own, a Collapsed or
Expanded icon/bit map is displayed to their immediate left as well.

To display your own Collapsed and Expanded icons or bit maps, specify their handles by
using the hptrCol/apsed and hptrExpanded fields of the CNRINFO data structure for icons,
and the hbmCo/lapsed and hbmExpanded fields for bit maps. Also, you can use the
slTreeBitmapOrlcon field to specify the size, in pels, of these Collapsed and Expanded icons
and bit maps.

Tree Name View
Container items in the Tree name view (CV _TREE I CV _NAME) are displayed as either
icon/text pairs or bit-map/text pairs. Similar to the Tree icon view, the items are drawn as
icons or bit maps with one or more lines of text displayed to the right of each icon or bit map.
The container control does not limit the number of lines or the number of characters in each
line of text.

8-1 0 PM Advanced Programming Guide

Unlike the Tree icon view, however, separate Collapsed and Expanded icons/bit maps are
not used. Instead, if an item is a parent, the icon or bit map that represents that item
contains the same type of visible indication that is placed in a separate icon/bit map in the
Tree icon view to show that an item can be collapsed or expanded. In this way, the icon or
bit map that represents the parent item can serve a dual purpose and thus preserve space
on the screen, an important consideration if the text strings used to describe items become
too long.

The container control does not provide default icons or bit maps for the Tree name view. To
display your own Collapsed and Expanded icons or bit maps, specify their handles using the
hptrCollapsed and hptrExpanded fields of the TREEITEMDESC data structure for icons, and
the hbmCollapsed and hbmExpanded fields for bit maps. Also, you can use the
slBitmapOrlcon field of the CNRINFO data structure to specify the size, in pels, of these
Collapsed and Expanded icons and bit maps. Figure 8-10 shows an example of the Tree
name view.

r:;=.'.:.~.~.~.'.;;;;~ Sales Reports
,,:,: 1980·1990

[~.: 'B Sales Reports
,,::, 1980

1.8: JJ. S ales Reports
:::: 1981

Figure 8-10. Tree Name View

Details View
The Details view (CV_DETAIL attribute) of the container control can display the following
data types to represent container item: icons or bit maps, text, numbers, dates, and times.
CV _DETAIL is an attribute of the CNRINFO data structure's flWindowAttr field.

The data is arranged in columns, which can have headings. Each column can contain data
that belongs to only one of the valid data types. Column headings can contain text, icons, or
bit maps.

Chapter 8. Container Controls 8-11

The width of each column can be explicitly specified in the cxWidth field of the FIELDINFO
data structure. If a column width is not specified, it is determined by the widest entry in the
column.

Columns can be inserted or removed dynamically. All of the columns in a given row belong
to a single container item; selecting the data portion of a row selects the entire row, not just
the individual column.

Details view column headings and data can be top- or bottom-justified or vertically centered,
as well as left- or right-justified or horizontally centered. In addition, horizontal separator
lines can be specified between the column headings and the data; vertical separator lines
can be placed between columns. Figure 8-11 shows an example of the Details view where
Container Items, the icon, Description, and Item Size are the column headings.

Ownerdraw, where the application draws the container items, is supported for each column.

Container
Items

:': .

Figure 8-11. Details View

Description

Determining the Width of a Column in a Details View

Column
He~dings

There are instances when you might want to determine the width of a column in the Details
view. A function has been added to the container control to allow you to determine the width
of the data in a column. You can then compute the width of the entire column by adding the
width of the data to the left and right margins of the column. To determine the width of a
column:

1. Define an attribute with a value of Ox0200 and give it a name such as
CMA DATAWIDTH.

2. Issue the CM_QUERYDETAILFIELDINFO message with the following values:

a. Provide a pointer to-the FIELDINFO data structure in param1.

b. Specify your attribute (see step 1) in param2.

8-12 PM Advanced Programming Guide

c. Request a return value with a type of LONG, not PFIELDINFO, to retrieve the width
of the column in the FIELDINFO data structure to which you are pointing. The
value returned is the width of the data (text, icon, or bit map) in this column.

3. Use GpiQueryFontMetrics to query the average character width of the font used by the
container. This value will be used to calculate the total column width.

4. Multiply 3 by the average character width and add this to the data width returned from
step 2 on page 8-12 for all columns except the following:

• The first and last columns in each split window. In these cases, multiply 2.5 by the
average character width and add the column data width returned from step 2 on
page 8-12.

• The only other special case is where there is only 1 column in either the left or right
split windows. In this case, you would multiply 2 by the average character width
and add the column data width returned from step 2 on page 8-12.

5. The value returned is the total width of the column.

Split Bar Support for the Details View
A split bar enables the application to split the container window vertically between two
column boundaries. This function is available only in the Details view.

The two portions of the work area on either side of the split bar appear side-by-side. They
scroll in unison vertically, but they scroll independently horizontally.

The application is responsible for specifying the position of the split bar, which is defined with
the xVertSplitbar field. Also, the rightmost column of the left split window is specified with
the pFieldlnfoLast field. xVertSplitbar and pFieldlnfoLast are fields of the CNRINFO data
structure.

The left split window cannot be empty if there is data in the right window. The right split
window is not required to have data. However, because data cannot be scrolled from the
right split window into the left split window, or from left to right, the split bar loses much of its
usefulness if the right split window is empty.

The user can drag the vertical split bar within the limits of the window. As the user drags the
split bar to the left, the right split window becomes wider; as the user drags the split bar to
the right, the left split window becomes wider.

Each container control can have one vertical split bar. Horizontal split bars are not
supported.

Figure 8-12 on page 8-14 shows an example of a split bar between the Description column
and the Date Created column.

Chapter 8. Container Controls 8-13

Split Ba.r

Container:

····(i· .. I····;=~·~~·.~~·;·····
.. ···UI·I·I~m ;::: ~~~~.~.:.~.~.~

!,!t!,! SALE S. CB T

Description

Sales Chart
Updated Each Month

Sales Text
Updated Each Month

File Cabinet
for 1980-1990
Sales Reports

Figure 8-12. Details View with Split Bar

Using Container Controls

Date
Created

2/1/91

2/1/91

1/3/80

This section provides information about the following topics:

• Creating a container
• Allocating memory for container records
• Allocating memory for container columns
• Inserting container records
• Removing container records
• Setting the container control focus
• Using container views
• Changing a container view.

Note: Much of the sample code in this section is part of a complete program that creates a
container for a small address book. The program is illustrated in "Sample Code for
Container Controls" on page 8-38.

Creating a Container
You create a container by using the WC_CONTAINER window class name in the ClassName
parameter of WinCreateWindow. Before you create the container, you can create a frame
window as a parent. If you create the frame window, it sizes the container to fill its work
area. The sample code illustrated in Figure 8-13 on page 8-15 shows the code to create
both the frame and the container.

8-14 PM Advanced Programming Guide

hab; HAB
HWND
HWND
PFNWP

hPopUi>M~nu;
hFrameWnd.hCnrWnd;
SysWndProt ;'

7'* FrameandCorrl:ainer window handles *1

INT rna; n (VOID)
{

HMQ hmq;
FRAMECDATA fed;
QMSG qmsg;

i f(! (hab :::<Winlni tiaJi ze(0»))
return~ FALSE;

if {!(hmq= WinCreateMsgQueue(hab, 0»)
TeturnFALSE;

/***1
I*Setupthe'fra~econtrql data for the frame window. '. *1
l******~**i*i<~~**i<*****:**:*:*** 1

fcd •. Gb.= .. ··size0f:{F~AMECQATA);
fcd.flCreateFl ags= ...• fCFTl'f:LEBAR

, FCF-SY$MENU
FCF:SIZESORDER
FCF_SHELLPOSITION
fCF.-MINMAX,
FCF .. TASKLlSJ;

fe~.~hmodRe~our~es NUI..LHANOLE;
fed •. idResourees,;;;~;

I~J**.***W~****~***2~*i****~***************w*******.***:**:********~********/
I*Create,theframe·to·holdthe,container·contro]. *1
1**:***,*****.*;"**'**~***;"*C***~~~1<*¥*******~***'*****'***********'************* 1

hfram¢~l'lcJ.:::·, .. WjnCreClteW.ind()W.(HWND_PE.sKTOP,
'WCjJRAME;

lI~rone.·· .. ··.~og~·lI.t
'e'i ~~.~f.0i'· 0;
~U~.LHANDL~, .

. ·'HWND.·TOP···'·
" "'.: ' .. '
~., '

::&f¢~,
NUL.L);

Figure 8-13 (Part 1 of 2). Sample Code for Creating a Container

Chapter 8. Container Controls 8-15

Figure 8-13 (Part 2 of 2). Sample Code for Creating a Container

The container is created with a default set of control data, which can be changed using the
CM_SETCNRINFO message.

Allocating Memory for Container Records
Your application must allocate memory for a container record by using the
CM_ALLOCRECORD message, which also enables you to allocate memory for additional
application data.

The maximum number of records is limited by the amount of memory in the user's computer.
The container control does not limit the number of records that a container can have.

The sample code illustrated in Figure 8-14 on page 8-17 shows how to allocate memory for'
records that populate the container. A pointer to the record is returned.

8-16 PM Advanced Programming Guide

HWND
PRECORDCORE
RECORDINSERT
ULONG

hlcon;
Address, Fi rstRec;
recsln;
x;

/**/
/ * All ocate MAXFRI ENDS records all at once - * /
/* CM ALLOCRECORD returns them in a linked list. *!
/*****;**/

Address = (PRECORDCORE) Wi nSendMsg(hWnd ,
CM_ALLOCRECORD,
0,
MPFROMLONG(MAXFRIENDS));

Figure 8-14. Sample Code for Allocating Memory for Container Records

Your application can use the CM_ALLOCRECORD message to allocate memory for one or
more container records. The application can request n container records with an nRecords
parameter. If n is one, a pointer to that record is returned. If n is greater than one, a pointer
to the first record in a linked list of n records is returned.

Allocating Memory for Container Columns
In addition to allocating memory for records, an application also must allocate memory for
columns of data if the details view is used. In the Details view, a container's data is
displayed in columns, each of which is described in a FIELDINFO data structure.

Memory is allocated for FIELDINFO data structures using the CM_ALLOCDETAILFIELDINFO
message. Unlike the CM_ALLOCRECORD message, the CM_ALLOCDETAILFIELDINFO
message does not allow the application to allocate memory ,for additional application data.
However, the pUserData field of the FIELDINFO data structure can be used to store a
pointer to the application-allocated data.

Multiple FIELDINFO data structures can be allocated with the nFieldlnfo parameter of the
CM_ALLOCDETAILFIELDINFO message.

Inserting Container Records
After the memory is allocated, you can insert one or more container records by using the
CMJNSERTRECORD message.

Figure 8-15 on page 8-18 provides a sample code that inserts records into a container for
which memory was allocated in Figure 8-14.

Chapter 8. Container Controls 8-17

Figure 8-15 (Part 1 of 2). Sample Code for Inserting Records into a Container

8-18 PM Advanced Programming Guide

/* Redraw the container */
recsIn.fInvalidateRecord = TRUE;

/* Set the number of records to insert */
recsIn.cRecordsInsert = MAXFRIENDS;

/**/
/* Insert the records into the container. */
/ ***'*** /

WinSendMsg(hWnd,
CM INSERTRECORD, .
(PRECOROCORE) Fi rstRec,
&recsIn);

Figure 8-15 (Part 2 of 2). Sample Code for Inserting Records into a Container

The CM-,NSERTRECORD message requires you to provide two pointers. The first pointer
points to the record that is to be inserted, which is specified in the FirstRec parameter.
When you are inserting multiple records, use this parameter to specify a pointer to a linked
list of records.

The second pointer points to a RECORDINSERT data structure (&recsln) , which specifies
information the container needs for inserting records.

One of the elements of information that this data structure contains is the order in which the
records are to be inserted, which is specified in the pRecordOrder field. In this field you
have two options. The first option is to specify a pointer to a container record. The records
being inserted are placed immediately after that record. In this case, the pRecordParent field
is ignored.

The second option is to specify whether the records being inserted are to be placed at the
beginning or end of a list of records. This is done by specifying either the CMA_FIRST or
CMA_END attributes. If you choose this option, the list of records used depends on the
value of the pRecordParent field.

If CMA_FIRST or CMA_END is specified and the value of the pRecordParent field is NULL,
the inserted records are placed at the beginning or end of the root-level records. However, if
CMA_FIRST or CMA_END is specified and pRecordParent contains a pointer to a parent
item record, the records are inserted at the beginning or end of the list of child item records
that this parent record contains.

The RECORDINSERT data structure also lets you specify the z-order position of the records
being inserted. The CMA_ TOP and CMA_BOTTOM attributes of the zOrder field place the
record at the top or bottom, relative to the other records in the z-order list. This field applies
to the Icon view only.

To specify the number of records that are being inserted, use the cRecords/nsert field. The
value of this field must be greater than O.

Chapter 8. Container Controls 8-19

The last field in the RECORDINSERT data structure is fIIn valida teRecord, which enables you
to control whether the records are displayed automatically when they are inserted. If you
specify TRUE in this field, the display is updated automatically. However, if you specify
FALSE, the application must send the CMJNVALIDATERECORD message after the records
are inserted to update the display.

Where items are positioned in a container depends on the view the user has specified. If the
Icon view is specified and the CCS_AUTOPOSITION style bit is not set, the x- and
y-coordinates for each record, which are stored in the ptllcon field of the RECORDCORE and
MINIRECORDCORE data structures, determine its position. Records displayed in the Name
view, Text view, Tree view, and Details view are positioned as previously described in this
section.

Note: Records inserted into a list of child record items can be displayed in the Tree view
only. These records are visible only if the parent record item to which these child
record items belong is expanded.

Removing Container Records
The CM_REMOVERECORD message can be used to remove one or more container records
from the container control. The sample code in Figure 8-16 removes all records from a
container and frees the memory associated with those records. It is the application's
responsibility to free all application-allocated memory that is associated with the removed
container records. The container is invalidated and repainted.

Figure 8-16 (Part 1 of 2). Sample Code for Removing Container Records

8-20 PM Advanced Programming Guide

/**/
/* Remove the records. */
/******************:k***/
WinSe~dMsg{hwndCnr, /* Container window handle */

CM_REMOVERECORD, /* Container message for removing */

NULL,
MPFROM2SHORT(

cNumRecord,
fRemoveRecord»;

/* records */
/* NULL PRECORDARRAY */

/* Number of records
/* Memory invalidation flags

Figure 8-16 (Part 2 of 2). Sample Code for Removing Container Records

The application must set the pointers to each record to be removed in an array. If the
fRemoveRecord parameter of this message includes the CMA _FREE attribute, the records
are removed and the memory is freed. If this attribute is not set, the records are removed
from the list of items in the container, and the application must use the CM_FREERECORD
message to free the memory. The default is not to free the memory.

If the fRemoveRecord parameter includes the CMAJNVALIDATERECORD attribute, the
container is invalidated after the records are removed. The default is not to invalidate the
container. The CMAJNVALIDATERECORD attribute can be used with the CMA_FREE
attribute, separated by a logical OR operator (I), to free the record's memory and invalidate
the container.

Setting the Container Control Focus
The application must set the focus to the container control using WinSetFocus so that all
mouse and keyboard activity goes to the container window. The sample code illustrated in
Figure 8-17 shows how to use WinSetFocus.

WinSetFocus(HWND DESKTOP,
hListWnd)

1* Desktop wi ndowhandl e *!
/* Handle of window to receive focus */

Figure 8-17. Sample Code Showing How to Use WinSetFocus

Using Container Views
Container views are specified by using attributes on the flWindowAttr field of the CNRINFO
data structure.

Because the container control does not support both icons and bit maps in the same view,
an application mustspecify which are used by setting either the CA_DRAWICON attribute or
the C~DRAWBITMAP attribute in the flWindowAttr field of the CNRINFO data structure.
The default is the CA_DRAWICON attribute. The size of the icon or bit map can be
specified in the slBitmapOrlcon field of the CNRINFO data structure.

Chapter 8. Container Controls 8-21

Changing a Container View
The sample code illustrated in Figure 8-18 shows how to use the CM_SETCNRINFO
message to change from the current view of a container (Name, Details, or Text) to the Icon
view.

Figure 8-18. Sample Code for Changing a Container View

Graphical User Interface Support for Container Controls
This section describes the container control support for graphical user interfaces (GUls).
Except where noted, this support conforms to CUA interface design guidelines. The GUI
support provided by the container control consists of the following:

• Scrolling
• Dynamic scrolling
• Selecting container items
• Providing emphasis
• Using direct manipulation.

Scrolling
The container control automatically provides horizontal or vertical scroll bars, or both,
whenever the container window's work area is not large enough to display all of the container
items.

I If all container items are visible in the work area, the scroll bars are either removed or
disabled, depending on the view and how the items are positioned, as follows:

8-22 PM Advanced Programming Guide .

• If container items are displayed in the icon or tree view, and one or more items are not
visible in the work area, a horizontal scroll bar, vertical scroll bar, or both, are provided,
depending on the position of the items outside of the work area. If container items are
positioned to the right or left of the work area, a horizontal scroll bar is provided; if
container items are positioned below or above the work area, a vertical scroll bar is
provided.

Scroll bars are not provided if all the container items are visible in the work area. Scroll
bars are removed from the container window if either of the following occurs:

- Container items positioned outside the work area are moved into the work area.

- The size of the container window is increased so that container items formerly not
visible become visible.

• If container items are displayed in non-flowed text and non-flowed Name views, a
vertical scroll bar is provided; this scroll bar is disabled if all the container items are
visible in the work area. A horizontal scroll bar is used in these views only when the
work area is too narrow to allow the widest container item to be seen in its entirety. If
the user changes the window size to allow the entire widest container item to be seen,
the horizontal scroll bar is removed.

• If container items are displayed in flowed text and flowed name views, a horizontal scroll
bar is provided; this scroll bar is disabled if all the container items are visible in the work
area. A vertical scroll bar is used in these views only when the work area is too short to
allow the tallest container item to be seen in its entirety. If the user changes the window
size to allow the entire tallest container item to be seen, the vertical scroll bar is
removed.

• If container items are displayed in the Details view, both horizontal and vertical scroll
bars are provided. These scroll bars are disabled if all the container items are visible in
the work area.

Note: A Details view that is split has two horizontal scroll bars, one for each portion of
the split window.

Dynamic Scrolling
The container control supports dynamic scrolling, which enables the user to drag the scroll
box in the scroll bar and get immediate visible feedback on where the scrolling stops when
the scroll box is dropped. If the scrolling range is greater than 32K pels, dynamic scrolling is
disabled.

Selecting Container Items
Except during direct manipulation and direct editing of text in a container, a user must select
a container item before performing an action on it. The container control provides several
selection types, along with selection techniques to implement those types. The container
control also supports two selection mechanisms: pointing device, such as a mouse, and the
keyboard.

Chapter 8. Container Controls 8-23

Selection Types
The container control supports the following seleCtion types:

• Single selection

Single selection enables a user to select only one container item at a time. This is the
default selection type for all views and is the only selection type supported for the Tree
view.

• Extended selection

Extended selection enables a user to select one or more container items, in any
combination. The CUA-defined keyboard augmentation keys are implemented for
extended selection. When used with a pointing device, these keys enable a user to
select discontiguous sets of container items. Extended selection is valid for all views
except the Tree view.

• Multiple selection

Multiple selection enables a user to select none, some, or all of the container items.
Multiple selection is valid for all views except the Tree view.

Only one of these selection types can be used for each container. The selection type for a
container is defined when the container is created.

Selection Techniques
Depending on the type of view and the type of selection, a user can select container items
using the following selection techniques:

• Marquee selection

Marquee selection is supported only in the Icon view and is only valid with the extended
and multiple selection types. This selection technique enables a user to begin selection
from an anchor point that is established by moving the pointer to white space in the
container and pressing, but not releasing, the select button on the pOinting device. As
the user presses the select button and drags the pointer, a tracking rectangle is drawn
between the anchor point and the current pOinter position. All items whose icons or bit
maps are entirely within the tracking rectangle are dynamically selected.

• Swipe selection

Swipe selection is valid only with the extended and multiple selection types. The
container control implements two techniques for swipe selection: touch swipe and range
swipe.

- Touch swipe

Touch-swipe selection is implemented in the Icon view. With this selection
technique, the pOinter must pass over some portion of a container item while the
user is pressing the select button for that item to be selected.

- Range swipe

In views other than the Icon and Tree views, range-swipe selection is available.
With this method, the user presses the select button while moving the pointer.
However, the pointer does not have to pass directly over a container item for that

8-24 PM Advanced Programming Guide

item to be selected. Aside from pressing the select button and moving the pointer,
the only other requirement for selection is that the container item must be within a
range of items that is being selected. The range begins at the pointer's position
when the user presses the select button; it ends at the pointer's position when the
user releases the select button.

• First-letter selection

For the Icon, Name, Text, and Tree views, first letter selection occurs when a character
key is pressed, and the first container item whose text begins with that character is
displayed with selected-state emphasis. The same is true for the Details view, except
that all the columns for a record are searched for a matching character before the next
record is searched. The effect of first letter selection on other selected container items
depends on the chosen selection type (single, multiple, or extended).

Note: If more than one container window is open, selecting a container item in one window
has no effect on the selections in any other window.

Selection Mechanisms
Mouse button 1 (the select button) is used for selecting container items, and mouse button 2
(the drag button) is used for dragging and dropping container items during direct
manipulation. These definitions also apply to the same buttons on any other pointing device.

In addition, a user can press a keyboard key while pressing a mouse button; this is called
keyboard augmentation. The only instance of keyboard augmentation defined specifically for
the container control is pressing the Alt key with the select button, which starts direct editing
of text in a container.

In addition, the container control supports two keyboard cursors that can be moved by using
keyboard navigation keys:

• The selection cursor, a dotted black box drawn around a container item, which
represents the current position for the purpose of keyboard navigation.

• The text cursor, a vertical line that shows the user where text can be inserted or deleted
when container text is being edited directly.

Keyboard navigation consists of the use of the Up and Down Arrow, Left and Right Arrow,
Home, End, PgUp, and PgDn keys. If container items are not visible within the work area,
navigation with these keys causes the items to scroll into view if the user is not editing
container text directly.

Providing Emphasis
The container control supports various types of emphasis. The following list describes forms
of emphasis that have a distinct visible representation in the container control:

Chapter 8. Container Controls 8-25

• Selected-state and unavailable-state emphasis

When a container item is selected, the container item receives selected-state emphasis,
which means that the emphasis is applied to icon/text or bit-map/text pairs in the Icon,
Name, Tree icon, and Tree name views; text strings in the Text and Tree text views; and
an entire row that represents a container item in the Details view. Figure 8-19 illustrates
an example of selected-state and unavailable-state emphasis; the emphasis on the
choice in the pull-down menu indicates that the choice is unavailable.

Selected-state emphasis U navai lab Ie-state emp h asis

Figure 8-19. Selected-State and Unavailable-State Emphasis

The color for selected-state emphasis can be changed by using the control panel or
WinSetPresParam, which results in a WM_PRESPARAMCHANGED message being
sent to the container.

• In-use emphasis

Cross-hatching behind an icon or bit map indicates in-use emphasis. In-use emphasis is
not applied to container items in the Text view, Tree text view, or Details view when it
contains text only. However, the Details view often includes icons or bit maps in one
column of each record, usually the leftmost column. In this situation, specify the column
that contains the icons or bit maps so that in-use emphasis can be applied to them.
This column can be set by using the pFieldlnfoObject field of the CNRINFO data
structure.

• Target emphasis

Target emphasis is used during direct manipulation. When a user drags one container
item over another, the item beneath the dragged item displays target emphasis. Two
forms of target emphasis (visible feedback) are available: a black line and a black
border. These forms of emphasis indicate the target, where the container item is
dropped if the user releases the drag button.

8-26 PM Advanced Programming Guide

Using Direct Manipulation
Direct manipulation is a protocol that enables the user to drag a container item within its
current window or from one window to another. The user can drop the container item either
on white space in a window or on another item.

Direct manipulation can be performed with all views of the container control. A function is
provided so that the application is notified if an item is dropped on another item in the
container and if an item is dragged from the container.

The user can drag any container item, whether or not it is selected. If the user presses the
drag button when the pointer is over a selected container item, the application drags all
selected items.

If the user presses the drag button when the pointer is over a container item that is not
selected, the application drags only the item that the pOinter is over.

The container control fully supports direct manipulation.

Enhancing Container Controls Performance and Effectiveness
The following topics offer information about fine-tuning a container to enhance its
performance and effectiveness:

• Positioning container items
• Specifying space between container items
• Providing target emphasis
• Specifying deltas for large amounts of data
• Direct editing of text in a container
• Specifying container titles
• Specifying fonts and colors
• Drawing container items and painting backgrounds
• Filtering container items
• Optimizing container memory usage
• Sharing records among multiple containers.

Positioning Container Items
Container items are positioned in the Icon view according to workspace coordinates.

The workspace is a two-dimensional Cartesian-coordinate system. The user can see a
portion of the workspace in the work area, which is the scrollable viewing area of the
container that is defined by the size of the container window. The work area is logically
scrollable within the workspace.

Figure 8-20 on page 8-28 shows the x- and y-axes of the workspace with a container
window and its work area superimposed. (This figure is not drawn to scale.)

Chapter 8. Container Controls 8-27

Scrollable Workspace Areas
The workspace is indicated by the solid black line that runs even with:

• The top and bottom edges of the topmost and bottommost container items

• The left and right edges of the leftmost and rightmost container items.

The workspace is defined by the minim"um and maximum x- and y-coordinates of the items in
the container. The work area of the container window can be scrolled only within the
workspace and only as far as is· necessary to see the topmost, bottommost, leftmost, and
rightmost container items.

Figure 8-20 shows the scrollable work area of the workspace.

Work
Area

y

y

Sales Text

Sales Chart

Bounded Workspace

Sales Reports
'980-'990

Figure 8-20. Workspace x- and Y-Axes

J!!!t
Host Connect

x

Figure 8-21 on page 8-29 further illustrates a bounded workspace. In this example, the
topmost and bottommost container items limit the workspace. The work area has been
scrolled so that the elements are not all within the work area. The work area could be
scrolled to the left so that it would include the leftmost element, or scrolled down and to the
right to include the rightmost element, but it could not be scrolled any farther in either
direction.

8-28 PM Advanced Programming Guide

Workspace and Work Area Origins
When the container is created, the work area and workspace share the same origin, (0,0), as
represented in Figure 8-20 on page 8-28. If the application requires that the work area and
the workspace have different origins, the application can use the ptlOrigin field of the
CNRINFO data structure and the CM_SETCNRINFO message to set the origin of the work
area. The application can use the CM_ QUERYCNRINFO and CM_ SETCNRINFO messages
to obtain the origin when the user ends the application and to reset the origins when the user
restarts the application.

Container items are located in reference to the workspace origin. There is a visual shift as
the work area is scrolled; however, because the work area moves over a fixed workspace,
the coordinates of the container items do not change.

Container Item
in Workspace

Host Connect

Container Item
in Work Area

Sales Chart

Bounded
Workspace

Sales Reports
1980-1990

Sales Text

Figure 8-21. Workspace Bounds

Sales Reports
1991

Specifying Space between Container Items

:: :

~

~
Picture Printer

You can specify the amount of vertical space, in pels, to allow between container items by
using the cyLineSpacing field of the CNRINFO data structure. If you do not specify how
much vertical space can be used, the container control sets the space between the items
using a default value. For the Tree view, you can specify the horizontal distance between
the levels by using the cxTreelndent field of the CNRINFO data structure. If this value is
less than 0, a default is used.

Chapter 8. Container Controls 8-29

Providing Source Emphasis
Source emphasis is the type of emphasis provided when a context menu is displayed. It
appears as a dotted box with rounded corners that surrounds the item for which the context
menu is requested, or the item that is being dragged.

To provide source emphasis for container items issue the CM_SETRECORDEMPHASIS
message with the following values:

1. Provide a pointer to the RECORDCORE or MINIRECORDCORE data structure in
param1.

You can provide source emphasis for the entire container by setting param1 to NULL.

2. Set the us Change Emphasis parameter to TRUE in param2.

3. Set the fEmphasisAttribute parameter in param2 to CRA_SOURCE (Ox00004000L).

To remove source emphasis follow the same procedure outlined above, but set the
usChangeEmphasisparameter in param2 to FALSE instead of TRUE.

Providing Target Emphasis
The CA_ORDEREDTARGETEMPH and CA_MIXEDTARGETEMPH attributes of the
CNRINFO data structure's flWindowAttr field determine the form of emphasis applied for the
Text, Name, and Details views, as follows:

• If the CA_ORDEREDTARGETEMPH attribute is set:

- The CN_DRAGAFTER notification code is sent when a container item is being
dragged.

- A black line is drawn between container items to show the current target position.

• If the CA_MIXEDTARGETEMPH attribute is set:

- The CN_DRAGAFTER and CN_DRAGOVER notification codes are sent when a
container item is being dragged. The notification code sent depends on the position
of the pointer relative to the item it is positioned over.

- A black line is drawn if the pointer is positioned such that the item being dragged is
inserted between two target items.

- A black border is drawn around either the entire target item for the Text and Details
views or the icon or bit map for the Name view if the pointer is positioned such that
the item being dragged is dropped on the target item.

• If the CA_ORDEREDTARGETEMPH and CA_MIXEDTARGETEMPH attributes are not
set:

- The CN_DRAGOVER notification code is sent when a container item is being
dragged.

- A black border is drawn around the entire target item for the Text and Details views,
and around the icon or bit map only for the Name view.

8-30 PM Advanced Programming Guide

For the Icon and Tree view, the CA_ORDEREDTARGETEMPH and
CA_MIXEDTARGETEMPH attributes are ignored, so target emphasis is applied as follows:

• The CN_DRAGOVER notification code is sent when a container item is dragged.

• A black border is drawn around the target, as follows:

- For the Icon view, if the target is another container item, a black border is drawn
around the icon or bit map that represents the container item, but not around the
text string beneath it. If the target is white space, a black border is drawn around
the outer edge of the entire work area.

- For the Tree icon and Tree name views, a black border is drawn around the icon or
bit map that represents the container item, but not around the text string to the right
of it.

- For the Tree text view, a black border is drawn around the entire target item.

Specifying Deltas for Large Amounts of Data
The container control can accommodate large amounts of data with an application-defined
delta. The delta is an application-defined threshold, or number of container items, from
either end of the list. The application is responsible for specifying the delta value in the
CNRINFO data structure's cDe/ta field. It also is responsible for 'setting the delta value with
the CMA_DELTA attribute of the CM_SETCNRINFO message's ulCnr/nfoFI parameter.

The container control monitors its place in the list of container items when the user is
scrolling through it. When the user scrolls to the delta from either end of the list, the
container control sends a CN_QUERYDELTA notification code to the application as a
request for more container items in the list.

The application is responsible for managing the records in the container. When the
application receives the CN_QUERYDELTA notification code, the application is responsible
for removing and inserting container records by using the CM_REMOVERECORD message
and the CM_INSERTRECORD message, respectively.

Notes:

1. The delta concept is intended for applications with large amounts of data, or several
thousand records. Applications with smaller amounts of data are not required to use the
delta function. The default delta value is O.

2. Tile delta function is not available in the Icon view because it is intended for data
displayed in a linear format.

Direct Editing of Text in a Container
Direct editing of text is supported for any text field in a container, including the container title,
column headings, and container items. If a text field, such as the text field beneath an icon
in the Icon view, has no text and is not read-only, a user can place text in that field by editing
the field directly. The font specified for the container by the application is used for the edited
text.

Chapter 8. Container Controls 8-31

Direct editing is supported only for text data. Therefore, if the data type in the Details view is
other than CFA_STRING, a user cannot edit it. CFA_STRING is an attribute of the
FIELDINFO data structure's flData field.

You can prevent a user from editing any of the text in a container window by setting the
CCS_READONLY style bit when a container is created. If you do not set this style bit, the
user can edit any of the text in a container window unless you set the following read-only
attributes:

• CA_ TITLEREADONL Y of the CNRINFO data structure's flWindowAttr field
• CRA_RECORDREADONLY of the RECORDCORE data structure'sflRecordAttr field
• CFA_FIREADONLY of the FIELDINFO data structure's flData field
• CFA_FITITLEREADONLY of the FIELDINFO data structure's flTitle field.

If one of these read-only attributes is set, a user's attempts to edit container text directly are
ignored.

A user can edit container text directly by doing either of the following:

• Moving the pOinter to an editable text field, holding down the Alt key, and clicking the
select button.

• Sending a CM_OPENEDIT message to the container control. The application can
assign a key or menu choice to this message so that the keyboard can be used to edit
container text directly.

The container control responds by using the WM _CONTROL message to send the
CN_BEGINEDIT notification code to the application. A window that contains a multiple-line
entry (MLE) field opens to show that container text can be edited directly.

The editing actions supported by MLEs, such as Cut, Copy, and Paste, are also supported
by the container control. These actions can be performed using system-defined shortcut
keys. The actions and shortcut keys are' defined by CUA interface design guidelines.

If the user enters a text string that is longer than the text field, the text string scrolls. If
multiple lines of text are needed or wanted, a user can press the Enter key to insert a new
line.

A user can end the direct editing of container text and save the changes by doing either of
the following:

• Moving the pOinter outside the MLE and pressing the select button.

• Sending a CM _ CLOSEEDIT message to the container control. The application can
assign a key or menu choice to this message so that the keyboard can be used to end
the direct editing of container text.

The container responds by sending the WM_CONTROL message to the application again,
but this time with the CN_REALLOCPSZ notification code. The application can allocate
more memory on receipt of the CN_REALLOCPSZ notification code, if necessary. If the
application returns TRUE, the container control copies the new text to the application's text
string. If the application returns FALSE, the text change in the MLE is disregarded. The

8-32 PM Advanced Programming Guide

container then sends the WM_CONTROL message to the application again, this time with
the CN_ENDEDIT notification code. The MLE field is removed from the screen, leaving only
the text string.

A user can end the direct editing of container text without saving any changes to the text in
numerous ways, including the following:

• Pressing the Esc key

• Dragging the container item that is being edited

• Pressing the Alt key and the select button before the direct editing of container text has
ended

• Scrolling the container window. •
The CN_ENDEDIT notification code is sent to the application in each of these cases.

Searching for Exact Text String Matches
There might be times when you need to search the container for a text string that is an exact
match of your search string argument. To find an exact match:

• In the SEARCHSTRING data structure, specify values for the fields as you normally
WOUld, with the following exception:

Along with an attribute for the type of view being displayed in the container, in the
usView field specify the CV _EXACTLENGTH (Ox10000000L) flag. For example:

CV_EXACTLENGTH I CV_ICON

Note: The usView field if used for specifying the exact match attribute, and the type of
view. Despite the "us" prefix this field is a ULONG. The "us" prefix is used in the
header files to maintain backward compatibility.

Specifying Container Titles
The container control can have a non-scrollable title that consists of one or more lines of
text. The container control does not limit the number of lines or the number of characters in
each line. If specified, this title is the first line or lines of the container control. The text of
the title is determined by the application and can be used to identify the container or to
contain status information. Figure 8-22 on page 8-34 shows an example of a container title.

Chapter 8. Container Controls 8-33

Co ntain e r Title
with Separator Line

i ~$.:~I~i:¢h~~:CJ Host Connect

Sales T e:-:t Install

Sales Report!
1980-1990

Sales Reports
1991

Picture Printer

Print Manager

Sales Report
January 1991

Figure 8-22. Non-Flowed Text View with Container Title

The CA_CONTAINERTITLE attribute must be set to include a title in a container window, as
shown in Figure 8-23 on page 8-35. The default is no container title.

If you do not want the user to be able to edit the container title directly, you can set the
CA_ TITLEREADONLYattribute. The default is that the container title can be edited.

Below the title in Figure 8-22, a horizontal line separates the container title from the
container items. The CA_TITLESEPARATOR attribute must be set in order to include a
separator line in a container window. The default is no separator line, as shown in
Figure 8-23 on page 8-35.

8-34 PM Advanced Programming Guide

Container Title
without Separator Line

C~~~~~er I'" Description

··~:::r:::::~~~i..~:~~~~::··r::::::::~~;'~:'~i~;'~r~.;;.;;
L:J
I

:" :
: :

SALES.TXT

SALES.CBT

Sales Te:-:t
Updated Each Month

File Cabinet
for 1980-1990
Sales Reports

.. :~ ~

Figure 8-23. Split Details View with Container Title

Date Time
Created Created

2/1/91

211191 02:13:01

1/3/80

The container titles in both figures are centered. This is the default. However, the
CA_ TITLECENTER, CA_ TITLELEFT, or CA_ TITLERIGHT attribute can be used to specify
whether a container title is to be centered, left-justified, or right-justified.

All the container attributes described here are attributes of the CNRINFO data structure's
flWindowAttr field.

Specifying Fonts and Colors
A different font can be specified for each view. The same font is used for the text within
each view. Text color can be configured from the system control panel. The application can
override the system-defined font and colors by using WinSetPresParam.

The font and color can be changed for the text in all views. However, font and color cannot
be changed for text in individual columns in the Details view. Therefore, all text in the details
view, including the container title, columns, and column headings, has the same font and
color.

Drawing Container Items and Painting Backgrounds
The container control enables your application to paint the container's background, draw the
container items, or both. If the CA_OWNERPAINTBACKGROUND attribute is set, the
container control sends the CM_PAINTBACKGROUND message to itself. Your application
can control background painting by subclassing the container control and intercepting the

Chapter 8. Container Controls 8-35

CM_PAINTBACKGROUND message. CA_OWNERPAINTBACKGROUND is an attribute of
the CNRINFO data structure's flWindowAttr field.

To support o wnerdraw, the drawing of container items by the application, the container
control provides the CA_OWNERDRAW attribute of the CNRINFO data structure's
flWindowAttr field. If this attribute is set and the application processes the WM_DRAWITEM
window message, the application is responsible for drawing each container item, including
the types of emphasis.

In addition, the container control supports ownerdraw for each column in the Details view.
This support is indicated by the CFA_OWNER attribute, which is specified in the FIELDINFO
data structure's flData field.

If the CA_OWNERDRAW attribute or CFA_OWNER attribute is set, the container control
sends the application a WM_DRAWITEM message with a pOinter to an OWNERITEM data
structure as the owneritem parameter.

Filtering Container Items
If the CRA_FILTERED attribute is set for a container item, that item is not displayed.
Therefore, filtering can be used to hide container items. CRA_FILTERED is an attribute of
the RECORDCORE data structure's flRecordAttr field.

Optimizing Container Memory Usage
The container control provides an option to enable you to develop applications that minimize
the amount of memory used for each container record. This is done by specifying the
CCS_MINIRECORDCORE style bit when the container is created, which causes a smaller
version of the RECORDCORE data structure, MINIRECORDCORE, to be used. Table 8-2
shows the differences between these two data structures.

Table 8-2. Differences between RECORD CORE and MINIRECORDCORE

RECORDCORE MINIRECORDCORE

Up to eight image handles can be Only one image handle can be specified for each record.
specified for each record. Note: This image must be an icon.

Up to four text strings can be Only one text string can be specified for each record.
specified for each record.

8-36 PM Advanced Programming Guide

Allocating Memory for when Using MINIRECORDCORE
The sample code illustrated in Figure 8-24 shows how to allocate memory for one container
record when the MINIRECORDCORE data structure is used. A pointer to the
MINIRECORDCORE data structure is returned.

HWND hwndCnr;
PMINIRECORDCORE pRecord;
ULONG nRecords = 1;

pRecord =
(PMINIRECORDCORE)WinSendMsg(

hwndCnr,
CM_ALLOCRECORD,
NULL,
(MPARAM)nRecords);

/* Container window handle */
/* Pointer to MINIRECORDCORE structure */
/* 1 record to be allocated */

/* Container window handle
/* Message for allocating the record
/* No additional memory
/* Number of records to be allocated

Figure 8-24. Sample Code for Allocating Memory for Smaller Container Records

Sharing Records among Multiple Containers
The container control enables the application to share records that are allocated among
multiple containers in the same process. That is, records can be allocated once and then
inserted into many containers in the same process. Only one copy of each record is in
memory, but the container provides the flexibility for the records to appear as though they
are independent of one another.

When a record is inserted into the container, the f1RecordAttr and ptllcon fields of the record
structure are saved internally. The values in these fields cause the record attributes for all
views and the icon position for the Icon view to be associated with the specific container into
which the record is inserted. If the same record is inserted into multiple containers, the
attributes and icon location of each record are maintained separately. The application uses
the CM_QUERYRECORDINFO message to retrieve the current values of these two fields for
a particular record in a specific container.

Invalidating Records Shared by Multiple Containers
When a record is invalidated by an application, the f1RecordAttr and ptllcon fields are saved
internally, just as when a record is inserted. The CM_QUERYRECORDINFO message is
used to acquire the current data for each record that is being invalidated. After querying the
current data, the data can be changed before invalidating its record.

Freeing Records Shared by Multiple Containers
When an application attempts to free a record in an open container, the record is freed only
if it is not being used in any other open container. The methods of freeing records in an
open container are to use the CM_FREERECORD message, or use the
CM_REMOVERECORD message and specify the CMA_FREE attribute.

Chapter 8. Container Controls 8-37

Sample Code for Container Controls
This section illustrates a complete container control sample program. Several parts of this
program are explained in "Using Container Controls" on page 8-14.

Container Application Sample Code
The container application includes the following files:

• Contain.C
• Contain.RC
• Contain.H
• Contain.LNK
• Phones.H

Figure 8-25 illustrates the container application sample code.

Figure 8-25 (Part 1 of 12). Sample Code for a Container Application

8-38 PM Advanced Programming Guide

/***/
/* Program Overview: */
/* */
/* This program creates a frame window as a parent, then creates */
/* a container window as a child. The frame window sizes the */
/* container to fill its client area. */
/* */
/* After the windows are created successfully, the container */
/* window is populated. First, the container is sent a message to */
/* allocate memory for each of the records which wi 11 be inserted. */
/* After the memory is allocated, we set the values for each record. */
/* (This sample program reads data from a static array - you could */
/* also load values from a file.) Then, the container is sent a */
/* message to insert the records (which makes them visible). */
/* */
/* This container is read-only, which means the end user cannot */
/* change the title text. It supports single selection. */
/* */
/* In the message loop, we'must check for WM_CONTROL messages, */
/* which are generated from the container control. This sample */
/* processesCN_ENTER messages, when an item in the container is */
f* selected (either with the mouse or the keyboard), and */
/*CN.:.,CONTEXTMENU messages, when a context menu is requested. The */
/*' context menu allows the user to change the display mode of the */
/* container. Our container supports Icon, Text, and Name views. */
/* */
/* When a CN_ENTER message ;s received, we loop through the array */
/* of l1amesuntil we find a match. On a match, we pop up a message */
/*boxwhich contains the nickname, name, and number of the person */
1* selected~ */
1* */
/ **************,*** /

#pragma lil1kage',(main,optlink)
INLmai n(VOID);
VOlI) , LdadDtttabase (HWND);

Figure 8-25 (Part 2 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-39

Figure 8-25 (Part 3 of 12). Sample Code for a Container Application

8-40 PM Advanced Programming Guide

/********************i:**/
/* Create the frame to hold the container control. */
/***/

hFrameWnd = WinCreateWindow(HWND_DESKTOP,
WC_FRAME,
"Phone Book",
0, 0, 0, 0, 0,
NULLHANDLE,
HWND_TOP,
0,
&fcd,
NULL) ;

/***~**********~**/
/* Verify that the frame was created; otherwise, stop. */
/***/

if (!hFrameWnd)
return FALSE;

/***/
/* Set anicol1 for the frame window. */
/***/

Wi nSendMsg (hFrameWnd,
WMSETICON,
(MPARAM)WinQuerySysPointer(HWNDDESkTOP,

SPTR·FOLDER,
FALSE),

NULL);

Figure 8-25 (Part 4 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-41

Figure 8-25 (Part 5 of 12). Sample Code for a Container Application

8-42 PM Advanced Programming Guide

I ******'1<,** 1
1* Standard PMmessageloop-get it, dispatch it., *1
1**********************,*** 1

while (WinGetMsg(hab, &qmsg, NULLHANOLE, 0, 0»
{

WinOispatchMsg(hab, &qmsg);

. 1***************'1<***1
1* Clean upon the . way out. *1
1*************************'1<***1

,' .. Wi~ D~stroY.MsgQueue (hmq) ;
WinTerminate(hab);

return TRUE;

I ****:**************************:**'1<************************************** 1
1* Loca lWrdPro.cO-windowpr()cedure for the frame wi ndow. * 1
I~CClll~dbyPM:whefleverame~sag~ is. sent to the frame. . *1
1****)~'fr~,*"!*:**:*:****t***,*.*'1!*:**:*'***********'!<*******************************/
,MRESVLT:E:XPENTRV: LocalWndP.ro.,c(. H. WND : .• hwnd, ULONG msg., MPARAM mpl, MPARAM mp2) ·f····· ... : " :.: , ... , .. '

char
CNRINFO

,'~N9Ilfy~~eORI)ENrER
,POU~mL' ., ,
::tilt ,.::,

, "::.,>" .::: .. :: :'"::".:::. :.:::

,,:5\11 tch:(m~g)

szBuffer[8Gl; "
cnrInfo;
Selected;
pt;
x;

i<,;1:}:.{ .' ••.•..•. :::.. ..•.•. : :•••....• :.,

:. ·:~~~~r;itLC()NTRQL.~.:.: •.•..• ::
$wttch (SflORT2FROMMP(mpl})

:'{':'"

Figure 8-25 (Part 6 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-43

Figure 8-25 (Part 7 of 12). Sample Code for a Container Application

8-44 PM Advanced Programming Guide

sprintf(szBuffer,
111%5'· ·C%S) %5",
Friends[xJ~NickNarnef
Fri ends [x] • FullNarne,
Friends [x] .Phone);
WinMessageBox(HWND DESKTOP,

HWNO-OESKTOP,
szBuffer.,
"Phone",
e,
MB_OK);

Figure 8-25 (Part 8 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-45

HWND
PRECOROCORE
RECORD INSERT
ULONG

Figure 8-25 (Part 9 of 12). Sample Code for a Container Application

8-46 PM Advanced Programming Guide

/**/
/*WewHlneed the first record's address to */
/-It insert them Jnto<the container. */
/**/

FirstRec= Address;

/'**'**/
1* Loop through the address book,loadlng as we go.. */
/* BecausetheCM A Ll,.OCRECORD returns a linked list, */
/* the address of-the. next. record; s retri eved */
/* from each record as we go (preccNextRecord). */
/***************************'***/

for (X<:;:e; .x<MAXfRIEND5; x++)
{

Address->cb sizeof(RECORDCORE); /* Standard records */
Address->hptrlcon hI con; /* File icon */
Address->pszlcon Friends[x).NickNamej
Address->psiName Friends[x].FullName;
Address ;.>pszText ..= Fri endslxl. Fu 11 Name;
Address..;·Add.ress->preccNextRecord; 1* Next record in 1i st * /

1*********************'**********'***************************************/
/ * Set up the insert records t ructure to place * /
1* the records in the container. *!
/ ****************~*****:*******.~** /

recsln~cb =sizeof(RECORfHNSERT);
..•.•...•...••.....•..........••..•••••..•• .• : .• ·• .•. · ••. · ... ;· .• '.·i .•.• : .•.... : •. ' •............. ' .•.....•. ; .•.........•.•...•.. ; •..•....• '•..••......•..•..•. '.

1* .• Puttherecotd~. inafterilnyothers .• *1
; ." recsln~ pRe(;o:rdQ'rder.··.7 .;. (~~~C9RDCORE)~MA~ENI); .

..... " • " •• :': .'.; : •• ", 'u • ••• F,":·. " :. \.: "< ,:,"".,. '." " .. " .. ~:. :.:".:.::". '. U'. """.

1;;.·.'.~1:J .• ; .• ··.t~e··i.···re6Qrds; •• ;·a~~.··;,'t~p .• ··i ... l~V~l;
re(:sIri~pRecQl!dParent;;:;:;~UIi.l.;

'." ... ".: " .. , " .. "' ... ,.: .. :.": ." ,

j~ .Th~ lc~n:~iClr~1:()pi.l~vel*I.···
. recsI:rn?:Qrdet;,,:X~SHORI:)CMA~JQP,; :

•.••• ~~~lltaWW"~~9n~1~~'~j ••• <i •... ·
: ····::r~cs!n~t:Il1y ?lt~Cl~~'~~~~m9r.J.R~~;·

' ... 1*: .•• ·~·~t ·~ibe ••• ·rntJ~A~:r .•••• ?f .•• ·r~f~~~:,~ ..• · .•• toi ... j.'nse~t ..• ·• .• ·i*i .•.•••• , .. i

:: ·.r~c~,I.~.:~,CR~cor;d:$ Jr1$ert •... ·~ /~AX;rR~E>~D$';: . .

Figure 8-25 (Part 10 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-47

. #include<os2.h>
#ine Tude"eontain.hu

MENU
BEGIN

END

MENU ITEM
MENUITEM
MENU ITEM

#define.DLG AbDRBOOK
#defjneCNI(ADDRBOOK
#d.efine. PH ... ADD
#defi.ne.PB-OIAL
#define:PHON~BOOK
#define ·1OM DISPtAy

. #define 10M· ICON
ffde fin e .' .TOM"""' NAME
#define.·· IbM=TEXT

IDM ... ICON
1OMTEXT
10M_NAME

Figure 8-25' (Part 11 of 12). Sample Code for a Container Application

8-48 PM Advanced Programming Guide

================
PHONES.H
============~===

#defineMAXFRIENDS 9

/***/
/* This is a simple phone book database. */
/ **********************************'******.******************************* /
typedef struct Phones
{ .-

PSZ NickName;
PSZ Full Name;
PSZ Phone;

}PhoneBook;

/***/
/* Normal programs would read this data from a file. *!
/***/
Phone.Book Friends [MAXFRI ENOS] = '
{

IlGnes",
IIBubba ll

,

"fred",
"Jack ll

,

"Johnll,
"Toni",
!I Babe",
"Kevinu

,

"Hone~f Abe"~

"Kev; n G.iles",
Ii Hank Smith ",
IIFred Bicycle",
"Jack Anjj 11 II,
"Joh~ Richards",
"Toni Henderson",
"George Herman Ruth",
IIK~vin Kortrel ",
IIAbraham lincoln".

"214-555-1212",
"713-555-1212" ,
"817-555-121211,
11919-555-1212 11 ,
11214-555-1212",
"919-555-1212",
"212-555-1212",
"817-555-121211,
"none ll

Figure 8-25 (Part 12 of 12). Sample Code for a Container Application

Chapter 8. Container Controls 8-49

Related Window Messages
This section covers the window messages that are related to container controls.

CM_ALLOCDETAILFIELDINFO
This message allocates memory for one or more FIELDINFO structures.

Parameters
param1

nFieldlnfo (USHORT)
Number of FIELDINFO structures to be allocated.

The value of this parameter must be greater than O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
pFieldlnfo (PFIELDINFO)

Pointer or error.

o Reserved value, O. The WinGetLastError function may return the following
errors:

• PMERR_INSUFFICIENT_MEMORY
• PMERR_INVALlD_PARAMETERS.

Other If the nFieldlnfo parameter has a value of 1, a pointer to a FIELDINFO data
structure is returned.

A pointer to the first FIELDINFO structure in a linked list of FIELDINFO
structures is returned if the nFieldlnfo parameter has a value greater than 1.
The pointer to the next FIELDINFO structure is set in each pNextFieldlnfo field
of the FIELDINFO data structure. The last pointer is set to NULL.

CM_ALLOCRECORD
This message allocates memory for one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

8-50 PM Advanced Programming Guide

Parameters
param1

cbRecordData (ULONG)
Bytes of additional memory.

The number of bytes of additional memory that you want to reserve for your
application's private use. This parameter must have a value between 0 and 64,000.
If the value is 0, no additional memory is allocated, but a RECORDCORE data
structure is allocated.

param2

nRecords (USHORT)
Number of records.

The number of container records to be allocated. This parameter must have a
value greater than O.

Returns
pRecord (PRECORDCORE)

Returns a pointer or an error.

NULL Allocation failed. The WinGetLastError function may return the following errors:

• PMERR_INSUFFICIENT _MEMORY
• PMERR-,NVALlD_PARAMETERS.

Other If the nRecords parameter has a value of 1, a pointer to a RECORDCORE
structure is returned.

If the nRecords parameter has a value greater than 1, a pointer to the first
RECORDCORE structure in the linked list of records is returned. The pointer to
the next container record is set in the preccNextRecord field in each
RECORDCORE data structure. The last pointer is set to NULL.

eM_ARRANGE
This message arranges the container records in the icon view of the container control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

Chapter 8. Container Controls 8-51

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Icon/text or bit-map/text pairs were successfully arranged.
An error occurred.

CM_CLOSEEDIT
This message closes the window that contains the multiple-line entry (MlE) field used to edit
container text directly.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

The direct editing of container item text was successfully ended.
The direct editing of container item text was not successfully ended. The
WinGetlastError function may return the following error:

PMERRJNSUFFICIENT _MEMORY.

8-52 PM Advanced Programming Guide

CM_COLLAPSETREE
This message causes one parent item in the tree view to be collapsed.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure that is to be collapsed.

If this is NUll, all expanded parent items are collapsed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

The item was successfully collapsed. TRUE
FALSE An error occurred. The WinGetlastError function may return the following

error:

CM_ERASERECORD
This message erases the source record from the current view when a move occurs as a
result of direct manipulation.

Parameters
param1

pRecord (PRECORDCORE)
Pointer to the container record that is to be erased from the current view.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures,and messages.

Chapter 8. Container Controls 8-53'

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

The record was successfully erased.
The record was not erased. The WinGetlastError function may return the
following errors:

• PMERRJNVALlD_PARAMETERS
• PMERRJNSUFFICIENT _MEMORY.

CM_EXPANDTREE
This message causes one parent item in the tree view to be expanded.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure that is to be expanded.

If this is NUll, all collapsed parent items are expanded.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE The item was successfully expanded.

FALSE An error occurred. The WinGetlastError function may return the following
error:

PMERR JNVALID _PARAMETERS.

'8-54 PM Advanced Programming Guide

CM_FILTER
This message filters the contents of a container so that a subset of the container items is
viewable.

Parameters
param1

pfnFilter (PFN)
Pointer to an application-supplied filter function.

param2

pStorage (PVOID)
Application use.

Available for application use.

Returns
rc (BOOl)

Success indicator.

TRUE A subset was successfully created.

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERR_NO_FllTEREDJTEMS
• PMERRJNSUFFICIENT _MEMORY.

CM_FREEDETAILFIELDINFO
This message frees the memory associated with one or more FIElDINFO structures.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer to an array of pointers to FIElDINFO structures that are to be freed.

param2

cNumFieldlnfo (USHORT)
Number of structures.

Number of FIElDINFO structures to be freed.

Chapter 8. Container Controls 8-55

Returns
rc (BOOL)

Success indicator.

TRUE Memory associated with a specified FIELDINFO structure or structures in the
container was freed.

FALSE Associated memory was not freed. The WinGetLastError function may return
the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR
• PMERR_FI_CURRENTLY JNSERTED.

CM_FREERECORD
This message frees the memory associated with one or more RECORDCORE structures.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer to an array of pointers to RECORDCORE structures that are to be freed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be freed.

Returns
rc (BOOL)

Success indicator.

TRUE Memory associated with a record or records in the container was freed.

FALSE Associated memory was not freed. The WinGetLastError function may return
the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR
• PMERR_RECORD_CURRENTLY_INSERTED.

8-56 PM Advanced Programming Guide

CM_HORZSCROLLSPLITWINDOW
This message scrolls a split window in the split details view.

Parameters
param1

usWindow (USHORT)
Window indicator.

CMA_LEFT The left split window is scrolled.

CMA_RIGHT The right split window is scrolled.

param2

IScrolllnc (LONG)
Amount to scroll.

Amount (in pixels) by which to scroll the window.

Returns
rc (BOOL)

Success indicator.

Successful completion TRUE
FALSE An error occurred. The WinGetLastError function may return the following

error:

PMERRJNVALlD_PARAMETERS.

CM INSERTDETAILFIELDINFO
This message inserts one or more FIELDINFO structures into a container control.

Parameters
param1

pFieldlnfo (PFIELDINFO)
Pointer to the FIELDINFO structure or structures to insert.

param2

pFieldlnfolnsert (PFIELDINFOINSERT)
Pointer to the FIELDINFOINSERT data structure.

See "FIELDINFOINSERT" on page 8-103 for the descriptions of this structure's
fields as they apply to the CMJNSERTDETAILFIELDINFO message.

Chapter 8. Container Controls 8-57

Returns
cFields (USHORT)

Number of structures.

o The FIELDINFO structure or structures were not inserted. The WinGetLastError
function may return the following errors:

• PMERR-,NVALlD_PARAMETERS
• PMERR_INSUFFICIENT _MEMORY
• PMERR_FI_CURRENTLY-,NSERTED.

Other The number of FIELDINFO structures in the container.

CM_INSERTRECORD
This message inserts one or more RECORDCORE structures into a container control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)
Pointer to the RECORDCORE structure or structures to insert.

param2

pRecordlnsert (PRECORDI NSERT)
Pointer to the RECORDINSERT data structure.

See "RECORDINSERT" on page 8-117 for definitions of this structure's fields as
they apply to the CM-,NSERTRECORD message.

Returns
cRecords (ULONG)

Number of structures.

o The RECORDCORE structure was not inserted. The WinGetLastError function
may return the following errors:

• PMERR INVALID PARAMETERS - -
• PMERR-,NSUFFICIENT _MEMORY
• PMERR _RECORD _ CURRENTLY -,NSERTED.

Other The number of RECORDCORE structures in the container.

8-58 PM Advanced Programming Guide

CM_INVALIDATEDETAILFIELDINFO
This message notifies the container control that any or all FIElDINFO structures are not valid
and that the view must be refreshed.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

FIElDINFO structures were successfully refreshed.
FIElDINFO structures were not successfully refreshed.

CM_INVALIDATERECORD
This message notifies the container control that a RECORDCORE structure or structures are
not valid and must be refreshed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)

param2

Pointer to an array of pointers to RECORDCORE structures that are to be
refreshed.

cNumRecord (USHORT)
Number of container records to be refreshed.

If the cNumRecord parameter has a value of 0, all of the records in the container
are refreshed and the pRecordArray parameter is ignored.

Chapter 8. Container Controls 8-59

flnvalidateRecord (USHORT)
Flags used to optimize container record invalidation.

The CMA_REPOSITION, CMA_NOREPOSITION, and CMA_ TEXTCHANGED
attributes are mutually exclusive. However, any of them can be combined with the
CMA_ERASE attribute by using a logical OR operator (I). .

CMA_ERASE

CMA_REPOSITION

Flag used when the icon view is displayed to minimize
painting of a container record's background when it has
changed. If specified, the background is erased when the
display is refreshed. The default is to not erase the
background when the display is refreshed.

Flag used to reposition all container records. This flag
must be used if container records are inserted or
removed, or if many changes have occurred. If a
container record is inserted, the pRecordArray parameter
points to the inserted record. If a container record is
removed, the pRecordArray parameter points to the
record that precedes the removed one. If several
container records have changed, an array of container
record pointers must be used. The container determines
the first record to be invalidated. This is the default.

CMA_NOREPOSITION Flag used to indicate that container records do not need
to be repositioned. The container draws the record or
records pointed to in the pRecordArray parameter. The
container does not do any validation; therefore it is the
application's responsibility to make sure repositioning is
not needed or changing the longest text line is not
necessary.

CMA_ TEXTCHANGED Flag used if text has changed and you do not know
whether repositioning is needed. The container
determines whether the longest line or the height of the
record has changed. If so, the container repositions and
redraws the necessary visible container records.

8-60 PM Advanced Programming Guide

It may be necessary to reposition the container records if
the number of lines of text has changed. Warning: The
application must send a CMJNVALIDATERECORD
message if text changes. Otherwise, any further
processing is unreliable. .

Returns
rc (BOOl)

Success indicator.

Records were successfully refreshed. TRUE

FALSE An error occurred. The WinGetlastError function may return the following
errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_INSUFFICIENT_MEMORY.

CM_OPENEDIT
This message opens the window that contains the multiple-line entry (MlE) field used to edit
container text directly.

Parameters
param1

pCnrEditData (PCNREDITDATA)
Pointer to the CNREDITDATA structure.

See "CNREDITDATA" on page 8-88 for definitions of this structure's fields as they
apply to the CM_OPENEDIT message.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Direct editing of container text was successfully started.
Direct editing of container text was not successfully started. The
WinGetlastError function may return the following error:

PMERRJNVALlD_PARAMETERS.

Chapter 8. Container Controls 8-61

CM_PAINTBACKGROUND
This message informs an application whenever a container's background is painted if the
CA_OWNERPAINTBACKGROUND attribute of the CNRINFO data structure is specified.

Parameters
param1

pOwnerBackground (POWNERBACKGROUND)
Pointer to the OWNERBACKGROUND structure.

param2

See "OWNERBACKGROUND" on page 8-110 for definitions of this structure's fields
as they apply to the CM_PAINTBACKGROUND message.

ulReserved (UlONG)
ReseNed value, should be O.

Returns
rc (BOOl)

Process indicator.

TRUE The application processed the CM_PAINTBACKGROUND message.
FALSE The application did not process the CM_PAINTBACKGROUND message.

CM_QUERYCNRINFO
This message returns the container's CNRINFO structure.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer to a buffer into which the CNRINFO structure is copied.

param2

cbBuffer (USHORT)
Number of bytes.

Maximum number of bytes to copy.

8-62 PM Advanced Programming Guide

Returns
cbBytes (USHORT)

Success indicator.

o Container data was not successfully returned. The WinGetLastError function
may return the following error:

PMERR-, NVALI D_PARAM ETERS.

Other Actual number of bytes copied.

CM_QUERYDETAILFIELDINFO
This message returns a pointer to the requested FIELDINFO structure.

Parameters
param1

pfldinfoBase (PFIELDINFO)
Pointer to the FIELDINFO structure used to search for the next or previous column.

If the CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

param2

cmd (USHORT)
Command that indicates which FIELDINFO structure to retrieve.

CMA FIRST First column in the container.
CM~LAST Last column in the container.
CMA_NEXT Next column in the container.
CMA PREV Previous column in the container.

Returns
pFieldlnfo (PFIELDINFO)

Pointer to the FIELDINFO structure for which data was requested.

NULL No FIELDINFO structures to retrieve.

-1 The data from the FIELDINFO structure was not returned. The WinGetLastError
function may return the following error:

PMERR_INVALlD_PARAMETERS.

Other Pointer to the FIELDINFO structure for which data was requested.

Chapter 8. ContaIner Controls 8-63

CM_QUERYDRAGIMAGE
This message returns a handle to the icon or bit map for the record in the current view.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure that is to be queried for the image.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

ulReserved (ULONG)
Reserved value, should be O.

Returns
hlmage (LHANDLE)

Image handle.

NULLHANDLE If no image is defined, NULLHANDLE is returned.

Other Handle of an icon or bit map.

• If the CA_DRAWICON attribute and the CV_MINI style bit are
specified, the RECORDCORE structure's hptrMinilcon field is
returned.

• If the CA_DRAWICON attribute is specified without the CV _MINI
style bit, the RECORDCORE structure's hptrlcon field is returned.

• If the CA_DRAWBITMAP attribute and the CV _MINI style bit are
specified, the RECORDCORE structure's hbmMiniBitmap field is
returned.

• If the CA_DRAWBITMAP attribute is specified without the
CV _MINI style bit, the RECORDCORE structure's hbmBitmap field
is returned.

8-64 PM Advanced Programming Guide

CM_QUERYRECORD
This message returns a pointer to the requested RECORDCORE structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the RECORDCORE structure used to search for the next or previous
container record.

If the CMA_FIRST or CMA_LAST attribute is specified, this is ignored.

cmd(USHORT)
Command that indicates which container record to retrieve:

CMA_FIRST
CMA_FIRSTCHILD
CMA_LAST
CMA_LASTCHILD
CMA NEXT
CMA PARENT
CMA PREY

fsSearch (USHORT)
Enumeration order.

First record in the container.
First child record of pRecord specified in param1.
Last record in the container.
Last child record of pRecord specified in param 1.
Next record of pRecord specified in param1.
Parent of pRecord specified in param1.
Previous record of pRecord specified in param 1 .

Specifies the enumeration order. This value is one of the following:

CMA_ITEMORDER Container records are enumerated in item order, first to last.

CMA ZORDER Container records are enumerated by z-order, from first
record in the z-order to the last record. The last z-order
record is the last record to be drawn. This flag is valid for
the icon view only.

Chapter 8. Container Controls 8-65

Returns
pRecord (PRECORDCORE)

Pointer to the RECORDCORE structure for which data was requested.

NULL No RECORDCORE structures to retrieve.

-1 The container record data was not returned. ~ The WinGetLastError function may
return the following error:

PMERRJNVALID _PARAMETERS.

Other Pointer to the container record for which data was requested.

CM_QUERYRECORDEMPHASIS
This message queries for a container record with the specified emphasis attributes.

Parameters
param1

pSearchAfter (PRECORDCORE)

param2

Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CM_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

fEmphasisMask (USHORT)
Emphasis attribute.

Specifies the emphasis attribute of the container record. The following states can
be combined using a logical OR operator (\):

CRA_ COLLAPSED
CRA_ CURSORED

8-66 PM Advanced Programming Guide

Specifies that a record is collapsed.
Specifies that a record will be drawn with a selection
cursor.

CRA DROPONABLE

CRA_EXPANDED
CRA_FILTERED

CRA INUSE
CRA PICKED

CRA_SELECTED

Returns
pRecord (PRECORDCORE)

Specifies that a record will be drawn with unavailable-state
emphasis.
Specifies that a record can be a target for direct
manipulation.
Specifies that a record is expanded.
Specifies that a record is filtered and, therefore, hidden
from view.
Specifies that a record will be drawn with in-use emphasis.
Specifies that the container record willi be picked up as part
of the drag set.
Specifies that a record will be drawn with selected-state
emphasis.
Specifies that a record will be drawn with source-menu
emphasis.

Pointer to the record with the specified emphasis.

NULL This implies that none of the records that follow the pointer specified in the
pSearchAfter parameter meet those specifications.

-1 The container record data was not returned.

The WinGetLastError function may return the following error:

PMERR_INVALlD_PARAMETERS (1208)

Other Pointer to a container record with the specified emphasis.

This is the first record that follows the record pointed to by the pSearchAfter
parameter and satisfies the criteria specified in the fEmphasisMask parameter. To
find the next record that satisfies this criteria, send this message again, but this
time use the value returned in the pRecord parameter for the value of the
pSearchAfter parameter.

Chapter 8. Container Controls 8-67

CM_QUERYRECORDFROMRECT
This message queries for a container record that is bounded by the specified rectangle.

Parameters
param1

pSearchAfter (PRECORDCORE)

param2

Pointer to the specified container record.

To get all the container records within the specified rectangle, this message is sent
repeatedly, each time this parameter is set to the pOinter that is returned by the
previous usage of this message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

The values of this parameter can be:

CMA_FIRST Start the search with the first record in the container.
Other Start the search after the record specified by this pointer.

pQueryRecFromRect (PQUERYRECFROMRECT)
Pointer to the QUERYRECFROMRECT data structure.

See "QUERYRECFROMRECT" on page 8-112 for definitions of this structure's
fields as they apply to the CM_QUERYRECORDFROMRECT message.

Returns
pRecord (PRECORDCORE)

Pointer to the container records within the bounding rectangle.

NULL No container records are within the bounding rectangle.

-1 The container record data was not returned. The WinGetLastError function may
return the following error:

PMERRJ NVALI D_PARAMETERS.

Other Pointer to the container record within the bounding rectangle.

8-68 PM Advanced Programming Guide

CM_QUERYRECORDINFO
This message updates the specified records with the current information for the container.

Parameters
param1

pRecordArray (PVOI D)
Pointer to an array of pointers to RECORDCORE structures to which the current
information is to be copied.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE all applicable data structures and messages.

param2

cNumRecord (USHORT)
Number of records.

The number of container records to be updated. If the cNumRecord parameter has
a value of 0, all of the records in the container are updated and the pRecordArray
parameter is ignored.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Record information was successfully updated.
An error occurred. The WinGetlastError function may return the following
error:

PMERRJNVALlD_PARAMETERS.

CM_QUERYRECORDRECT
This message returns the rectangle of the specified container record, relative to the container
window origin.

Parameters
param1

prclltem (PRECTl)
Pointer to the RECTl structure, into which the rectangular coordinates are placed.

Chapter 8. Container Controls 8-69

param2

pQueryRecordRect (PQUERYRECORDRECT)
Pointer to the QUERYRECORDRECT structure.

See "QUERYRECORDRECT" on page 8-113 for definitions of this structure's fields
as they apply to the CM_QUERYRECORDRECT message.

Returns
rc (BOOl)

Success indicator.

TRUE A rectangle with valid coordinates is returned.

FALSE The rectangle is not successfully returned. The WinGetlastError function may
return the following error:

PMERRJNVALlD_PARAMETERS.

CM_ QUERYVIEWPORTRECT
This message returns a rectangle that contains the coordinates of the container's client area.
These are virtual coordinates that are relative to the origin of the coordinate space
requested ..

Parameters
param1

prclViewport (PRECTl)

param2

Pointer to the RECTl structure.

Pointer to the RECTl structure that the virtual coordinates of the client area
rectangle are to be written into.

uslndicator (USHORT)
Coordinate space indicator.

One of the following must be used:

CMA_WINDOW Returns the client area rectangle in container window
coordinates.

CMA_WORKSPACE Return the client area rectangle in coordinates relative to the
origin of the container's workspace.

8-70 PM Advanced Programming Guide

fRightSplitWindow (BOOL)
Flag.

Flag that specifies the right or left window in the split details view. This flag is
ignored if the view is not the split details view.

TRUE
FALSE

Right split window is returned.
Left split window is returned.

Returns
rc (BOOL)

Success indicator.

TRUE The client area rectangle was returned successfully.

FALSE An error occurred. The WinGetLastError function may return the following
error:

CM_REMOVEDETAILFIELDINFO
This message removes one, multiple, or all FIELDINFO structures from the container control.

Parameters
param1

pFieldlnfoArray (PVOID)
Pointer to an array of pointers to FIELDINFO structures that are to be removed.

param2

cNumFieldlnfo (USHORT)
Number of FIELDINFO structures to be removed.

If the cNumFieldlnfo parameter has a value of 0, all of the FIELDINFO structures in
the container are removed and the pFie/d/nfoArray parameter is ignored.

fRemoveFieldlnfo (USHORT)
Flags.

Flags that show whether memory must be freed and FIELDINFO structures
invalidated.

If specified, FIELDINFO structures are removed and memory
associated with the FIELDINFO structures is freed. If not
specified, FIELDINFO structures are removed and no memory
is freed; this is the default.

Chapter 8. Container Controls 8-71

CMA_INVALIDATE If specified, after FIELDINFO structures are removed, the
container is invalidated, and any necessary repositioning of
the FIELDINFO structures is performed. If not specified,
invalidation is not performed.

Returns
cFields (SHORT)

Number of structures.

-1 An error occurred. The WinGetLastError function may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other The number of FIELDINFO structures that remain in the container.

CM_REMOVERECORD
This message removes one, multiple, or all RECORDCORE structures from the container
control.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Parameters
param1

pRecordArray (PVOID)
Pointer to an array of pointers to RECORDCORE structures that are to be removed.

param2

cNumRecord (USHORT)
Number of records.

Number of container records to be removed. If the cNumRecord parameter has a
value of 0, all of the records in the container are removed and the pRecordArray
parameter is ignored.

8· 72 PM Advanced Programming Guide

fRemoveRecord (USHORT)
Flags.

Flags that show whether memory must be freed and container records invalidated.

CMA FREE If specified, RECORDCORE structures are removed and
memory associated with the RECORDCORE structures is
freed. If not specified, RECORDCORE structures are
removed and no memory is freed; this is the default.

CMA INVALIDATE If specified, after RECORDCORE structures are removed the
container is invalidated and any necessary repositioning of
the container records is performed. If not specified,
invalidation is not performed.

Returns
cRecords (LONG)

Number of structures.

This option is not valid in the icon view unless the
CCS_AUTOPOSITION style bit is not set. In the icon view,
the container record is refreshed if the CCS_AUTOPOSITION
style bit is set. regardless of whether the CMA_INVALIDATE
attribute is set.

-1 An error occurred. The WinGetLastError function may return the following errors:

• PMERRJNVALlD_PARAMETERS
• PMERR_MEMORY _DEALLOCATION_ERR.

Other Number of root level RECORDCORE structures that remain in the container.

CM SCROLLWINDOW
This message scrolls an entire container window.

Parameters
param1

fsScroliDirection (USHORT)
Scroll direction.

Direction in which to scroll the container window.

CMA_ VERTICAL
CMA_HORIZONTAL

Scroll vertically.
Scroll horizontally.

Chapter 8. Container Controls 8-73

param2

IScrolllnc (lONG)
Scroll increment.

Amount (in pixels) by which to scroll the window.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
An error occurred. The WinGetlastError function may return the following
error:

CM_SEARCHSTRING
This message returns the pointer to a container record whose text matches the string.

Parameters
param1

pSearchString (PSEARCHSTRING)

param2

Pointer to the SEARCHSTRING structure.

See "SEARCHSTRI NG" on page 8-118 for definitions of this structure's .fields as
they apply to the CM_SEARCHSTRING message.

pSearchAfter (PRECORDCORE)
Pointer to the starting container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

CMA FIRST Start the search at the first container record.

Other Start the search after the container record specified by this pointer.
To get all of the records in the container whose text matches the
string, this message is sent repeatedly. Each time this message is
sent, the pSearchAfter parameter contains a pointer to the last
record that was found.

8-74 PM Advanced Programming Guide

Returns
pRecord (PRECORDCORE)

Pointer to the found container record.

NULL No container record's text matches the search string.

-1 An error occurred. The WinGetLastError function may return the following error:

PMERR_I NVALI D_PARAMETERS.

Other Pointer to the container record whose text matches the search string.

CM_SETCNRINFO
This message sets or changes the data for the container control.

Parameters
param1

pCnrlnfo (PCNRINFO)
Pointer to the CNRINFO structure from which to set the data for the container.

param2

ulCnrlnfoFI (ULONG)
Flags.

Flags that show which fields are to be set.

CMA_PFIELDINFOOBJECT

Pointer to the comparison function for sorting
container records. If NULL, which is the default
condition, no sorting is performed. Sorting only
occurs during record insertion and when
changing the value of this field. The third
parameter of the comparison function, pStorage,
must be NULL. See CM_SORTRECORD for a
further description of the comparison function.

Pointer to the last column in the left window of
the split details view. The default is NULL,
causing all columns to be positioned in the left
window.

Pointer to a column that represents an object in
the details view. This FIELDINFO structure must
contain icons or bit maps. In-use emphasis is
applied to this column of icons or bit maps only.
The default is the leftmost column in the unsplit
details view, or the leftmost column in the left
window of the split details view.

Chapter 8. Container Controls 8-75

CMA_CNRTITLE

CMA_FLWINDOWATTR

CMA_PTLORIGIN

CMA_SLBITMAPORICON

CMA_ SL TREEBITMAPORICON

CMA_ TREEBITMAP

CMA_LlNESPACING

CMA CXTREEINDENT

CMA CXTREELINE

CMA XVERTSPLITBAR

8-76 PM Advanced Programming Guide

Text for the container title. The default is NULL.

Container window attributes.

Lower-left origin of the container window in
virtual workspace coordinates, used in the icon
view. The default origin is (0,0).

An application-defined threshold, or number of
records, from either end of the list of available
records. Used when a container needs to
handle large amounts of data. The default is 0.
Refer to the description of the container control
in the OS/2 Programming Guide for more
information about specifying deltas.

The size (in pels) of icons or bit maps. The
default is the system size.

The size (in pels) of the expanded and collapsed
icons or bit maps in the tree icon and tree text
views.

Expanded and collapsed bit maps in the tree
icon and tree text views.

Expanded and collapsed icons in the tree icon
and tree text views.

The amount of vertical space (in pels) between
the records. If this value is less than 0, a default
value is used.

Horizontal distance (in pels) between levels in
the tree view. If this value is less than 0, a
default value is used.

Width of the lines (in pels) that show the
relationship between items in the tree view. If
this value is less than 0, a default value is used.
Also, if the CA_ TREELINE container attribute of
the CNRINFO data structure's flWindowAttr field
is not specified, these lines are not drawn.

The initial position of the split bar relative to the
container, used in the details view. If this value
is less than 0, the split bar is not used. The
default value is negative one (-1).

rc (BOOl)
Success indicator.

TRUE
FALSE

Container data was successfully set.
Container data was not set. The WinGetlastError function may return the
following errors:

• PMERR_INVALlD_PARAMETERS
• PMERR-,NSUFFICIENT _MEMORY.

CM SETRECORDEMPHASIS
This message sets the emphasis attributes of the specified container record.

Parameters
param1

pRecord (PRECORDCORE)

param2

Pointer to the specified container record.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages.

usChangeEmphasis (USHORT)
Change-emphasis-attribute flag.

TRUE The container record's emphasis attribute is to be set ON if the change
specified is not the same as the current state.

FALSE The container record's emphasis attribute is to be set OFF if the change
specified is not the same as the current state.

fEmphasisAttribute (USHORT)
Emphasis attribute of the container record.

The following states can be combined by using a logical OR operator (I):

CRA_CURSORED
CRA_DISABlED

CRA_INUSE
CRA_PICKED

Specifies that a record will be drawn with a selection cursor.
Specifies that a record will be drawn with unavailable-state
emphasis.
Specifies that a record will be drawn with in-use emphasis.
SpeCifies that the container record willi be picked up as part of
the drag set.
Specifies that a record will be drawn with selected-state
emphasis.
Specifies that a record will be drawn with source-menu
emphasis.

Chapter 8. Container Controls 8-77

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion

FALSE An error occurred.

The WinGetlastError function may return the following errors:

PMERR_INVALlD_PARAMETERS (1208)
PMERR_INSUFFICIENT _MEMORY (203E)

CM_SORTRECORD
This message sorts the container records in the container control.

Parameters
param1

pfnCompare (PFN)
Pointer to a comparison function.

param2

pStorage (PVOID)
Application use.

Available for application use.

Returns
rc (BOOl)

Success indicator.

TRUE The records in the container were sorted.

FALSE The records in the container were not sorted. The WinGetlastError function
may return the following errors:

• PMERR_COMPARISON_FAllED
• PMERRJNSUFFICIENT_MEMORY.

8·78 PM Advanced Programming Guide

WM_PICKUP
This message adds objects to the drag set during a lazy drag operation.

Parameters
param1

ptlPointerPos (POINTL)

param2

Pointer position in window coordinates relative to the bottom-left corner of the
window.

Reserved (ULONG)
Reserved value, must be O.

Returns
returns

rc (BOOL)
Success indicator.

Possible values are described in the following list:

TRUE
FALSE

Message was processed.
Message was ignored.

WM_PRESPARAMCHANGED (in Container Controls)
For the cause of this message, see WM_PRESPARAMCHANGED.

Parameters
param1

attrtype (ULONG)
Presentation parameter attribute identity.

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX
Sets the background color of the container window. This color is initially set
to SYSCLR_WINDOW.

PP _BORDERCOLOR or PP _BORDERCOLORINDEX
Sets the color of the title separators, column separators, and split bar. This
color is initially set to SYSCLR_WINDOWFRAME.

PP _FONTNAMESIZE
Sets the font and font size of the. text in the container. This font and font size
defaults to the system font and font size.

Chapter 8. Container Controls 8-79

param2

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX
Sets the color of unselected text. This color is initially set to
SYSCLR_ WINDOWTEXT.

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX
Sets the color of selection emphasis, the color of the cursor of an unselected
item in the details view, and the color of the cursor in all other views. This
color is initially set to SYSCLR_HILITEBACKGROUND.

PP _HILITEFOREGROUNDCOLOR or PP _HILITEFOREGROUNDCOLORINDEX
Sets the color of the text of a selected item in all views and the color of the
cursor of a selected item in the details view. This color is initially set to
SYSCLR_HILITEFOREGROUND.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

8-80 PM Advanced Programming Guide

Related Notification Messages
This section covers the notification messages that are related to container controls.

WM_CONTROL (in Container Controls)
For the cause of this message, see WM_ CONTROL.

Parameters
param1

id (USHORT)
Container control ID.

notifycode (USHORT)
Notify code.

The container control uses the following notification codes. For the complete
description of the specified notifycode, see Table 8-5 on page 8-123.

CN_BEGINEDIT Container text is about to be edited.

CN_COLLAPSETREE A parent item was collapsed in the tree view.

CN_CONTEXTMENU The container received a WM_CONTEXTMENU message.

CN_DRAGAFTER The container received a DM_DRAGOVER message. The
CN _ DRAGAFTER notification code is sent only if either
the CA ORDEREDTARGETEMPH or
CA_MIXEDTARGETEMPH attribute of the CNRINFO data
structure is set and the current view is the name, text, or
details view.

CN_DRAGLEAVE

CN_DRAGOVER

CN_DROP

CN_DROPNOTIFY

CN_DROPHELP

CN_EMPHASIS

CN_ENDEDIT

CN_ENTER

The container received a DM _ DRAGLEAVE message.

The container received a DM_DRAGOVER message. The
CN_DRAGOVER notification code is sent only if the
CA_ORDEREDTARGETEMPH attribute of the CNRINFO
data structure is not set or the current view is the icon
view or tree view.

The container received a DM_DROP message.

The container received a DM_DROPNOTIFY message.

The container received a DM_DROPHELP message.

A container record's attributes changed.

Direct editing of container text has ended.

The Enter key is pressed while the container window has
the focus, or the select button is double-clicked while the
pointer is over the container window.

Chapter 8. Container Controls 8-81

param2

CN_EXPANDTREE

CN_HELP

CNJNITDRAG

CN _ KI LLFOCUS

CN_PICKUP

CN_ QUERYDEL TA

CN _REALLOCPSZ

CN_SCROLL

CN_SETFOCUS

notifyinfo (ULONG)
Notify code information.

A parent item is expanded in the tree view.

The container received a WM_HELP message.

The drag button was pressed and the pointer was moved
while the pointer was over the container contro\.

The container is losing the focus.

The container received a WM_PICKUP message.

Queries for more data when a user scrolls to a preset
delta value.

Container text is edited. This message is sent before the
CN_ENDEDIT notification code is sent.

The container window scrolled.

The container is receiving the focus.

For the definition of this parameter, see the description of the specified
notifycodeTable 8-5 on page 8-123 .

Returns
ulReserved (ULONG)

Reserved value, should be O.

WM_DRAWITEM (in Container Controls)
For the cause of this message, see WM_DRAWITEM.

Parameters
param1

id (USHORT)
Container control ID.

param2

pOwnerltem (POWNERITEM)
Pointer to an OWNERITEM data structure.

The following list defines the OWNERITEM data structure fields as they apply to the
container contra\. See OWNERITEM for the default field values.

8-82 PM Advanced Programming Guide

hwnd (HWND)
Handle of the window in which ownerdraw will occur. The following is a list of
the window handles that can be specified for ownerdraw:

• The container window handle of the icon, name, text, and tree views
• The container title window handle
• The left or right window handles of the details view
• The left or right column heading windows of the details view.

hps (HPS)
Handle of the presentation space of the container window. For the details view
that uses a split bar, the presentation space handle is either for the left or right
window, depending upon the position of the column. If the details view does
not have a split bar, the presentation space handle is for the left window.

fsState (ULONG)
Specifies emphasis flags. This state is not used by the container control
because the application is responsible for drawing the emphasis states during
ownerdraw.

fsAttribute (ULONG)
Attributes of the record as given in the flRecordAttr field in the RECORDCORE
data structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container
is created, then MINIRECORDCORE should be used instead of
RECORDCORE and PMINIRECORDCORE should be used instead of
PRECORDCORE in all applicable data structures and messages. See
"RECORDCORE" on page 8-114 and "MINIRECORDCORE" on
page 8-104 for descriptions of these data structures.

fsStateOld (ULONG)
Previous emphasis. This state is not used by the container control because
the application is responsible for drawing the emphasis states during
ownerdraw.

fsAttributeOld (ULONG)
Previous attribute. This state is not used by the container control because the
application is responsible for drawing the emphasis states during ownerdraw.

rcl/tem (RECTL)
This is the bounding rectangle into which the container item is drawn.

If the container item is an icon/text or bit-map/text pair, two WM_DRAWITEM
messages are sent to the application. The first WM_DRAWITEM message
contains the rectangle bounding the icon or bit map and the second contains
the rectangle bounding the text.

If the container item contains only text, or only an icon or bit map, only one
WM_DRAWITEM message is sent. However, if the current view is the tree
icon or tree text view and if the item is a parent item, the application will
receive an additional WM_DRAWITEM (in Container Controls) message. The
additional message is for the icon or bit map that indicates whether the parent
item is expanded or collapsed.

Chapter 8. Container Controls 8-83

If the current view is the details view and the CFA_OWNER attribute is set, the
rectangle's size is equal to the width of the column and the height of the tallest
field in the container item. CFA_OWNER is an attribute of the FIElDINFO
data structure's flData field.

idltem (UlONG)
Identifies the item being drawn. It can be one of the following:

• CMA_CNRTITlE
• CMAJCON
• CMA_TEXT
• CMA_ TREEICON.

This field is not used for the details view and is set to O.

hltem (CNRDRAWITEMINFO)

Returns
rc (BOOl)

Pointer to a CNRDRAWITEMINFO structure. This field is set to NUll if idltem
is CMA_CNRTITlE.

See "CNRDRAWITEMINFO" on page 8-88 for descriptions of this structure's
fields.

Item-drawn indicator.

TRUE
FALSE

The owner draws the item, and so the container control does not draw it.
If the owner does not draw the item, the owner returns this value and the
container control draws the item.

8-84 PM Adv~nced Programming Guide

Related Data Structures
This section covers the data structures that are related to container controls.

COATE
Structure that contains date information for a data element in the details view of a container
control.

Syntax

typedef struct _COATE {
UCHAR day;
UCHAR month;
USHORT year;
} COATE;

typedef COATE *PCOATE;

Fields
day (UCHAR)

Current day.

month (UCHAR)
Current month.

year (USHORT)
Current year.

CNRDRAGINFO
Structure that contains information about a direct manipulation event that is occurring over
the container. The information specified for this structure depends on the container
notification code with which it is used. The differences are specified in the following field
descriptions. The applicable notification codes are:

• CN_DRAGAFTER
• CN_DRAGLEAVE
• CN _DRAGOVER
• CN DROP
• CN_DROPHELP

Chapter 8. Container Controls 8-85

Syntax

Fields
pDraglnfo (PDRAGINFO)

Pointer to a DRAGINFO structure.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE structure.

The structure that is pointed to depends on the notification code being used.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages. For the CN_DRAGAFTER notification code, this field contains
a pointer to the RECORDCORE structure after which ordered target emphasis is drawn.
If ordered target emphasis is applied above the first record in item order, the CM_FIRST
attribute is returned.

For the CN_DRAGLEAVE notification code, this field is NULL.

For the CN_DRAGOVER, CN_DROP, and CN_DROPHELP notification codes, this field
contains a pointer to a container record over which direct manipulation occurred. This
field has a value of NULL if the direct manipulation event occurs over white space.

8-86 PM Advanced Programming Guide

CNRDRAGINIT
Structure that contains information about a direct manipulation event that is initiated in a
container. This structure is used with the CNJNITDRAG notification code only. See
CN_INITDRAG for information about that notification code.

Syntax

type(lefstruct3NRDRAGINIT '{
H~Nll, ' , , hwn(iCnr;
I'R;ECORDCORE pR.ecord;
LONG

':LONG.
':iQNG'"

LONG
TCNRDRAGINIT ;

,:tipedef .C~RD~GI,Nlf.·.,*pdtRDRAGINlT;

Fields
hwndCnr (HWND)

Container control handle.

pReeord (PRECORDCORE)
Pointer to the RECORDCORE where direct manipulation started.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

The pRecord field can have one of the following values:

NULL Direct manipulation started over white space.
Other Container record over which direct manipulation started.

x (LONG)
X-coordinate of the pointer of the pointing device in desktop coordinates.

y (LONG)
V-coordinate of the pointer of the pointing device in desktop coordinates.

ex (LONG)
X-offset from the hot spot of the pointer of the pointing device (in pels) to the record
origin.

ey (LONG)
V-offset from the hot spot of the pointer of the pointing device (in pels) to the record
origin.

Chapter 8. Container Controls 8-87

CNRDRAWITEMINFO
Structure that contains information about the container item being drawn. This structure is
used with the WM_DRAWITEM (in Container Controls) message only. See
'WM_DRAWITEM (in Container Controls)" on page 8-82 for information about that message.

Syntax

Fields
pRecord (PRECORDCORE)

Pointer to the RECORDCORE structure for the record being drawn.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

pFieldlnfo (PFIELDINFO)
Pointer to the FIELDINFO structure for the container column being drawn in the details
view.

For all other views, this field is NULL.

CNREDITDATA
Structure that contains information about the direct editing of container text. The information
specified for this structure depends on the container notification code or message with which
it is used. The differences are specified in the following field descriptions. The applicable
notification codes and message are:

• CN_BEGINEDIT
• CN_ENDEDIT
• CN _ REALLOCPSZ
• "CM_OPENEDIT" on page 8-61

8-88 PM Advanced Programming Guide

Syntax

typedef struct _CNREDITDATA {
ULONG cb;
HWND hwndCnr;
PRECORDCORE pRecord;
PFIELDINFO pFieldInfo;
PSZ *ppszText;
ULONG cbText;
ULONG id;
} CNREDITDATA;

typedef CNREDITDATA *PCNREDITDATA;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the CNREDITDATA data structure.

hwndCnr (HWND)
Container window handle.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE data structure, or NULL.

This field is NULL if container titles are to be edited.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ notification codes, this
field is a pointer to the edited RECORDCORE data structure.

For the CM_OPENEDIT message, this field is a pointer to the RECORDCORE data
structure to be edited.

pFieldlnfo (PFIELDINFO)
Pointer to a FIELDINFO data structure, or NULL.

Pointer to a FIELDINFO data structure if the current view is the details view and the user
is not editing the container title. Otherwise, this field is NULL.

If the current view is the details view:

• For the CN_BEGINEDIT, CN_ENDEDIT, and CN_REALLOCPSZ notification codes,
this field contains a pointer to the FIELDINFO structure being edited.

• For the CM_OPENEDIT message, this field is a pointer to the FIELDINFO data
structure to be edited.

Chapter 8. Container Controls 8-89

ppszText (PSZ *)
Pointer to a PSZ text string.

For the CN_BEGINEDIT and CN_REALLOCPSZ notification codes, this field is a pointer
to the current PSZ text string.

For the CN_ENDEDIT notification code, this field is a pointer to the new PSZ text string.

For the CM_OPENEDIT message, this field is NULL.

cbText (ULONG)
Number of bytes in the text string.

For the CN_BEGINEDIT notification code, this field is O.

For the CN_ENDEDIT and CN_REALLOCPSZ notification codes, this field is the number
of bytes in the new text string.

For the CM_OPENEDIT message, this field is O.

id (ULONG)
ID of the window to be edited.

The ID can be one of the following:

CID CNRTITLEWND
Title window.

CID _LEFTDVWND
Left details view window; default if unsplit window.

CID_RIGHTDVWND
Right details view window.

CID _ LEFTCOL TITLEWN [)
Left details view column headings window; default if unsplit window.

CID _RIGHTCOLTITLEWND
Right details view column headings window.

An application-defined container-ID
Container window.

8-90 PM Advanced Programming Guide

CNRINFO
Structure that contains information about the container.

Syntax

typedef struct _CNRINFO {
ULONG
PYOID
PFIELDINFO
PFIELDINFO
psz
ULONG
POINTL
ULONG
ULONG
SIZEL
SIZEL
HBlTMAP
HBITMAP
HPOINTER
HPOINTER
LONG
LONG
LONG
ULONG
LONG
} CNRINFO;

cb;
pSortRecord;
pFieldlnfoLast;
pFteldInfoObject;
pszCnrTitle;
flWindowAttr;
ptlOrigin;
cDelta;
cRecords;
slBitmapOrlcon;
slTreeBitmapOrlcon;
hbmExpanded;
hbmCo 11 apsed;
hptrExpanded;
hptrCollapsed;
cyLineSpacing;
cxTreelndent;
cxTreeLine;
cFields;
xVertSplitbar;

typecjE:!fCNRINFO *PCNRINFO;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the CNRINFO data structure.

pSortRecord (PVOID)
Pointer to the comparison function for sorting container records, or NULL.

If NULL, which is the default condition, no sorting is performed. Sorting only occurs
during record insertion and when changing the value of this field. The third parameter of
the comparison function, pStorage, must be NULL. See "CM_SORTRECORD" in the
Control Program Programming Reference for a further description of the comparison
function.

pFieldlnfoLast (PFIELDINFO)
Pointer to last column in the left windoyv of the split details view, or NULL.

The default is NULL, causing all columns to be positioned in the left window.

Chapter 8. Container Controls 8-91

pFieldlnfoObject (PFIELDINFO)
Pointer to a column that represents an object in the details view.

The data for this FIELDINFO structure must contain icons or bit maps. In-use emphasis
is applied to this column of icons or bit maps only. The default is the leftmost column in
the unsplit details view, or the leftmost column in the left window of the split details view.

pszCnrTitle (PSZ)
Title text, or NULL.

Text for the container title. The default is NULL.

flWindowAttr (ULONG)
Window attributes.

Consists of the following container window attributes:

• Specify one of the following container views, which determine the presentation
format of items in a container:

CV_ICON
In the icon view, the container items are represented as icon/text or bit-map/text
pairs, with text beneath the icons or bit maps. This is the default view. This
view can be combined with the CV _MINI style bit by using an OR operator (I).
See CV _MINion page 8-94 for more information.

CV_NAME
In the name view, the container items are represented as icon/text or
bit-map/text pairs, with text to the right of the icons or bit maps. This view can
be combined with the CV _MINI and CV _FLOW style bits by using OR operators
(I). See CV _MINion page 8-94 and CV _FLOW on page 8-94 for more
information.

CV_TEXT
In the text view, the container items are displayed as a list of text strings. This
view can be combined with the CV _FLOW style bit by using an OR operator (I).
See CV _FLOW on page 8-94 for more information.

8-92 PM Advanced Programming Guide

CV_TREE
In the tree view, the container items are represented in a hierarchical manner.
The tree view has three forms, which are defined in the following list. If you
specify CV _TREE by itself, the tree icon view is used.

- Tree icon view

The tree icon view is specified by using a logical OR operator to combine
the tree view with the icon view (CV _TREE I CV -'CON). Container items
in this view are represented as icon/text pairs or bit-map/text pairs, with text
to the right of the icons or bit maps. Also, a collapsed or expanded icon or
bit map is displayed to the left of parent items. If this icon or bit map is a
collapsed icon or bit map, selecting it will cause the parent item to be
expanded so that its child items are displayed below it. If this icon or bit
map is an expanded icon or bit map, selecting it will cause the parent's
child items to be removed from the display. The default collapsed and
expanded bit maps provided by the container use a plus sign (+) and a
minus sign (-), respectively, to indicate that ite!lls can be added to or
subtracted from the display.

- Tree name view

The tree name view is specified by using a logical OR operator to combine
the tree view with the name view (CV _TREE I CV _NAME). Container
items in this view are displayed as either icon/text pairs or bit-map/text
pairs, with text to the right of the icons or bit maps. However, the indicator
that represents whether an item can be collapsed or expanded, such as a
plus or minus sign, is included in the icon or bit map that represents that
item, not in a separate icon or bit map as in the tree icon and tree text
views. The container control does not provide default collapsed and
expanded bit maps for the tree name view.

- Tree text view

The tree text view is specified by using a logical OR operator to combine
the. tree view with the text view (CV _TREE I CV _TEXT). Container items
in this view are displayed as a list of text strings. As in the tree icon view, a
collapsed or expanded icon or bit map is displayed to the left of parent
items.

Chapter 8. Container Controls 8-93

CV_DETAIL
In the details view, the container items are presented in columns. Each column
can contain icons or bit maps, text, numbers, dates, or times.

• Specify one or both of the following view styles by using an OR operator (I) to
combine them with the specified view. These view styles are optional.

CV_MINI
Produces a mini-icon whose size is based on the Presentation Manager (PM)
SV _ CYMENU system value to produce a device-dependent mini-icon.

The CV _MINI view style bit is ignored when:

- The text view (CV _TEXT), tree view (CV _TREE), or details view
(CV _DETAIL) are displayed

- The CCS_MINIRECORDCORE style bit is specified.

If this style bit is not specified and the icon view (CV JCON) or name view
(CV _NAME) is used, the default, regular-sized icon is used. The size of
regular-sized icons is based on the value in the slBitmapOrlcon field of the
CNRINFO data structure. If this field is equal to 0, the PM SV _ CXICON and
SV _CYICON system values for width and height, respectively, are used. Icon
sizes are consistent with PM-defined icon sizes for all devices.

CV_FLOW
Dynamically arranges container items in columns in the name and text views.
These are called flowed name and flowed text views. If this style bit is set for
the name view (CV _NAME) or text view (CV _TEXT), the container items are
placed in a single column until the bottom of the client area is reached. The
next container item is placed in the adjacent column to the right· of the filled
column. This process is repeated until all of the container items are positioned
in the container. The width of each column is determined by the longest text
string in that column. The size of the window determines the depth of the client
area.

If this style bit is not specified, the default condition for the name and text views
is to vertically fill the container in a single column without flowing the container
items. If this style bit is set for the icon view (CV JCON) or details view
(CV _DETAIL), it is ignored.

8-94 PM Advanced Programming Guide

• Specify either of the following to indicate whether the container will display icons or
bit maps:

CA_DRAWICON
Icons are used for the icon, name, tree, or details views. This is the default.
This container attribute should be used with the hptr/con and hptrMinilcon fields
of the RECORDCORE data structure.

CA_DRAWBITMAP
Bit maps are used for the icon, name, tree, or details views. This container
attribute can be used with the hbmBitmap and hbmMiniBitmap fields of the
RECORDCORE data structure.

Notes:

1. If both the CA_DRAWICON and CA_DRAWBITMAP attributes are specified,
the CA_DRAWICON attribute is used.

2. If the CCS_MINIRECORDCORE style bit is specified when a container is
created, the hptr/con field of the MINIRECORDCORE data structure is
used.

• Specify one of the following attributes to provide target emphasis for the name, text,
and details views. If neither ordered nor mixed target emphasis is specified, the
emphasis is drawn around the record.

CA_ORDEREDTARGETEMPH
Shows where a container record can be dropped during direct manipulation by
drawing a line beneath the record. Ordered target emphasis does not apply to
the icon and tree views.

CA_MIXEDTARGETEMPH
Shows where a container record can be dropped during direct manipulation
either by drawing a line between two items or by drawing lines around the
container record. Mixed target emphasis does not apply to the icon and tree
views.

• Specify the following attribute to draw lines that show the relationship between items
in the tree view.

CA_ TREELINE
Shows the relationship between all items in the tree view.

Chapter 8. Container Controls 8-95

• Specify the following to draw container records, paint the background of the
container, or both:

CA_OWNERDRAW
Ownerdraw for the container, which allows the application to draw container
records.

CA_ OWNERPAINTBACKGROUND
Allows the application to subclass the container and paint the background. If
specified, and the container is subclassed, the application receives the
CM_PAINTBACKGROUND message in the subclass procedure. Otherwise, the
container paints the background using the color specified by
SYSCLR_WINDOW, which can be changed by using the
PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX presentation
parameter in the WM_PRESPARAMCHANGED (in Container Controls)

• Specify the following if the container is to have a title:

CA_CONTAINERTITLE
Allows you to include a container title. The default is no container title.

• Specify one or both of the following container title attributes. These are valid only if
the CA_CONTAINERTITLE attribute is specified.

CA_ TITLEREADONL Y
Prevents the container title from being edited directly. The default is to allow the
container title to be edited.

CA_ TITLESEPARATOR
Puts a separator line between the container title and the records beneath it.
The default is no separator line.

• Specify one of the following to position the container title. These are valid only if
the CA_CONTAINERTITLE attribute is specified.

CA_ TITLECENTER
Centers the container title. This is the default.

CA_ TITLE LEFT
Left-justifies the container title.

CA_ TITLERIGHT
Right-justifies the container title.

• Specify the following to display column headings in the details view:

CA_DETAILSVIEWTITLES
Allows you to include column headings in the details view. The default is no
column headings.

ptlOrigin (POINTL)
Workspace origin.

Lower-left origin of the workspace in virtual coordinates, used in the icon view. The
default origin is (O,O).

8-96 PM Advanced Programming Guide

cDelta (ULONG)
Threshold.

An application-defined threshold, or number of records, from either end of the list of
available records. Used when a container needs to handle large amounts of data. The
default is O. Refer to the OS/2 Programming Guide for more information about
specifying deltas.

cRecords (ULONG)
Number of records.

The number of records in the container. Initially this field is O.

slBitmapOrlcon (SIZEL)
Icon/bit-map size.

The size (in pels) of icons or bit maps. The default is the system size.

slTreeBitmapOrlcon (SIZEL)
Icon/bit-map size.

The size (in pels) of the expanded and collapsed icons or bit maps used in the tree icon
and tree text views.

hbmExpanded (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent an expanded parent item in the tree
icon and tree text views. If neither an icon handle (see hptrExpanded) nor a bit-map
handle is specified, a default bit map with a minus sign (-) is provided.

hbmColiapsed (HBITMAP)
Bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item in the tree
icon and tree text views. If neither an icon handle (see hptrCollapsed) nor a bit-map
handle is specified, a default bit map with a plus sign (+) is provided.

hptrExpanded (HPOINTER)
Icon handle.

The handle of the icon to be used to represent an expanded parent item in the tree icon
and tree text views. If neither an icon handle nor a bit-map handle (see hbmExpanded)
is specified, a default bit map with a minus sign (-) is provided.

hptrColiapsed (HPOINTER)
Icon handle.

The handle of the icon to be used to represent a collapsed parent item in the tree icon
and tree text views. If neither an icon handle nor a bit-map handle (see hbmCollapsed)
is specified, a default bit map with a plus sign (+) is provided.

Chapter 8. Container Controls 8-97

cyLineSpacing (LONG)
Vertical space.

The amount of vertical space (in pels) between the records. If you specify a value that
is less than 0, a default value is used.

cxTreelndent (LONG)
Horizontal space.

The amount of horizontal space (in pels) between levels in the tree view. If you specify
a value that is less than 0, a default value is used.

cxTreeLine (LONG)
Line width.

The width of the lines (in pels) that show the relationship between tree items. If you
specify a value that is less than 0, a default value is used. Also, if the CA_ TREELINE
container attribute of the flWindowAttr field is not specified, these lines are not drawn.

cFields (ULONG)
Number of columns.

The number of FIELDINFO structures in the container. Initially this field is O.

xVertSplitbar (LONG)
Split bar position.

The initial position of the split bar relative to the container, used in the details view. If
this value is less than 0, the split bar is not used. The default value is negative one
(-1).

CNRLAZVORAGINFO
Container lazy drag information.

Syntax

typedef.· . S t ruct ·,;.CNRLAZYDRAGINFQ . {
.. PpRAGINFO· ...• pOY'~gInfo;.··

PRECORDCORE pHecord;
HWNf) '.' '.. .' ..~w~dTa:rget;

}CNRLAZYDRAGINFO; .

typedef.CN~LAZYORAGI NF,O .• *PCNRLAZYD~GINPQ;

8-98 PM Advanced Programming Guide

Fields
pDraglnfo (PDRAGINFO)

Pointer to the DRAGINFO structure.

pRecord (PRECORDCORE)
Pointer to a container RECORDCORE structure.

A value of NULL indicates that the lazy drag set was dropped over whitespace in the
container. Any other value indicates that the lazy drag set was dropped on the record
specified by this field.

hwndTarget (HWND)
Handle of the target winddow that the lazy drag set was dropped on.

CTIME
Structure that contains time information for a data element in the details view of a container
control.

Syntax

typedef structCTIME {
UCHARhou;Si
UCHAR minutes;
UCHAR seconds;
UCHAR ucReservedi

} CTIME; ,

typedefCTIME*PCTIME;

Fields
hours (UCHAR)

Current hour.

minutes (UCHAR)
Current minute.

seconds (UCHAR)
Current second.

ucReserved (UCHAR)
Reserved.

Chapter 8. Container Controls 8-99

FIELDINFO
Structure that contains information about column data in the details view of the container
control. The details view displays each FIELDINFO structure as a column of data that
contains specific information about each container record. For example, one FIELDINFO
structure, or column, might contain icons or bit maps that represent each container record.
Another FIELDINFO structure might contain the date or time that each container record was
created.

Syntax

...• tip~def .struCi •.. J"lELDINF(} .. .f.
U1;;ONG . cb L .
ULONG fiD~ta;

·UtONG flTitle;
PVOIO pTitleDa.ta;
ULONG offStrucl:;
PVOIO pUs~rData;
shuat *p~~X.tFi~ldtnfo;
ULONG· p~:Wtdth; .

}···FIELDINFO;

typed¢f.· .. ·.FlihDIN.·FO·.·*PFIELOlNFO;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the FIELDINFO structure.

flOata (ULONG)
Data attributes.

Attributes of the data in a field.

• Specify one of the following for each column to choose the type of data that is
displayed in each column:

CFA_BITMAPORICON
The column contains bit-map or icon data.

CFA_OATE
The data in the column is displayed in date format. National Language Support
(NLS) is enabled for date format. Use the data structure described in CDATE

CFA_STRING
Character or text data is displayed in this column.

CFA_TIME
The data in the column is displayed in time format. National Language Support
(NLS) is enabled for time format. Use the data structure described in CTIME.

8-100 PM Advanced Programming Guide

CFA_ULONG
Unsigned number data is displayed in this column. National Language Support
(NLS) is enabled for number format.

• Specify any or all of the following column attributes:

CFA_FIREADONL Y
Prevents text in a FIELDINFO data structure (text in a column) from being edited
directly. This attribute applies only to columns for which the CFA_STRING
attribute has been specified.

CFA_HORZSEPARATOR
A horizontal separator is provided beneath column headings.

CFA_INVISIBLE
Invisible container column. The default is visible.

CFA_OWNER
Ownerdraw is enabled for this container column.

CFA_SEPARATOR
A vertical separator is drawn after this column.

• Specify one of the following for each column to vertically position data in that
column:

CFA_BOTTOM
Bottom-justifies field data.

CFA_TOP
Top-justifies field data.

CFA_VCENTER
Vertically centers field data. This is the default.

• Specify one of the following for each column to horizontally position data in that
column. These attributes can be combined with the attributes used for vertical
positioning of column data by using an OR operator (I).

CFA_CENTER
Horizontally centers field data.

CFA_LEFT
Left-justifies field data. This is the default.

CFA_RIGHT
Right-justifies field data.

Chapter 8. Container Controls 8-1 01

flTitle (ULONG)
Column heading attributes.

• Specify the following if icon or bit-map data is to be displayed in the column
heading:

CFA_BITMAPORICON
The column heading contains icon or bit-map data. If CFA_BITMAPORICON is
not specified, any data that is assigned to a column heading is assumed to be
character or text data.

• Specify the following to prevent direct editing of a column heading:

CFA_FITITLEREADONL Y
Prevents a column heading from being edited directly.

• Specify one of the following for each column heading to vertically position data in
that column heading:

CFA_TOP
Top-justifies column headings.

CFA_BOTTOM
Bottom-justifies column headings.

CFA_VCENTER
Vertically centers column headings. This is the default.

• Specify one of the following for each column heading to horizontally position data in
that column heading. These attributes can be combined with the attributes used for
vertical positioning of column heading data by using an OR operator (I).

CFA_CENTER
Horizontally centers column headings.

CFA_LEFT
Left-justifies column headings. This is the default.

CFA_RIGHT
Right-justifies column headings.

pTitleData (PVOID)
Column heading data.

Column heading data, which can be a text string, or an icon or bit map. The default is a
text string. If the flTitle field is set to the CFA_BITMAPORICON attribute, this must be
an icon or bit map.

8-102 PM Advanced Programming Guide

offStruct (ULONG)
Structure offset.

Offset from the beginning of a RECORDCORE structure to the data that is displayed in
this column.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

pUserData (PVOID)
Pointer to user data.

pNextFieldlnfo (struct _FIELDINFO *)
Pointer to the next linked FIELDINFO data structure.

cxWidth (ULONG)
Column width.

Used to specify the width of a column. The default is an automatically sized column that
is always the width of its widest element. If this field is set and the data is too wide, the
data is truncated.

FIELDINFOINSERT
Structure that contains information about the FIELDINFO structure or structures that are
being inserted into a container. This structure is used in the CM_INSERTDETAILFIELDINFO
container message only. See "CMJNSERTDETAILFIELDINFO" on page 8-57 for
information about that message.

Syntax

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the FIELDINFOINSERT structure.

Chapter 8. Container Controls 8-103

pFieldlnfoOrder (PFIELDINFO)
Column order.

Orders the FIELDINFO structure or structures relative to other FIELDINFO structures in
the container. The values can be:

CMA_FIRST Places a FIELDINFO structure, or list of FIELDINFO structures, at the
front of the list of columns.

CMA.-:END Places a FIELDINFO structure, or list of FIELDINFO structures, at the
end of the list of columns.

Other Pointer to a FIELDINFO structure that this structure, or list of structures,
is to be inserted after.

flnvalidateFieldlnfo (ULONG)
Update flag.

Flag that indicates an automatic display update after the FIELDINFO structures are
inserted.

TRUE
FALSE

The display is automatically updated after FIELDINFO structures are inserted.
The application must send the CMJNVALIDATEDETAILFIELDINFO message
after the FIELDINFO structures are inserted.

cFieldlnfolnsert (ULONG)
Number of columns.

The number of FIELDINFO structures to be inserted. The cFieldlnfolnsert field value
must be greater than O.

MINIRECORDCORE
Structure that contains information for smaller records than those defined by the
RECORDCORE data structure. This data structure is used if the CCS_MINIRECORDCORE
style bit is specified when a container is created.

Syntax

8-104 PM Advanced Programming Guide

Fields
eb (ULONG)

Structure size.

The size (in bytes) of the MINIRECORDCORE structure.

flReeordAttr (ULONG)
Attributes of container records.

Contains any or all of the following:

CRA_COLLAPSED

CRA_CURSORED

CRA_DROPONABLE

CRA_EXPANDED

CRA_FILTERED

CRAJNUSE

CRA RECORDREADONLY

CRA_SELECTED

ptlleon (POI NTL)
Record position.

Specifies that a record is collapsed.

Specifies that a record will be drawn with a selection
cursor.

Specifies that a record can be a target for direct
manipulation.

Specifies that a record is expanded.

Specifies that a record is filtered, and therefore hidden
from view.

Specifies that a record will be drawn with in-use
emphasis.

Prevents a record from being edited directly.

Specifies that a record will be drawn with selected-state
emphasis.

Specifies that a record will be drawn with target
emphasis.

Position of a container record in the icon view.

preeeNextReeord (struct _MINIRECORDCORE *)
Pointer to the next linked record.

pszleon (PSZ)
Record text.

Text for the container record.

hptrleon (HPOINTER)
Record icon.

Icon that is displayed for the container record.

Chapter 8. Container Controls 8-1 05

NOTIFYDELTA
Structure that contains information about the placement of delta information for a container.
This structure is used in the CN _ aUERYDEL TA container notification code only. See
eN_au ERYDEL T A for information about that notification code.

Syntax

Fields
hwndCnr (HWND)

Container control handle.

fDelta (ULONG)
Placement of delta information. The values can be:

CMA_DELTATOP The record that represents the delta value scrolls into view at the
top of the client area.

CMA _DEL TABOT The record that represents the delta value scrolls into view at the
bottom of the client area.

CMA_DELTAHOME The container scrolls to the beginning of the list of all container
records that are available to be inserted into the container, such
as the first record in a database.

CMA DELTAEND The container scrolls to the end of the list of all container records
that are available to be inserted into the container, such as the
last record in a database.

8-1 06 PM Advanced Programming Guide

NOTIFYRECORDEMPHASIS
Structure that contains information about emphasis that is being applied to a container
record. This structure is used in the CN_EMPHASIS container notification code only. See
CN_EMPHASIS for information about that notification code.

Syntax

,:t,V,pedef struct_NOTJFYRECORDEMPHASIS {
HWND hwndCnrj
PRECORDCORE pRecord;

. U~QN(l: < ." . .TEmt:lhaSi sMas k;
} NOTIFYRECORDEMPHASlS;

typedef·NOTIFYRECORDEMPHASlS *PNOTIFYRECORDEMPHASIS;

Fields
hwndCnr (HWND)

Container control handle.

pRecord (PRECORDCORE)
Pointer to a RECORDCORE data structure whose emphasis attribute has been
changed.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

fEmphasisMask (ULONG)
Changed emphasis attributes.

Specifies the emphasis attribute or attributes that changed in the container record. The
following states can be combined with a logical OR operator (I):

• CRA_ CURSORED
• CRA_INUSE
• CRA_SELECTED.

Chapter 8. Container Controls 8-107

NOTIFYRECORDENTER
Structure that contains information about the input device that is being used with the
container control. This structure is used in the CN_ENTER container notification code only.
See CN_ENTER for information about that notification code.

Syntax

Fields
hwndCnr (HWND)

Container control handle.

fKey (ULONG)
Flag.

Flag that ~etermines whether the Enter key was pressed or the select button was
double-clicked.

TRUE
FALSE

The Enter key was pressed.
The select button was double-clicked.

pRecord (PRECORDCORE)
Pointer to the RECORDCORE data structure over which an action occurred.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE
and PMINIRECORDCORE should be used instead of PRECORDCORE in all
applicable data structures and messages.

• If a user presses the Enter key, a pointer to the record with the selection cursor is
returned.

• If a user double-clicks the select button when the pointer of the pOinting device is
over a record, a pointer to the record is returned.

• If a user double-clicks the select button when the pointer of the pointing device is
over white space, NULL is returned.

8-1 08 PM Advanced Programming Guide

NOTIFYSCROLL
Structure that contains information about scrolling a container control window. This structure
is used in the CN_SCROLL container notification code only. See CN_SCROLL for
information about that notification code.

Syntax

typed¢fstruct _NOTIFYSCROLL {
HWNO ·····hwndCrir; .
LONG 1 S¢~o111 nc i
ULONG. fScroll;

...... r~~nrY~CRO:tL~

typedef .NOTJFYSCROlL •. *PN()TlFYSCRQLL;

Fields
hwndCnr (HWND)

Container control handle.

IScrolllnc (LONG)
Scroll amount.

Amount (in pixels) by which the window scrolled.

fScroll (ULONG)
Scroll flags.

Flags that show the direction in which the window scrolled and the window that was
scrolled.

CMA_HORIZONTAL A window was scrolled horizontally. If the split details view
window is scrolled, a logical OR operator (I) is used to combine
the CMA_HORIZONTAL attribute with either the CMA_LEFT
attribute or the CMA_RIGHT attribute to indicate which window
was scrolled. If the unsplit details view window is scrolled, the
CMA_HORIZONTAL attribute is combined with the CMA_LEFT
attribute.
The container window scrolled vertically. If the split details view
window is scrolled, a logical OR operator (I) is used to combine
the CMA _ VERTICAL attribute with the CMA _ LEFT attribute and
the CMA_RIGHT attribute. If the unsplit details view window is
scrolled, the CMA_VERTICAL attribute is combined with the
CMA _LEFT attribute.

Chapter 8. Container Controls 8-1 09

OWNERBACKGROUND
Structure that contains information about painting the container window's background by the
container owner. This structure is used in the CM_PAINTBACKGROUND container
message only. See "CM_PAINTBACKGROUND" on page 8-62 for information about that
message.

Syntax

Fields
hwnd (HWND)

Window handle.

Handle of the window to be painted.

hps (HPS)
Presentation-space handle.

rei Background (RECTL)
Background rectangle.

Background rectangle in window coordinates.

idWindow (LONG)
Window ID.

Identity of the window to be painted.

8-110 PM Advanced Programming Guide

OWNERITEM
Owner item.

Syntax

typedef structOWNERITEM {
HWNO' hwnd;
HPS hps; ,
ULONG fsSt~t~;
ULONG fsAttribute;
ULONG fsStateQl d~
.ULONG :fsAttributeOld; .
RECTL rcHtem;
LONG idltem;
ULONG hltem;
1 ()WNERITEM;

Fields
hwnd (HWNO)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
State.

fsAttribute (ULONG)
Attribute.

fsStateOld (ULONG)
Old state.

fsAttributeOld (ULONG)
Old attribute.

rclltem (RECTL)
Item rectangle.

idltem (LONG)
Item identity.

hltem (ULONG)
Item.

Chapter 8. Container Controls 8-111

QUERYRECFROMRECT
Structure that contains information about a container record that is bounded by a specified
rectangle. This structure is used in the CM_QUERYRECORDFROMRECT container
message only. See "CM_QUERYRECORDFROMRECT" on page 8-68 for information about
that message.

Syntax

Fields
eb (ULONG)

Structure size.

The size (in bytes) of the QUERYRECFROMRECT data structure.

reet (RECTL)
Rectangle.

The rectangle to query, in virtual coordinates relative to the container window origin. If
the details view (CV _DETAIL) is displayed, the x-coordinates of the rectangle are
ignored.

fsSeareh (ULONG)
Search control flags.

One flag from each of the following groups can be specified:

• Search sensitivity:

CMA_COMPLETE
Returns the container records that are completely within the bounding rectangle.

CMA_PARTIAL
Returns the container records that are completely or partially within the bounding
rectangle.

8-112 PM Advanced Programming Guide

• Enumeration order:

CMA_ITEMORDER
Container records are enumerated in item order, lowest to highest.

CMA_ZORDER
Container records are enumerated by z-order, from top to bottom. This flag is
valid for the icon view only.

QUERYRECORDRECT
Structure that contains information about the rectangle of the specified container record,
relative to the container window origin. This structure is used in the
CM_QUERYRECORDRECT container message only. See "CM_QUERYRECORDRECr on
page 8-69 for information about that message.

Syntax

typedef struct QUERYRECORDRECT·{
ULONG - cb;
PRECORDCORE pR~cord;
ULONG fRlghtSplitWindow;
UlONG fsExtent;
} QUERYRECORDRECT;

typedef QUERYRECORDRECT *PQUERYRECORDRECT;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the QUERYRECORDRECT structure.

pRecord (PRECORDCORE)
Pointer.

Pointer to the specified RECORDCORE data structure.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is
created, then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable data
structures and messages.

Chapter 8. Container Controls 8-113

fRightSplitWindow (ULONG)
Window flag.

Flag that specifies the right or left window in the split details view.

This flag is ignored if the view is not the split details view.

TRUE
FALSE

Right split window is returned.
Left split window is returned.

fsExtent (ULONG)
Rectangle flags.

Flags that specify the extent of the desired rectangle.

These flags can be combined by using a logical OR operator (I) to return the rectangle
that bounds the icon, the expanded and collapsed icon or bit map, and the text.

CMAJCON
CMA_TEXT
CMA _ TREEICON

RECORDCORE

Returns the icon rectangle.
Returns the text rectangle.
Returns the rectangle of the expanded and collapsed icons or bit
maps. This flag is valid for the tree icon and tree text views only.

Structure that contains information for records in a container control. This data structure is
used if the CCS_MINIRECORDCORE style bit is not specified when a container is created.

Syntax

8-114 PM Advanced Programming Guide

Fields
cb (ULONG)

The size, in bytes, of the RECORDCORE structure.

flRecordAttr (ULONG)
Container record attributes.

This parameter can contain any or all of the following:

CRA _COLLAPSED

CRA_CURSORED

CRA_DISABLED

CRA_DROPONABLE

CRA EXPANDED

CRA FILTERED

CRA_INUSE

CRA_PICKED

CRA_SELECTED

ptllcon (POINTL)

Specifies that a record is collapsed.

Specifies that a record will be drawn with a selection cursor.

Specifies that a record will be drawn with unavailable-state
emphasis.

Specifies that a record can be a target for direct manipulation.

Specifies that a record is expanded.

Specifies that a record is filtered and, therefore, hidden from
view.

Specifies that a record will be drawn with in-use emphasis.

Specifies that the container record willi be picked up as part of
the drag set.

Specifies that a record will be drawn with selected-state
emphasis.

Specifies that a record will be drawn with source-menu
emphasis.

Position of a container record in the icon view.

preccNextRecord (struct _RECORDCORE *)
Pointer to the next linked record.

pszlcon (PSZ)
Text for the icon view (CV _ICON).

hptrlcon (HPOINTER)
Icon that is displayed when the CV _MINI style bit is not specified.

This field is used when the CA_DRAWICON container attribute of the CNRINFO data
structure is set.

Chapter 8. Container Controls 8-115

hptrMinilcon (HPOINTER)
Icon that is displayed when the CV _MINI style bit is specified.

This field is used when the CA_DRAWICON container attribute of the CNRINFO data
structure is set.

hbmBitmap (HBITMAP)
Bit map displayed when the CV _MINI style bit is not specified.

This field is used when the CA_DRAWBITMAP container attribute of the CNRINFO data
structure is set.

hbmMiniBitmap (HBITMAP)
Bit map displayed when the CV_MINI style bit is specified.

This field is used when the CA_DRAWBITMAP container attribute of the CNRINFO data
structure is set.

pTreeltemDesc (PTREEITEMDESC)
Pointer to a TREEITEMDESC structure.

The TREEITEMDESC structure contains the icons and bit maps used to represent the
state of an expanded or collapsed parent item in the tree name view.

pszText (PSZ)
Text for the text view (CV_TEXT).

pszName (PSZ)
Text for the name view (CV_NAME).

pszTree (PSZ)
Text for the tree view (CV _TREE).

8-116 PM Advanced Programming Guide

RECORDINSERT
Structure that contains information about the RECORDCORE structure or structures that are
being inserted into a container. The RECORDINSERT structure is used in the
CM_INSERTRECORD container message only. See "CMJNSERTRECORD" on page 8-58
for information about that message.

Note: If the CCS_MINIRECORDCORE style bit is specified when a container is created,
then MINIRECORDCORE should be used instead of RECORDCORE and
PMINIRECORDCORE should be used instead of PRECORDCORE in all applicable
data structures and messages.

Syntax

typedef struct _RECORDINSERT {
ULONG
PRECORDCORE
PRECORDCORE
ULONG
ULONG
ULONG
} . RECORDI NSERT ;

cb;
pRecordOrder;
pRecordParent;
flnvalidateRecord;
zOrder;
cRecbrdslnsert;

typedef RECORDINSERT*PRECORDINSERT;

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the RECORDINSERT structure.

pRecordOrder (PRECORDCORE)
Record order.

Orders the RECORDCORE structure or structures relative to other RECORDCORE
structures in the container. The values can be:

CMA FIRST Places a RECORDCORE'structure, or list of RECORDCORE structures,
at the beginning of the list of structures.

CMA_END Places a RECORDCORE structure, or list of RECORDCORE structures,
at the end of the list of structures.

Other Pointer to a RECORDCORE structure that this structure, or list of
structures, is to be inserted after.

pRecordParent (PRECORDCORE)
Pointer to record parent.

Pointer to a RECORDCORE structure that is the parent of the record or records to be
inserted. This field is used only with the CMA_FIRST or CMA_END attributes of the
pRecordOrder field.

Chapter 8. Container Controls 8-117

flnvalidateRecord (ULONG)
Update flag.

Flag that indicates an automatic display update after RECORDCORE structures are
inserted.

TRUE The display is automatically updated after a RECORDCORE structure is
inserted.

FALSE The application must send the CMJNVALIDATERECORD message after a
RECORDCORE structure is inserted.

zOrder (ULONG)
Record z-order.

Positions the RECORDCORE structure in z-order, relative to other records in the
container. The values can be:

CMA_ TOP Places a RECORDCORE structure at the top of the z-order. This is
the default value.

CMA_BOTTOM Places a RECORDCORE structure at the bottom of the z-order.

cRecordslnsert (ULONG)
Number of root level structures.

The number of root level RECORDCORE structures to be inserted. The cRecords/nsert
field value must be greater than O.

SEARCHSTRING
Structure that contains information about the container text string that is the object of the
search. This structure is used in the CM_SEARCHSTRING container message only. See
"CM_SEARCHSTRING" on page 8-74 for information about that message.

Syntax

8-118 PM Advanced Programming Guide

Fields
cb (ULONG)

Structure size.

The size (in bytes) of the SEARCHSTRING structure.

pszSearch (PSZ)
Pointer to the search string.

fsPrefix (ULONG)
Search flag.

Search flag that defines the criteria by which the string specified by the pszSearch field
is to be compared with the text of the container records to determine the pointer to the
first matching record.

TRUE Matching occurs if the leading characters of the container record are the
characters specified by the pszSearch field.

FALSE Matching occurs if the container record contains a substring of the characters
specified by the pszSearch field.

fsCaseSensitive (ULONG)
Case sensitivity flag.

Determines case sensitivity of the search.

TRUE The search is case sensitive.
FALSE The search is not case sensitive.

usView (ULONG)
View to search.

Search one of the container views for the string. Valid values are:

• CVJCON
• CV_NAME
• CV_TEXT
• CV_TREE
• CV _DETAIL.

Chapter 8. Container Controls 8-119

TREEITEMDESC
Structure that contains icons and bit maps used to represent the state of an expanded or
collapsed parent item in the tree name view of a container control.

Syntax

Fields
hbmExpanded (HBITMAP)

Expanded bit-map handle.

The handle of the bit map to be used to represent an expanded parent item in the tree
name view.

hbmColiapsed (HBITMAP)
Collapsed bit-map handle.

The handle of the bit map to be used to represent a collapsed parent item in the tree
name view.

hptrExpanded (HPOINTER)
Expanded icon handle.

The handle of the icon to be used to represent an expanded parent item in the tree
name view.

hptrColiapsed (HPOINTER)
Collapsed icon handle.

The handle of the icon to be used to represent a collapsed parent item in the tree name
view.

8-120 PM Advanced Programming Guide

Summary
Following are tables that describe the OS/2 window messages, notification messages,
notification codes, and data structures used with container controls:

Table 8-3 (Page 1 of 2). Container Control Window Messages

Message Name

CM_ALLOCDETAILFIELDINFO

CM_ALLOCRECORD

CM_ARRANGE

CM_ CLOSEEDIT

CM_ COLLAPSETREE

CM_ERASERECORD

CM_EXPANDTREE

CM_FILTER

CM_FREEDETAILFIELDINFO

CM_FREERECORD

CM_HORZSCROLLSPLITWINDOW

CM_INSERTDETAILFIELDINFO

CMJNSERTRECORD

CMJNVALIDATEDETAILFIELDINFO

CM_INVALIDATERECORD

CM_OPENEDIT

CM_ QUERYCNRINFO

CM_ QUERYDETAILFIELDINFO

Description

Allocates memory for one or more FIELDINFO data
structures.

Allocates memory for one or more RECORDCORE data
structures.

Arranges the container records in the icon view.

Closes the window containing the multiple-line entry
(MLE) field used to edit container text directly.

Causes one parent item in the tree view to be collapsed.

Erases the source record from the current view when a
move occurs as a result of direct manipulation.

Causes one parent item in the tree view to be expanded.

Filters the contents of a container so that a subset of the
container items can be viewed.

Frees the memory associated with one or more
FIELDINFO data structures.

Frees the memory associated with one or more
RECORDCORE data structures.

Scrolls a split window in the split details view.

Inserts one or more FIELDINFO data structures into a
container control.

Inserts one or more RECORDCORE data structures into
a container control.

Notifies the container control that any or all FIELDINFO
data structures are not valid and that the view must be
refreshed.

Notifies the container control that any or all
RECORDCORE data structures are not valid and must be
refreshed.

Opens the window that contains the multiple line entry
(MLE) field used to edit container text directly.

Informs an application when a container's background is
painted if the C~OWNERPAINTBACKGROUND attribute
of the CNRINFO data structure is specified.

Returns the container's CNRINFO data structure.

Returns a pointer to the requested FIELDINFO data
structure.

Chapter 8. Container Controls 8-121

Table 8-3 (Page 2 of 2). Container Control Window Messages

Message Name

CM_ QUERYDRAGIMAGE

CM_QUERYRECORD

CM_ QUERYRECORDEMPHASIS

CM_QUERYRECORDFROMRECT

CM_ QUERYRECORDINFO

CM_QUERYRECORDRECT

CM_ QUERYVIEWPORTRECT

CM_REMOVEDETAILFIELDINFO

CM_REMOVERECORD

CM_SCROLLWINDOW

CM_SEARCHSTRING

CM_SETCNRINFO

CM_SETRECORDEMPHASIS

CM_SORTRECORD

WM_PICKUP

WM_PRESPARAMCHANGED

Description

Returns a handle to the icon or bit map for the record in
the current view.

Returns a pointer to the requested RECORDCORE data
structure.

Queries for a container record with the specified
emphasis attributes.

Queries for a container record that is bounded by the
specified rectangle.

Updates the specified records with the current information
for the container.

Returns the rectangle of the specified container record,
relative to the container window origin.

Returns a rectangle that contains the coordinates of the
container's work area.

Removes one, multiple, or all FIELDINFO data structures
from the container control.

Removes one, multiple, or all RECORDCORE data
structures from the container control.

Scrolls an entire container window.

Returns the pointer to a container record whose text
matches the string.

Sets or changes the data for the container control.

Sets the emphasis attributes of the specified container
record.

Sorts the container records in the container control.

Adds objects to the pickup set during a Pickup and Drop
operation.

Sent when a presentation parameter is set or removed
dynamically from a window instance.

Table 8-4. Container Control Notification Messages

Message Name Description

WM_CONTROL Occurs when the container control has a significant event
to notify to its owner.

WM_CONTROLPOINTER Sent to the container control's owner window when the
pointing device pointer moves over the container window,
thereby allowing the owner to set the pointing device
pointer.

WM_DRAWITEM Sent to the owner of the container control each time an
item is to be drawn.

8-122 PM Advanced Programming Guide

Table 8-5. Container Control Notification Codes

Code Name

CN_BEGINEDIT

CN_COLLAPSETREE

CN_CONTEXTMENU

CN_DROP

CN_DROPHELP

CN_EMPHASIS

CN_ENDEDIT

CN_ENTER

CN_EXPANDTREE

CN_HELP

CN_INITDRAG

CN_KILLFOCUS

CN_PICKUP

CN_QUERYDELTA

CN_REALLOCPSZ

CN_SCROLL

CN_SETFOCUS

Description

Sent when container text is about to be edited.

Sent when a parent item is collapsed in the tree view.

Sent when the container receives a
WM_CONTEXTMENU message.

Sent when the container receives a DM_DRAGOVER
message.

Sent when the container receives a DM_DRAGLEAVE
message.

Sent when the container receives a DM_DRAGOVER
message.

Sent when the container receives a DM_DROP message.

Sent when the container receives a DM_DROPHELP
message.

Sent when a LazyDrag drag set is dropped over the
container.

Sent when the attributes of a container record change.

Sent when direct editing of the container text ends.

Sent either when the Enter key is pressed while the
container window has the focus, or when the select button
is double-clicked while the pointer is over the container
window.

Sent when the container expands a parent item in the
tree view.

Sent when the container receives a WM_HELP message.

Sent when the drag button is pressed and the pointer is
moved while over the container control.

Sent when the container is losing the focus.

Sent when the container receives a WM_PICKUP
message. Determines if mouse position is over target
object, white space, or desktop.

Sent to query for more data when the user scrolls to a
preset delta value.

Sent when container text is edited (before CN_ENDEDIT
is sent).

Sent when the container window scrolls.

Sent when the container receives the focus.

Chapter 8. Container Controls 8-123

Table 8-6 (Page 1 of 2r Container Control Data Structures

Data Structure Name

COATE

CNRDRAGINFO

CNRDRAGINIT

CNRDRAWITEMINFO

CNREDITDATA

CNRINFO

CNRLAZYDRAGINFO

CTIME

FIELDINFO

FIELDINFOINSERT

MINIRECORDCORE

NOTIFYDEL TA

NOTIFYRECORDEMPHASIS

NOTIFYRECORDENTER

NOTIFYSCROLL

OWNERBACKGROUND

OWNERITEM

QUERYRECFROMRECT

QUERYRECORDRECT

RECORDCORE

RECORDINSERT

SEARCHSTRING

8-124 PM Advanced Programming Guide

Description

Contains date information for a data element in the details
view of the container.

Contains information about a direct manipulation event
occurring over the container.

Contains information about a direct manipulation event
that was initiated in a container.

Contains information about the item being drawn in the
container.

Contains information about the direct editing of container
text.

Contains information about the container.

Contains information about the DRAGINFO,
RECORDCORE that is dropped on and the window
handle of the target window.

Contains time information for a data element in the details
view of the container.

Contains information about column data in the details
view of the container.

Contains information about the FIELDINFO data
structures that are being inserted into the container.

Contains information for container records that are smaller
than those defined by the RECORDCORE data structure.

Contains information about the placement of delta
information for the container.

Contains information about the emphasis applied to a
container record.

Contains information about the input device being used
with the container.

Contains information about scrolling the container window.

Contains information about painting the container
window's background.

Contains owner item.

Contains information about a container record that is
bounded by a specified rectangle.

Contains information about the rectangle of the specified
container record, relative to the container window origin.

Contains information for container records.

Contains information about the RECORDCORE data
structures that are being inserted into the container.

Contains information about the container text string that is
the object of the search.

Table 8-6 (Page 2 of 2). Container Control Data Structures

Data Structure Name Description

TREEITEMDESC Contains icons and bit maps used to represent the state
of an expanded or collapsed parent item in the tree name
view.

Chapter 8. Container Controls 8-125

8-126 PM Advanced Programming Guide

Chapter 9. Notebook Controls

A notebook control (WC_NOTEBOOK window class) is a visual component that organizes
information on individual pages so that a user can find and display that information quickly
and easily. This chapter explains how to use notebook controls in PM applications.

About Notebook Controls
This notebook control component simulates a real notebook but improves on it by
overcoming a notebook's natural limitations. A user can select and display pages by using a
pOinting device or the keyboard. Figure 9-1 shows an example of a notebook control.

Figure 9-1. Notebook Example

The notebook can be customized to meet varying application requirements, while providing a
user interface component that can be used easily to develop products that conform to the
Common User Access (CUA) user interface guidelines. The application can specify different
colors, sizes, and orientations for its notebooks, but the underlying function of the control
remains the same. For a complete description of CUA notebooks, refer to the SAA eUA
Guide to User Interface Design and the SAA eUA Advanced Interface Design Reference.

Notebook Styles
This section describes the following notebook style components:

• Page buttons
• Status line
• Binding
• Intersection of back pages
• Major and minor tabs

© Copyright IBM Corp. 1994 9-1

• Tab shapes.

Figure 9-2 shows how a notebook control looks when it is created. The figure assumes that
pages have been inserted into the notebook with major and minor tab attributes.

Notebook
Binding,
Always
Opposite
from
Major Tabs

Left
Justified
Status-Line
Text

I
Minor Tabs
on the Bottom Edge
and Squared

Backward
Page Button

Forward
Page Button

Major Tabs
on the

-RightEdge
and
Squared

Bottom Right
Intersection
of Back Pages

Figure 9-2. Notebook Style and Placement of Major and Minor Tabs

Page Buttons
In the bottom-right corner of the notebook in Figure 9-2 are the page buttons. These buttons
let you bring one page of the notebook into view at a time. They are a standard component
that is automatically provided with every notebook. However, the application can change the
default width and height of the page buttons by using the BKM_SETDIMENSIONS message.
The page buttons always are located in the corner where the recessed edges of the
notebook intersect.

Selecting the forward page button (the arrow pointing to the right) causes the next page to
be displayed and selecting the backward page button (the arrow pointing to the left) causes
the previous page to be displayed. In Figure 9-2, the page buttons are displayed with
available-state emphasis because pages have been inserted into the notebook. Prior to
inserting pages in the notebook, the page buttons are displayed with unavailable-state
emphasis; therefore, selecting either page button would not bring a page into view.

9-2 PM Advanced Programming Guide

Status Line
To the left of the page buttons in the default notebook style setting is the status line, which
enables the application to provide information to the user about the page currently displayed.
The notebook does not supply any default text for the status line. The application is
responsible for associating a text string with the status line of each page on which a text
string is to be displayed.

The status text is drawn left-justified by default, but it can be drawn centered or right-justified.
The same status text justification applies to all pages in the notebook. This setting is
specified by the BKS _ STATUSTEXTLEFT style bit. The location of the back pages
intersection and the major tabs has no effect on the specification of the status line position.
This style bit can be set for the entire notebook.

Binding
The notebook control resembles a real notebook in its general appearance. For example, as
Figure 9-2 on page 9-2 shows, the notebook has a binding that, along with recessed pages
on the right and bottom edges, gives the notebook a three-dimensional appearance. The
default binding is solid and is placed on the left side. This binding is used if the
BKS_SOLIDBIND style bit is specified or if no style bit is specified.

Two styles are provided for the notebook binding: solid and spiral. The notebook is
displayed with a solid binding by default, but the application can specify BKS_SPIRALBIND
to display a spiral binding.

The placement of the binding depends entirely on the placement of the back pages and
major tabs, respectively. The binding always is located on the opposite side of the notebook
from the major tabs.

Intersection of Back Pages
The recessed edges that intersect near the page buttons are called the back pages. The
default notebook's back pages intersect in the bottom-right corner, which means the
recessed pages are on the bottom and right edges. This setting is specified by the
BKS_BACKPAGESBR style bit. The back pages are important because their intersection
determines where the major tabs can be placed, which in turn determines the placement of
the binding and the minor tabs.

Major Tabs
Major and minor tabs are used to organize related pages into sections. Minor tabs define
subsections within major tab sections. The content of each section has a common theme,
which is represented to the user by a tabbed divider that is similar to a tabbed page in a
notebook.

Th~ BKS_MAJORTABRIGHT style bit specifies that major tabs, if used, are to be placed on
the right side of the notebook. This is the default major tab placement when the back pages
intersect at the bottom-right corner of the notebook. The binding is located on the left,
because it is always located on the opposite side of the notebook from the major tabs.

Chapter 9. Notebook Controls 9-3

The placement of the major tabs is limited to one of the two edges on which there are
recessed pages. For example, if the application specifies the back pages intersection at the
bottom-right corner (B KS_BAC KPAG ESBR, the default), the major tabs can be placed on
either the bottom edge (BKS_MAJORTABBOTTOM) or the right edge
(BKS_MAJORTABRIGHT) of the notebook. In this situation, if the application specifies that
major tabs are to be placed on the left or top edges of the notebook, the notebook control
places them on the right edge anyway-the default placement for back pages intersecting at
the bottom-right corner.

When major tabs are defined at the creation of the notebook they are not displayed on
screen. Major tab attributes only show at the time a page is inserted into the notebook. This
is done by specifying the BKA_MAJOR attribute in the BKMJNSERTPAGE message.

Minor Tabs
Minor tabs are specified using the BKA_MINOR attribute. Minor tabs always are placed
perpendicular to the major tabs, based on the intersection of the back pages and the major
tab placement. Only one major or minor tab attribute can be specified for each notebook
page. Minor tabs are displayed only if the associated major tab page is selected or if the
notebook has no major tab pages.

The placement of the minor tabs depends entirely on the placement of the back pages and
major tabs, respectively. The minor tabs always are located on the recessed page side that
has no major tabs.

Table 9-1 describes the available notebook control styles.

Table 9-1. Notebook Control Styles

Back Pages Major Tabs Minor Tabs Binding

Bottom-right (default) Bottom Right Top

Bottom-right (default) Right (default) Bottom Left

Bottom-left Bottom (default) Left Top

Bottom-left Left Bottom Right

Top-right Top (default) Right Bottom

Top-right Right Top Left

Top-left Top Left Bottom

Top-left Left (default) Top Right

Tab Shapes and Contents
The default shape of the tabs used on notebook divider pages is square. This setting is
specified by the BKS _ SQUARETABS style bit. The shape of the tabs can be square,
rounded, or polygonal. The tab text can be drawn left-justified, right-justified, or centered.
Once set, these styles apply to the major and minor tabs for all pages in the notebook. The
location of the back pages intersection and the major tabs has no effect on the specification
of the tab-shape position. As with the page buttons, the application can change the default

9-4 PM Advanced Programming Guide

width and height of the major and minor tabs by using the BKM_SETDIMENSIONS
message.

A notebook tab can contain either text or a bit map. Text is associated with a tab page by
using the BKM_SETTABTEXT message. Notebook tab text is centered by default or by
specifying the BKS_ TABTEXTCENTER style when creating the notebook window. A bit map
is placed on a tab by using the BKM _ SETT ABBITMAP message. A bit map cannot be
positioned on a tab because the bit map stretches to fill the rectangular area of the tab;
therefore, no style bit is used.

Summary of Notebook Styles
The notebook control provides style bits so that your application can specify or change the
default style settings. One style bit from each of the following groups can be specified. If
you specify more than one style bit, you must use an OR operator (I) to combine them.

• Type of binding

BKS_SOLIDBIND
BKS SPIRALBIND

• Intersection of back pages

BKS_BACKPAGESBR
BKS_BACKPAGESBL
BKS BACKPAGESTR
BKS_BACKPAGESTL

• Location of major tabs

BKS _MAJORTABRIGHT
BKS_MAJORTABLEFT
BKS _ MAJORTABTOP
BKS_MAJORTABBOTTOM

• Shape of tabs

BKS _ SQUARETABS
BKS ROUNDEDTABS
BKS_POL YGONTABS

Solid (default)
Spiral

Bottom-right corner (default)
Bottom-left corner
Top-right corner
Top-left corner

Right edge (default)
Left edge
Top edge
Bottom edge

Square (default)
Rounded
Polygonal

• Alignment of text associated with tabs

BKS_TABTEXTCENTER Centered (default)
BKS _ T ABTEXTLEFT Left-justified
BKS TABTEXTRIGHT Right-justified

• Alignment of status-line text

BKS_STATUSTEXTLEFT
BKS _ STATUSTEXTRIGHT
BKS_STATUSTEXTCENTER

Left-justified (default)
Right -justified
Centered

Chapter 9. Notebook Controls 9-5

Using Notebook Controls
The following sections describe how to create pages, insert pages into, create and associate
windows for, and delete pages from a notebook.

Notebook Creation
You create a notebook by using the WC_NOTEBOOK window class name in the ClassName
parameter of WinCreateWindow. The sample code in Figure 9-3 shows the creation of the
notebook. The style set in the ulNotebookStyles variable (the BKS_* values) specifies that
the notebook is to be created with a solid binding and the back pages intersecting at the
bottom-right corner, major tabs placed on the right edge, shape tab square, tab text
centered, and status:..line text left-justified These are the default settings and are given here
only to show how notebook styles are set.

I:\WND . hwndNotebook;
ULONGulNotebookStyles;
HMODULEhmod;

1* Notebook window handle
1*. Notebookwinp?WstYle~
1* Notebook DLL .. module·handle

l***j(**~*******************~·**********************t~~******'************'1
1* Set the BKS~stYle!l ~~~tocust9\lli.z~ the ... potebook.·· '•.....•........... ' ~l
I******"lt**************"lt*'if*************'if**.*.*****"lt***********·**'if*******.*.1!t
ulNotebookStyies::; '.' ' '.

BK~_SOLIDBI~D 1~.U~~S()tidbfnding.....••....•••.•...•.•••...••.. •...••• ''*1
BKS;"'BACKPAGESI3R 1*~~tbackpagesto;ntersectaf ·th~· *1

BKS. MJ\J~RTAI3:RIGHT '.}'
'BKS=SQUARETABS
I3KS.JABTEXTCENtER I

>BKSisTATUSTEXT!2EFT;

1* .. ·bottom-right .. <;:orner .'.* l
I*Positionmajprtabs Qrirightsid~: *1
I~Ma~e'tabs square' '. . *1
It.··centertab·text.· *1
I*.' Left.~j ustified·s~a.tu~s·":li I'le text *'1

l**.**~*.*.~****************.**.~*.*~~***~***i**~****'****'#******.;***********~ 1
I,*Cr.eate·the notebook control w·tndow.. . *1
I*****.*.!.*~*~**************.*************;W*******;**+~*****~***'ic*~******.I····
hwndNotebook. :;.

Wi nqr.e~t~Wtnd()w (
hwndParent,
W¢jNOTtBPOK,

. NUL~;.· •.• ·•··•· •.. · •• i< •••••.••• :
u.1Note.bookStYles~

·.·I*··P~ten'tiwjOdQW ••. · •. handl~i····· .
1~~q'teb90~r';nd?wc: l~ss
1~~()fWi;n~ow t~xt: ...•••. •• : · •• i
1* NoteboOk window .st.y·, es,

Figure 9-3 (Part 1 of 2). Sample Code for Creating a Notebook

9-6 PM Advanced Programming Guide

'#/
, .. ~l
· .. *1····

1<1

x, y, CX, xy
hwndOwner,
HWNO_TOP,
ID_BOOK,
NULL,
NULL;

/* Origin and size
/* Owner window handle
/* Sibling window handle
/* Notebook window 10
/* No control data
/* No presentation parameters

/**/
/* Make the notebook control visible. */
/*************~**/
WinShowWindow(

hwndNotebook~
TRUE);

/* Notebook window handle
/* Make the window visible

Figure 9-3 (Part 2 of 2). Sample Code for Creating a Notebook

Figure 9-4 shows how the default notebook control looks when it is created.

Binding

~~~~~ .. § ... § ... § ... § .... § ... § ... § ... ~ ... ~ .... ~ ... ~ ... ~ ... ~ ... ~ .... § ... ~ ... ~ ... ~~illl~- Intersection 
'i of Back Pages 

Empty Status Line 

Figure 9-4. Default Notebook Style 

Changing Notebook Styles 

Backward 
Page Button 

Forward 
Page Button 

Figure 9-5 on page 9-8 shows some sample code fragments for setting the notebook style 
to_ spiral binding, back pages intersecting at the bottom-left corner, major tabs placed on the 
bottom edge, tab shape rounded, tab text left-justified, and status-line text centered. 

Chapter 9. Notebook Controls 9-7 



Figure 9-5. Sample Code for Changing the Notebook Style 

Figure 9-6 on page 9-9 shows how the notebook appears when these style bits are set. 
This figure assumes that pages have been inserted into the notebook with major and minor 
tab attributes. 

9-8 PM Advanced Programming Guide 



Minor Tabs 
on the 
Left Edge 
and 
Rounded 

Bottom Left 

Notebook 
Binding, 
Always 
Opposite 
form 
Major Tabs 

Centered 
Page 1 of 20 ------+-- Status-Line 

Intersection ~-lEJ2....22.2.S2.S"""2....2.......22Wii.I:l2.L[jJ of Back Pages 
Text 

Major Tabs 
on the Bottom Edge 
and Rounded 

Figure 9-6. Notebook with Style Settings Changed 

Inserting Notebook Pages 
After a notebook is created, pages can be inserted into the notebook by using the 
BKM_INSERTPAGE message. BKM_INSERTPAGE provides several attributes that can 
affect the inserted pages. When inserting pages into either a new notebook or an existing 
one, consider carefully how the user expects those pages to be organized. 

Major and Minor Tabs 
The two attributes that have the most impact on how notebook pages are organized are 
BKA_MAJOR and BKA_MINOR, which specify major and minor tabs, respectively. Major tab 
pages define the beginning of major sections in the notebook, while minor tab pages define 
the beginning of subsections within a major section. Major sections should begin with a 
page that has a BKA_MAJOR attribute. Within major sections, information can be organized 
into minor sections, each of which should begin with a page that has a BKA_MINOR 
attribute. 

For an existing notebook, the underlying hierarchy, if one exists, must be observed when 
inserting new pages, to provide efficient organization and navigation of the information in the 
notebook. For example, if the notebook has minor sections but no major sections, you could 
confuse the user if you inserted a page with a major tab attribute between related minor 
sections or at the end of the notebook. 

Chapter 9. Notebook Controls . 9-9 



If you insert pages without specifying tab attributes, those pages become part of the section 
in which they are inserted. For example, if page 7 of your notebook has a minor tab and you 
insert a new page 8 without specifying a tab attribute, page 8 becomes part of the section 
that begins with the minor tab on page 7. 

Because tab pages are not mandatory, the application can create a notebook that contains 
no major or minor tab pages. That style would be similar to that of a composition notebook. 

Another group of attributes that can affect the organization of pages being inserted into a 
notebook consists of BKA_FIRST, BKA_LAST, BKA_NEXT, and BKA_PREV. These 
attributes cause pages to be inserted at the end, at the beginning, after a specified page, 
and before a specified page of a notebook, respectively. 

Status Line 
Each page has an optional status line that can be used to display information for the user. 
To include this status line, the application must specify the BKA_STATUSTEXTON attribute 
when inserting the page. If the application inserts the page without specifying this attribute, 
the status line is not available for that page. 

To display text on the status line of the specified page, the application must use the 
BKM_SETSTATUSLINETEXT message to associate a text string with the page. A separate 
message must be sent for each page that is to display status-line text. If the application 
does not send a BKM_SETSTATUSLINETEXT message for a page, no text is displayed in 
the status line of that page. The application can send this message to the notebook at any 
time to change the status-line text. The status line can be cleared by setting the text to 
NULL. 

The sample code in Figure 9-7 on page 9-11 shows how to insert a page into a notebook, 
where the inserted page has a major tab attribute, the status line is available, and the page 
is inserted after the last page in the notebook. This sample code also shows how to 
associate a text string with the status line of the inserted page. 

9-10 PM Advanced Programming Guide 



HWND hwndNotebook; 
ULONG ulPageld; 

/* Notebook windo~ handle 
/* Page identifier 

/***********************************************************************/ 
/* Insert a new page into a notebook. */ 
/***************************************~*******************************/ 
ulPageId = (ULONG) WinSendMsg( 

hwndNotebook, /* Notebook window handle */ 
BKM_INSERTPAGE, /* Message for i'1serting a page */ 
(MPARAM) NULL, /* NULL for page ID */ 

, MPFROM2SHORT( 
BKA_MAJORI 

BKA STATUSTEXTON), 
BKA:LAST»; 

/* Insert page with a major tab */ 
/* attribute */ 
/* Make status-line text visible */ 
/* Insert this page at end of notebook */ 

/***********************************************************************/ 
/* Set the status-line text. */ 
/***********************************************************************/ 
Wi nSendMsg ( 

hwndNotebook, 
BKM_SETSTATUSLINETEXT, 

(MPARAM)ulPageld, 

MPFROMP("Page 1 of 2"»; 

/* Notebook window handle 
/* Message for setting status-line 
/* text 
/* ID of page to receive status-line 
/* text 
/* Text string to put on status line 

Figure 9-7. Sample Code for Inserting a Notebook Page 

Setting and Querying Page Information 
The information for a page in the notebook can be set and queried with 
BKM_SETPAGEINFO and BKM_QUERYPAGEINFO respectively. By using these 
messages, all the information associated with a page can be accessed at once. In addition, 
BKM_SETPAGEINFO can be used to delay the loading of a page until it is turned to, by 
setting the bLoadDlg field to FALSE. By doing this for all pages in a notebook, the notebook 
is created much more quickly. 

Associating Application Page Windows with Notebook Pages 
After a page is inserted into a notebook, you must facilitate the display of information for this 
page when it is brought to the top of the book. The notebook provides a top page area in 
which the application can display windows or dialogs for the topmost page. For each 
inserted page, the application must associate the handle of a window or dialog that is to be 
invalidated when the page is brought to the top of the book. The application can associate 
the same handle with different pages, if desired. 

Chapter 9. Notebook Controls 9-11 



The application must send a BKM_SETPAGEWINDOWHWND message to the notebook in 
order to associate the application page window or dialog handle with the notebook page 
being inserted. Once done, the notebook invalidates this window or dialog whenever the 
notebook page is brought to the top of the book. If no application page window handle is 
specified for an inserted page, no invalidation can be done by the notebook for that page. 
However, the application receives a BKN_PAGESELECTED notification code when a new 
page is brought to the top of the notebook, at which time the application can invalidate the 
page. 

The notebook also sends a BKN_PAGESELECTEDPENDING notification code to the 
application before the new page is selected. The application can use this message to 
prevent the page from being turned to. This is useful when the application wants to validate 
a page's contents. 

The following sections describe how to associate either a window handle or a dialog handle 
with an inserted page. 

Associating a Window with a Notebook Page 
A calendar example is used to show how a page can be implemented as a window. 
Figure 9-8 shows a calendar that is divided into four years (major tabs). Within each year 
are months (minor tabs) grouped into quarters. The top page has a window associated with 
it. The window paint processing displays the days for the currently selected month and year. 

October 

II .... . ~ M T "H -1 F S 

1 2 3 4 5 
6 7 8 9 10 11 12 

13 14 15 16 17 18 19 
20 21 22 23 24 25 26 
27 28 29 30 31 

1991 

1993 1994 

Figure 9-8. Calendar Inserted into an Application Page Window 

The sample code in Figure 9-9 on page 9-13 shows how the window procedure for the 
calendar, in Figure 9-8, is registered with the application. Also, it shows how the window is 

9-12 PM Advanced Programming Guide 



created and associated with the notebook page. The example ends by showing the window 
procedure for the associated window. 

/*********************************************************************/ 
/* Registration of window procedure for calendar. */ 
/*********************************************************************1 
WinRegisterClass(hab, 1* Register a page window class *1 

"Calendar Page ll
, 1* Class name *1 

PageWndProc, 1* Window procedure *1 
CS_SIZEREDRAW, 1* Class style *1 
G}; 1* No extra bytes reserved *1 

/*********************************************************************1 
1* Create the window~ *1 
I*~****************~**************************************************1 
hwndPage= WinCreateWindow(hwndNotebook, 1* Parent *1 

uCalenda;r Page", 1* Class *1 
NULL, 1* Title text *1 
el, 1* Styl e *1 
e~~tet e, I*Ori~in and size *1 
hwildNotebook, 1*. Owner *1 

. ~WND't()P,' 1* Z-order *1 
IDWIN CALENDAR PAGE, 1* ID *1 
NULL, -. - 1* Control data *1 
NULL); 1* Presparams *1 

I*t**~~~*~**********~*************************************************1 
l*Asso<:iat~windOW\1iththe insertednotehook page.. *1 
I ***~***~**~t*******·********************************* *************** ** I 

'Wi~~en~Msg("wi1dBook, .'.'.' " ." •• > ....• ; '.';; " ..... , ... ' 
. ., . ". "'BKM;SETPA(]E~IND?WHWND) 

MPFROMLONG{u.lP~g~Id), 
MPFROMHWNO(hwndPageJ ); 

Figure 9-9 (Part 1 of 2). Sample Code for Associating a Window with a Notebook Page 

Chapter 9. Notebook Controls 9-13 



r 

!*****************************************************************! 
!*Pl ace window . ini ti a Ifzat; on. code here. *! 
1****":1<*******1<*************************~**1<1<*************1<*******1 
br'e!1k; . 

case·WM.:'pAI~T: ••••.•.. y>. <. ". . ... ...•• "< ......................... i< ................ ....... ....... . ' . 
. 1*****1<*******·**~***********.*1<****·************~~***1<**1<*~**:****9i#*1 

!1<.·.Praw •...• th~.· •. c~l~n~a.r .. fpr.the .. cu~rent<s~'~ct~d .. j'e~rand.·TQn~h.~ .....•....•.. ~/ 
1~*******1<***~~***1<1<~***********~****~**~*1<":~.*·~1<1<:*~~#*******~*~~~*l···.···.··· 
hp.~=~i nB~g i nPal nt( hwrrd.,NULL ,NULL)'; .• ' ......, ................................. : •. ••••. .•••• ..• .•..•... •.•. .•• •..•. •....• •.• 
drawMonthCal endar(hps, wi ndowSi ze {currOa te.year,· .. cu rrDate.mo.nth); 
WinE.ndPatn~(hps}; . 
break} . 

return 
} 

Figure 9-9 (Part 2 of 2). Sample Code for Associating a Window with a Notebook Page 

Associating a Dialog with a Notebook Page 
To illustrate the notebook implemented as a dialog, a Properties Notebook is used. In 
Figure 9-10 on page 9-15 the various objects whose properties can be changed or updated 
are displayed as major tabs. Included are sections that represent a folder, printer, and 
display (major tabs). The printer object is currently selected. Within the printer object, the 
user can choose to "View" or "Update" (minor tabs) the printer settings. The topmost page is 
a printer dialog from which the user can update the printer name, type, and device 
information. 

9-14 PM Advanced Programming Guide 



Figure 9-10. Dialog Used as an Application Page Window 

The sample code in Figure 9-11 shows how the printer dialog is created and associated with 
a notebook page. The example ends by showing the dialog procedure for the associated 
dialog. 

SELse]':; NULL; 
PDLGTEMP~~TE:pD19t ; ..... . 

· .• I'Ic'lc'!t~t*,!<:~****~***~****~*~**'/t****ft*~************************************1· 
1~9~~,at.eadi~lo9~ .••• ••..• • •..•.•••.•• , .... '. •..... ...<'> ....••.•..•.•••.•....•......•......... '.. .*1 
: 1*'Ic*#'Ic**'Ic*.*********r~***#****:****:**#~*****·*****************************1 
Dos(l~t~esource(NU~Li~r •. DIALOG, ID·.I)LG .·.PRINTDR'l ,&sel).; 

'p!llgt?. MAr<:EP{sel,<:J}r -. - - . 
. hwodRage:·::WjnCreateDlg(tlW~D':';DESKTOP, I*Pa~entwindow handle 

'hwl'ldBook~ I ~ •. Owner Wi~~OW·rardle 
fn~pPrtn't; 1*. Dialog procedure 

pOlgt,.~·········: 
" .. """ 

.1t~9~ress ....... .. 
Ift'Dialogd~ta 

(ta~.dr~ss: •.....•. ' .. 
VtAp'pi.i'F~tjondata 

Figure 9-11 (Part 1 of 2). Sample Code for Associating a Dialog with a Notebook Page 

Chapter 9. Notebook Controls 9-15 



Figure 9-11 (Part 2 of 2). Sample Code for Associating a Dialog with a Notebook Page 

Deleting Notebook Pages 
The BKM_OELETEPAGE message is used to delete one or more pages from the notebook. 
The application can delete one page (BKA_SINGLE attribute), all pages within a major or 
minor tab section (BKA_TAB attribute), or all of the pages in the notebook (BKA_ALL 
attribute). The default, if no attributes are specified, is to delete no pages. The sample code 
in Figure 9-12 on page 9-17 shows how the BKM_QUERYPAGEIO message is used to get 
the 10 of the top page and how the BKM_OELETEPAGE message is then used to delete that 
page. 

9-16 PM Advanced Programming Guide 



/******-/(***************************************************************/ 
/* Set the range of pages to be del.eted. */ 

. /**********************************************************************/ 

/* Set attribute to delete a single page. */ 
usOeleteFlag = BKA_SINGLE 

/ ~*.'!'*************************-/(***i****************-/(-/(**-/(****'If************ / 
/* Get the ID of the notebook I s top page. */ 
/**********************************************************************/ 
ulPageld = (ULONG) WinSendMsg( 

hwndNotebook, /*. Notebook wirJdowhandle 
BKM_QUERYPAGEIO, 1* Message to query a.page lO 

: NULL, /* NULL for page ID 
(MPARAM) BKA . .JOP).; /* Get ID of top page 

/*************-/(********************************************************1 
/ * Del ete the notebook's top page. . ." ." . . * / 
/**********************************************************************/ 
WinSendMsg( 

hwndN()~ebo()k, 
BKMJ}ELE"fEPAGE, 
MPF"ROMLONG{u1 Pag.eId), 
(MPARAM) usDeleteFlag) ; 

/*Notebookwindowhandle 
1* Mess~ge:to delete the page 
/* 10 of page to be deleted 
/* Range of pages to be deleted 

Figure 9-12. Sample Code for Deleting a Notebook Page 

Notebook Colors 
The application can change the color of any part of the notebook. The colors of some parts 
can be changed by specifying presentation parameter attributes in WinSetPresParam. Other 
colors can be changed by specifying notebook attributes in the 
BKM_SETNOTEBOOKCOLORS message. The following sections define which parts of the 
notebook can have their colors changed by each of these two methods. 

Changing Colors USing WinSetPresParam 
WinSetPresParam is used to change the color of the notebook outline, window background, 
selection cursor, and status-line text. The following list shows the mapping between the 
various notebook parts and their associated presentation parameter attributes. 

Notebook outline 
PP _BORDERCOLOR or PP _BORDERCOLORINDEX. This color is set initially to 
SYSCLR _ WINDOWFRAME. 

Notebook window background 
PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX. This color is set 
initially to SYSCLR_FIELDBACKGROUND. 

Chapter 9. Notebook Controls 9-17 



Selection cursor 
PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX. This 
color is set initially to SYSCLR_HILITEBACKGROUND. 

Status-line text 
PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX. This color is initially 
set to SYSCLR_WINDOWTEXT. 

If a presentation parameter attribute is set, all parts of the notebook that are mapped to this 
color are changed. The sample code in Figure 9-13 shows how to change the color of the 
notebook outline. 

1********************************************************'*'*************1 
/* Set the "notebook out 1 tne' col or.*1 
I ******,****,*'1<*************,*********************************'*******''1<***,*/ 
<.W:.tD·$~:t'P~.~.$p·~ramI " ... " ' .. ,.", 

hWndNotebook, . 1*, Notebook window handle 
PP_Bf}RDERCOLOR~ !*Bordercoloraftribute 
uSColorLen, /*Number'ofbyteS,j n •. color ,index 

/*t:able value 
!*Color; ndextable value 

Figure 9-13. Sample Code for Changing the Color of the Notebook Outline 

Changing Colors Using BKM_SETNOTEBOOKCOLORS 
The BKM_SETNOTEBOOKCOLORS message is used to change the color of the major tab 
background and text, the minor tab background and text, and the notebook page 
background. The following list shows the mapping between the various notebook parts and 
their associated notebook attributes. 

Major tab background 
BKA_BACKGROUNDMAJORCOLOR or BKA_BACKGROUNDMAJORCOLORINDEX. 
This color is set initially to SYSCLR_PAGEBACKGROUND. The currently selected 
major tab has the same background color as the notebook page background. 

Major ta~ text 
BKA_FOREGROUNDMAJORCOLOR or BKA _FOREGROUNDMAJORCOLORINDEX. 
This color is set initially to SYSCLR_WINDOWTEXT. 

Minor tab background 
BKA_BACKGROUNDMINORCOLOR or BKA_BACKGROUNDMINORCOLORINDEX. 
This color is set initially toSYSCLR_PAGEBACKGROUND. The currently selected 
minor tab has the same background color as the notebook page background. 

9-18 PM Advanced Programming Guide 



Minor tab text 
BKA_FOREGROUNDMINORCOLOR or BKA_FOREGROUNDMINORCOLORINDEX. 
This color is set initially to SYSCLR_WINDOWTEXT. 

Notebook page background 
BKA_BACKGROUNDPAGECOLOR or BKA_BACKGROUNDPAGECOLORINDEX. This 
color is set initially to SYSCLR_PAGEBACKGROUND. 

If a notebook attribute is set, all parts of the notebook that are mapped to this color are 
changed. The sample code in Figure 9-14 shows how to change the color of the major tab 
background. 

/* Color index value */ 
ulColorIdx = SYSCLR WINDOW; 
/* Major·tab background */ 
ulColorRegion = BKA_BACKGROUNDMAJORCOLORINDEX; 

WinSendMsg(hwndBook, 
BKM SETNOTEBOOKCOLORS, 
MPFROMLONG(ulColorIdx), 
MPFROMLONG{ulColorRegion)) ; 

Figure 9-14. Sample Code for Changing the Color of the Major Tab Background 

Graphical User Interface Support for Notebook Controls 
The following section describes the support for graphical user interfaces (GUls) provided by 
the notebook control. Except where noted, this support conforms to the guidelines in the 
SAA CVA Advanced Interface Design Reference. 

The GUI support provided by the notebook control consists of the notebook navigation 
techniques. 

Notebook Navigation Techniques 
The notebook control supports the use of a pointing device and the keyboard for displaying 
notebook pages and tabs and for moving the selection cursor from the notebook tabs to the 
application window and the other way around. 

Note: If more than one notebook window is open, displaying a page or tab in one notebook 
window has no effect on the pages or tabs displayed in any other notebook window. 

Chapter 9. Notebook Controls 9-19 



Pointing Device Support 
A user can use a pointing device to display notebook pages or tabs by selecting the 
notebook components described in the following list. The CUA guidelines define mouse 
button 1 (the select button) to be used for selecting these components. This definition also 
applies to the same button on any other pointing device a user might have. 

• Selecting tabs using a pointing device 

A tab can be selected to bring a page that has a major or minor tab attribute to the top 
of the notebook. The selection cursor, a dotted outline, is drawn inside the tab's border 
to indicate the selected tab. In addition, the selected tab is given the same background 
color as the notebook page area. The color of the other tabs is specified in the 
BKM _ SETNOTEBOOKCOLORS message. This helps the user distinguish the selected 
tab from the other tabs if different colors are used. 

Because all tabs are mutually exclusive, only one of them can be selected at a time. 
Therefore, the only type of selection supported by the notebook control is single 
selection. This selection type conforms to the guidelines in the SAA eUA Advanced 
Interface Design Reference. 

If the user moves the pointing device to a place in the notebook page window that can 
accept a cursor, such as an entry field, check box, or radio button, and presses the 
select button, the selection cursor is removed from the tab it is on and is displayed in the 
notebook page window. The selection cursor never can be displayed both on a tab and 
in the notebook page window at the same time. 

• Selecting page buttons using a pointing device 

A forward or backward page button can be selected to display the next or previous 
page, respectively, one at a time. The arrow pointing to the right is the forward page 
button, and the arrow pointing to the left is the backward page button. When the 
selection of a page button brings a page that has a major or minor tab to the top of the 
notebook, the selection cursor is drawn inside that tab's border. 

• Selecting tab scroll buttons using a pointing device 

A user can decrease the size of a notebook window so that some of the available 
notebook tabs cannot be displayed. When this happens, the notebook control 
automatically draws tab scroll buttons at the corners of the notebook side or sides to 
notify the user that more tabs are available. 

Tab scroll buttons have another purpose: to give the user the means to scroll into view, 
one at a time, the tabs that are not displayed. The user does this by selecting a forward 
or backward tab scroll button, which causes the next tab to scroll into view, but does not 
change the location of the selection cursor. Once the tab is in view, the user can 
display that tab's page by selecting the tab. 

A maximum of four tab scroll buttons can be displayed: two for the major tab side and 
two for the minor tab side. Figure 9-15 on page 9-21 is an example of a notebook with 
two of its tab scroll buttons displayed on the bottom-left and bottom-right corners of the 
minor tab side. 

9-20 PM Advanced Programming Guide 



Backward 
Tab Scroll 
Button 

Figure 9-15. Notebook with Two Tab Scroll Buttons Displayed 

Forward 
Tab Scroll 
Button 

In this example, only three minor tabs are displayed because the notebook is not wide 
enough to display more. Here, the user can display a previous minor tab by selecting 
the backward tab scroll button or a following minor tab by selecting the forward tab scroll 
button. 

When the first tab in the notebook is displayed, the backward tab scroll button is 
deactivated. Unavailable-state emphasis is applied to it to show that no more tabs can 
be scrolled into view by using the backward tab scroll button. Unavailable-state 
emphasis is applied to the forward tab scroll button if the last tab in the notebook is 
displayed. 

Chapter 9. Notebook Controls 9-21 



Keyboard Support 
The users can utilize the keyboard to display and manipulate notebook pages and 
components. 

Focus on Application Dialog or Window 
If the application dialog page or window has the focus, the notebook handles the following 
keyboard interactions: 

Keyboard Input 

Alt+PgDn or PgDn 

Alt+PgUp or PgUp 

Alt +U pArrow 

Tab 

Shift+ Tab 

Description 

Brings the next page to the top of the notebook. If the 
application uses the PgDn key, then it must be used in 
combination with the Alt key. 

Brings the previous page to the top of the notebook. If the 
application uses the PgUp k~y, then it must be used in 
combination with the Alt key. 

Switch the focus to the notebook window. 

Move the cursor to the next control within the top page 
window or dialog. If the cursor is currently on the last control 
within the top page window or dialog when the Tab key is 
pressed, the cursor is moved to the notebook major tab, if it 
exists; else to the minor tab, if it exists; else to the right page 
button. 

Move the cursor to the previous control within the top page 
window or dialog. If the cursor is currently on the first control 
within the top page window or dialog when the Shift+ Tab key 
is pressed, the cursor is moved to the previous control. If the 
previous control is the notebook, the cursor is moved to the 
right page button. 

Focus on the Notebook Control 
If the notebook control has the focus, it handles the following keyboard intereactions: 

Keyboard Input Description 

Alt+Down Arrow Switch the focus to the application's primary window. 

Alt+PgDn or PgDn Brings the next page to the top of the notebook. 

Alt+PgUp or PgUp Brings the previous page to the top of the notebook. 

Left or Up Arrow If the cursor is currently on a major tab, it is moved to the 
previous major tab. If the previous major tab is not visible, 
the tabs are scrolled to bring the previous major tab into view. -
If th'e first major tab is reached, scrolling ends. 

If the cursor is currently on a minor tab, it is moved to the 
previous minor tab. If the previous minor tab is not visible, 
the tabs are scrolled to bring the previous minor tab into view. 
If the first minor tab is reached, scrolling ends. 

9-22 ' PM Advanced Programming Guide 



Right or Down Arrow 

Tab 

Shift+Tab 

Home 

End 

Enter or Spacebar 

Mnemonics 

If the cursor is currently on the right page button, the cursor 
moves to the left page button. If the cursor is currently on the 
left page button, no action is taken. 

If the cursor is currently on a major tab, it is moved to the 
next major tab. If the next major tab is not visible, the tabs 
are scrolled to bring the next major tab into view. If the last 
major tab is reached, scrolling ends. 

If the cursor is currently on a minor tab, it is moved to the 
next minor tab. If the next minor tab is not visible, the tabs 
are scrolled to bring the next minor tab into view. If the last 
minor tab is reached, scrolling ends. 

If the cursor is currently on the right page button, no action is 
taken. If the cursor is currently on the left page button, the 
cursor moves to the right page button. 

The cursor moves from the major tab, then to the minor tab, 
then to the right page button, and then to the last tab stop in 
the application dialog or window. 

The cursor moves from the page button, to the minor tab, to 
the major tab, and then to the first tab stop in the application 
dialog or window. 

Brings the first page of the notebook to the top and sets the 
cursor on the associated tab. 

Brings the last page of the notebook to the top and sets the 
cursor on the associated tab. 

If the cursor is on a major or minor tab, the associated page 
is brought to the top of the notebook, and the selected tab is 
given the same background color as the notebook page area. 
The other tabs have their color specified in the 
BKM_ SETNOTEBOOKCOLORS message. This helps the 
user distinguish the selected tab from the other tabs if 
different colors are used. 

If the cursor is currently on the right page button, the next 
page is brought to the top of the notebook. If the cursor is 
currently on the left page button, the previous page is brought 
to the top of the notebook. 

Mnemonics are underlined characters in the text of a tab that 
cause the tab's page to be selected. Coding a tilde n before 
a text character in the BKM _ SETT ABTEXT message causes 
that character to be underlined and activates it as a 
mnemonic-selection character. 

A user performs mnemonic selection by pressing a character 
key that corresponds to an underlined character. When this 
happens, the tab that contains the underlined character is 

Chapter 9. Notebook Controls 9-23 



selected,and that tab's page is brought to the top of the 
notebook. 

Note: Mnemonic selection is not case sensitive, so the user 
can type the underscored letter in either uppercase or 
lowercase. 

Enhancing Notebook Controls Performance and Effectiveness 
This section provides the following information to enable you to fine-tune a notebook control: 

• Dynamic resizing and scrolling 
• Tab painting and positioning. 

Dynamic Resizing and Scrolling 
The notebook control supports dynamic resizing by recalculating the size of the notebook's 
parts when either the user or the application changes the size of any of those parts. A 
BKN_NEWPAGESIZE notification code is sent from the notebook to the application 
whenever the notebook's size changes. 

The notebook handles the sizing and positioning of each application page window if the 
BKA_AUTOPAGESIZE attribute is specified for the inserted notebook page. Otherwise, the 
application must handle this when it receives the BKN_NEWPAGESIZE notification code 
from the notebook. 

If the size of the notebook window is decreased so that the page window is not large enough 
to display all the information the page contains, the information in the page window is 
clipped. If scroll bars are desired to enable the clipped information to be scrolled into view, 
they must be provided by the application. Tab scroll buttons are automatically displayed if 
the size of the notebook is decreased so that all the major or minor tabs cannot be 
displayed. For example, a notebook has major tabs on the right side, but the height of the 
notebook does not allow all the tabs to be displayed. In this case, tab scroll buttons are 
displayed on the upper- and lower-right corners of the notebook. 

Tab Painting and POSitioning 
The tab pages provide a method for organizing the information in a notebook so that the user 
easily can see and navigate to that information. When a page is inserted with a major or 
minor tab attribute, the notebook displays a tab for that page, based on the orientation of the 
notebook. The contents of the tab can be painted either by the notebook control or the 
application. 

If the notebook control is to paint the tabs, the application must associate a text string or bit 
map with the page whose tab is to be drawn. This is done by sending the 
BKM_SETTABTEXT or BKM_SETTABBITMAP message to the notebook control for the 
specified page. If neither of these messages is sent for an inserted page with a major or 
minor tab attribute, the application must draw the contents of the tab, through ownerdraw. 
The application receives a WM_DRAWITEM message whenever a tab page that has no text 
or bit map associated with it is to be drawn. The application can either draw the tab contents 

9-24 PM Advanced Programming Guide 



or return FALSE, in which case the notebook control fills the tab with the tab background 
color. 

Positioning Tabs in Relation to the Top Tab: 
There are seven page edges that define the back pages. The page attribute (BKA_MAJOR 
or BKA_MINOR) and the topmost page determine how the tabs are positioned. In most 
cases, the tabs must be drawn when their position changes. For example, this can happen 
when a page with a tab attribute is brought to the top of the notebook. 

The new top major or minor tab will appear attached to the top page. The other tabs will 
appear as described in the following list. This information is provided to help you understand 
the relationship between the top tab and the other tabs so that you can organize the 
information you put into a notebook appropriately. The application has no control over tab 
positioning. 

• When the top page is a major tab page: 

- Any major tabs prior to the top major tab are aligned on the last page of the 
notebook. 

- Any major tabs after the top major tab are incrementally cascaded from the topmost 
edge to the last page. 

- If the top major tab has minor tabs, no major tab is drawn on the page edge that 
immediately follows the top tab page. Instead, any major tabs that follow the top 
tab are incrementally cascaded, beginning on the second page, edge-down from the 
top tab. This is done to account for the minor tabs that are positioned between the 
top major tab and the major tab that follows it on the perpendicular notebook edge. 

The minor tabs are all positioned on the third page edge from the top, thereby 
giving the appearance of being between the top major tab and the next major tab. 

• When the top page is a minor tab page: 

- Any minor tabs prior to the top minor tab are positioned on the third page edge from 
the top of the notebook. 

- Any minor tabs after the top minor tab are incrementally cascaded up to the third 
page edge from the top. 

Chapter 9. Notebook Controls 9-25 



Related Functions 
This section covers the functions that are related to notebook controls. 

WinlnvalidateRect 
This function adds a rectangle to a window's update region. 

Syntax 

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinlnvalidateRect (HWND hwnd, PRECTl pwrc, BOOl flncludeChiidren) 

Parameters 
hwnd (HWND) - input 

Handle of window whose update region is to be changed. 

HWND_DESKTOP This function applies to the whole screen (or desktop). 
Other Handle of window whose update region is to be changed. 

pwrc (PRECTl) - input 
Update rectangle. 

NUll The whole window is to be added into the window's update region. 
Other Rectangle to be added to the window's update region. 

flncludeChiidren (BOOl) - input 
I nvalidation-scope indicator. 

TRUE 
FALSE 

Returns 

Include the descendants of hwnd in the invalid rectangle. 
Include the descendants of hwnd in the invalid rectangle, but only if the parent 
does not have a WS_CLlPCHllDREN style. 

rc (BOOl) - returns 
Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

9-26 PM Advanced Programming Guide 



WinSetPresParam 
This function sets a presentation parameter for a window. 

Syntax 

#define INCL_WINSYS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinSetPresParam (HWND hwnd, UlONG idAttrType, 

Parameters 
hwnd (HWND) - input 

Window handle. 

idAttrType (ULONG) - input 
Attribute type identity. 

UlONG cbAttrValuelen, PVOID pAttrValue) 

PP _FOREGROUNDCOLOR Foreground color (in RGB) attribute. 

PP _BACKGROUNDCOLOR Background color (in RGB) attribute. 

PP _FOREGROUNDCOLORINDEX Foreground color index attribute. 

PP _BACKGROUNDCOLORINDEX Background color index attribute. 

PP _HILITEFOREGROUNDCOLOR Highlighted foreground color (in RGB) 
attribute, for example for selected 
menu items. 

PP _HILITEBACKGROUNDCOLOR Highlighted background color (in RGB) 
attribute. 

PP _HILITEFOREGROUNDCOLORINDEX Highlighted foreground color index 
attribute. 

PP _HILITEBACKGROUNDCOLORINDEX Highlighted background color index 
attribute. 

PP _DISABLEDFOREGROUNDCOLOR Disabled foreground color (in RGB) 
attribute. 

PP _DISABLEDBACKGROUNDCOLOR Disabled background color (in RGB) 
attribute. 

PP _DISABLEDFOREGROUNDCOLORINDEX Disabled foreground color index 
attribute. 

PP _DISABLEDBACKGROUNDCOLORINDEX Disabled background color index 
attribute. 

PP _BORDERCOLOR Border color (in RGB) attribute. 

Chapter 9. Notebook Controls 9-27 



PP _BORDERCOLORINDEX 

PP _FONTNAMESIZE 

PP _ACTIVECOLOR 

PP _ACTIVECOLORINDEX 

PP JNACTIVECOLOR 

PP JNACTIVECOLORINDEX 

PP ACTIVETEXTFGNDCOLOR 

PP _ACTIVETEXTFGNDCOLORINDEX 

PP ACTIVETEXTBGNDCOLOR 

PP _ACTIVETEXTBGNDCOLORINDEX 

PP JNACTIVETEXTFGNDCOLOR 

PP INACTIVETEXTFGNDCOLORINDEX 

PP JNACTIVETEXTBGNDCOLOR 

PP INACTIVETEXTBGNDCOLORINDEX 

PP USER 

cbAttrValueLen (ULONG) - input 

Border color index attribute. 

Font name and size attribute. 

Active color value of data type RGB. 

Active color index value of data type 
LONG. 

Inactive color value of data type RGB. 

Inactive color index value of data type 
LONG. 

Active text foreground color value of 
data type RGB. 

Active text foreground color index value 
of data type LONG. 

Active text background color value of 
data type RGB. 

Active text background color index 
value of data type LONG. 

Inactive text foreground color value of 
data type RGB. 

Inactive text foreground color index 
value of data type LONG. 

Inactive text background color value of 
data type RGB. 

Inactive text background color index 
value of data type LONG. 

Changes the color used for drop 
shadows on certain controls. 

This is a user-defined presentation 
parameter. 

Byte count of the data passed in the pAttrValue parameter. 

pAttrValue (PVOID) - input 
Attribute value. 

Returns 
rc (BOOL) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

9-28 PM Advanced Programming Guide 



Related Window Messages 
This section covers the window messages that are related to notebook controls. 

BKM_CALCPAGERECT 
This message calculates an application page rectangle from a notebook rectangle or 
calculates a notebook rectangle from an application page rectangle, depending on the setting 
of the bPage parameter. 

Parameters 
param1 

pRectl (PRECTl) 

param2 

Pointer to the RECTl structure that contains the coordinates of the rectangle. 

If the bPage parameter is TRUE, this structure contains the coordinates of a 
notebook window on input, and on return it contains the coordinates of an 
application page window. 

If the bPage parameter is FALSE, this structure contains the coordinates of an 
application page window on input, and on return it contains the coordinates of a 
notebook window. 

bPage (BOOl) 
Window specifier. 

Specifies whether the window coordinates to calculate are for a notebook window or 
an application page window. 

TRUE 
FALSE 

An application page window is calculated. 
A notebook window is calculated. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Coordinates were successfully calculated. 
Unable to calculate coordinates. This is returned if an invalid RECTl structure 
is specified in the pReetl parameter. 

Chapter 9. Notebook Controls 9-29 



BKM_DELETEPAGE 
This message deletes the specified page or pages from the notebook data list. 

Parameters 
param1 

ulPageld (UlONG) 
Page identifier. 

param2 

Page identifier for deletion. This is ignored if the BKA_All attribute of the· 
usDeleteFlag parameter is specified. 

usDeleteFlag (USHORT) 
Page range attribute. 

Attribute that specifies the range of pages to be deleted. 

BKA_SINGlE Delete a single page. 

BKA_ TAB If the page ID specified is that of a page with a major tab attribute, 
delete that page and all subsequent pages up to the next page that 
has a major tab attribute. 

If the page ID specified is that of a page with a minor tab attribute, 
delete that page and all subsequent pages up to the next page that 
has either a major or minor tab attribute. 

This attribute should only be specified for pages that have major or 
minor tab attributes. If a page with neither of these attributes is 
specified, FALSE is returned and no pages are deleted. 

BKA _All Delete all pages in the notebook. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Pages were successfully deleted. 
Unable to delete the page or pages. This is returned if an invalid page ID is 
specified for the ulPageld parameter or if the BKA_TAB attribute is specified 
for a page that has neither a major nor a minor tab attribute. 

9-30 PM Advanced Programming Guide 



BKM_INSERTPAGE 
This message inserts the specified page into the notebook data list. 

Parameters 
param1 

ulPageld (ULONG) 

param2 

Page 10 for placement. 

Page identifier used for the placement of the inserted page. This identifier is 
ignored if the BKA_FIRST or BKA_LAST attribute of the usPageOrder parameter is 
specified. 

usPageStyle (USHORT) 
Style attributes. 

Attributes that specify the style to be used for an inserted page. You can specify 
one attribute from each of the following groups by using logical OR operators (I) to 
combine attributes. 

• Specify the following for automatic page position and size: 

BKA_AUTOPAGESIZE Notebook handles the positioning and sizing of the 
application page window specified in the 
BKM_SETPAGEWINOOWHWNO message. 

• Specify the following to display status area text: 

BKA_STATUSTEXTON 
Page is to be displayed with status area text. If this attribute is not 
specified, the application cannot associate a text string with the status area 
of the page being inserted. 

• Specify one of the following if the page is to have a major or minor tab attribute: 

BKA_MAJOR 
BKA_MINOR 

Inserted page will have a major tab attribute. 
Inserted page will have a minor tab attribute. 

Chapter 9. Notebook Controls 9-31 



usPageOrder (USHORT) 
Order attributes. 

Placement of page relative to the previously inserted pages. You can specify one of 
the following attributes: 

BKA FIRST Insert page at the front of the notebook. The page 10 specified in 
the ulPageld parameter for param1 is ignored if this is specified. 

BKA LAST Insert page at the end of the notebook. The page 10 specified in the 
ulPageld parameter for param1 is ignored if this is specified. 

BKA NEXT Insert page after the page whose 10 is specified in the ulPageld 
parameter for param1. If the page 10 specified in the ulPageld 
parameter is invalid, NULL is returned and no page is inserted. 

BKA PREY Insert page before the page whose 10 is specified in the ulPageld 
parameter for param1. If the page 10 specified in the ulPageld 
parameter is invalid, NULL is returned and no page is inserted. 

Returns 
ulPageld (ULONG) 

Page 10 for insertion. 

NULL The page was not inserted into the notebook. An invalid page 10 was specified 
for the ulPageld parameter for param 1 or not enough space was available to 
allocate the page data. 

Other Identifier for the inserted page. 

BKM_INVALIDATETABS 
This message repaints all of the tabs in the notebook. 

Parameters 
param1 

ulReserved (ULONG) 
Reserved value, should be O. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
rc (BOOL) 

Success indicator. 

TRUE 
FALSE 

Tabs painted successfully. 
Tabs were not painted. 

9-32 PM Advanced Programming Guide 



BKM_QUERYPAGECOUNT 
This message queries the number of pages. 

Parameters 
param1 

ulPageld (ULONG) 
Page 10 or O. 

param2 

Page identifier from which to start the query, or o. If this parameter is set to 0, the 
query begins with the first page. 

usQueryEnd (USHORT) 
Query end attribute. 

Attribute that ends the page count query. 

BKA MAJOR Query the number of pages between the page 10 specified in the 
ulPageld parameter and the next page that has the BKA _ MAJOR 
attribute. The page that has the BKA_MAJOR attribute is not 
included in the page count. 

BKA_MINOR Query the number of pages between the page 10 specified in the 
ulPageld parameter and the next page that has the BKA_MINOR 
attribute. The page that has the BKA_MINOR attribute is not 
included in the page count. 

BKA ENO Query the number of pages between the page 10 specified in the 
ulPageld parameter and the last page. When this attribute is 
specified, the page count includes the last page plus the 
notebook's back cover. 

Returns 
pageCount (SHORT) 

Number of pages. 

BOOKERRJNVALlO_PARAMETERS An invalid page 10 was specified for the 
ulPageld parameter. 

Other Number of pages for the specified range. If the 
notebook is empty or no pages are found in the 
range, this value is O. 

Chapter 9. Notebook Controls 9-33 



BKM_QUERVPAGEDATA 
This message queries the 4 bytes of application reserved storage associated with the 
specified page. 

Parameters 
param1 

ulPageld (ULONG) 
Page ID. 

The page identifier of the page from which to retrieve the 4 bytes of data. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulPageData (ULONG) 

Page data. 

BOOKERRJNVALlD_PARAMETERS An invalid page ID was specified for the 
ulPageld parameter. 

o No page data was set for the page specified in 
the ulPageld parameter. 

Other Application-defined page data. 

BKM_QUERVPAGEID 
This message queries the page identifier for the specified page. 

Parameters 
param1 

ulPageld (ULONG) 
Location page ID. 

Page identifier used for locating the requested page. This identifier is ignored if the 
BKA_FIRST, BKA_LAST, or BKA_TOP attribute is specified. 

9-34 PM Advanced Programming Guide 



param2 

usQueryOrder (USHORT) 
Page ID query order. 

Order in which to query the page identifier. 

BKA_FIRST Get the page identifier for the first page. The page ID specified in 
the ulPageld parameter for param1 is ignored if this is specified. 

BKA_LAST Get the page identifier for the last page. The page ID specified in 
the ulPageld parameter for param1 is ignored if this is specified. 

BKA_NEXT Get the page identifier for the page after the page whose ID is 
specified in the ulPageld parameter for param 1. If the page I D 
specified in the ulPageld parameter is invalid, 
BOOKERRJNVALlD_PARAMETERS is returned. 

BKA_PREV Get the page identifier for the page before the page whose ID is 
specified in the ulPageld parameter for param1. If the page ID 
specified in the ulPageld parameter is invalid, 
BOOKERR_INVALlD_PARAMETERS is returned. 

BKA_ TOP Get the page identifier for the page currently visible in the notebook. 
The page ID specified in the ulPageld parameter for param1 is 
ignored if this is specified. 

usPageStyle (USHORT) 
Page style. 

Page style for which to query the page identifier. If neither of these attributes is 
specified, the usPageStyle parameter is ignored. 

BKA_MAJOR Query page with major tab attribute. 

BKA_MINOR Query page with minor tab attribute. If a major tab page is found 
before the minor tab page, the search is ended and 0 is returned. 

Returns 
ulPageld (ULONG) 

Retrieved page ID. 

BOOKERRJNVALlD_PARAMETERS Returned if the page ID specified for the 
ulPageld parameter for param 1 is invalid when 
specifying either the BKA_PREV or BKA_NEXT 
attribute in the usQueryOrder parameter. 

o Requested page not found. This could be an 
indication that the end or front of the list has 
been reached, or that the notebook is empty. 

Other Retrieved page identifier. 

Chapter 9. Notebook Controls 9-35 



BKM_QUERYPAGEINFO 
This message queries the page information associated with a notebook page. 

Parameters 
param1 

ulPageld (UlONG) 
Id of the notebook page whose information is to be queried. 

param2 

pPagelnfo (PPAGEINFO) 
Pointer to a notebook page information structure. 

Returns 
returns 

rc (BOOl) 
Success indicator. 

Possible values are described in the following list: 

TRUE 
FALSE 

Message was processed. 
Message was ignored. 

BKM_QU ERYPAG ESTYLE 
This message queries the style that was set when the specified page was inserted. 

Parameters 
param1 

ulPageld (UlONG) 
Page 10. 

Page identifier of the page from which to query the style setting. 

param2 

ulReserved (UlONG) 
Reserved value, should be O. 

9-36 PM Advanced Programming Guide 



Returns 
usPageStyle (USHORT) 

Page style data. 

BOOKERRJNVALlD_PARAMETERS An invalid page ID was specified for the 
ulPageld parameter. 

Other Page 'style data. 

BKM_QUERYPAGEWINDOWHWND 
This message queries the application page window handle associated with the specified 
page. 

Parameters 
param1 

ulPageld (ULONG) 
Page ID. 

Page identifier of the page whose window handle is requested. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
hwndPage (HWND) 

Window handle. 

BOOKERRJNVALlD_PARAMETERS An invalid page ID was specified for the 
ulPageld parameter. 

NULLHANDLE No application page window handle is 
associated for the page specified in the 
ulPageld parameter. 

Other Handle of the application page window 
associated with the specified page identifier. 

Chapter 9. Notebook Controls 9-37 



BKM_ QUERYSTATUSLINETEXT 
This. message queries the status line text, text size, or both for the specified page. 

Parameters 
param1 

ulPageld (ULONG) 
Page ID. 

Page identifier of the page whose status line text is requested. 

param2 

pBookText (PBOOKTEXT) 
Pointer to a BOOKTEXT data structure. See "BOOKTEXT" on page 9-51 for 
definitions of this structure's fields as they apply to the 
BKM_QUERYSTATUSLINETEXT message. 

Returns 
statusTextLen (USHORT) 

String length. 

BOOKERRJNVALlD_PARAMETERS An invalid page ID was specified for the 
ulPageld parameter or the structure specified 
for the pBookText parameter is invalid. 

o No text data has been set 
(BKM_SETSTATUSLINETEXT) for the page 
specified in the ulPageld parameter. 

Other Length of ~he returned status line text string. 

BKM_QUERYTABBITMAP 
This message queries the bit-map handle associated with the specified page. 

Parameters 
param1 

ulPageld (ULONG) 
Page ID. 

Page identifier of the page whose bit-map handle is requested. This should be a 
page for which a BKA_MAJOR or BKA_MINOR attribute has been specified. 

9-38 PM Advanced Programming Guide 



param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
hbm (HBITMAP) 

Bit-map handle. 

BOOKERRJNVALlO_PARAMETERS An invalid page 10 was specified for the 
ulPageld parameter. 

NULLHANOLE No bit-map handle is associated with the page 
specified in the ulPageld parameter. 

Other Handle of the bit map associated with the 
specified page identifier. 

BKM_QUERYTABTEXT 
This message queries the text, text size, or both for the specified page. 

Parameters 
param1 

ulPageld (ULONG) 
Page 10. 

Page identifier of the page whose tab text is requested. This should be a page for 
which a BKA_MAJOR or BKA_MINOR attribute has been specified. 

param2 

pBookText (PBOOKTEXT) 
Pointer to a BOOKTEXT data structure. 

See "BOOKTEXT" on page 9-51 for definitions of this structure's fields as they 
apply to the BKM_QUERYTABTEXT message. 

Chapter 9. Notebook Controls 9-39 



Returns 
tabTextLen (USHORT) 

Length of the tab text string. 

BOOKERR_I NVALI O_PARAMETERS An invalid page 10 was specified for the 
ulPageld parameter or the structure specified 
for the pBookText parameter is invalid. 

o No text data has been set 
(BKM _SEn ABTEXT) for the page specified in 
the ulPageld parameter. 

Other Length of the returned tab text string. 

BKM_SETDIMENSIONS 
This message sets the height and width for the major tabs, minor tabs, or page buttons. 

Parameters 
param1 

usWidth (USHORT) 
Width value to set. 

usHeight (USHORT) 
Height value to set. 

param2 

usType (USHORT) 
Notebook region. 

Notebook region for which the dimensions are to be set. Valid values are: 

• BKA_MAJORTAB 
• BKA_MINORTAB 
• BKA_PAGEBUnON. 

9-40 PM Advanced Programming Guide 



Returns 
rc (BOOL) 

Success indicator. 

TRUE Dimensions were successfully set. 
FALSE Unable to set dimensions. Returned if an invalid value is specified for the 

usType parameter or if the dimensions are invalid. 

BKM_SETNOTEBOOKCOLORS 
This message sets the colors for the major tab text and background, the minor tab text and 
background, and the notebook page background. 

Parameters 
param1 

ulColor (ULONG) 
Color value to set. 

param2 

usBookAttr (USHORT) 
Notebook region. 

Notebook region whose color is to be set. Valid values are: 

BKA_BACKGROUNDPAGECOLOR or BKA_BACKGROUNDPAGECOLORINDEX 
Page background. This color is initially set to 
SYSCLR_PAGEBACKGROUND. 

BKA_BACKGROUNDMAJORCOLOR or 
BKA_BACKGROUNDMAJORCOLORINDEX 

Major tab background. This color is initially set to 
SYSCLR_PAGEBACKGROUND. 

BKA_BACKGROUNDMINORCOLOR or BKA_BACKGROUNDMINORCOLORINDEX 
Minor tab background. This color is initially set to 
SYSCLR_PAGEBACKGROUND. 

BKA_FOREGROUNDMAJORCOLOR or 
BKA_FOREGROUNDMAJORCOLORINDEX 

Major tab text. This color is initially set to SYSCLR_WINDOWTEXT. 

BKA_FOREGROUNDMINORCOLOR or BKA_FOREGROUNDMINORCOLORINDEX 
Minor tab text. This color is initially set to SYSCLR_ WINDOWTEXT. 

Chapter 9. Notebook Controls 9-41 



Returns 
rc (BOOL) 

Success indicator. 

TRUE 
FALSE 

Colors were successfully set. 
Unable to set colors. Returned if an invalid notebook attribute is specified for 
the usBookAttr parameter. 

BKM_SETPAGEDATA 
This message sets the 4 bytes of application reserved storage associated with the specified 
page. 

Parameters 
param1 

ulPageld (ULONG) 
Page 10. 

The page identifier of the page from which to set the 4 bytes of data. 

param2 

ulPageData (ULONG) 
Page data. 

Application-defined page data. 

Returns 
rc (BOOL) 

Success indicator. 

TRUE 
FALSE 

Page data was successfully set. 
Unable to set page data. This value is returned if the page 10 specified in the 
ulPageld parameter is invalid. 

9-42 PM Advanced Programming Guide 



BKM_SETPAGEINFO 
This message sets the page information associated with notebook page which contains a 
single message. 

Parameters 
param1 

ulPageld (UlONG) 
Id of the notebook page whose information is to be set. 

param2 

pPagelnfo (PPAGEINFO) 
Pointer to a notebook page information structure. 

Returns 
returns 

rc (BOOl) 
Success indicator. 

Possible values are described in the following list: 

TRUE 
FALSE 

Message was processed. 
Message was ignored. 

BKM_SETPAGEWINDOWHWND 
This message associates an application page window handle with the specified notebook 
page. 

Parameters 
param1 

ulPageld (UlONG) 
Page 10. 

The page 10 of the notebook page with which the application page window is to be 
associated. 

Chapter 9. Notebook Controls 9-43 



param2 

hwndPage (HWNO) 
Window handle. 

The handle of the application page window that is to be associated with the 
notebook page identified in the ulPageld parameter. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Application page window handle was successfully set. 
Unable to set application page window handle. This value is returned if the 
page 10 specified for the ulPageld parameter is invalid. 

BKM_SETSTATUSLINETEXT 
This message associates a text string with the specified page's status line. 

Parameters 
param1 

ulPageld (UlONG) 
Page 10. 

The page identifier with which to associate the text string. 

param2 

pString (PSZ) 
Pointer to a text string that ends in a null character. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Status line text was successfully set. 
Unable to set status line text. This value is returned if the page 10 specified in 
the ulPageld parameter is invalid or if the page was inserted without 
specifying the BKA_STATUSTEXTON attribute. 

9-44 PM Advanced Programming Guide 



BKM_SETTABBITMAP 
This message associates a bit-map handle with the specified page. 

Parameters 
param1 

ulPageld (UlONG) 
Page 10. 

The page identifier with which to associate the bit-map handle. This should be a 
page for which a BKA_MAJOR or BKA_MINOR attribute has been specified. 

param2 

hbm (HBITMAP) 
Bit-map handle. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE Tab bit map was successfully set. 

FALSE Unable to set tab bit map. If the page 10 specified in the ulPageld parameter 
is invalid or if it identifies a page that does not have a BKA_MAJOR or 
BKA_MINOR attribute, FALSE is returned and no bit map is associated with 
the page. 

BKM_SETTABTEXT 
This message associates a text string with the specified page. 

Parameters 
param1 

ulPageld (UlONG) 
Page 10. 

The page identifier with which to associate the text string. This should be a page 
for which a BKA_MAJOR or BKA_MINOR attribute has been specified. 

param2 

pString (PSZ) 
Pointer to a text string that ends with a null character. 

Chapter 9. Notebook Controls 9-45 



Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Tab text was successfully set. 
Unable to set tab text. If the page ID specified in the ulPageld parameter is 
invalid or if it identifies a page that does not have a BKA_MAJOR or 
BKA_MINOR attribute, FALSE is returned and no text string is associated with 
the page. 

BKM_TURNTOPAGE 
This message brings the specified page to the top of the notebook. 

Parameters 
param1 

ulPageld (UlONG) 
Page ID. 

The page identifier that is to become the top page. 

param2 

ulReserved (UlONG) 
Reserved value, should be O. 

Returns 
fSuccess (BOOl) 

Success indicator. 

TRUE 
FALSE 

The page was successfully moved to the top of the notebook. 
Unable to move the page to the top of the notebook. This value is returned if 
the page ID specified in the ulPageld parameter is invalid. 

9-46 PM Advanced Programming Guide 



WM_PRESPARAMCHANGED (in Notebook Controls) 
For the cause of this message, see WM_PRESPARAMCHANGED. 

Parameters 
param1 

attrtype (ULONG) 
Attribute type. 

param2 

Presentation parameter attribute identity. 

PP _BACKGROUNDCOLOR or PP _BACKGROUNDCOLORINDEX 
Sets the background color of the notebook window. This color is initially set 
to SYSCLR_FIELDBACKGROUND. 

PP _BORDERCOLOR or PP _BORDERCOLORINDEX 
Sets the color of the notebook outline. This color is initially set to 
SYSCLR_WINDOWFRAME. 

PP _FOREGROUNDCOLOR or PP _FOREGROUNDCOLORINDEX 
Sets the color of text on the status line. This color is initially set to 
SYSCLR_WINDOWTEXT. 

PP _HILITEBACKGROUNDCOLOR or PP _HILITEBACKGROUNDCOLORINDEX 
Sets the color of the selection cursor. This color is initially set to 
SYSCLR_HILITEBACKGROUND. 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

Chapter 9. Notebook Controls 9-47 



Related Notification Messages 
This section covers the notification messages that are related to notebook controls. 

WM_CONTROL (in Notebook Controls) 
For the cause of this message, see WM_CONTROL. 

Parameters 
param1 

id (USHORT) 
Control-window identity. 

notifycode (USHORT) 
Notify code. 

param2 

The notebook control uses these notification codes: 

BKN_HELP Indicates the notebook control has received a 
WM_HELP message. 

BKN_NEWPAGESIZE Indicates the dimensions of the application 
page window have changed. 

BKN_PAGEDELETED Indicates a page has been deleted from the 
notebook. 

BKN_PAGESELECTED Indicates a new page has been brought to the 
top of the notebook. This notification is sent 
after the page is turned. 

BKN_PAGESELECTEDPENDING Indicates a new page is about to be brought to 
the top of the notebook. This notification is 
sent before the page is actually turned. 

If the application does not want the page to be 
turned, it sets the ulPageldNew field of the 
PAGESELECTNOTIFY structure to NULL 
before returning. 

notifyinfo (ULONG) 
Notify code information. 

The value of this parameter depends on the value of the notifycode parameter. 
When the value of the notifycode parameter is BKN_HELP, this parameter is the ID 
of the notebook page (uIPageld) whose tab contains the selection cursor. 

9·48 PM Advanced Programming Guide 



When the value of the notifycode parameter is BKN_PAGESELECTED or 
BKN_PAGESELECTEDPENDING, this parameter is a pointer to the 
PAGESELECTNOTIFY structure. 

When the value of the notifycode parameter is BKN_PAGEDELETED, this 
parameter is a pointer to the DELETENOTIFY structure. 

Otherwise, this parameter is the notebook control window handle. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

WM_DRAWITEM (in Notebook Controls) 
This notification message is sent to the owner of a notebook control each time a tab's 
content is to be drawn by the owner of the notebook. The tab's content is drawn by the 
owner unless the owner sets the tab text or bit map by sending a BKM_SETTABTEXT or 
BKM_SETTABBITMAP message, respectively, to the notebook control. 

Parameters 
param1 

id (USHORT) 
Window identifier. 

The window identifier of the notebook control sending this notification message. 

param2 

powneritem (POWNERITEM) 
Pointer to an OWNERITEM data structure. 

The following list defines the OWNERITEM data structure fields that apply to the 
notebook control. See "OWNERITEM" on page 8-111 for the default field values. 

hwnd (HWND) 
Notebook window handle. 

hps (HPS) 
Presentation-space handle. 

fsState (ULONG) 
Notebook window style flags. See "Notebook Styles" on page 9-1 for 
descriptions of these style flags. 

fsAttribute (ULONG) 
Page attribute flags for the tab page. See BKMJNSERTPAGE for descriptions 
of these attribute flags. 

Chapter 9. Notebook Controls 9-49 



fsStateOld (UlONG) 
Reserved. 

fsAttributeOld (UlONG) 
Reserved. 

rcl/tem (RECTl) 
Tab rectangle to be drawn in window coordinates. 

idltem (lONG) 
Reserved. 

hltem (UlONG) 

Returns 
rc (Baal) 

Current page 10 (uIPageld) for which the content of a tab is to be drawn. 

Content-drawn indicator. 

TRUE 
FALSE 

The owner draws the tab's content. 
If the owner does not draw the tab's content, the owner returns this value and 
the notebook control draws the tab's content. 

9-50 PM Advanced Programming Guide 



Related Data Structures 
This section covers the data structures that are related to notebook controls. 

BOOKTEXT 
Notebook data structure that contains text strings for notebook status lines and tabs. This 
data structure is used with the BKM_QUERYSTATUSLINETEXT and the 
BKM_QUERYTABTEXT messages only. See "BKM_QUERYSTATUSLINETEXT" on 
page 9-38 and "BKM_QUERYTABTEXT" on page 9-39 for information about those 
messages. 

Syntax 

typedef structBOOKTEXT { 
PSZ ' pStrfng; 
UtbN<i textLen; 
} BOOKTEXT; 

Fields 
pString (PSZ) 

Pointer to a string buffer. 

Buffer in which the text string is to be placed. For the BKM_QUERYSTATUSLINETEXT 
message, this is the buffer in which the status line text is placed. 

For the BKM_QUERYTABTEXT message, this is the buffer in which the tab text is 
placed. 

text Len (ULONG) 
String length. 

Length of the text string. For the BKM_QUERYSTATUSLINETEXT message, this is the 
length of the status line text string. 

For the BKM_QUERYTABTEXT message, this is the length of the tab text string. 

Chapter 9. Notebook Controls 9-51 



DELETENOTIFY 
Structure that contains information about the application page that is being deleted from a 
notebook. 

Syntax 

Fields 
hwndBook (HWNO) 

Notebook window handle. 

hwndPage (HWNO) 
Application page window handle. 

ulAppPageData (ULONG) 
Application-specified page data. 

hbmTab (HBITMAP) 
Application-specified tab bit map. 

PAGESELECTNOTIFY 
Structure that contains information about the application page being selected. 

Syntax 

9-52 PM Advanced Programming Guide 



Fields 
hwndBook (HWND) 

Notebook window handle. 

ulPageldCur (ULONG) 
Current top page identifier. 

ulPageldNew (ULONG) 
New top page identifier. 

Chapter 9. Notebook Controls 9-53 



Summary 
Following are tables that describe the OS/2 functions, window messages, notification 
messages, notification codes, and data structures used with notebook controls: 

Table 9-2. Notebook Control Functions 

Function Name Description 

WinlnvalidateRect Adds a rectangle to a window's update region. 

WinSetPresParam Sets a presentation parameter for a window. 

Table 9-3 (Page 1 of 2). Notebook Control Window Messages 

Message Name 

BKM_CALCPAGERECT 

BKM_DELETEPAGE 

BKM_)NSERTPAGE 

BKMJNVALIDATETABS 

BKM_QUERYPAGECOUNT 

BKM_QUERYPAGEDATA 

BKM_ QUERYPAGEID 

BKM_QUERYPAGEINFO 

BKM_QUERYPAGESTYLE 

BKM_QUERYPAGEWINDOWHWND 

BKM_QUERYSTATUSLINETEXT 

BKM_ QUERYT ABBITMAP 

BKM_QUERYTABTEXT 

BKM_SETDIMENSIONS 

9-54 PM Advanced Programming Guide 

Description 

Calculates a window rectangle from a notebook rectangle 
or a notebook rectangle from a window rectangle, 
depending on the setting of the fPage parameter. 

Deletes the specified page or pages from the notebook 
data list. 

Inserts the specified page into the notebook data list. 

Repaints all the tabs in the notebook. 

Queries the number of pages. 

Queries the 4 bytes of application-reserved storage 
associated with the specified page. 

Queries the page identifier for the specified page. 

Queries any of the page information associated with a 
notebook page. 

Queries the style that was set when the specified page 
was inserted. 

Queries the notebook page window handle associated 
with the specified page. 

Queries the status-line text, text size, or both, for the 
specified page. 

Queries the bit-map handle associated with the specified 
page. If this message is sent for a page having both a 
major and a minor attribute, the notebook returns the 
bitmap that is associated with the major tab. 

Queries the text, text size, or both, for the specified page. 
If this message is sent for a page having both a major 
and a minor attribute, the notebook returns the text that is 
associated with the major tab. 

Sets the height and width for the major tabs, minor tabs, 
or page buttons. 



,Table 9-3 (Page 2 of 2). Notebook Control Window Messages 

Message Name 

BKM_SETNOTEBOOKCOLORS 

BKM_SETPAGEDATA 

BKM_SETPAGEINFO 

BKM_SETPAGEWINDOWHWND 

BKM_SETSTATUSLINETEXT 

BKM_SETTABBITMAP 

BKM_TURNTOPAGE 

WM_CHAR 

WM_PRESPARAMCHANGED 

Description 

Sets the colors for the major tab text and background, 
minor tab text and background, and notebook page 
background. 

Sets the 4 bytes of application-reserved storage 
associated with the specific page. 

Allows an application to set any of the page information 
associated with a page in the notebook which contains a 
single message. 

Associates a notebook page window handle with the 
specified notebook page. 

Associates a text string with the status line on the 
specified page. 

Associates a bitmap handle with the specified page. If 
this message is sent for a page having both a major and 
a minor tab attribute, the notebook sets both the major 
and minor tab bitmap to be the bitmap that is passed in. 

Associates a text string with the specified page. If this 
message is sent for a page having both a major and a 
minor attribute, the notebook sets both the major and 
minor tab text to be the text that is passed in. 

Brings the specified page to the top of the notebook. 

Occurs when the user presses a key. 

Occurs when a presentation parameter is set or removed 
dynamically from a window instance. 

Occurs when the size of the notebook window changes. 

Table 9-4. Notebook Control Notification Messages 

Message Name Description 

WM_CONTROL Occurs when a control has a significant event to notify to 
its owner. 

WM_CONTROLPOINTER Sent to the notebook control's owner window when the 
pointing device pointer moves over the notebook control 
window, thereby enabling the owner to set the pointing 
device pointer. 

WM_DRAWITEM Sent to the owner of the notebook control each time an 
item is to be drawn. 

Chapter 9. Notebook Controls 9-55 



Table 9-5. Notebook Control Notification Codes 

Code Name Description 

BKN_HELP Indicates that the notebook control has received a 
WM_HELP message. 

BKN_NEWPAGESIZE Indicates that the dimensions of the notebook page 
window have changed. 

BKN_PAGEDELETED Indicates that a page has been deleted from the 
notebook. 

BKN_PAGESELECTED Indicates that a new page has been brought to the top of 
the notebook. 

BKN_PAGESELECTEDPENDING Indicates that a new page is about to be brought to the 
top of the notebook. 

Table 9-6. Notebook Control Data Structures 

Data Structure Name Description 

BOOKTEXT Contains text strings for notebook status lines and tabs. 

DELETENOTIFY Contains information about the page being deleted from a 
notebook. 

PAGESELECTNOTIFY Contains information about the page being selected in a 
notebook. 

PPAGEINFO Contains a pointer to the notebook page information data 
structure. 

9-56 PM Advanced Programming Guide 



Chapter 10. File Dialog Controls 

File dialog controls provide basic functions that enable users to do the following: 

• Display and select from a list of drives, directories, and files 
• Enter a file name directly 
• Filter the file names before they are displayed 
• Display active network connections 
• Specify .TYPE EA extended attributes 
• Interact with a single-selection or multiple-selection file dialog 
• Interact with a modal or modeless file dialog. 

These basic functions can be extended to meet the requirements of PM applications. 

About File Dialog Controls 
The file dialog control enables you to implement Open or SaveAs dialogs. Figure 10-1 and 
Figure 10-2 on page 10-2 illustrate an example of these two dialogs. 

Figure 10-1. Open Dialog Example 

© Copyright IBM Corp. 1994 10-1 



Figure 10-2. SaveAs Dialog Example 

Customizing the File Dialog 
You can customize the File Dialog control by using the standard controls and adding any of 
your own design. Specify a standard control by including the control name, ID, and style in 
the dialog. The standard control list is included in "Summary" on page 10-16. 

Using File Dialog Controls 
This section describes how to create: 

• A file dialog 
• An Open dialog 
• A SaveAs dialog. 

Creating a File Dialog 
To present a file dialog to users, your application must do the following: 

1. Allocate storage for a FILEDLG data structure and set all fields to NULL. 
2. Initialize the fields in the FILEDLG data structure. 

The application must do the following: 

a. Set the cbSize field to the size of the data structure. 

b. Set the fI field to indicate the type of dialog. You must set the FDS_OPEN_DIALOG 
or FDS_SAVEAS_DIALOG flags. 

10-2 PM Advanced Programming Guide 



The application can set the following: 

a. An application~specific title. Pass the pointer to a null-terminated string in the 
pszTitle field. 

b. An application-specific text for the OK push button. Pass the pointer to a 
null-terminated string in the pszOKButton field. 

c. A custom dialog procedure to provide application-specific function. Pass the pointer 
to a window procedure in the pfnDlgProc field. 

d. Set other FDS_* flags in the fI field to customize the dialog style. 

e. Pass the initial position of the dialog in the x and y fields. 

3. Initialize the FILEDLG data structure with any values that users should see when they 
invoke the dialog for the first time. For example, you can: 

a. Pass the name of the first drive from which file information will be displayed in the 
pszlDrive field. 

b. If you want to limit user selections, pass a list of drives from which the user can 
choose in the papszlDriveList field. Otherwise, the system defaults to showing all 
available drives. 

c. Pass the name of an extended-attribute filter to be used to filter file information in 
the pszlType field. 

d. Pass a list of extended attributes in the papszlTypeList field. By selecting from this 
list, users can filter file information. 

e. Pass the name of the initial file to be used by the dialog in the szFullFile field. This 
can be a file name or a string filter, such as *.dat, to filter the initial file information. 
This field can be fully qualified to select the initial drive and directory. 

4. Invoke the file dialog. Call WinFileDlg and pass the dialog's owner window handle and a 
pointer to the initialized FILEDLG data structure. 

5. Verify the return value from WinFileDlg. If it is successful, the application can create the 
file dialog (either Open or SaveAs) by using the file name or file names returned from 
the dialog; 

Creating an Open Dialog 
When the Open dialog is invoked, the fields in the dialog box are updated with the fields 
passed in the FILEDLG data structure. The values passed in the szFullFile field of the data 
structure are displayed in the File Name field, the Directory list box, and the Drive field. The 
value passed in the pszlType field is displayed in the Type field. 

Chapter 10. File Dialog Controls 1 0-3 



Creating a SaveAs Dialog 
The SaveAs dialog is identical to the Open dialog with these exceptions: 

• By default, the file names in the file list box are grayed and cannot be selected, although 
the list box can be scrolled. 

• When the user clicks on the OK push button or presses the Enter key, the file name in 
the File Name field is passed to the application, and the application saves, rather than 
opens, the file. 

• The titles of the file name, filter, and dialog are SaveAs rather than Open. 

Graphical User Interface Support for File Dialog Controls 
This section provides information about the file dialog user interface. 

Name Field 
The File Name field is a single-line entry (SLE) field used to display the name of a file that 
was selected from the file list box or entered directly by the user. As the user types, the file 
or files matching the user entry are scrolled into view in the file list box. The first file name 
that most closely matches the file name typed by the user is placed at the top of the list box. 
When the user types a character that causes a mismatch, the file at the top of the list is 
displayed. 

When the user presses the Enter key, the dialog returns the selected file name to the 
application. The application then initiates the default action of opening the file. When a file 
name is not valid, such as when the file does not exist, the application displays an error 
message. 

The File Name field displays the currently selected file name or the current string filter. 
When a filter is specified in the szFullFile field of the FILEDLG data structure, the string filter 
is displayed without the path information. The string filter remains in the field until a file is 
selected or the user types over the data in the field. 

When a file name is not specified, the File Name field is blank. 

File List Box 
The File list box is a single- or multiple-selection list box that is scrollable both horizontally 
and vertically. It contains all the files that meet the filter criteria, sorted by name. 

When the file dialog is a single-selection dialog, the selected file name is placed in the File 
Name field. When the file dialog is a multiple-selection dialog, the topmost selected file 
name is placed in the File Name field. When the user double-clicks on a file name, the 
dialog exits and returns the selected file or files to the application for opening. 

10-4 PM Advanced Programming Guide 



Directory List Box 
The Directory list box is a single-selection list box that is scrollable both horizontally and 
vertically. 

The Directory list box displays the path in the szFullFile field of the FILEDLG data structure 
as a list of each parent subdirectory. Any subdirectories of the selected directory also are 
displayed. Each directory level is indented to show the path, and the current working 
directory level is indicated by an arrow. The top entry is always the root directory, with the 
drive specification preceding it. When the szFullFile field is NULL, the current path of the 
current drive is displayed. The user selects a new subdirectory by double-clicking on the 
subdirectory name. This action updates the Directory list box. 

Drive Field 
The Drive field contains a drop-down list of the logical drives. This field cannot be edited by 
the user. 

The Drive field displays the value passed in the papszlDriveList field of the FILEDLG data 
structure. If the application does not specify a drive list, all drives currently available on the 
system are displayed. When the drop-down list is displayed, the current drive is highlighted. 
When the user selects a drive, the display is refreshed. When either the user-specified drive 
or the default drive has a volume label, the volume label is displayed also. 

Users can access networked files by associating logical disks with remote servers, or they 
can enter the name and ID of the server in the File Name field. When the server name 
entered is not found in the Drive drop-down list, it is added to the list and displayed in the 
Drive field. 

Type Field 
The Type field contains a drop-down list of extended-attribute filters. 

The Type field displays the value passed in the pszlType field of the FILEDLG data structure. 
The current setting is highlighted when the drop-down list is displayed. 

When a type filter .is not specified by the application, <All Fi 1 es> is displayed and no 
extended-attribute type filtering is used with the initial display. 

All files affected by the string filter and the extended-attribute type filter criteria are displayed, 
based on how the filters are to be used. The default is that all file names meeting the 
intersection of the two filters are shown. When users change the value in the Type field, the 
File list box is updated to display a list of files that meet the new type filter criteria. Files that 
meet both the string filter and extended-attribute type filter are displayed. 

Chapter 10. File Dialog Controls 10-5 



Standard Push Button and Default Action 
The OK push button initiates the default action. 

When a subdirectory is selected, the File Name field is empty. When the user clicks on the 
OK push button or presses the Enter key, the subdirectory is opened and the displayed 
values in the File list box and the Directory list box are refreshed. 

When a file name is selected, selection of subdirectories is canceled and the File Name field 
is updated with the name of the selected file. When the user clicks on the OK push button 
or presses the Enter key, the file displayed in the File Name field is returned to the 
application for opening. 

Subclassing the Default File Dialog Procedure 
The name of the dialog procedure is assigned to the pfnDlgProc field of the FILEDLG data 
structure. 

1 0-6 PM Advanced Programming Guide 



Related Functions 
This section covers the functions that are related to file dialog controls. 

WinDefFileDlgProc 
This function is the default dialog procedure for the file dialog. 

Syntax 

#define INCL_winstdfile 

#include <os2.h> 

MRESUL T WinDefFileDlgProc (HWND hwnd, ULONG msg, MPARAM mp1, 
MPARAM mp2) 

Parameters 
hwnd (HWND) - input 

Dialog-window handle. 

msg (ULONG) - input 
Message identity. 

mp1 (MPARAM) - input 
Parameter 1. 

mp2(MPARAM) - input 
Parameter 2. 

Returns 
mresReply (MRESUL T) - returns 

Message-return data. 

WinFileDlg 
This function creates and displays the file dialog and returns the user's selection or 
selections. 

Syntax 

#define INCL_winstdfile 

#include <os2.h> 

HWND WinFileDlg (HWND hwndP, HWND hwndO, PFILEDLG pfild) 

Chapter 10. File Dialog Controls 1 0-7 



· Parameters 
hwndP (HWND) - input 

Parent-window handle. 

HWND _DESKTOP The· desktop window. 
Other Specified window. 

hwndO (HWND) - input 
Requested owner-window handle. 

pfild (PFllEDlG) - input 
Pointer to a FllEDlG structure. 

Returns 
hwndDlg (HWND) - returns 

File dialog window handle. 

WinFreeFileDlgList 
This function frees the storage allocated by the file dialog when the FDS_MUlTIPlESEl 
dialog flag is set. 

Syntax 

#define INCL_winstdfile 

#include <os2.h> 

BaOl WinFreeFileDlglist (PAPSZ papszFQFilename) 

Parameters 
papszFQFilename (PAPSZ) - input 

Pointer to a table of pointers of fully-qualified file names returned by the dialog. 

Returns 
rc (Baal) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

1 0-8 PM Advanced Programming Guide 



Related Window Messages 
This section covers the window messages that are related to file dialog controls. 

FDM_ERROR 
This message is sent whenever the file dialog is going to display an error message window. 
This allows an application to display its own message, if desired, instead of messages 
provided by the system. 

Parameters 
param1 

usErrorld (USHORT) 
Error message 10. 

This is the 10 of the message that is displayed by the file dialog if the default file 
dialog procedure processes the message. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
usUserReply (USHORT) 

User's reply. 

MBID _CANCEL 

MBID RETRY 

The file dialog presents the error message for this 10. 

The file dialog processes the reply as if the OK push button was 
pressed in its message window. 

The file dialog processes the reply as if the Cancel push button was 
pressed in its message window. 

The file dialog processes the reply as if the Retry push button was 
pressed in its message window. 

Chapter 10. File Dialog Controls 1 0-9 



FDM FILTER 
This message is sent before a file that meets the current filter criteria is added to the File list 
box. 

Parameters 
param1 

pFilename (PSZ) 
Pointer to the file name. 

param2 

pEAType (PSZ) 
Pointer to the .TYPE EA extended attribute. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE Add the file. 
FALSE Do not add the file. 

FDM VALIDATE 
This message is sent when the user selects a file and presses Enter or clicks on the OK 
button, or double-clicks on a file name in the file list box. 

Parameters 
param1 

pFileName (PSZ) 
Pointer to the fully-qualified file name. 

param2 

usSeltype (USHORT) 
Selection type. 

rc (BOOl) 
Validity indicator. 

TRUE File name is valid. 
FALSE File name is not valid. 

10-10 PM Advanced Programming Guide 



Related Data Structure 
This section covers the data structure that is related to file dialog controls. 

FILEDLG 
File-dialog structure. 

Syntax 

typedef struct _FILEDLG { 
ULONG 
ULONG 
ULONG· . 
LONG 
LONG 
PSZ 
PSZ 
PFNWP 
PSZ 
PAPSZ 
PSZ 
PAPSZ 
HMOOULE 
CHAR 
PAPSZ 
ULONG 
USHORT 
SHORT 
SHORT 
SHORr 
·}FlI.!EDLG; 

Fields 

cbSize; 
fl ; 
ul User; 
lReturn; 
lSRC; 
pszTJtle; 
pszOKBu~ton; 
pfnDlgProc; 
pszIType; 
papszUypeUst; 
pszIDrive; 
paps:dDriveL i st; 
hMod; 
szFul TFi le[CCHMAXPATH]; 
papszFQFi 1 enaine; 
ulFQFCount; 
usDlgID; 

y; 
sEAType; 

cbSize (ULONG) 
Structure size. 

Size of the structure. This field allows future expansion of the structure and must be 
initialized with the size of the FILEDLG structure. 

fl (ULONG) 
FDS _ * flags. 

Several flags can be specified to alter the behavior of the dialog. 

Note: The dialog must be either an "Open" or a "Save As" dialog. If neither the 
FDS_OPEN_DIALOG nor the FDS_SAVEAS_DIALOG flag is set, or if both are set, the 
dialog will return an error. 

Chapter 10. File Dialog Controls 1 0-11 



FDS _ APPL YBUTTON 

FDS_CENtER 

FDS_CUSTOM 

FDS ENABLEFILELB 

FDS_FILTERUNION 

FDS _ HELPBUTTON 

FDS _ MODELESS 

FDS_MULTIPLESEL 

FDS_OPEN_DIALOG 
FDS_PRELOAD_ VOLINFO 

FDS _ SAVEAS _DIALOG 

ulUser (ULONG) 
Used by the application. 

An Apply push button is added to the dialog. This is 
useful in a modeless dialog. 
The dialog is positioned in the center of its parent window, 
overriding any specified x, y position. 
A custom dialog template is used to create the dialog. 
The hMod and usDlglD fields must be initialized. 
When this flag is set, the Files list box on a Save As 
dialog is enabled. When this flag is not set, the Files list 
box is not enabled for a Save As dialog. This is the 
default. 
When this flag is set, the dialog uses the union of the 
string filter and the extended-attribute type filter when 
filtering files for the Files list box. When this flag is not 
set, the list box, by default, uses the intersection of the 
two. 
A Help push button of style 
(BS_HELPIBS_NOPOINTERFOCUS) with an ID of 
DID_HELP _PB is added to the dialog. When this push 
button is pressed, a WM_HELP message is sent to 
hwndO. 
If this flag is set, the dialog will always query extended 
attribute information for files as it fills the Files list box. 
The default is to not query the information unless an 
extended attribute type filter has been selected. 
When this flag is set, the dialog is modeless; WinFileDlg 
returns immediately after creating the dialog window and 
returns the window handle to the application. The 
application should treat the dialog as if it were created 
with WinLoadDlg. As in the modal (default) dialog case, 
the return value is found in the fRetum field of the 
FILEDLG structure passed to WinFileDlg. 
When this flag is set, the Files list box for the dialog is a 
multiple selection list box. When this flag is not set, the 
default is a single-selection list box. 
The dialog is an "Open" dialog when this flag is set. 
If this flag is set, the dialog will preload the volume 
information for the drives and will preset the current 
default directory for each drive. The default behavior is 
for the volume label to be blank and the initial directory 
will be the root directory for each drive. 
The dialog is a "Save As" dialog when this flag is set. 

This field can be used by an application that is subclassing the file dialog to store its 
own state information. 

10-12 PM Advanced Programming Guide 



IReturn (LONG) 
Result code. 

Result code from dialog dismissal. This field contains the 10 of the push button pressed 
to dismiss the dialog, DID_OK or DID_CANCEL, unless the application supplies 
additional push buttons in its template. If an error occurs on dialog invocation, this field 
is set to zero. 

ISRC (LONG) 
System return code. 

This field contains an FDS_ERR return code. When a dialog fails, this field is used to 
tell the application the reason for the failure. 

pszTitle (PSZ) 
Dialog title string. 

When this field is NULL, the dialog title defaults to the name of the dialog currently 
running. 

pszOKButton (PSZ) 
OK push button text. 

This string is used to set the text of the OK push button. The default text is OK. 

pfnDlgProc (PFNWP) 
Custom dialog procedure. 

NULL unless the caller is subclassing the file dialog. When non-NULL, it points to the 
dialog procedure of the application. 

pszlType (PSZ) 
Extended-attribute type filter. 

This field contains a pointer to the initial extended-attribute type filter that is applied to 
the initial dialog screen. This filter is not required to be in papszlTypeUst. 

papszlTypeList (PAPSZ) 
Pointer to a table of pointers to extended-attribute types. 

Each pointer in the table points to a null-terminated string, and each string is an 
extended-attribute type. These types are sorted in ascending order in the Type 
drop-down box. The end of the table is marked by a null pointer. To specify an empty 
table, the application sets this field to NULL, or it specifies a table containing only a null 
pointer. 

pszlDrive (PSZ) 
The initial drive. 

This field contains a pointer to a string that specifies the initial drive applied to the initial 
dialog screen. This drive is not required to be in papszlDriveUst. 

Chapter 10. File Dialog Controls 1 0-13 



papszlDriveList (PAPSZ) 
Pointer to a table of pointers to drives. 

Each pointer in the table points to a null-terminated string, and each string is a valid 
drive or network identifier. These drives and network IDs will be sorted in ascending 
order in the Drive drop-down box. The end of the table is marked by a null pointer. To 
specify an empty table, the application sets this field to NULL, or it specifies a table 
containing only a null pointer. 

hMod (HMODULE) 
Module for custom dialog resources. 

If FDS_CUSTOM is set, this is the HMODULE from which the custom file dialog 
template is loaded. NULLHANDLE causes the dialog resource to be pulled from the 
module of the current EXE. 

szFuIiFile[CCHMAXPATH] (CHAR) 
Character array. 

An array of characters where CCHMAXPATH is a system-defined constant. On 
initialization, this field contains the initial fully-qualified path and file name. On 
completion, this field contains the selected fully-qualified path and file name. The simple 
file name can be replaced with a string filter, such as *.DAT. When the dialog is 
invoked, all drive and path information is stripped from the entry and moved to the 
corresponding fields in the dialog. 

When a file name is specified, the Files list box is scrolled to the matching file name. 
When there is no exact match, the closest match is used. 

When a string filter is specified, the dialog is initially refreshed using the results of this 
filter intersected with the results of pszlType. After the dialog is initially shown, the string 
filter remains in the file name field until a file is selected, or the user overtypes the value. 

When a file is selected, szFuliFile is returned to the calling application and is set to the 
selected fully-qualified file name. 

When more than one file is selected in a multiple file selection dialog, only the topmost 
selected file name is returned in this field. 

papszFQFilename (PAPSZ) 
Pointer to a table of pointers to fully-qualified file names. 

Returned to multiple file selection dialogs when the user selects one or more files from 
the list box. If the user types the file name in the file name entry field, the file name will 
be in szFuliFile and this pointer will be NULL. When one or more selections are made, 
the count of items in this array will be.returned in ulFQFCount. 

This table of pointers is storage allocated by the file dialog. When the application 
completes opening or saving all of the files specified, the application must call 
WinFreeFileDlgList to free the storage allocated by the file dialog. 

10-14 PM Advanced Programming Guide 



ulFQFCount (ULONG) 
Number of file names. 

Number of file names selected in the dialog. In a single file selection dialog, this value 
is 1. In a multiple file selection dialog, this value will be the number of files selected by 
the user. 

usDlglD (USHORT) 
Custom dialog 10. 

The 10 of the dialog window. When FOS_CUSTOM is set, this field contains the 10 of 
the resource containing the custom dialog template. 

x (SHORT) 
X-axis dialog position. 

This, along with y and hwndP, is used to position the dialog. It is updated in the 
structure if the user moves the dialog to a new position. If the FILEDLG structure is 
reused, the dialog appears in the position at which it was left each time it is invoked. 
The FOS _CENTER flag overrides this position and automatically centers the dialog in its 
parent. 

Y (SHORT) 
Y-axis dialog position. 

This, along with x and hwndP, is used to position the dialog. It is updated in the 
structure if the user moves the dialog to a new position. If the FILEDLG structure is 
reused, the dialog appears in the position at which it was left each time it is invoked. 
The FOS _CENTER flag overrides this position and automatically centers the dialog in its 
parent. 

sEAType (SHORT) 
Selected extended-attribute type. 

Returns a selected extended-attribute type to assign to the file name returned in 
szFuliFile. This field is a zero-based offset into the papszlTypeUst and is returned only 
when the Save As dialog is used. A -1 value is returned when the Open dialog is used. 

Chapter 10. File Dialog Controls 1 0-15 



Summary 
Following are tables that describe the OS/2 functions, window messages, data structure, and 
minimum set of standard controls in file dialog controls: 

Table 10-1. File Dialog Control Functions 

Function Name Description 

WinDefFileDlgProc The default dialog procedure for the file dialog. 

WinFileDlg Creates and displays the file dialog and returns the user's 
selections. 

WinFreeFileDlgList Frees the storage allocated by the file dialog when the 
FDS_MULTIPLESEL dialog flag is set. 

Table 10-2. File Dialog Control Window Messages 

Message Name Description 

FDM_ERROR Sent before the file dialog displays a message notifying the 
user of an error. 

FDM_FILTER Sent before a file that meets the current filter criteria is added 
to the File list box. 

FDM_VALIDATE Sent when the user selects a file and presses the Enter key 
or clicks on the OK push button, or when the user 
double-clicks on a file name in the File list box. 

Table 10-3. File Dialog Control Data Structure 

Data Structure Name Description 

FILEDLG File-dialog data structure. 

1 0-16 PM Advanced Programming Guide 



Table 10-4 (Page 1 of 2). File Dialog Standard Controls 

Standard Control Name ID Class/Style Remarks 

DID_APPLY _PB 268 WC_BUTTON, Button contral. 
BS_PUSHBUTTON I Used to apply selection 
WS_VISIBLE for a modeless dialog. 

DID_CANCEL_PB DID_CANCEL WC_BUTTON, Button control. 
BS_PUSHBUTTON I Used as a Cancel push button. 
WS_VISIBLE 

DID_DIRECTORY_LB 264 . WC_LlSTBOX, List-box control. 
LS _HORZSCROLL I Used to display and select the 
LS_OWNERDRAW I directories on the system. 
WS_TABSTOP I 
WS_VISIBLE 

DID_DIRECTORY _ TXT 263 WC_STATIC, Static-text control. 
DT_LEFT I Label for the Directory list box. 
DT_TOP I 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_DRIVE_CB 260 WC_COMBOBOX, Combination-box control. 
CBS_DROPDOWNLIST I Used to display and select 
WS_TABSTOP I drive names. 
WS_VISIBLE 

DID_DRIVE_TXT 259 WC_STATIC, Static-text contral. 
DT_LEFT I Label for the Drive field. 
DT_TOP I 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID _FILE_DIALOG 256 DIALOG, Dialog contrallD. 
FS_DLGBORDER I 
FS _ NOBYTEALIGN I 
WS _ CLiPSIBLINGS I 
WS_SAVEBITS, 
FCF _DLGBORDER I 
FCF _SYSMENU I 
FCF _ TITLEBAR 

DID _FILENAME_ED 258 WC _ENTRYFIELD, Static entry field. 
ES_AUTOSCROLLBAR I Fully-qualified file name entry 
ES_LEFT I field for parsing or selecting. 
ES_MARGIN I 
WS_TABSTOP I 
WS_VISIBLE 

Chapter 10. File Dialog Controls 1 0-17 



Table 10-4 (Page 2 of 2). File Dialog Standard Controls 

Standard Control Name 10 Class/Style Remarks 

DID_FILENAME_TXT 257 WC_STATIC, Static-text control. 
DT_LEFT I Label for the File Name field. 
DT_TOP I 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_FILES_LB 266 WC_LlSTBOX, List-box control. 
LS _HORZSCROLL I Used to display and 
WS_TABSTOP I select the files in a directory. 
WS_VISIBLE 

DID_FILES_TXT 265 WC_STATIC, Static-text control. 
DT_LEFT I Label for the Files list box. 
DT_TOP I 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID _FIL TER_ CB 262 WC COMBOBOX, Combination-box control. 
CBS_DROPDOWNLIST I Used to display and select 
WS_TABSTOP I extended-attribute type filters. 
WS_VISIBLE 

DID_FILTER_TXT 261 WC_STATIC, Static-text control. 
DT_LEFT I Label for the Type field. 
DT_TOP I 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_HELP _PB 267 WC_BUTTON, Button control. 
BS_HELP I Used to request help from 
BS_NOPOINTERFOCUS I the application. 
BS_PUSHBUTTON I 
WS_VISIBLE 

DID_OK_PB DID_OK WC_BUTTON, Button control. 
BS_DEFAULT I Used as an OK push button. 
BS_PUSHBUTTON I 
WS_GROUP I 
WS_TABSTOP I 
WS_VISIBLE 

10-18 PM Advanced Programming Guide 



Chapter 11. Font Dialog Controls 

Font dialog controls provide basic functions that give users the ability to display and select 
from a list of: 

• Font family names installed on the system 
• Available styles for each font 
• Available sizes for each font 
• Emphasis styles available for each font. 

Users can view their selections, using a sample character string in a preview area, and 
interact with a modal or modeless font dialog. This chapter explains how font dialog controls 
can be extended to meet the requirements of PM applications. 

About Font Dialog Controls 
In the font dialog control, family face is defined as the name of the typeface. Figure 11-1 
shows an example of a font dialog. 

Figure 11-1. Font Dialog Example 

Courier, Times New Roman**, and Helvetica** are examples of commonly used family faces. 
Type styles include normal, bold, italic, and bold italic. Size is the point size, or vertical 
measurement, of the type. Font emphasis styles include outline, underline, and strikeout. 

Customizing the Font Dialog 
You can create a font dialog by customizing the font dialog control, using the standard 
controls and adding any controls of your own design. Specify a standard control by including 
a control of the same class, ID, and style as in the font dialog. 

© Copyright IBM Corp. 1994 11-1 



The minimum set of controls required for the font dialog are: 

• DID_CANCEL_BUTTON 
• DID_DISPLAY_FILTER 
• DID NAME 
• DID_OK_BUTTON 
• DID OUTLINE 
• DID PRINTER FILTER - -
• DID_SAMPLE 
• DID SIZE 
• DID_STRIKEOUT 
• DID_STYLE 
• DID_UNDERSCORE 

The complete set of standard controls is included in "Summary" on page 11-25. 

Even if your dialog does not use all of the required controls, you must include them. You 
can make the unused controls invisible so that your application users are not confused. 

Using Font Dialog Controls 
This section describes how to create a font dialog. 

Creating a Font Dialog 
To present a font dialog to users, your application must do the following: 

1. Allocate storage for a FONTDLG data structure and set all fields to NULL. 

2. Initialize the fields in the FONTDLG data structure. 

The application must do the following: 

a. Set the cbSize field to the size of the data structure. 

b. Set either the hpsScreen or the hpsPrinter presentation space field, or both. You 
must have a valid presentation space from which to query fonts. 

c. Pass the pointer to a buffer in which to return the family name selected 
(pszFamilyname) and the size of the buffer (usFamilyBufLen). If the application 
requires a default font, pass the family name of the font in this buffer. 

The application can choose to set the following: 

a. An application-specific title. Pass the pointer to a null-terminated string in the 
pszTitle field. 

b. An application-specific preview string._ Pass the pointer to a null-terminated string in 
the pszPreview field. 

c. Application-specific available font sizes for outline fonts. Pass the pointer to a 
null-terminated string containing point sizes, separated by spaces in the 
pszPtSizeList field. 

11-2 PM Advanced Programming Guide 



d. A custom dialog procedure to provide application-specific function. Pass the pointer 
to a window procedure in the pfnDlgProc field. 

e. Set the appropriate FNTS_* flags in the fl field to customize the dialog style. 

f. Set the FNTF _NOVIEWPRINTERFONTS or FNTF _NOVIEWSCREENFONTS flags 
to customize the dialog style when working with printer fonts in the flFlags field. 
These filter flags should be initialized only when both the hpsScreen and the 
hpsPrinter presentation space fields are non-NULL. 

g. Pass the initial position of the dialog in the x and y fields. 

3. Initialize the FONTDLG data structure with any values that users should see when they 
invoke the dialog for the first time. For example, you can: 

a. Pass the characteristics of the default font in the us Weight, us Width , flType, and 
sNominalPointSize fields. 

b. Pass any display options of the default font in the flStyle field. 

c. Pass the color options for displaying the font sample in the clrFore and clrBack 
fields. 

4. Invoke the font dialog. Call WinFontDlg and pass the dialog's parent window handle, 
owner window handle, and a pointer to the initialized FONTDLG data structure. 

5. Check the return value from WinFontDlg. If it is successful, the selected font can be 
used by the application. The information returned in the fAttrs field of the FONTDLG 
data structure is used. 

Graphical User Interface Support for Font Dialog Controls 
This section contains information about the graphical user interface support. 

Name Field 
The Name field is a drop-down list that displays a font family name. When the font dialog is 
invoked, the value displayed in this field is either an application-supplied family name or the 
default system font. 

When users select a family name from the drop-down list, the Name field display is refreshed 
with the selected family name. The preview area is updated to show the sample character 
string in the selected family face, using the font style, size, and emphasis currently in effect. 

Style Field 
The Style field is a drop-down list that displays a font style. When the font dialog is invoked, 
the value displayed in this field is either an application-specified font style or the system 
default. 

When users select a font style from the drop-down list, the Style field display is refreshed 
with the selected style name. The preview area is updated to show the sample character 
string in the selected font style, using the family name, size, and emphasis currently in effect. 

Chapter 11. Font Dialog .Controls 11-3 



Size Field 
The Size field is a drop-down combination box that displays available font sizes. Users can 
display and select from a list of available sizes for a font, or they can type a font size directly 
into the entry field. 

When users select a font size from the drop-down list, the Size field display is refreshed with 
the selected size. The preview area is updated to show the character string in the selected 
font size, using the family name, font style, and emphasis currently in effect. 

The font sizes included in the drop-down list are dependent on the character definition of the 
font. For image or raster fonts, all available sizes are listed. For outline fonts, the default 
sizes are 8, 10, 12, 14, 18, and 24 points. If required, the application can specify the 
available sizes for outline fonts. 

When users type a font size in the entry field, the preview area is updated immediately. The 
Size field will accept a fixed point number, such as 24.25, with up to four places saved after 
the decimal. 

Emphasis Group Box 
The Emphasis group box is a multiple-selection field that contains a list of emphasis styles 
(Outline, Underline, Strikeout) available for each font. 

When users select an emphasis style, the preview area is updated immediately. The Outline 
selection is not available for image fonts. 

Preview Area 
The Preview area enables users to view their font family, style, size and emphasis selections 
as they make them. It contains a sample character string that is defined by the application. 
The default character string is abcdABCD. The Preview area displays font sizes as large as 
48 points. As the size of the font increases, the sample displayed is clipped by the borders 
of the area. 

Filter Check Box 
The Filter check box enables users to limit the font family name drop-down list to select from 
fonts that are displayable only, printable only, or a merged list. The initial setting of the Filter 
check box is specified by the application. 

Standard Push Button and Default Action 
The dialog can be dismissed with either the OK or Cancel push buttons. 

Subclassing the Default Font Dialog Procedure 
The name of the dialog procedure is assigned to the pfnDlgProc field of the FONTDLG data 
structure. 

11-4 PM Advanced Programming Guide 



Related Functions 
This section covers the functions that are related to font dialog controls. 

WinDefFontDlgProc 
This function is the default dialog procedure for the font dialog. 

Syntax 

#define INCL_winstdfont 

#include <os2.h> 

MRESULT WinDefFontDlgProc (HWND hwnd, ULONG msg, MPARAM mp1, 
MPARAM mp2) 

Parameters 
hwnd (HWND) - input 

Dialog-window handle. 

msg (ULONG) - input 
Message identity. 

mp1 (MPARAM) - input 
Parameter ·1 . 

mp2 (MPARAM) - input 
Parameter 2. 

Returns 
mresReply (MRESUL T) - returns 

Message-return data. 

WinFontDlg 
This dialog allows the user to select a font. 

Syntax 

#define INCL_winstdfont 

#include <os2.h> 

HWND WinFontDlg (HWND hwndP, HWND hwndO, PFONTDLG pfntd) 

Chapter 11. Font Dialog Controls 11-5 



Parameters 
hwndP (HWND) - input 

Parent-window handle. 

HWND_DESKTOP The desktop window. 
Other Specified window. 

hwndO (HWND) - input 
Requested owner-window handle. 

pfntd (PFONTDLG) - input 
Pointer to an initialized FONTDLG structure. 

Returns 
hwnd (HWND) - returns 

Font dialog window handle. 

11-6 PM Advanced Programming Guide 



Related Window Messages 
This section covers the window messages that are related to font dialog controls. 

FNTM_FACENAMECHANGED 
This message notifies the subclassing application whenever the font family name is changed 
by the user. 

Parameters 
param1 

pFamilyname (PSZ) 
Pointer to the currently-selected face name. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

FNTM_FILTERLIST 
This message is sent whenever the Font Dialog is preparing to add a font family name, font 
style type, or pOint size entry to the combination box fields that contain these parameters. 

Parameters 
param1 

pFontname (PSZ) 
Pointer to the text string that is being added to the combination box. 

Chapter 11. Font Dialog Controls 11-7 



param2 

usFieldld (USHORT) 
Field identifier. 

The identifier of the field to which the text string is being added. The identifier can 
be one of the following: 

FNTI FAMll YNAME 

FNTI_STYlENAME 

FNTI_POINTSIZE 

usFontType (USHORT) 
Font information. 

The text string is an addition to the family name 
combination box. 

The text string is an addition to the style 
combination box. 

The text string is an addition to the size 
combination box. 

The family name, style, or point size that is being added to the combination box. 
Use one of the following to identify the font information that is being added: 

FNTLBITMAPFONT 

FNTI_ VECTORFONT 

FNTI_SYNTHESIZED 

FNTI_FIXEDWIDTHFONT 

FNTLPROPORTIONAlFONT 

FNTI_DEFAUl TUST 

Returns 
rc (BOOl) 

Filter indicator. 

A bit-map font is being added or a point size of a 
bit-map font is being added. 

A vector font is being added. 

A synthesized font is being added. This value is 
valid for the style field only. 

A fixed width (monospace) font is being added. 

A proportionally spaced font is being added. 

A point size from the defaultlist (or the 
application-supplied list) is being added. 

TRUE 
FALSE 

Add the text string to the combination box. 
Do not add the text string to the combination box. 

11-8 PM Advanced Programming Guide 



FNTM_POINTSIZECHANGED 
This message notifies subclassing applications when the point size of the font is changed by 
the user. 

Parameters 
param1 

pPointSize (PSZ) 
Pointer to the text in the point-size entry field. 

param2 

fxPointSize (FIXED) 
Point size. 

The fxPointSize field in FONTDLG stated in fixed-point notation. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

FNTM_STVLECHANGED 
This message notifies subclassing applications when the user changes any of the attributes 
in the STYLECHANGE structure. 

Parameters 
param1 

stye (STYLECHANGE) 
Style changes. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

Chapter 11. Font Dialog Controls 11-9 



FNTM_UPDATEPREVIEW 
This message notifies subclassing applications before the preview window is updated. This 
occurs when the font selection is modified. 

Parameters 
param1 

hwndPreview (HWNO) 
Window handle. 

Window handle the preview image is drawn into. This is a static text field. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

11-10 PM Advanced Programming Guide 



Related Notification Message 
This section covers the notification message that is related to font dialog controls. 

WM_DRAWITEM {in Font Dialog} 
If the FNTS_OWNERDRAWPREVIEW style is set for a font dialog, this notification message 
is sent to that dialog's owner whenever the preview window area (sample text) is to be 
drawn. 

Parameters 
param1 

id (USHORT) 
Window identifier. 

The window 10 of the sample area (DID_SAMPLE). 

param2 

pOwnerltem (POWNERITEM) 
Pointer to an OWNERITEM data structure. 

The following list defines the OWNERITEM data structure fields as they apply to the 
font dialog. See "OWNERITEM" on page 8-111 for the default field values. 

hwnd (HWND) 
Window handle of the sample area. 

hps (HPS) 
Presentation-space handle. 

fsState (ULONG) 
Reserved. 

fsAttribute (ULONG) 
Reserved. 

fsStateOld (ULONG) 
Reserved. 

fsAttributeOld (ULONG) 
Reserved. 

rc/ltem (RECTL) 
Item rectangle to be drawn in window coordinates. 

idltem (LONG) 
. Reserved. 

hltem (CNRDRAWITEMINFO) 
Reserved. 

Chapter 11. Font Dialog Controls 11-11 



Returns 
rc (BOOl) 

Item-drawn indicator. 

TRUE 
FALSE 

The owner draws the item. 
If the owner does not draw the item, the owner returns this value and the font 
dialog draws the item. 

11-12 PM Advanced Programming Guide 



Related Data Structures 
This section covers the data structures that are related to font dialog controls. 

FACENAMEDESC 
Face-name description structure. See GpiQueryFaceString. 

Syntax 

typedef struct JACENAMEDESC { 
USHORT usS.i Zej 

USHORT usWeightClass; 
USHORT usWidthClassi 
USHORT usReserved;' 
ULONG flOptions; 
) FACENAMEDESC; 

typedef.FACENAMEDESC *PFACENAMEDESC; 

Fields 
usSize (USHORT) 

Length of structure. 

usWeightClass (USHORT) 
Weight class. 

Indicates the visual weight (thickness of strokes) of the characters in the font: 

FWEIGHT DONT CARE - -
FWEIGHT _ULTRA_LIGHT 
FWEIGHT _EXTRA_LIGHT 
FWEIGHT LIGHT 
FWEIGHT SEMI LIGHT - -
FWEIGHT NORMAL 
FWEIGHT SEMI BOLD - -
FWEIGHT BOLD 
FWEIGHT _EXTRA_BOLD 
FWEIGHT _ UL TRA_ BOLD 

usWidthClass (USHORT) 
Width class. 

Any font weight satisfies the request. 
Ultra-light. 
Extra-light. 
Light. 
Semi-light. 
Medium (normal) weight. 
Semi-bold. 
Bold. 
Extra-bold. 
Ultra-bold. 

Indicates the relative aspect ratio of the characters of the font in relation to the normal 
aspect ratio for this type of font: 

FWIDTH_DONT _CARE 
FWIDTH_ULTRA_CONDENSED 
FWIDTH_EXTRA_ CONDENSED 
FWIDTH_ CONDENSED 

Any font width satisfies the request. 
Ultra-condensed (50% of normal). 
Extra-condensed (62.5% of normal). 
Condensed (75% of normal). 

Chapter 11. Font Dialog Controls 11-13 



FWIDTH_SEMI_CONDENSED 
FWIDTH_NORMAL 
FWIDTH_SEMI_EXPANDED 
FWIDTH EXPANDED 
FWIDTH EXTRA EXPANDED - -
FWIDTH_ULTRA_EXPANDED 

us Reserved (USHORT) 
Reserved. 

flOptions (ULONG) 
Other characteristics of the font. 

Semi-condensed (87.5% of normal). 
Medium (normal): 
Semi-expanded (112.5% of normal). 
Expanded (125% of normal). 
Extra-expanded (150% of normal). 
Ultra-expanded (200% of normal). 

FTYPEJTALIC Italic font required. If not specified, non-italic font 
required. 

FTYPE_ITALlC_DONT_CARE Italic and non-italic fonts can satisfy the request. If 
this option is specified, FTYPEJTALIC is ignored. 

FTYPE_OBLIQUE Oblique font required. If not specified, non-oblique 
font required. 

FTYPE_OBLlQUE_DONT_CARE Oblique and non-oblique fonts can satisfy the 
request. If this option is specified, 
FTYPE_OBLIQUE is ignored. 

FTYPE ROUNDED Rounded font required. If not specified, 
non-rounded font required. 

FTYPE_ROUNDED_DONT_CARE Rounded and non-rounded fonts can satisfy the 
request. If this option is specified, 
FTYPE_ROUNDED is ignored. 

FATTRS 
Font-attributes structure. 

Syntax 

11-14 PM Advanced Programming Guide 



Fields 
usRecordLength (USHORT) 

Length of record. 

fsSelection (USHORT) 
Selection indicators. 

Flags causing the following features to be simulated by the system. 

Note: If an italic flag is applied to a font that is itself defined as italic, the font is slanted 
further by italic simulation. 

Underscore or strikeout lines are drawn using the appropriate attributes (for 
example, color) from the character bundle (see the CHARBUNDLE datatype), not 
the line bundle (see LlNEBUNDLE). The width of the line, and the vertical 
position of the line in font space, are determined by the font. Horizontally, the 
line starts from a point in font space directly above or below the start point of 
each character, and extends to a point directly above or below the escapement 
point for that character. 

For this purpose, the start and escapement points are those applicable to 
left-to-right or right-to-Ieft character directions (see GpiSetCharDirection in GPI), 
even if the string is currently being drawn in a top-to-bottom or bottom-to-top 
direction. 

For left-to-right or right-to-Ieft directions, any white space generated by the 
character extra and character break extra attributes (see GpiSetCharExtra and 
GpiSetCharBreakExtra in GPI), as well as increments provided by the vector of 
increments on GpiCharStringPos and GpiCharStringPosAt, are also 
underlined/overstruck, so that in these cases the line is continuous for the string. 

FATTR_SELJTALIC 
FATTR_SEL_UNDERSCORE 
FATTR_SEL_BOLD 

FATTR_SEL_STRIKEOUT 
FATTR_SEL_OUTLINE 

IMat9h (LONG) 
Matched-font identity. 

szFacename[FACESIZE] (CHAR) 
Typeface name. 

Generate italic font. 
Generate underscored font. 
Generate bold font. (Note that the resulting characters 
are wider than those in the original font.) 
Generate font with 8'o'eFs~FI:l81( characters. 
Use an outline font with hollow characters. If this flag is 
not set, outline font characters are filled. Setting this 
flag normally gives better performance, and for 
suffiCiently small characters (depending on device 
resolution) there may be little visual difference. 

The typeface name of the font, for example, Tms Rmn. 

idRegistry (USHORT) 
Registry identifier. 

Font registry identifier (zero if unknown). 

Chapter 11. Font Dialog Controls 11-15 



usCodePage (USHORT) 
Code page. 

If zero, the current Gpi code page (see GpiSetCp in GPI) is used. A subsequent 
GpiSetCp function changes the code page used for this logical font. 

IMaxBaselineExt (LONG) 
Maximum baseline extension. 

For raster fonts, this should be the height of the required font, in world coordinates. 

For outline fonts, this should be zero. 

IAveCharWidth (LONG) 
Average character width. 

For raster fonts, this should be the width of the required font, in world coordinates. 

For outline fonts, this should be zero. 

fsType (USHORT) 
Type indicators. 

FATIR_ TYPE_KERNING 
FATIR_ TYPE_MBCS 

FATIR_TYPE_DBCS 
FATIR_ TYPE~NTIALIASED 

fsFontUse (USHORT) 
Font-use indicators. 

Enable kerning (PostScript** only). 
Font for mixed single- and double-byte code 
pages. 
Font for double-byte code. pages. 
Antialiased font required. Only valid if 
supported by the device driver. 

These flags indicate how the font is to be used. They affect presentation speed and font 
quality. 

FATIR_FONTUSE_NOMIX Text is not mixed with graphics and can be 
written without regard to any interaction with 
graphics objects. 

FATIR_FONTUSE_OUTLINE Select an outline (vector) font. The font 
characters can be used as part of a path 
definition. If this flag is not set, an outline 
font might or might not be selected. If an 
outline font is selected, however, character 
widths are rounded to an integral number of 
&pel,s. 

FATIR_FONTUSE_TRANSFORMABLE Characters can be transformed (for example, 
scaled, rotated, or sheared). 

11-16 PM Advanced Programming Guide 



FONTDLG 
Font-dialog structure. 

Syntax 

typedef struct _FONTDLG { 
ULONG 
HPS 
HPS 
PSZ 
PSZ 
PSZ 
PFNWP 
PSZ 
FIXED 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
LONG 
LONG 
ULONG 
LONG 
LONG 
LONG 
LONG 
LONG 
HMODULE 
FATTRS 
SHORT 
USHORT 
USHORT 
SHORT 
SHORT 
USHORT 
USHORT 
USHORT 

1. FONTDLG; ; 

cbSize; 
hpsScreen; 
hpsPrinter; 
pszTitle; 
pszPreview; 
pszPtSi zeLi st; 
pfnDlgProc; 
pszFamilyname; 
fxPointSize; 
fl; 
flFlags; 
flType; 
flTypeMask; 
flStyle; 
flStyleMask; 
cl rFpre; 
clrBack; 
ulUser; 
lReturn; 
lSRC; 
l~mHeight; 
lXHeight; 
1 ExternalLeading; 
hMod; 
fAttrs; 
sNominalPointSize; 
usWeight; 
usWidth; 
x; 
y; 
usDlgld; 
usFamilyBufLen; 
usReserved; 

typedef '. FONTDLG*PFONTDLG; 

Fields 
cbSize (ULONG) 

Structure size. 

This field allows for future expansion of the structure, and must be initialized with the 
size of the FONTDLG structure. 

Chapter 11. Font Dialog Controls 11-17 



hpsScreen (HPS) 
Screen presentation space. 

If not NULLHANDLE, the screen presentation space from which screen fonts are 
queried. 

hpsPrinter (HPS) 
Printer presentation space. 

If not NULLHANDLE, the printer presentation space from which printer font are queried. 

pszTitle (PSZ) 
Dialog title string. 

Application-provided dialog title. If NULL, it defaults to "Font." 

pszPreview (PSZ) 
Font-preview window string. 

String to show in font-preview window. If NULL, it defaults to "abcdABCD." 

Note: Care is necessary when choosing the string to put in this field. Using many 
different characters causes excess memory to be used by the font cache. 

pszPtSizeList (PSZ) 
Application-provided point size list. 

String which contains a list of point sizes to be used as the default list for outline fonts in 
the point-size drop-down area. Point sizes are separated by spaces. If NULL, the point 
size drop down defaults to 8, 10, 12, 14, 18, and 24. 

pfnDlgProc (PFNWP) 
Custom dialog procedure. 

NULL unless the caller is subclassing the font dialog. When non-NULL, it points to the 
dialog procedure of the application. 

pszFamilyname (PSZ) 
Family name buffer. 

Buffer provided by the application for passing the family name of the font. The font 
family name used by the application to select a font. When the first character in this 
string is NULL, no family name was initially selected, and the dialog defaults to the 
system font. 

A buffer must be passed to the font dialog to allow the dialog to return the selected font 
family name. The size of this buffer is placed in the usFamilyBufLen field. 

fxPointSize (FIXED) 
Point size of the font. 

, 
If FNTS_OWNERDRAWPREVIEW is set, 0 means the user wants to leave the font size 
unchanged and the application must update the. preview area. 

11-18 PM Advanced Programming Guide 



fl (ULONG) 
FNTS _ * flags. 

FNTS_APPLYBUTTON 

FNTS _ BITMAPONL Y 

FNTS_CENTER 

FNTS _CUSTOM 

FNTS_FIXEDWIDTHONL Y 

FNTS_HELPBUTTON 

FNTS INITFROMFATTRS 

FNTS _ MODELESS 

FNTS _ NOSYNTHESIZEDFONTS 
FNTS _ OWNERDRAWPREVIEW 

FNTS PROPORTIONALONL Y 

FNTS_RESETBUTTON 

FNTS_ VECTORONLY 

An Apply push button is added to the dialog. This 
is useful in a modeless dialog. 
The dialog presents bit-map fonts only. An 
application that changes fonts by using the 
presentation parameters (PP _* values) could use 
this flag. 
The dialog is positioned in the center of its parent 
window, overriding any specified x,y position. 
A custom dialog template is used to create the 
dialog. The hMod and usDfgfd fields must be 
initialized. 
The dialog presents fixed-width (monospace) fonts 
only. 
A Help push button of style 
(BS_HELPIBS_NOPOINTERFOCUS) with an ID of 
DID_HELP _BUTTON is added to the dialog. If the 
push button is pressed, a WM_HELP message is 
sent to the hwndO parameter of the WinFontDlg 
function call. 
The dialog initializes itself from the font attribute 
structure (FATTRS) that is passed. 
The dialog is modeless; WinFontDlg returns 
immediately after creating the dialog window and 
returns the window handle to the application. The 
application should treat the dialog as if it were 
created with WinLoadDlg. As in the modal (default) 
dialog case, the return value is found in the fRetum 
field of the FONTDLG structure passed to 
WinFontDlg. 
The dialog does not synthesize any fonts. 
This flag makes the check boxes in the font dialog 
three-state check boxes, enabling the user to leave 
certain style attributes unchanged. Additionally, a 
WM_DRAWITEM message will be sent to the 
owner, providing the owner an opportunity to draw 
the preview window itself. 
The dialog presents proportionally spaced fonts 
only. 
A Reset push button is added to the dialog. When 
this push button is pressed, the values for the 
dialog are restored to their initial values. 
The dialog presents vector fonts only. 

Chapter 11. Font Dialog Controls 11-19 



flFlags (ULONG) 
FNTF _ * flags. 

FNTF _NOVIEWPRINTERFONTS 

FNTF _ NOVIEWSCREENFONTS 

This flag is initialized only when both hpsScreen 
and hpsPrinter are not NULLHANDLE. On input, 
this parameter determines whether the printer fonts 
are to be included in the font list box. The user 
controls this with a check box. 

This flag is initialized only when both hpsScreen 
and hpsPrinter are not NULLHANDLE. On input, 
this parameter determines whether the screen 
fonts should be included in the font list box. The 
user controls this with a check box. 

FNTF _PRINTERFONTSELECTED This determines if a printer-specific font is selected 
by the user. The application should make an 
approximation of this printer font when outputting 
to the screen. This is an output-only flag and is 
ignored on input. 

FNTF _SCREENFONTSELECTED This determines if a screen-specific font is selected 
by the user. The application should make an 
approximation of this screen font when outputting 
to the screen. This is an output-only flag and is 
ignored on input. 

flType (ULONG) 
The selected type bits. 

These flags specify what additional attributes the user specified for the font. This field is 
used as the flOptions field in the FACENAMEDESC structure for GpiQueryFaceString. 

flTypeMask (ULONG) 
Mask of type bits to use. 

This field is used only if FNTS_OWNERDRAWPREVIEW is specified. It tells which flags 
of the flTypeMask field the user wants to change, and is relevant only if the text for 
which the font is selected has different faces and styles. 

flStyle (ULONG) 
Selected style bits. 

Flags for any additional selections the user specified for the font. This field is used as 
the fsSelection field in the FATTRS structure passed to GpiCreateLogFont. 

flStyleMask (ULONG) 
Mask of style bits to use. 

This field is used only if FNTS_OWNERDRAWPREVIEW is specified. It tells which flags 
of the flStyle field the user wants to change and is relevant only if the text for which the 
font is selected has different faces and styles. 

11-20 PM Advanced Programming Guide 



clrFore (LONG) 
Font foreground color. 

Foreground color of the font. This color is a value used for the color mode that 
hpsScreen is in. If FNTS_OWNERDRAWPREVIEW is specified, this value can be 
CLR_NOINDEX, leaving the foreground color "as is." 

clrBack (LONG) 
Font background color. 

Background color of the font. This color is a value used for the color mode that 
hpsScreen is in. If FNTS_OWNERDRAWPREVIEW is specified, this value can be 
CLR_NOINDEX leaving the background color "as is." 

ulUser (ULONG) 
Application-defined. 

A ULONG that an application uses to store its state information when it is subclassing 
the font dialog. 

IReturn (LONG) 
Return value. 

Return value from WinFontDlg. This value is the ID of the push button pressed to 
dismiss the dialog, DID_OK or DID_CANCEL, unless the application supplied additional 
push buttons in its template. 

ISRC (LONG) 
System return code. 

This field contains an FNTS_ERR return code. When a dialog fails, this field is used to 
tell the application the reason for the failure. 

IEmHeight (LONG) 
Em height. 

The Em height of the current font. This is the same as in the FONTMETRICS structure. 
It is an output-only parameter and its value has no effect on the behavior of the font 
dialog, but is updated when the user dismisses the dialog. 

IXHeight (LONG) 
X height. 

The x height of the current font. This is the same as in the FONTMETRICS structure. It 
is an output-only parameter and its value has no effect on the behavior of the font 
dialog, but is updated when the user dismisses the dialog. 

IExternalLeading (LONG) 
External leading. 

The external leading of the font. This is the same as in the FONTMETRICS structure. It 
is an output-:-only parameter and its value has no effect on the behavior of the font 
dialog, but is updated when the user dismisses the dialog. 

Chapter 11. Font Dialog Controls 11-21 



hMod (HMODULE) 
Module for custom dialog resources. 

If FNTS_CUSTOM is set, this is the HMODULE from which the custom font dialog 
template is loaded. NULLHANDLE causes the dialog resource to be pulled from the 
module of the current EXE. 

fAttrs (FATTRS) 
Font-attribute structure. 

Font-attribute structure of selected font. The FATTRS for the selected font. This is 
output-only for all fields except usCodePage, which is input/output, and the initial code 
page value passed is used for font selection. The value returned is the one for the 
matching font. 

sNominalPointSize (SHORT) 
Font point size. 

The nominal point size of the font. This is the same as in the FONTMETRICS structure. 
It is an output-only parameter and its value has no effect on the behavior of the font 
dialog, but is updated when the user dismisses the dialog. 

usWeight (USHORT) 
Font weight. 

The weight of the font. This is the weight-class/boldness the user selects for the font. 
This field is used as the usWeightClass field in the FACENAMEDESC structure for 
GpiQueryFaceString. When FNTS_OWNERDRAWPREVIEW is set, 0 causes the 
application to leave the font weight "as is" and the application must update the preview 
area. 

usWidth (USHORT) 
Font width. 

The width of the font. This is the width-class the user selects for the font. This field is 
used as the usWidthClass field in the FACENAMEDESC structure for 
GpiQueryFaceString. When FNTS_OWNERDRAWPREVIEW is set, 0 causes the 
application to leave the font width "as is" and the application must update the preview 
area. 

x (SHORT) 
The x-axis dialog pOSition. 

This, along with y and hwndP, is used to position the dialog. It is updated in the 
structure if the user moves the dialog to a new position. This way, the dialog appears in 
the position at which it was left each time it is invoked. The FNTS _CENTER flag 
overrides this position and automatically centers the dialog in its parent. 

Y (SHORT) 
The y-axis dialog position. 

This, along with x and hwndP, is used to position the dialog. It is updated in the 
structure if the user moves the dialog to a new pOSition. This way, the dialog appears in 
the pOSition at which it was left each time it is invoked. The FNTS _CENTER flag 
overrides this position and automatically centers the dialog in its parent. 

11-22 PM Advanced Programming Guide 



usDlgld (USHORT) 
Dialog ID. 

This sets the ID of the dialog window. If FNTS_CUSTOM is set, this is the ID of the 
resource that contains the custom dialog template. 

usFamilyBufLen (USHORT) 
Buffersize. 

Size of the buffer passed in the pszFamilyname resource that contains the custom 
dialog template. 

usReserved (USHORT) 
Reserved. 

This is a reserved field. 

STVLECHANGE 
Style-change structure. This structure is returned by the FNTM_STYLECHANGED message. 

All "old" fields describe the style attributes before the user made a change. The other, or 
"new", parameters describe the style that will be in effect after this is passed to 
WinDefFontDlgProc. When the "old" and "new" values are the same, the user made no 
change. 

For further details of the parameters, see FONTDLG. 

Syntax 

typedefst ruct.;;. STYLEC~ANGE 
USHORTusWeight; 

. USHO~T u$Weightpld; 
US HORT usWidth; 
USHORT uSWiqthOld; 
HUONG . flType; 
ULONG flTyp~Old; .. 
(lLONG .... fl~ypeMask; .... 
UUONG ..flTypeMaskO 1d; 
ULONG· .. flSt¥l~; ....•.. 
ULON~ . flstyieOld; 
ULONG. ...... . .flStYTeM~$~; 
ULONG·· .. ·•·.·· :.~lStyJ·eMaskOld; 

l· .. STYLECHANGE;· 

: .t;p·~de·~· .• ·· •. ~+YLE~~~NGE··.~.P~+YLECHAN~E 

Chapter 11. Font Dialog Controls 11-23 



Fields 
usWeight (U8HORT) 

New weight of font. 

usWeightOld (U8HORT) 
Old weight of font. 

usWidth (U8HORT) 
New width of font. 

usWidthOld (U8HORT) 
Old width of font. 

flType (ULONG) 
New type of font. 

flTypeOld (ULONG) 
Old type of font. 

flTypeMask (ULONG) 
New type mask. 

flTypeMaskOld (ULONG) 
Old type mask. 

flStyle (ULONG) 
New selected style bits. 

flStyleOld (ULONG) 
Old selected style bits. 

flStyleMask (ULONG) 
New mask of style bits to use. 

flStyleMaskOld (ULONG) 
Old mask of style bits to use. 

11-24 PM Advanced Programming Guide 



Summary 
Following are tables that describe the OS/2 functions, window messages, notification 
message, data structures, and standard controls in font dialog controls: 

Table 11-1. Font Dialog Control Functions 

Function Name Description 

WinDefFontDlgProc The default dialog procedure for the font dialog. 

WinFontDlg Allows the user to select a font. 

Table 11-2. Font Dialog Control Window Messages 

Message Name Description 

FNTM_FACENAMECHANGED Notifies the subclassing application whenever the font family 
name is changed by the user. 

FNTM_FIL TERLIST Sent whenever the font dialog is preparing to add a font 
family name, font style type, or point size entry to the 
combination-box fields that contain these parameters. 

FNTM_POINTSIZECHANGED Notifies subclassing applications when the point size of the 
font is changed by the user. 

FNTM_STYLECHANGED Notifies subclassing applications when the user changes any 
of the attributes in the STYLECHANGE data structure. 

FNTM_UPDATEPREVIEW Notifies subclassing applications before the preview window is 
updated. 

Table 11-3. Font Dialog Control Notification Message 

Message Name Description 

WM_DRAWITEM Sent to the owner of the font dialog control each time an item 
is to be drawn. 

Table 11-4. Font Dialog Control Data Structures 

Data Structure Name Description 

FACENAMEDESC Face-name description data structure. 

FATTRS Font-attributes data structure. 

FONTDLG Font-dialog data structure. 

STYLECHANGE Style-change data structure returned by the 
FNTM _ STYLECHANGED message. 

Chapter 11. Font Dialog Controls 11-25 



Table 11-5 (Page 1 of 3). Font Dialog Standard Controls 

Standard Control Name 10 Class/Style Remarks 

DID_APPLY_BUTTON 311 WC_BUTTON, Button control provided 
BS_PUSHBUTTON I by the application. 
WS_VISIBLE Used as an Apply push 

button in modeless 
appl ications. 

DID_CANCEL_BUTTON DID_CANCEL WC_BUTTON, Button control. Used as 
BS_PUSHBUTTON I a Cancel push button. 
WS_VISIBLE 

DID _DISPLAY _FilTER 303 WC_BUTTON, Button control. Used to 
BS_AUTOCHECKBOX I filter the Font Name 
WS_GROUP I field. 
WS_TABSTOP I 
WS_VISIBLE 

DID_EMPHASIS _ GROUPBOX 317 WC_STATIC, Group box around the 
SS_GROUPBOX I emphasis check boxes. 
WS_GROUP I 
WS_VISIBLE 

DID _FONT_DIALOG 300 DIALOG, Dialog control 10. 
FCF _SYSMENU I 
FCF _ TITLE BAR I 
FS_BORDER I 
FS_DLGBORDER I 
FS_NOBYTEALIGN I 
WS_CLlPSIBLINGS I 
WS _ SAVEBITS 

DID_HELP _BUTTON 310 WC_BUTTON, Button control. Used to 
BS_HELP I request help from the 
BS _ NOPOINTERFOCUS I application. 
BS_PUSHBUTTON I 
WS_VISIBLE 

DID_NAME 301 WC_COMBOBOX, Combination-box 
CBS_DROPDOWNLIST I control. Used to display 
WS_TABSTOP I and select font family 
WS_VISIBLE names. 

DID _NAME_PREFIX 313 WC_STATIC, Static-text control. 
DT_LEFT I Label for the font Family 
DT_TOP I Name field. 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_OK_BUTTON DID_OK WC_BUTTON, Button control. Used as 
BS_DEFAULT I an OK push button. 
BS_PUSHBUTTON I 
WS_GROUP I 
WS_TABSTOP I 
WS_VISIBLE 

11-26 PM Advanced Programming Guide 



Table 11-5 (Page 2 of 3). Font Dialog Standard Controls 

Standard Control Name 10 Class/Style Remarks 

DID_OUTLINE 307 WC_BUTTON, Check-box control. 
BS_AUTOCHECKBOX I Used to select the 
WS_TABSTOP I outline emphasis of the 
WS_VISIBLE selected font. 

DID _PRINTER_FILTER 304 WC_BUTTON, Button control. Used to 
BS_AUTOCHECKBOX I filter the Font Name 
WS_TABSTOP I field. 
WS_VISIBLE 

DID_RESET_BUTTON 312 WC_BUTTON, Button control provided 
BS_PUSHBUTTON I by the application. 
WS_VISIBLE Used as a Reset push 

button. 

DID_SAMPLE 306 WC_STATIC, Static-text control. 
DT_CENTER I Used to display the 
DT_VCENTER I preview string in the 
SS_TEXT I selected font. 
WS_GROUP I 
WS_VISIBLE 

010_ SAMPLE_ GROUPBOX 316 WC_STATIC, Group box around a 
SS_GROUPBOX I sample field. 
WS_GROUP I 
WS_VISIBLE 

DID_SIZE 305 WC _ COMBOBOX Combination-box 
CBS _ DROPDOWN I control. Used to 
WS_TABSTOP I display, select, and 
WS_VISIBLE enter the type size of 

the selected font. 

DID_SIZE_PREFIX 315 WC_STATIC, Static-text control. 
DT_LEFT I Label for the font Type 
DT_TOP I Size field. 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_STRIKEOUT 309 WC_BUTTON, Check-box control. 
BS_AUTOCHECKBOX I Used to select strikeout 
WS_VISIBLE emphasis of the 

selected font. 

DID_STYLE 302 WC_COMBOBOX, Combination-box 
CBS_DROPDOWNLIST I control. Used to display 
WS_TABSTOP I and select font style 
WS_VISIBLE names. 

Chapter 11. Font Dialog Controls 11-27 



Table 11-5 (Page 3 of 3). Font Dialog Standard Controls 

Standard Control Name 10 Class/Style Remarks 

DID _STYLE_PREFIX 314 WC_STATIC, Static-text control. 
DT_LEFT I Label for the font Style 
DT_TOP I Name field. 
SS_TEXT I 
WS_GROUP I 
WS_VISIBLE 

DID_UNDERSCORE 308 WC_BUTTON, Check box control. 
BS_AUTOCHECKBOX I Used to select the 
WS_VISIBLE underscore emphasis of 

the selected font. 

11-28 PM Advanced Programming Guide 



Chapter 12. Direct Manipulation 

Direct manipulation is the act of moving graphical representations such as OS/2 icons around 
the screen using a pointing device, such as a mouse. This chapter explains how to use 
direct manipulation in PM applications. 

About Direct Manipulation 
The direct manipulation protocol enables the user to select an object in a window, drag it to 
another location, and drop it on another object or in another window. Dragging is the act of 
moving an object as though it were attached to the pointer; it is performed by pressing and 
holding the drag button and moving the pointer. Dropping is the act of fixing the position of 
the dragged object by releasing the drag button on the pointer. This causes interaction (data 
exchange) between the window from which the selected object is dragged and the window 
containing the object on which the selected object is dropped. Figure 12-1 shows an 
example of an object being dragged to a printer. 

Ionia 
Temper ature 

OX}lgen 
Consumption 

Figure 12-1. Dragging Data to a Printer 

© Copyright IBM Corp. 1994 

Living Q uar.ters/:~~:rlrll;-5}. 
Construction h .:Hnt·':iH 

'\: 

12-1 



The window containing the dragged object is the source. The window containing the object 
that was dropped on is the target. The source and target can be the same window, different 
windows within the same application, or windows belonging to different applications. The 
dragged object can be either the only visible object in the source window or one of many 
objects. The target object can be either the only visible object in the target window or one of 
many objects. A source or target window that contains multiple objects is a container 
window. 

The data exchange that occurs between the source and target after a direct manipulation 
operation enables applications that support the protocol to integrate easily, while providing a 
simple user interface. 

Application-Defined Drag Operations 
At times it may be useful for an application to define its own drag operation to facilitate 
functions between two windows in the same application or between closely related 
applications. For example, an application implementing a keyboard remapping function may 
want to provide a method of redefining keys with direct manipulation. This application could 
define an operation whereby dragging one key to another exchanges the definitions of the 
two keys. The protocol provides the extendability to enable this kind of function. 

Rendering Mechanism and Format 
The rendering mechanism represents the way in which you want to exchange the data, for 
example, dynamic data exchange (DOE). The rendering format identifies the actual type or 
true type of the data, for example, text. To exchange data, both the source and target must 
know how to communicate with each other through the rendering mechanism and understand 
the particular format of the data. 

The native rendering mechanism and format of the object is the mechanism that most 
naturally conveys the data, either where it is now, or where it can be put most easily. The 
format conveys all information about the data. For example, a spreadsheet cell has a 
location in a row and column of a spreadsheet. Rendering the spreadsheet cell in a simple 
text format would cause this information to be lost, so a more appropriate format should be 
chosen for its native rendering format. 

A source application may be able to exchange data with a target through several 
mechanisms, such as: 

• Dynamic Data Exchange (DOE) 
• OS/2 File . 
• Print. 

Additionally, the source application might be able to render the data in various formats, that 
is, into various types. For example, a spreadsheet application could render its contents in a 
spreadsheet format or into a simple text format. The ability of the source application to 
render the data in some format might, itself, depend on the exchange mechanism used. The 
rendering mechanisms and formats that a source application can support, for each object 
dropped, are provided to the target through the hstrRMF field in the DRAGITEM data 
structure. 

12-2 PM Advanced Programming Guide 



The target application may also be able to exchange data with the source through several 
different combinations of mechanism and format. The target is responsible for obtaining the 
data from the source in the format that they both support and that provides the highest level 
of information about the data. 

While making this determination, the target must consider the exchange capabilities offered 
by the mechanism. For example, an OS/2 File exchange mechanism can provide only a 
snapshot of the data at the time the direct manipulation operation occurred. An exchange 
using DOE, on the other hand, offers the target an opportunity to remain informed about 
changes to the data. 

Non-Standard Rendering Mechanisms 
Some standard rendering mechanisms are already defined, but the system lets the set of 
rendering mechanisms be expanded, allowing for: 

• Additional standard rendering mechanisms to be defined in the future 
• Application definition of private or nonstandard rendering mechanisms. 

An application can elect to support some, all, or none of the standard rendering mechanisms 
defined by the system. Applications that do not support any of the standard rendering 
mechanisms are not precluded from using direct manipulation. However, support of the 
standard rendering mechanisms and formats increases the chances of a successful data 
transfer between applications. 

An application that supports a particular rendering mechanism, whether or not it is a 
rendering mechanism defined by the system, must follow a specific set of guidelines defined 
by that rendering mechanism, including conversation-initiation procedures and naming 
conventions. 

Responsibilities of a Source Application 
The source is responsible for starting a direct manipulation operation. Startup can be 
accomplished only with a pointing device, such as a mouse. The operation starts when the 
application detects that a drag button has been pressed and the pointing device has moved. 
Dragging continues until terminated, which is usually when the button is released. 

Although the direct manipulation protocol lets the application use any button for dragging, it is 
recommended that the system-defined drag button be used for direct manipulation 
operations. 

The source has the following responsibilities in preparing for the actual drag of the objects 
across the screen: 

• Allocate and initialize the DRAGINFO data structure that conveys the necessary 
information about each object to the target. 

• Initialize a set of DRAGIMAGE data structures that describe the image to be displayed 
during the drag operation. 

Chapter 12. Direct Manipulation 12-3 



• Make the following information known to the system: 

- The type of each object being directly manipulated 

- The rendering mechanism and format for each object 

- The suggested name of the object at the target 

- The name of the container or folder containing the source object 

The name of the object at the source 

- The true type of each object being directly manipulated 

- The native rendering mechanism and format for each object. 

Responsibilites Of a Target Application 
The target in a direct manipulation operation is responsible for determining whether a 
particular set of objects can be dropped on it, and for providing the user with visible cues 
regarding the operation. A target is informed of the operation through messages sent to it as 
the pointer, provided by the source, is dragged across the screen. 

When a set of objects is dropped on the target, the target is responsible for establishing the 
appropriate conversations with the source to accomplish the data transfer. The type of 
conversation for each object is based on the rendering mechanism and format of the object 
being dropped. 

The target application is responsible for: 

• Determining if data can be exchanged between source and target by verifying that both 
applications share knowledge of at least one rendering mechanism and format 

• Providing visible feedback, or target emphasis, on whether a drop is allowed 

• Defining the default state of a direct manipulation operation 

• Initiating conversations with the source for data transfer. 

Messages Sent to a Target Application 
Table 12-1 describes the messages that are sent to each window whose boundaries are 
crossed as the user drags the object around the screen. 

Table 12-1 (Page 1 of 2). Messages Sent to a Target Application 

Message Name Description 

DM_DRAGOVER Sent to the window under the pointer as the pointer is dragged across it. 
A single DM_DRAGOVER message is sent each time the pointer moves 
and each time a key is pressed or released, and it contains a pointer to 
the DRAGINFO data structure. The target can access this data structure 
with DrgAccessDraginfo. 

DM_DRAGLEAVE Sent whenever the DM_DRAGOVER message has been sent to a 
window, and the pOinter is moved outside the bounds of that window. If 
the target or an object in the window had been emphasized as a target,. it 
should be de-emphasized. 

12-4 PM Advanced Programming Guide 



Table 12-1 (Page 2 of 2). Messages Sent to a Target Application 

Message Name Description 

DM_DROP Sent to the target to provide it with the information necessary to establish 
a conversation for data exchange with the source. The target should 
immediately remove any target emphasis. The data transfers must not be 
done before responding to the DM_DROP message. 

DM_DROPHELP Posted to a target to indicate that the user requested help for the drag 
operation while over that target. 

Response to Messages Sent to a Target Application 
Table 12-2 shows the four possible responses available to the target when it receives a 
OM _ DRAGOVER message. The target sends these values to the window handle specified 
in the DRAGINFO data structure. 

Table 12-2. Target Responses to DM_DRAGOVER 

Message Name 

DOR_NODROPOP 

DOR_NEVERDROP 

Description 

Sent if the objects being dragged are acceptable. A drop does not occur 
unless DOR_DROP is returned. 

Sent if the objects being dragged are acceptable and the target supports 
the current operation, but the objects cannot be dropped on the current 
location in the target window. For example, a list box might return 
DOR_NODROP if it contains objects that can be dropped on, but the 
pointer is over an object that cannot be dropped on. 

If the target response is DOR_NODROP, the DM_DRAGOVER message 
continues to be sent to the target when: 

• The pointer is moved 
• A keyboard key is pressed 
• The pointer is moved out of and back into the window. 

Sent if the objects being dragged are acceptable, but the target does not 
support the current operation. This response implies that the drop may 
be valid if the drag operation changes. For example, copying a file to a 
shredder would not be valid, but moving a file to a shredder would be. 

Once the target has sent DOR_NODROPOP, no further DM_DRAGOVER 
messages is sent to the target until: 

• A keyboard key is pressed 
• The pointer is moved out of and back into the window. 

Sent when the objects being dragged are not acceptable, and the target 
will never accept them. 

Once the target has sent DOR_NEVERDROP, no further 
DM_DRAGOVER messages are sent to that target until the pointer is 
moved out of and back into the target window. 

If a reply other than DOR_DROP is received from a target, the augmentation emphasis is 
automatically changed to indicate that no drop is allowed. This gives the user a visible cue 

Chapter 12. Direct Manipulation 12-5 



that a drop cannot occur. The emphasis is reverted to drop allowed when a DOR_DROP 
reply is received from some target. 

Two-Object Drag Operation 
Figure 12-2 represents the sequence of functions and message flows for a typical direct 
manipulation operation. The flow shows a two-object drag from App1 to App3, dragging over 
App2. 

The direct manipulation operation is started by the source window procedure after the user 
selects the objects to be manipulated and the source receives a WM_BEGINDRAG 
message. 

Appl 

(user select) 
•• 

• • 

DrgAllocDraginfo 

DrgAddStrHandle 

DrgAddStrHandle 

DrgSetDragitem 

DrgSetDragitem 

DrgDrag 

Two-Object Drag 

App2 

DM_DRAGOVER 
•• 

DrgAccessDraginfo 

DrgSetDraglmage (optional) 

App3 

Figure 12-2 (Part 1 of 3). Diagram Showing Sequence of Function and Message Flows 

12-6 PM Advanced Programming Guide 



." 

... 
(WM_ENOORAG) 

~ . 

(Verify that drop can be accepted) 

(Target emphasis on) 

OrgFreeOraginfo 

OM ORAGLEAVE 
~ . 

(Target emphasis off) 

OM ORAGOVER 
~ . 

DrgAccessOraginfo 

OrgSetOraglmage (optional) 

(Target emphasis on) 

~ . 

(OrgOrag returns) 

(Target emphasis off) 

(Perform operation) 

Figure 12-2 (Part 2 of 3). Diagram Showing Sequence of Function and Message Flows 

Chapter 12. Direct Manipulation 12-7 



DrgFreeDraginfo DrgDeleteDraginfoStrHandles 

DrgFreeDraginfo 

Figure 12-2 (Part 3 of 3). Diagram Showing Sequence of Function and Message Flows 

Conversation after the Drop 
Figure 12-3 represents the sequence of message flows for a typical direct manipulation 
data-transfer operation. The flow describes a single-object move from source to target. The 
user dropped on white space in the target container. 

For this example, assume that the rendering mechanism selected is DRM_OS2FILE and that 
the source does not initially provide the target with the source item's file name. Also assume 
that the source and target items exist on different drives. 

Source 

DM RENDER 
• III 

Verify the rendering mechanism and format 

DrgAddStrHandle 
(hstrSourceName) 

DM_RENDER(reply) 

Target 

DrgAllocDragtransfer 

DrgSendTransferMsg 

•• 

Figure 12-3 (Part 1 of 2). Diagram Showing Sequence of Message Flows 

12-8 PM Advanced Programming Guide 



DosCopy 

DrgFreeDragtransfer 

DM_RENDERCOMPLETE 
• • 

DM_ENDCONVERSATION 
• III 

DosDelete DrgFreeDragtransfer 

DrgFreeDraginfo DrgDeleteStrHandle 

DrgFreeDraginfo 

Figure 12-3 (Part 2 of 2). Diagram Showing Sequence of Message Flows 

Canceling a Drag Operation 
The user can end a direct manipulation operation in one of the three following ways: 

• Pressing the Esc key to cancel the operation 

• Releasing the drag button when the pointer is over a target that cannot accept the drop 

This action is equivalent to pressing the Esc key. When the pointer is over a target that 
can accept the drop, the target is informed of the drop, and the source is given the 
window handle of the target. 

• Pressing the F1 key to request help 

A DM_DROPHELP message is posted to the target. This enables the target to provide 
the user with assistance regarding: 

- What would happen if the user dropped the object on that target 
- Why the target cannot accept a particular drop. 

The source sees this termination of the direct manipulation operation as a cancelation. 

About Pickup and Drop 
Pickup and Drop (also known as Lazy Drag) enables a drag operation to occur without 
requiring that the drag button be pressed for the duration of the operation (as in the standard 
direct manipulation operation). Pickup and Drop is non-modal in nature, allowing the user to 
interrupt the drag operation with other processes, and eliminating the requirement that both 
the source and target objects be visible prior to initiation of the drag operation (as in standard 
protocol). Pickup and Drop does not replace the standard, modal direct manipulation 
operation; it offers a more flexible alternative data transfer option. 

Chapter 12. Direct Manipulation 12-9 



Pickup and Drop is composed of one or more source object Pickup operations followed by a 
single Drop operation on a target object. Pickup and Drop is initiated by the first Pickup and 
is terminated by a Drop or Cancel Drag operation. When Pickup and Drop is initiated, the 
mouse pointer is augmented with the system Pickup pointer icon, as shown in Figure 12-4. 

Printer 

Figure 12-4. Pickup Mouse Icon, Popup Menu and Pickup Emphasis 

The drag images seen in a standard direct manipulation operation are not displayed. As 
additional items are selected, they are added to the system Pickup set, and pickup emphasis 
is displayed for each item. The Pickup set is currently limited to a single source window or 
folder. While the operation is in progress, all other operations are valid with the exception of 
a standard direct manipulation operation. 

Pickup and Drop is initiated by DrgLazyDrag in response to a WM_PICKUP message 
generated when the user presses Alt+mouse button 2 on a source object. As the pointer 
moves over a potential target, DM_DRAGOVER and DM_DRAGLEAVE messages are sent 
when the user presses a key indicating the intention to drop the object. The target emphasis 
is not displayed until the user attempts to drop the object. Each time items are added to the 
Pickup set in response to a WM_PICKUP message, DrgReallocDraginfo must be called to 
reallocate the DRAGINFO data structure. The Pickup and Drop operation is then re-initiated 
by another DrgLazyDrag call. DrgLazyDrag returns upon initialization for the operation. The 
pointing device remains active during the operation and may be used as if no drag operation 
were in effect. If the pointer is over a valid target when a Drop is invoked, aDM_DROP 
message is sent to the target, and a DM_DROPNOTIFY message posted to the source 
window. 

12-10 PM Advanced Programming Guide 



DrgCancelLazyDrag is called to cancel the operation, and similarly posts a 
DM_DROPNOTIFY message to the source window, but with a target window handle of zero 
in the mp2 parameter. 

DrgLazyDrop can be used to programmatically invoke a drop operation; for example, from a 
menu choice. 

DrgQueryDraginfoPtrFromHwnd and DrgQueryDraginfoPtrFromDragitem are called to query 
the DRAGINFO pointer at any time during the course of the operation. 

DrgQueryDragStatus is called to determine whether a Pickup and Drop operation is currently 
in progress. 

Data Structure Handling 
Prior to initiating a Pickup and Drop operation (via DrgLazyDrag), DrgAllocDraginfo must be 
called to allocate a DRAGINFO data structure. As additional objects are added to the Pickup 
set, the DRAGINFO and DRAG ITEM data structures must be reallocated using 
DrgReallocDraginfo. This function unconditionally frees the existing DRAGINFO data 
structure passed to it, reallocates a new DRAGINFO data structure, and returns the pointer 
to the new data structure. The Pickup and Drop operation is then re-inititiated by another 
DrgLazyDrag call. 

The DRAGIMAGE array is passed to Drg LazyDrag , so that compatibility with the drag 
operation is maintained. This allows the application to support Pickup and Drop, and 
standard drag operation with the same code. However, the drag images in the data structure 
are not used for display during Pickup and Drop, as the mouse pointer is augmented with a 
Pickup icon during the operation. As soon as DrgLazyDrag returns, the DRAGIMAGE array 
can be freed. 

Message Handling 
In the standard direct manipulation protocol, DrgDrag does not return until the drag set is 
dropped on a target window. Pickup and Drop is slightly different, and requires a change in 
the handling of a Drop. Since the operation is non-modal, DrgLazyDrag returns as soon as it 
has completed drag initialiation and before a drop is performed. In the Pickup and Drop 
protocol, DM_DROPNOTIFY is posted to the source window as notification of a drop. The 
parameters of this message contain the pointer to the DRAGINFO data structure allocated by 
the source window and the handle of the target window. The source window should examine 
the mp2 parameter to determine if the target window and the source window are the same; if 
not, the source should free the DRAGINFO upon receipt of this message. Where the target 
and source are the same, the target window frees DRAGINFO after completing ,the post-drop 
conversation. The implementation of Pickup and Drop does not affect any of the existing 
post-drop conversation messages. 

The DM_DROPHELP message is not supported for the Pickup and Drop protocol, since help 
could be requested for any subject at any point during the operation. If the application is to 
provide Drop help, it must do so from a menu choice and explicitly code the support to be 
provided. 

Chapter 12. Direct Manipulation 12-11 



About Rendering Mechanisms 
The following sections describe the standard rendering mechanisms used by various 
containers and applications for direct manipulation. 

OS/2 File Rendering Mechanism 
This rendering mechanism can be used by various containers, including file folders and trash 
cans. These containers allow objects to be dragged and dropped on white space in the 
container to accomplish a Move or Copy operation. They also can allow objects in the same 
or another container to be dragged and dropped on objects within the container to 
accomplish an operation. 

Mechanism Name 
The string for this rendering mechanism is DRM_OS2FILE. 

Messages 
The following messages are used by the DRM_OS2FILE: 

• OM RENDER 

This message is sent by a target to a source to request a rendering for an object. When 
this message is received, the source determines if it understands the rendering 
mechanism and format selected by the target for the object. It also confirms that it 
allows the operation selected by the user for that object. The source must respond to 
this message before proceeding with the rendering operation. 

• DM_RENDERCOMPLETE 

This message is posted by a source to a target to notify the target that the rendering 
operation has been completed by the source, either successfully or unsuccessfully. The 
source can elect to let the target retry a successful or an unsuccessful operation. In this 
case, it should return to its state at the time of the drop for that object and indicate, in 
the message, that a retry is allowed. 

Support for this message by a source is optional. If this message is not supported, then: 

- The source must convey all necessary information to the target in order to allow it to 
handle the rendering operation. 

- It must always indicate that ,native rendering is allowed when replying to a 
OM_RENDER message. 

• DM_ENDCONVERSATION 

This message is sent by a target to a source to notify the source that the rendering 
operation is complete and that the conversation is terminated. When this message is 
received, the entire drop operation for the object is complete. The source can now 
release any resources it had allocated to the drop and rendering operations. When the 
reply is received, the target can release the resources it had allocated to the operation. 

12-12 PM Advanced Programming Guide 



Native Mechanism Actions 
If the target understands the native rendering mechanism and format of the object, it may be 
possible to render the object without any involvement on the part of the source, provided the 
source has given the target sufficient information to do so. In order for the rendering to be 
performed by the target, the source must fill in, at a minimum, the hstrContainerName and 
hstrSourceName fields. The hstrContainerName field represents the subdirectory that the file 
indicated by hstrSourceName is in. For the target to do the rendering on its own, the true 
type of the object must be DTYP _OS2FILE. When these conditions are met, the target may 
proceed with the operation. When the operation is complete, the target must send a 
DM_ENDCONVERSATION message to the window indicated by hwndltem in the 
DRAG ITEM data structure. 

Preventing a Target from Rendering an Item 
A source can prevent a target from doing the rendering operation on its own by not providing 
the source name for the object. This may be a necessary action for sources that implement 
some type of security, or that may not allow particular operations to be performed for an 
object move. When a source takes this course, it must fill in the hstrSourceName in the 
DRAGITEM data structure before replying to a OM_RENDER message. The target deletes 
the hstrSourceName string handle prior to freeing the DRAGINFO data structure, just as it 
would if the information had been passed to it at the time of the drop. 

Requesting the Source to Render the Item 
Whenever the conditions for a target to do the rendering operation without source 
participation are not met, the target must request the source to carry out the rendering by 
posting a OM_RENDER message to the source. Of course, the target can do this even if it 
is able to carry out the rendering mechanism on its own. 

Allocating and Freeing a DRAGTRANSFER Data Structure 
The data in a drag transfer message is carried in a DRAGTRANSFER data structure. 
DRAGTRANSFER data structures are allocated when the target calls DrgAllocDragtransfer. 

When the conversation is completed, both the source and the target must call 
DrgFreeDragtransfer to free the shared memory. The target should do it immediately after 
sending a DM_ENDCONVERSATION message. The source should do it immediately after 
sending a DM_RENDERCOMPLETE message. 

Operation Specifics 
Regardless of the operation being performed, the target must fill in the hstrRenderToName 
field in the DRAGTRANSFER data structure before sending a OM_RENDER message. This 
is the fully qualified drive, path, and file name of the file that will contain the data when the 
rendering operation is complete. When the source has completed the operation, it must post 
a DM_RENDERCOMPLETE message to the target. The target then must complete the 
direct manipulation operation for that object by posting a DM_ENDCONVERSATION 
message to the source. Once the conversations for all of the objects involved in the drop 
are complete, the target can delete the string handles and free the DRAGINFO data 
structure. 

Chapter 12. Direct Manipulation 12-13 



Non-Native Mechanism Actions 
The target may select the DRM_OS2FILE rendering mechanism when it is not the native 
rendering mechanism for an object, as long as the source supports it. In this case, the target 
must always request that the source carry out the rendering operation as described above. 
The source should render the data in the requested format to the file specified by the 
hstrRenderToName field. If the requested operation is a Move, the source should take 
whatever action is necessary to remove its knowledge of the object as long as no information 
regarding the object was lost in the transfer. 

Naming Conventions 
The naming conventions for this rendering mechanism are as follows: 

• hstrContainerName 

Contains the fully qualified drive and path name for the source file, for example: 

C:\ 
C:\MYSUBDIR\ 
A:\SUBDIRl\SUBDIR2\ 
\\NETWORK\SHARED\SUBDIRA\SUBDIRB\ 

• hstrSourceName 

Contains the name of the source file or subdirectory, for example: 

MYSOURCE.C 
MYSOURCE.H 
MYSOURCE IS A LONG FILE NAME 
SUBDIR3 

If you specify a subdirectory, the action is applied to all files in the subdirectory. 

• hstrRenderToName 

Contains the fully qualified file or subdirectory name that is to be used at the target, for 
example: 

C:\MYSUBDIR\MYSOURCE.C 
\\NETWORK\SHARED\SUBDIRA\SUBDIRB\MYSOURCE.H 
C:\SUBDIRl\SUBDIR2\SUBDIR3 

Types 
Any type that is allowed as a . TYPE extended attribute is allowed in the hstrType field of the 
DRAGITEM data structure. The type for a file can be obtained using DosQFilelnfo; the type 
can be set by using DosSetFilelnfo. 

Print Rendering Mechanism 
A common object that might be provided by a container is a printer. This object would allow 
objects to be dragged and dropped on it to accomplish a print operation. 

Mechanism Name 
The string for this rendering mechanism is DRM_PRINTOBJECT. 

12 .. 14 PM Advanced Programming Guide 



Messages 
To support this rendering mechanism, a source must be able to receive and process a 
DM_PRINTOBJECT message. The target posts this message to the source. When the 
message is received, the source prints the current view of the object identified in the 
message to the printer. The second message parameter (of type PRINTDEST) gives all the 
parameters necessary to call DevPostDeviceModes and DevOpenDC. 

Native Mechanism Actions 
There are no native mechanism actions for this rendering mechanism, because the act of 
printing an object is considered a transform from the native rendering mechanism to the print 
mechanism. 

Naming Conventions 
None. 

Dynamic Data Exchange (DOE) Rendering Mechanism 
This rendering mechanism can be used by various containers and applications. The 
containers allow objects to be dragged and dropped on white space in the container to 
accomplish a Move or Copy operation. They can also allow objects in the same or another 
container to be dragged and dropped on objects within the container to accomplish some 
operation. 

Mechanism Name 
The string for this rendering mechanism is DRM _ DDE. 

Messages 
To support this rendering mechanism, a source must be able to receive and process the 
following messages: 

• WM_DDE_REQUEST 

This message is posted by the target to the window indicated by the hwndltem field in 
the DRAG ITEM data structure to request information regarding the object. Note that 
WM_DDE-'NITIATE is not required because the target already has the handle of the 
window it wants to converse with. This message is sent for all Move and Copy 
operations. 

• WM_DDE_ADVISE 

This message is posted by the target to the window indicated by the hwndltem field in 
the DRAG ITEM data structure order to maintain a hot link to the object. 

• WM_DDE_UNADVISE 

This. message is posted by the target to the window indicated by the hwndltem field in 
the DRAG ITEM data structure to terminate a hot link to the object. 

• WM DDE TERMINATE 

This message is posted by the target to the window indicated by the hwndltem field in 
the DRAG ITEM data structure to terminate a conversation. 

Chapter 12. Direct Manipulation 12-15 



To support this rendering mechanism, a target must be able to receive and process the 
following messages: 

• WM_DDE_DATA 

This message is posted to the target by the source to deliver the requested information 
regarding the object. 

• WM_DDE_ACK 

This message is posted to the target by the source to acknowledge a 
WM_DDE_ADVISE or WM_DDE_UNADVISE message. 

• WM_DDE_TERMINATE 

This message is posted to the target by the source to end a conversation. 

Native Mechanism Actions 
Prior to establishing a DOE conversation, the target should determine the source-supported 
formats in which it wants to have the object rendered. It should register this format in the 
system atom table and use the resulting atom in the usFormat field of the DDESTRUCT 
used in the conversation. 

The target should establish the DOE conversation by posting a WM_DDE_REQUEST 
message to the window indicated by the hwndltem field in the DRAG ITEM data structure. 
The target acts as the client, and the source acts as the server in the conversation. 

Operation Specifics 
The following actions should be taken by the source, depending on the operation being 
performed: 

Copy Send the data to the target. 

Move Remove knowledge of the object after receiving confirmation that the target has 
successfully completed its portion of the rendering operation. 

Non-Native Mechanism Actions 
The target and source proceed in the same way, regardless of whether DOE was the native 
rendering mechanism or an alternate rendering mechanism. 

Naming Conventions 
The naming conventions for the DRM_DDE rendering mechanism follow: 

• hstrSourceName 

Contains the object name to be used in the DOE conversation. 

• hstrRMF 

The format portion of the list of ordered pairs in the format <DRM_DDE,format> 
identifies the formats supported by the source for the object. The non-standard DOE 
formats that these formats map to must be registered in the system atom table by both 
the source and the target. 

12-16 PM Advanced Programming Guide 



Types 
Any type that is allowed as a . TYPE extended attribute is allowed in the hstrType field of the 
DRAG ITEM data structure. 

Application-Defined Rendering Mechanisms 
An application can choose to define a new rendering mechanism. However, if an application 
intends to provide renderings from this extended rendering mechanism to existing rendering 
mechanisms, it should publish enough information so that other application developers can 
use the new mechanism. An application must address several distinct areas of definition. 
These areas are described below, in general, and also are addressed under the definition for 
the system mechanisms. 

Mechanism Name 
The string name of the rendering mechanism should be defined by the application. This 
string name is specified in the mechanism/format pair of the DRAGITEM data structure. 

Native Mechanism Actions 
When both a source and target application store the data in the same native mechanism, a 
transform is not required. Instead, the native Move and Copy actions for that mechanism 
can be performed by the target. An application must completely define the proper procedure 
for performing that action. In the case of files, the native Move action is defined as a 
DosMove or DosCopy/DosDelete. The native Copy action is DosCopy. An application need 
not support all of the basic actions; it can choose to define additional native mechanism 
actions, indicated by the DO_UNKNOWN action in the DRAGINFO data structure. 

Naming Conventions 
An application tbat is defining a new mechanism must completely specify the naming 
conventions for objects rendered in that mechanism. This information typically includes 'both 
the name of the data and preceding information describing the exact location of the data. 
Any special rules concerning uppercase and lowercase or character sets to be used in 
naming also must be specified. The semantics for 'using these mechanism names, as well 
as an algorithm for deriving location information, also must be defined. 

An application that is defining a new rendering mechanism must completely define the set of 
messages that a target and source application must support, and must specify the 
appropriate action to be taken for each message. The message IDs (above WM_USER) for 
the messages must be published. 

Performance' Considerations 
If an application provides or defines transforms from the newly defined mechanism to existing 
mechanisms, performance information about the transform between mechanisms should be 
provided. This aids the application developer in choosing the appropriate transform when it 
encounters an application that transforms from an unknown native mechanism to several 
different known mechanisms. 

Chapter 12. Direct Manipulation 12-17 



Using Direct Manipulation 
This section shows the sequence of functions and message flows for a typical direct 
manipulation operation. This section also describes the activities that must be performed by 
the applications during direct manipulation. . 

Note: Much of the sample codes in this section are part of a complete program illustrated in 
"Sample Code for Direct Manipulation" on page 12-32. ' 

Allocating Memory for the Drag Operation 
To prepare for the drag operation, the source must invoke DrgAllocDraginfo to allocate 
memory for the DRAGINFO data structure. DrgAllocDraginfo initializes the DRAGINFO data 
structure as follows: 

cbOraginfo 

cbOragitem 

usOperation 

xOrop and yOrop 

cditem 

The size, in bytes, of the entire DRAGINFO data structure, including 
the DRAG ITEM array 

The size, in bytes, of each DRAG ITEM data structure 

DO_DEFAULT 

The current mouse-pointer location, in desktop coordinates 

The count of objects being dragged, as specified in DrgAllocDraginfo. 

Initializing DRAGITEM Data Structure 
After allocating memory for the DRAGINFO data structure, the source initializes a 
DRAGITEM data structure, as appropriate, for each of the objects to be dragged. This is 
accomplished either by using DrgSetDragitem or by obtaining a pointer to each DRAGITEM 
data structure with DrgQueryDragitemPtr, and initializing it directly. 

The first step the source takes to initialize the DRAG ITEM data structure is to create the 
appropriate drag string handles. String handles must be created for: 

• Object type 
• Supported rendering mechanisms and formats for the object 
• Suggested name of the object at the target 
• Name of the container holding the object (whether a container or folder) 
• Name of the object at the source when the source allows the target to carry out the 

operation for the object. 

Type 
To directly manipulate an object, both the source and the target must support the object type, 
which describes the format of the object. For example, the input to a C compiler could have 
the type Plain Text (DRT_TEXT). The hstrType field in the DRAGITEM data structure 
conveys this information for each object being dragged. The type is represented by a string 
handle. The target should check to see if it supports the type before allowing the user to 
drop the object. 

12-18 PM Advanced Programming Guide 



Several DTYP _ * constants are defined as notational conveniences for common types of data. 
An application can extend these types by defining its own character strings and then creating 
string handles for them using DrgAddStrHandle. 

True Type 
The true type of an object is the type that most accurately describes the object. For 
example, the input to a C compiler could have the type Plain Text (DRT _TEXT), but would 
be more accurately described as C Code (DRT _C). C Code would be the true type of this 
object. Multiple types can be conveyed by using a comma to separate strings. Figure 12-5 
shows the format to use to convey multiple types. 

Figure 12-5. Format to Use to Convey Multiple Types 

The true type should appear first in the list of types, so the type string for the example object 
would be "C Code, Plain Text". 

Rendering Mechanism and Format 
The rendering mechanism and format are passed as a string handle in the DRAG ITEM data 
structure. The string handle must be created using DrgAddStrHandle. Figure 12-6 shows 
the string handle format. 

Figure 12-6. String Handle Format 

where elem is an ordered pair in the form: 

"<mechanism,format>" 

or a cross product in the form: 

"(mechani sm{ ,mechani sm ... }) X (format{, format. .. })" 

Multiple cross products are permitted in a single rendering mechanism and format string 
handle, as are combinations of ordered pairs and cross products. When cross-product 
notation is used, the rendering mechanism is the left operand. When ordered-pair notation is 
used, the rendering mechanism is the left element in the ordered pair. 

Several constants are defined for common rendering mechanisms and formats. For 
example, the rendering mechanism and format for a: 

• C source file might be "<DRM_OS2FILE,CF _OEMTEXT>" 

• Spreadsheet file might be "<DRM_OS2FILE,CF _SYLK>" . 

An application can extend these by defining its own "<mechanism,format>" strings and 
creating string handles for these using DrgAddStrHandle. For example, if an application 

Chapter 12. Direct Manipulation 12-19 



understands and can generate an LU 6.2 data stream, it can define its own rendering format, 
"DRF _LU62," and use it in direct manipulation operations. If an application wishes to use its 
own rendering mechanisms or formats to communicate with other applications, it should 
publish the protocol for the mechanisms, the format of the data streams, or both. 

Native Rendering Mechanism and Format 
The native rendering mechanism and format of the object is the mechanism that most 
naturally conveys the data and its current format. For example, the native rendering 
mechanism and format for a: 

• C source file might be 

• Spreadsheet file might be "<DRM_OS2FILE,CF _SYLK>" 

In some direct-manipulation operations, it might be possible for the target to carry out the 
necessary action on the source object without the source's participation. However, this is 
possible only when the target supports both the true type and the native rendering 
mechanism and format of the object. Even when the target is not performing the necessary 
action on the source object, it is still important to know the native rendering mechanism and 
format. In determining the rendering mechanism and format to be used in the data exchange 
after the drop, the target might select the native format because, generally, performance is 
better when the native rendering mechanism and format are used. 

The native rendering mechanism and format are conveyed to the target by making it the first 
ordered pair, or the first ordered pair to result from a cross product, in the list of rendering 
mechanisms and formats passed in the DRAGINFO data structure. 

Suggested Name at Target 
When dragging an object, for example, a file, from one container to another, it is important to 
know the name the object should have at the target. This mayor may not be the same 
name it had at the source. This name enables the target to check if another object with the 
same name already exists at the target and to take the appropriate action. For example, a 
target container might not allow the user to drop the object if an object by that same name 
already exists at the target. 

Container Name 
Sometimes it is necessary for a target container to know the name of the source container. 
This name could carry some location information. For example, the default operation when 
dragging objects between containers is a Move. However, in the case of file folders on 
different drives, this default would be changed to a Copy operation. Thus, a file folder would 
fill this field with the drive and path information for a file, for example, 
A:\SUBDIR1\SUBDIR2\. A database container, on the other hand, might fill this field with the 
fully qualified OS/2 file name of the database. 

Source Name 
In some direct-manipulation operations, it is possible for the target to perform the necessary 
action on the source object without the source's participation. If the source allows this, the 
target name should be filled in with the name of the source object. For example, a file folder 
would put the name of the source file into this field, such as AUTOEXEC.BAT. A database 

12-20 PM Advanced Programming Guide 



manager, on the other hand, might fill this field with some location information so the target 
could find a particular record or field within the database. 

Sample Code for Initializing DRAGITEM Data Structure 
The sample code fragment illustrated in Figure 12-7 shows how to initialize the DRAG ITEM 
array. 

/***********************************************************************/ 
/* Get our current directory for the container name. */ 
/***********************************************************************/ 

dirlen = CCHMAXPATH-l; 
DosQueryCurrentDir(0, szDir, &dirlen); 
sprintf{szContainer, "\\%s\\", szDir); 
hstrContainer DrgAddStrHandle(szContainer}; 
Dragi tern. hwndltem = hListWnd; 
Dragitern.hstrType = hstrType; 
Dragitern. hstrRMF = hstrRMF; 
Dragitem.hstrContainerName = hstrContainer; 
Dragitem. fsContr.o] = 0; 
Dragiteril~fsSupportedOps = DO_COPYABLE I DO~MOVEABLE; 
Dragitern.hstrSourceNarne = DrgAddStrHandle (szBuffer); 
Dragitern.hstrTargetNarne = Oragitern.hstrSourceName; 
Dragitern. ulIternID = index; 

/***********************************************************************/ 
/* . Set info, prepare for drag. */ 
f****************************************"Ir******************************/ 

DrgSetDragitern(pSourceDraginfo, 
&Oragitern, 
stzeof(DRAGITEM} , 
0); 

Figure 12-7. Sample Code for Initializing the DRAGITEM Array 

Initializing DRAGIMAGE Data Structure 
As part of the preparation for the actual drag, an application intializes a DRAGIMAGE data 
structure. The sample code illustrated in Figure 12-8 on page 12-22 shows how to initialize 
the DRAGIMAGE data structure. 

Chapter 12. Direct Manipulation 12-21 



Figure 12-8. Sample Code for Initializing the DRAGIMAGE Data Structure 

Starting the ,Drag Operation 
Once initialfzation is complete, the source object calls DrgDrag to start the direct 
manipulation operation. The sample code illustrated in Figure 12-9 shows how to start the 
drag operation. 

Figure 12-9. Sample Code for Starting the Drag Operation 

Responding to the DM_DRAGOVER Message 
The DM_DRAGOVER message is sent to 'a target whenever the user drags the pointer into 
the window. To assess whether a drop can be accepted, the target must use 
DrgAccessDraginfo to get access to the DRAGINFO data structure. It then determines 
whether a drop can be accepted for each object. The object must meet the following 
minimum requirements to exchange data: 

• The source and target must share knowledge of at least one common type for the 
object. The target can make this determination by using DrgVerifyTypeSet or 
DrgVerifyType. 

• The source and target must share at least one common rendering mechanism and 
format for that type object. The target can make this determination by using 
DrgVerifyRM F. 

DOR_DROP, DOR_NODROP, DOR_NODROPOP, and DOR_NEVERDROP are the four 
possible responses available to the target when it receives a DM_DRAGOVER message. 

12-22 PM Advanced Programming Guide 



The target sends these values to the window handle specified in the DRAGINFO data 
structure. 

The sample code illustrated in Figure 12-10 shows how the target determines its response to 
the DM_DRAGOVER message. 

/*********************************'*'********************************~****/ 
/* Someone's dragging an object over us. */ 
/*'**********************************************************************/ 

case OM ORAGOVER: 
draglnfo = (PORAGINFO)mpl; 

/*Getaccess to the ORAGINFO data structure */ 
OrgAccessOraginfo(draglnfo); 

/*Can we accept this drop? */ 
switch (draglnfo->usOperation) 
{ 

/* Return DOR_NODROPOPifcurrent operation */ 
/* is link or unknown */ 
case DO UNKNOWN: 

OrgFreeOraginfo(draglnfo); 
return (MRFROM2SHORT(DOR_NODROPOP,0)); 
break; 

/~ Our <i~faultpperati on is Move */ 
case,DOOEFAULT: 

dragltem = DrgQueryDragitemPtr( draglnfo ,O); 
uTBytes = DrgQueryStrName(dragItem~>hstrContainerName, 

sizeof (szDi r), 
szDir); 

Figure 12-10 (Part 1 of 2). Sample Code Showing the Target's Response to 
DM_DRAGO VER 

Chapter 12. Direct Manipulation 12-23 



Figure 12-10 (Part 2 of 2). Sample Code Showing the Target's Response to 
OM_ORA GO VER 

Providing Target Emphasis 
The target should provide target emphasis so the user knows exactly where the drop occurs 
or, if the drop is not allowed, the boundaries of the region where the drop is not allowed. 

A container window should emphasize a target object by drawing a thin, black rectangle 
around it. The application should use DrgGetPS and DrgReleasePS to obtain the 
presentation space in which to draw target emphasis. 

12-24 PM Advanced Programming Guide 



Providing Customized Images 
The target can provide a customized pointer to be displayed while it is the target of the drop 
by calling DrgSetDragPointer after it starts processing the DM_DRAGOVER message but 
before it sends a response. It also can provide a customized image (icon, bit map, and so 
forth) to be displayed while it is the target by calling DrgSetDraglmage. This capability may 
be used by a target to provide additional visible feedback to the user. The pointer is reverted 
to the default when it is moved to a new target. 

Responding to the DM_DRAGLEAVE Message 
DM_DRAGLEAVE is sent whenever the DM_DRAGOVER message is sent to a window, and 
the pointer is moved outside the bounds of that window. If the target or an object in the 
window had been emphasized as a target, it should be de-emphasized. 

Container windows monitor the position of the pointer on DM _ DRAGOVER messages and 
simulate the DM_DRAGLEAVE message when the pointer moves on or off a contained 
object. 

A DM_DRAGLEAVE message is not sent if the user drops the objects being dragged within 
the window. Therefore, when DM_DROP is received, the application de-emphasizes any 
target that was emphasized as a valid target. 

If the user drags the pointer outside the target window, resulting in a new target, a 
DM_DRAGLEAVE message is sent to the former target. The receiver of a 
DM_DRAGLEAVE message should use it to de-emphasize the target, thus providing the user 
with visible feedback that this is no longer the target. 

Responding to the DM_DROP Message 
When the user drops the objects, a DM_DROP message is sent to the target, providing it 
with the information necessary to process the objects that were dropped. The target 
application uses the information provided to exchange data with the source. The target is 
responsible for establishing the appropriate conversations, and the source must cooperate in 
establishing the necessary conversations to achieve the actual data exchange. After 
completing the direct manipulation operation, including the post-drop conversation with the 
source, the target uses DrgDeleteStrHandle or DrgDeleteDraginfoStrHandles to delete the 
string handles in the DRAGINFO data structure, and DrgFreeDraginfo to release the storage. 
The target should immediately remove any target emphasis. The data transfers must not be 
done before responding to the DM_DROP message. 

The sample code illustrated in Figure 12-11 on page 12-26 shows how a target processes 
an object that has been dropped on it. This code fragment is part of a complete program 
which is illustrated in "Sample Code for Direct Manipulation" on page 12-32. 

Chapter 12. Direct Manipulation 12-25 



Figure 12-11 (Part 1 of 2). Sample Code Showing the Drop of an Object on a Target 

12-26 PM Advanced Programming Guide 



/* Make sure we can move for a Move request */ 
/* or copy fora Copy */ 
if «( (d,rqgltem->fsSupportedOps & DO_COPYABLE) && 

} 

(usOp == (USHORT) DO_COPY}) II 
«dragltem->fsSupportedOps & DO_MOVEABLE) && 
(usOp == (USHORT}DO_MOVE») 

/* Check the rendering format */ 
if (DrgVeri fyRMF(dragltem, IDRM_OS2FILE", 1I0RF _UNKNOWN II) ) 

usIndieator = DOR_DROP; 
,el se 

uslndicator = OOR..,;NEVERDROP; 

else 
uslndicator = DOR_NODROPOP; 

/***********************************************************************/ 
/*This ts where we would actually move or copy the file, */ 
/* but we just display the name instead. */ 
/***********************************************************************/ 

} 

DrgQueryStrName(dragItem->hstrSourceName, 255, szBuffer); 
WinMessageBox(HWND_DESKTOP, 

HWND_DES/<TOP, 
szBuffer, 
"Dropped ll

, 

0, 
MB_OK)'; 

/*. ReleasethedraQinfo. data. structure*/ 
DrgFreeDrag jnfo(dragI nfo); 

return (MRFROM2SAORT(uslndicator, usOp)}; 
break; 

Figure 12-11 (Part 2 of 2). Sample Code Showing the Drop of an Object on a Target 

Exchanging Data 
Direct manipulation offers various ways for source and target applications to exchange data. 
To accomplish the exchange, a separate conversation must be established to transfer each 
data object from the source to the target. The target must inform the source about the 
rendering mechanism it is using and the format in which the data is to be exchanged. The 
target can establish the conversations to run in parallel, or it can initiate the conversations in 
a serial fashion. 

Chapter 12. Direct Manipulation 12-27 



The target determines which rendering mechanism and format to use in the following 
manner: 

1. Uses the native rendering mechanism and format whenever possible. 

This rendering conveys all information about the data. A target can determine if it 
supports the native rendering mechanism' and format by using the following functions: 

• DrgVerifyNativeRMF 
• DrgQueryNativeRMFLen 
• DrgQueryNativeRMF. 

Even if it can use the native rendering mechanism and format supported by the source, 
the target can elect to exchange the data in a rendering mechanism and format that 
conveys less information about the object. 

2. Uses the next best rendering mechanism and format. 

This is especially good for a Copy operation, because the user does not lose data about 
the object as occurs when the object is moved. 

The target can determine the next best rendering mechanism and format to use through 
repeated calls to DrgVerifyRMF. The calls are made starting with the most desirable 
rendering mechanism and format pair and progressing to the least desirable pair. Once 
a pair that the source supports has been found, the target can exchange the data. 

The sample code illustrated in Figure 12-12 show~ how the target checks the rendering 
mechanism and format. 

.·.·I*NQW,we.Dee~J91o?k.at.each 
for (t.:;:0;j<cItems; Jtt) 
{ 

dragltem. :;:" [)rgQl.leryOragitemPfr{draglrifo; 

1* Make.sure.w.e.can.· ..• mov.e. ·for.·a·MO'le·· requ.est·· *1, 
l*orco~xfor'.a. 9?PY ... i .•......•.. : <i:. .....:i ........ .......*1 
i.f ({(dragltem .. ~f$SupportE!dqps; .. &pq.··CqPY.A8.Lp 

(usOp ... ~~ •. ·.(USHORT)DO~COPY)l ......... "-<' ....... ' .i.' 
({drag Item":~fsSupporte~Ops& OO--,MOVEABLE) 
{usop:;::;: (USHORT) DO--,MOVE») 

Figure 12-12 (Part 1 of 2). Sample Code Showing how the Target Checks the Rendering 
Mechanism 

12-28 PM Advanced Programming Guide 



/* Check the rendering format*/ 
if (DrgVerifyRMF(dragItem, "DRMOS2FILE", "DRF _UNKNOWN U» 

uslndi c(l.tor=< DOR;.,.DROP.; -
else . . 

uslndicator "" DOR_NEVERDROP; 
} 
else 

usIndicator=·DOR...:.NODROPOP; 

Figure 12-12 (Part 2 of 2). Sample Code Showing how the Target Checks the Rendering 
Mechanism 

Performance Considerations 
When context information about an object might be lost because of using a less-desirable 
rendering mechanism and format, the target can elect to pick a common mechanism and 
format that achieves the best performance. This is done the same way that the next best 
rendering mechanism and format is selected, proceeding from the best-performing rendering 
to the worst. 

Regardless of the rendering mechanism used, the target might need to prepare the source 
for the rendering of the object. This is necessary when the source needs to create a window 
in order to handle the conversation. This preparation is done by sending a 
DM_RENDERPREPARE message to the hwndSource window in the DRAGINFO data 
structure. This message need be sent only when the DC_PREPARE flag is on in the 
fsControl field of the DRAGITEM data structure. When the source receives this message, it 
performs any necessary preparation for the rendering and fills in the hwndltem field in the 
DRAG ITEM data structure, thereby allowing the target to establish conversation with that 
window. 

Using Pickup and Drop 
The sample code illustrated in Figure 12-13 on page 12-30 shows a Pickup and Drop 
operation after the user has selected an object and pressed mouse button 2 while holding 
down the Pickup and Drop augmentation key (Alt). 

Chapter 12. Direct Manipulation 12-29 



, .: .:.::.: :.. :. ., , .. : . :. ': : .: :. . ....... : :: .. , . :... ...... .... . . . . ..~ 

#defineINcl.. _~INsiDakkG#i~~1~~~'~~~£~ b> ....................................... . 
'P~Itt~R,P.di·hf<l;;" 'I'Pbt;J~ri.tg~ti~iIN,~~a~~5tr~~~~~~ "';Z '" '. 
H~~N[):hvmdS()lJrce; l*~andle Of.thie. sourq~ .. ' iwiindow '~l 
[)RA~ITEM'di~em;" !*;DRAGrrEM,da~a"st rUfturei ··.·· .. ···•· .• · .. ··i'r'ii .......... *1 
PDRAGIMAGE:·pdiI119; /* .. Pointer .. to .• · .• [)RAGIMAGE.:··datp.s~r~~tpre */ 
HBITMAPhbm; J*.Bit-map handlep9ssedtoDrg~azyDrag */ 

!*.:I<******:**************:I<********-***~***.**:1<*.********.:I<i****.*'****'*:*'******~*l 
/* Initialize the DRAGlTEMdatastructure. ':1</ 
1*:1<******:1<**********************'***************************************:*J · 
ditem.hwndltem"'hwndSource; !*Handl e of the source window */ 
di tern. ul ItemI0= ID_ITEM; /* . App.defined i d of item */ 

ditern~ hstrType DrgAddStrHandl e("DRT TEXT"); .' /* Text item 
aitern. hstrRMF =' .Dr.~AddStrl-landle.(II~~R~t .. OS2FILE,DRF~TEXT>U); 
ditem.hstrCont,ainerNarne = DrgAddStrHanqle(nc:\\"}; 
ditern.hstrSourCeNarne DrgAddStrHandleC"C:\\CONFIG.SYS"); .•. ' 
ditem~hstrTatgetName ",'DrgAddStrHand1e( "e:\ \OS2\ \CONPIG.SYS II

); 

?·0; /* .Offset ...• ofthe.origtn),Ofthe 
=0; /* Jromthe pointer hotspot 
= 0; /*Source item cOhtrolflags 
= 0; 

/* Return FALSE ifini tializati on fails 
ff{!pdinfo} return FALSE; 

Figure 12 .. 13 (Part 1 of 2). Sample Code for a Pickup and Drop Operation 

12-30 PM Advanced Programming Guide 



/***********************************************************************/ 
/* Initialize the DRAGIMAGE data structure. */ 
/***********************************************************************/ 
pd;mg~Al10cMem(sizeof(DRAGIMAGE»; 

pdimg->cb=sizeof(DRAGIMAGE); 
pdimg->cptl=0; 
pdimg->hImage=hbm; 
pdi~g~>si~lStretch.cx~20L 

pdimg->fl=DRG_BITMAP I 
DRG_STRETCH; 

pdimg->cxOffset=0; 
pdimg->cyOffset=0; 

/* Size of the dragimage structure */ 
/* Image is not a polygon */ 
/* Handle of image to display */ 
/* Size to stretch icon orbit map */ 
/* Flags passed to DrgLazyDrag */ 

/* Offset of the orlg1n of image */ 
/* from the pointer hotspot */ 

/***********************************************************************/ 
/* Set the DRAG IT EM data structure. */ 
/***********************************************************************/ 
DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem, 0); 

/***********************************************************************/ 
/* Begin the, Lazy. Drag. operati on. *! 
/***********************************************************************/ 

if (DrgLazyDrag(hwndSource, 
pdinfo, 
pdimg, 
1, 
NULL» 

{ 
/* Free DRAG IMAGE if successful */ 
FreeMem (pdimg); 
} 

'. 

/* Source of the drag */ 
/* Pointer to the DRAGINFO */ 
/* DRAGIMAGE array */ 
/* Size of the DRAG IMAGE */ 
/* Reserved */ 

Figure 12-13 (Part 2 of 2). Sample Code for a Pickup and Drop Operation 

Graphical User Interface Support for Direct Manipulation 
This section describes the support the direct manipulation provides for graphical user 
interfaces (GUls). Except where noted, this support conforms to the guidelines in the SAA 
CVA Advanced Interface Design Reference. 

Keyboard Augmentation 
A direct manipulation operation begins in a default state, which means that, when the user 
drops objects on a target, the target is informed that it should perform its default operation. 
The target is responsible for defining its default operation. For a container window, the 
default should be a Move operation, if it is supported. The default for a device, such as a 
printer, should be a Copy operation. 

Chapter 12. Direct Manipulation 12-31 



As the user drags the object, the default operation can be overridden by pressing and 
holding one of the following augmentation keys: 

etrl Changes the operation to a Copy 

Shift 

Ctrl+Shift 

Changes the operation to a Move 

Changes the operation to a Link. 

The last key pressed and held at the time of the drop determines the operation to be 
performed. The target can determine the defined augmentation key that was pressed at the 
time of the drop by inspecting the usOperation field of the DRAGINFO data structure. 

A target can define additional augmentation keys for its own use. In this case, usOperation 
would indicate that the operation is unknown, and the target needs to use WinGetKeyState to 
determine the actual augmentation key that was used. 

As the user presses augmentation keys, the pointer currently being displayed is modified to 
provide the user with a visible cue as to the type of operation being performed. 

Sample Code for Direct Manipulation 
This section illustrates a complete sample program for the drag portion of a drag-and-drop 
operation. Several parts of this program are explained in "Using Direct Manipulation" on 
page 12-18. 

Source Application Sample Code 
The source application includes the following files: 

• Dragfrom.C 
• Dragfrom.H 
• Dragfrom.DEF 
• Dragfrom.LNK 
• Dragfrom. MAK 

Figure 12-14 on page 12-33 shows the source application sample code. 

12-32 PM Advanced Programming Guide 



DRAGFROM.C 

/***********************************************************************/ 
/* DRAGFROM.C - Drag source program */ 
/* */ 
/* This program displays a list of files in the current directory. */ 
/* Drag any file name to EPM, and drop, and the fil~ will be */ 
/* displayed in the editor. */ 
/***********************************************************************/ 
#define INCL_DOSFILEMGR 
#define INCL_WIN 
#define INCL_WINSTDDRAG 
#def; ne INCL_WINLISTBOXES 
#define INeL_WINWINDOWMGR 

#include <os2.h> 
#include <stdio.h~ 
'include <stdlib.h> 
#include <string.h> 
'include IIdragfrom.h" 

/***********************************************************************/ 
/* Global variables. */ 
/***********************************************************************/ 
HAB hab; 
char szFormats[] = II<DRM OS2FILE, DRF;...UNKNOWN>"; 
char szFileNames[50] [CCHMAXPATH]; 
HWND h FrameWnd; 
HWND hListWnd; 
PFNWP Sy'sWndProc; 
PFNWP Li stWndProc; 
HPOINTER hptrFil e; 

/****************************************1<*******1<**********************/ 
/*FunctionprotqtYpes. */ 
/*******************1<******************************~1<*******************/ 
MRESUl T EXPENTRY .. locaJWndProc.(HWND, .. ULONG, .. MPARAM.$ ···NPARAM) ; 
MRESULT EXPENTRYlocalUstProc(HWND, UI.,()NG; MPARAM,fvfPARAM); 
BOOLDoDrag(vold) ; 
void LoadUst (void); 

Figure 12-14 (Part 1 of 10). Sample Code for a Source Application 

Chapter 12. Direct Manipulation 12-33 



Figure 12-14 (Part 2 of 10). Sample Code for a Source Application 

12-34. PM Advanced Programming Guide 



:l'lt~ix****,******************~'#~**,***'************************************** / 
1*:'Cre'aitethErframe:-ilw; 11 hold the ltstbox: */ 

".::./:*~*#~:~*'k'****.~"r:~*:~~''k*~*,*,~*.***~*'*''f****~,#*"f**'k*,**********'it****************/ '., ·:<bFrameWllg:~· •• ~i:nCreateWin·dbw(HW.NO .OESI<TQP, . . 
. . '.' we_FRAME, . 

IDrag·Source", 
13, 13,13,'13, et 

N'ULLHANOLE, 
HWNIl·.TOP, 
DRAGFROM. 
&fcd, . 
NULL)'; 

Figure 12-14 (Part 3 of 10). Sample Code for a Source Application 

Chapter 12. Direct Manipulation 12-35 



Figure 12-14 (Part 4 of 10). Sample Code for a Source Application 

12-36 PM Advanced Programming Guide 



caseWM STARTDRA6: 
DoDragO; 
brea.k; 

default: 
return (*SysWndProc)(hwnd, msg, mpl, mp2); 
break; 

return FALSE; 

/***********************************************************************/ 
/* LocalpstProcO" Listboxsubclassing *! 
lir (all .. wecare· about ;s starting a<·drag). */ 

l***************************~**********************,********************* / 
MRESULT EXPENTRY LocalListProc(HWND hwnd, 

t;f (rilsg::::WM_Bl.ITTON2/JOWN) { . . '.' . '. 

ULONGmsg$ 
MPARAM'mpl, 
MPARAMmp2) 

WittPostMsg(hFrameWnd,WM_STARTDRAG, mpl, 9); 
. refurn (MRESULT) FALSE; 

char' 
char 
SHORT: 
HWND .. 

····tAANOEe:····· 

{*Lis1:WndProc)(hwnd,msg,mpl,mp2h 

~z:Bu,ffer.fCCHMAXPAT~J; 
szD;~[256JJ . . 
;'f1~exflfiln; 
~Targfil~~~dl'· 
hlmage;:.' 

Figure 12-14 (Part 5 of 10). Sample Code for a Source Application 

Chapter 12. Direct Manipulation 12-37 



Figure 12-14 (Part 6 of 10). Sample Code for a Source Application 

12-38 PM Advanced Programming Guide 



Dragftem.hstrRMF 
Dr~gjtem.hstrContainerName 

hstrRMF; 
hstrCol1tainer; 
C:l; . Drag:item.fsControl 

br~gjtem.fsSupportedOps 
Dragitem.hstrS()urc~Name 
Dragitem.hstrTargetName 
Dragi tern. ulltemlD 

DO_COPY ABLE I DO_MOVEABLE; 
DrgAddStrHandl e (szBuffer h 
Dragitem.hstrSourceName; 
index; 

l*'**********:**:**********************************************************/ 
1* Set info.; <prepare for drag. */ 
l*******************c*~**************************************************/ 

. Drg$etDrcigi tem{p'SourceDragi nfo, 
'>&Drilgi tem.; 

si zeof (DRAGlTEM), 
6J.; 

I *******"i(******.**.******************************************************* / 
1* .. lni.tialjie~he.drag image. ". '. . */ 
/ *******************.**************************************************** / 

d:img .• ~b ....... .... ..... =SiZ~Qf .. {QRAGrMAGE}; 
. .diJ~9.~h~m~~~H·· =: .• W.t~Que;r.ySysPotnter(HWND _;DESKTOP, SPTR.JILE, FALSE); 

;q~mgFf;l··::;i;::··~·.·.DRG' •• :ICON I DRG' TRANSPARENT; 
· ~img}:c~9ffs~t·;:fl; - -, 
Ii ilng:;.:eY:~ff~et:/=0; 

:".,::.: .:...... ' 

·,~$~I.I~~eo.raginfO .. >hWrtdSource =hFrameWnd; 

ii~.*i~*~.~~~**~.W*.";'."* ••. ,,._.~.* .. ;. .. ******************************** I 
j~)~~~r:td~ag<?p.~t~ti<?n..· > ••••.•.. ". ". .' .'. ... .... *1 
::I~~~~*:~~~!t<~*~*~**~*c***.****.**~**t<***:Ir*.********************************** / 
.... ;.:; D~g,Qr;~gJ~Fr~me~n(l.: ...... , ..... ','." .......... , . 

. . .... .pSOur~eQra.~info·~ 
, ' .....•.. '"Oi Jl19 :'.i:··.i.... .... 

: •. ·.,~4,,;.};:· •••••. ·.·< •...•... 
··.Y'~·::~~T~9~2~.··· . 
. . ~.~E.~);:;:: ....... : ....... : .• : .. ,.; 

Figure 12-14 (Part 7 of 10). Sample Code for a Source Application 

Chapter 12. Direct Manipulation 12-39 



Figure 12-14 (Part 8 of 10). Sample Code for a Source Application 

12-40 PM Advanced Programming Guide 



rc= 06sFindNexl{hOlr. 
&ffbFtle. 
S1 zeofe:FItEFI:NOBUF3). 
&COunt}i' 

ex <59»; 

#define'.ORAGFROM lee 
#define.WM_STARTDRAG WM .... USER+1ge 
#defineWM_LOAO_LIST WM __ USER+119 

Figure 12-14 (Part 9 of 10). Sample Code for a Source Application 

Chapter 12. Direct Manipulation 12-41 



Figure 12-14 (Part 10 of 10). Sample Code for a Source Application 

Target Application Sample Code 
The target application includes the following files: 

• Target.C 
• Target.RC 
• Target.H 
• Target.DEF 
• Target. LN K 

Figure 12-15 shows the target application sample code. 

Figure 12-15 (Part 1 of 9). Sample Code for a Target Application 

12-42 PM Advanced Programming Guide 



I****************************:,****}'t;**************'ic***********************1 
1* MainO .. prOgrClmentrYPQfnt. . *1 
1* Jh.i:s<program· acceptsdrops:fromEPM. .... . . .. .. .. ....... '. .*/ 
I*******************************'fc****'fc**********************************/ 
MRESULT EXPENJRY localWndProc(HWNO, ULONG, ·MPARAM, .. MPARAMl; 

HAS 
HWNO 
PFNWP 

hab; 
hFrameWnd; 
SyswndProc:'; 

,if (l(hab=Wtnll1i ti al ize(9»)) 
return FALSE; 

if •. ·· .• ··(.!Ihmq ......•. ~ .•.. ' Wi,pCre~t.~MsgQuelA;ekbab, 
return < FALSE ~. . 

1**************~*"Jt**'ic********;******~**'**********************'fc****'it*****l 
!*'Setupthe frame. control data for the frame wi ndow.. .. ... ' .. *1 
1*********~~~***************'Ic**~******~*********************************/ 

f (;.d.c~~:~t~ eot~ FRl\~~GOATA)J, . " ... ' ' ..... ' .'. . 
fcd~flCr~ate,Flags:=. FCF ... :rIJLEBAR •• ··.I • 

...•.•..•.•..•.•.•••... ..... ' .•..•. <>, ·FCF .... ~Y~ME,~U)I ..... . 
. . ,>·FCF .... S~:Z~~()~O~~.L 

.•.•• FCF~SHgkLP;QS!TION 
< ............... :: .•..•..•.. r~Fg.~~NMA~1 

, .. :.....: •.•..•.•....•• ' .•.••....•••..• ' .• > •••••.... FCFJA~KLr:~T;. 
fqd~h~QdR~~pUrq~S .'.~ .• '. ~~LlH~NDL~; · 
·fc:d.~.idReso~rc:e~ =~;: 

Figure 12-15 (Part 2 of 9). Sample Code for a Target Application 

Chapter 12. Direct Manipulation 12-43 



~> .: ... ~:.;." ... :::::.::<:'.'·"".':~:":"'~"<·::::i :'::'<: 

!****tr*******~****+:**r*r*~*r**.*r**~rr**rt****rr**************************/ 
/* wemustin~~T~~Ptthe'fNlme.'wi~dOW'$l1l~~s.a~e.$ ..•.. */ 
!* (to capture·.a'"Y·;~Rl.Itfr9111t.lle~ont:atner.···$PQt:rol). rrl 
!* We~~lv~thereturnv~ll.1e •• Itbec4rrent.wnqP~()cJ., .. ' ............ ' .... ..... */ 
I+: so,<we canpassi t.alltheothermessages .'. the frame gets. *1 
,.·I~~~*~+:*f*r+:*-+:+:*~~**t1<r*****frf*~~~~.~.**+:+:****,*,*+:f***~~t*~*t****r*~***t*~1 

SYsWr:tdProc= WinSubclassWir:tdow(hFrameWnd; (PFNWP}LocalWndProc);' , 

· "", ""w;r:tsn(j~WtndQw€hFram~w'nd J •••. fRUEYi 

Figure 12-15 (Part 3 of 9). Sample Code for a Target Application 

12-44 PM Advanced Programming Guide 



/***********************************************************************/ 
/* StandardPMmes$ageloop-g~t it,dispatchtt. */ 
l'/(**'/(~*~**~.'/(**C**'/(*~'/('/(if*******~*'/(*******·*************'If'/(*'/(**~*************/ 

while (WinGetMsg(hab ,&qmsg, NU~LHANDLE ,e, en . 
WinDispatchMsg(hab, &qmsg); . 

/*****,~*****************************************************************/ 
/* Clean upon the Wc\y out. '. . ....... . ...... . •.... .... .... ............•.•...•..• ......... ..... . .. */ 
/***********************************************************1;***********/ 

WtnDes.troyMs.gQueue(hmq); 
W;IlTerminate(h.ab} ; 

return TRUE; 

/******'*****************************************************************/ 
/* LocalWndProp{}-windowprocedureforthe··.fralllewindQw. */ 
/ * Call ed by>PM' whenever' a message is .sent tQ the frame. *! 
/**********'/(****t~'/(********************'*******~**************c***********l 
MRESU.LT.· EXP~NJ'R'fLocalWndProc(HWNO .•.. hwnd.,ULQ~G.msg,·MpARAM.·mpl.MPARAMmp?)· t: ' :.":: ::.~ .......... ~.:' ,;: :: .. ,<,,:;~.<-;.', ' 

char 's2PirtCC~"AXP~T:Hl; 
char siBLifferI256} ; . 
PO.RAGINFO d'raglnfQ; 
PDRAGITEM drag Item; '.' 
USHORT usOP; 
USHORT uslndic~tort' 
ULONG" ... 1lJ~yt~~; 

sw:itch(m~g) .•... 
r"" 

Figure 12-15 (Part 4 of 9). Sample Code for a Target Application 

Chapter 12. Direct Manipulation 12-45 



hOul" d.efaul t operationisMQve*1 
case DO DEFAULT: . , ". '. ,'. . <' .' , .... '.. . .... ..... • 

dragltem ·=DrgQueryDragitemPtr{dragl~foJ .0)·; 
ulBytes =DrgQueryStrName{dragltem~>hstrContatnerNamEh 

if{lul Bytes}. , 

si ieofCs:l)lj;r), 
szDi r); 

return (MRFROM2SHORT .• (OQR .... NODROpQp, '.'0»); 
else 

usQp ::: 
break; 

Figure 12-15 (Part 5 of 9). Sample Code for a Target Application 

12-46 PM Advanced Programming Guide 



usIndicator =DOR DROP; 
cHems = DrgQueryOragitemCount(dragInfo); 

/* Now, we need to look at each item in turn */ 
for (i = a; i < cItems; i++) 

dragItem = DrgQueryDragi temPtr( dragInfo, i); 

/* Make sure we can move for a Move request */ 
/* or copy for a Copy */ 
if «(dragltem->fsSupportedOps & DO_COPYABLE) && 

(usOp == (USHORT) DO_COPY» II 
«dragltem~>fsSupportedOps & DO_MOVEABLE) && 
(usOp ==,.(USHORT)DO_MOVE») 

/* Check therender1ngformat*/ 
; f (DrgVerifyRMF(drag Item , "DRM_OS2FILEII, "DRF _UNKNOWN"» 

usIndicator=DOR ... DRQP; 
el s.e 

usIndi cator = DOR_NEVERDROP; 
} 
else 

usIndicator = DOR_NQDROPOP; 

, , 

/* Release theqraginfo data struCture*! 
DrgFreeDra.ginfo(draglnfo); . 

return.··(MRfROM2~HORT(usIndicator, 
break; 

I*Draggedobj~cr Just left.*! 
case.··· D~ .• ,~RAGLEAVE: 

return · ..• (MRESuLT)FALSE; 
break; 

: : ~ :.: .. ~:" : ... :;. '. : .. ':" :. :": .:" :::' :". .:: .. -.: ...: ::" ::.: :., :: :::: <.:" '". , 

:,·.i* •• j[G~.~.! ..• ~cce.~.~ ..• ;·~.o •• • •..• ·th~ji·~~.AG.·IN,FO· da1:a •. " ·sty'u,c1t.tire· 
Dr9J\~~.essDr;agi nfo(dragInfo}; 

Figure 12-15 (Part 6 of 9). Sample Code for a Target Application 

Chapter 12. Direct Manipulation 12-47 



Figure 12-15 (Part 7 of 9). Sample Code for a Target Application 

12-48 PM Advanced Programming Guide 



/* Now, we need to look at each item in torn */ 
fore; =e; i < cItems;i++) 
{ 

dragltem = DrgQtieryDragitemPtr(dragltrfo, 

/* Make sure we can move for aMove request */ 
/* or copy for a Copy *! 
if H(dragltem->fsSupportedOps& DOCOPYABLE) && 

(usOp== (USHORT)DO.-COPY)) - " 
«dragItem->fs$uPPQrtedOps& DO_MOVEABLE) && 
(usOp == (USHORT) DO;...MOVE)J) 

/* Check the rendering format */ 
if (QrgVerifyRMF(dragltem. nORM OS2.FILE II

, uDRF_UNKNOWN")J 
usIndi cator = DOR DROP; -

else . -

us Indicator = DOR_NEVERDROP; 

else 
lIs.I ndicato\" ... =DORioNODROPOP;' 

/ ****************************'"Ic****~************************************* / •• 
/* This is where we. would actually move or copy the file,. *! 
/* but we just display the name instead. */ 

, ..... "., .".. " 

! ~Releasethedragjnfodqt~ 's'l: ructure 
DrgfreeQrqginfo(draglnfo);, 

'" :.". ~ :" . : ." .. , ." '. :::..:.:. :" '. . . .:. :. "'":" 

return (MRF~qf12S~ORi(ij~lOdiriatot~ .• ·• i~?Qp) > ... ~ 
bY'~'qk; 

Figure 12-15 (Part 8 of 9). Sample Code for a Target Application 

Chapter 12. Direct Manipulation 12-49 



Figure 12-15 (Part 9 of 9). Sample Code for a Target Application 

12-50 PM Advanced Programming Guide 



Related Functions 
This section covers the functions that are related to direct manipulation. 

DrgAcceptDroppedFiles 
This function handles the file direct manipulation protocol for a given window. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgAcceptDroppedFiles (HWND Hwnd, PSZ pPath, PSZ pTypes, 
UlONG ulDefaultOp, UlONG ulReserved) 

Parameters 
Hwnd (HWND) - input 

Handle of calling window. 

pPath (PSZ) - input 
Directory in which to place the dropped files. 

pTypes (PSZ) - input 
List of types that are acceptable to the drop. 

ulDefaultOp (UlONG) - input 
Default drag operation for this window. 

ulReserved (UlONG) - input 
Reserved. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE Successful completion. 
FALSE Error occurred. 

Chapter 12. Direct Manipulation 12-51 



DrgAccessDraginfo 
This function accesses a DRAGINFO structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgAccessDraginfo (PDRAGINFO pDraginfo) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FAlSl; 

Successful completion. 
Error occurred. 

DrgAddStrHandle 
This function creates a handle to a string. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

HSTR DrgAddStrHandle (P5Z pString) 

Parameters 
pString (PSZ) - input 

String for which a handle is to be created. 

12-52 PM Advanced Programming Guide 



Returns 
hstr (HSTR) - returns 

String handle. 

NULLHANDLE Error occurred. 
Other String handle created. 

DrgAllocDraginfo 
This function allocates a DRAGINFO structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGINFO DrgAllocDraginfo (ULONG cDitem) 

Parameters 
cDitem (ULONG) - input 

Number of objects being dragged. 

Returns 
Draginfo (PDRAGINFO) - returns 

Pointer to the DRAGINFO structure. 

NULL Error occurred. 
Other The DRAGINFO structure. 

Chapter 12. Direct Manipulation 12-53 



DrgAllocDragtransfer 
This function allocates a specified number of DRAGTRANSFER structures from a single 
segment. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGTRANSFER DrgAllocDragtransfer (UlONG cdxfer) 

Parameters 
cdxfer (ULONG) - input 

Number of DRAGTRANSFER structures to be allocated. 

Returns 
pDragtransfer (PDRAGTRANSFER) - returns 

Pointer to an array of DRAGTRANSFER structures. 

NULL Error occurred. 
Other The array of DRAGTRANSFER structures. 

DrgCancelLazyDrag 
This function is called to cancel the current drag operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgCancellazyDrag 0 

12-54 PM Advanced Programming Guide 



Parameters 
None. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

lazy drag is successfully canceled. 
An error occurred. 

DrgDeleteDraginfoStrHandles 
This function deletes each unique string handle in a DRAGINFO structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgDeleteDraginfoStrHandles (PDRAGINFO pDraginfo) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure that contains string handles to delete. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

Chapter 12. Direct Manipulation 12-55 



DrgDeleteStrHandle 
This function deletes a string handle. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgDeleteStrHandle (HSTR Hstr) 

Parameters 
Hstr (HSTR) - input 

The string handle to delete. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

DrgDrag 

. Successful completion. 
Error occurred. 

This function· performs a drag operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

HWND DrgDrag (HWND hwndSource, PDRAGINFO pDraginfo, 
PDRAGIMAGE pdimg, ULONG cdimg, LONG vkTerminate, 
PVOID pReserved) 

12-56 PM Advanced Programming Guide 



Parameters 
hwndSource (HWND) - input 

Handle of the source window calling this function. 

pDraginfo (PDRAGINFO) - in/out 
Pointer to the DRAGINFO structure. 

pdlmg (PDRAGIMAGE) - input 
Pointer to an array of DRAGIMAGE structures. 

cdimg (ULONG) - input 
Number of DRAGIMAGE structures in the pdimg array. Must be > O. 

vkTerminate (LONG) - input 
Pointing device button that ends the drag operation. 

V~BunON1 

VK_BUnON2 
VK_BUnON3 
VK_ENDDRAG 

Release of button 1 ends the drag. 
Release of button 2 ends the drag. 
Release of button 3 ends the drag. 
Release of the system-defined direct manipulation button ends the 
drag. This is the recommended value if the DrgDrag function call is 
invoked in response to a WM_BEGINDRAG message. 

pReserved (PVOID) - input 
Reserved value, must be NULL. 

Returns 
hwndDest (HWND) ..... returns 

Handle of window on which the dragged objects were dropped. 

DrgDragFiles 
This function begins a direct manipulation operation for one or more files. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgDragFiles (HWND Hwnd, PAPSZ pFiles, ·PAPSZ pTypes, 
PAPSZ pTargets, UlONG cFiles, HPOINTER hptrDrag, 
UlONG vkTerm, BOOl fSourceRender, UlONG ulReserved) 

Chapter 12. Direct Manipulation 12-57 



Parameters 
Hwnd (HWND) - input 

Handle of calling window. 

pFiles (PAPSZ) - input 
The names of the files to be dragged. 

pTypes (PAPSZ) - input 
The file types of the files to be dragged. 

pTargets (PAPSZ) - input 
Target file names. 

cFiles (UlONG) - input 
Number of files to be dragged. 

hptrDrag (HPOINTER) - input 
Icon to display during the drag. 

vkTerm (UlONG) - input 
Button that ends the drag. 

VK_BUTTON1 
VK_BUTTON2 
VK_BUTTON3 
VK_ENDDRAG 

Release of button 1 ends the drag. 
Release of button 2 ends the drag. 
Release of button 3 ends the drag. 
Release of the system-defined direct manipulation button ends the 
drag. This is the recommended value if the DrgDrag function call is 
invoked in response to a WM_BEGINDRAG message. 

fSourceRender (BOOl) - input 
Flag indicating whether the source must perform the move or copy. 

TRUE 
FALSE 

The caller will receive a DM_RENDERFllE message for each file. 
All file manipulation is performed by DrgDragFiles. 

ulReserved (UlONG) - input 
Reserved. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

The drag operation was initiated successfully. 
An error occurred. 

12-58 PM Advanced Programming Guide 



DrgFreeDraginfo 
This function frees a DRAGINFO structure allocated by DrgAllocDraginfo. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgFreeDraginfo (PDRAGINFO pDraginfo) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DrgFreeDragtransfer 
This function frees the storage associated with a DRAGTRANSFER structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgFreeDragtransfer (PDRAGTRANSFER pdxfer) 

Parameters 
pdxfer (PDRAGTRANSFER) - input 

Pointer to the DRAGTRANSFER structures to be freed. 

Chapter 12. Direct Manipulation 12-59 



Returns 
rc (BOOl) - returns 

Return code. 

TRUE 
FALSE 

DrgGetPS 

The structure was freed successfully. 
The deallocation failed. 

This function gets a presentation space that is used to provide target feedback to the user 
during a drag operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

HPS DrgGetPS (HWND Hwnd) 

Parameters 
Hwnd (HWND) - input 

Handle of the window for which presentation space is required. 

Returns 
Hps (HPS) - returns 

Presentation-space handle used for drawing in the window. 

NUllHANDlE Error occurred. 

DrgLazyDrag 
This function is called when a direct-manipulation button is pressed wile the lazy drag 
augmentation key is held to initiate a pickup and drop (lazy drag) operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrglazyDrag (HWND hwndSource, PDRAGINFO pDraginfo, 
PDRAGIMAGE pdimg, UlONG cdimg, PVOID Reserved) 

12-60 PM Advanced Programming Guide 



Parameters 
hwndSource (HWND) - input 

Handle of the source window that is calling this function. 

pDraginfo (PDRAGINFO) - input 
Pointer to the DRAGINFO structure which contains information about the objects being 
dragged. 

pdimg (PDRAGIMAGE) - input 
Pointer to an array of DRAGIMAGE structures. 

cdimg (UlONG) - input 
Number of DRAGIMAGE structures in the pdimg array. 

Reserved (PVOID) - input 
Reserved value, must be O. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

A lazy drag operation was successfully started. 
An error occurred while initiating a lazy drag operation. 

DrgLazyDrop 
This function is called to invoke a lazy drop operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrglazyDrop (HWND hwndTarget, UlONG ulsOperation, 
PPOINTL pptlDrop) 

Chapter 12. Direct Manipulation 12-61 



Parameters 
hwndTarget (HWND) - input 

Handle of the target window receiving the drop. 

ulsOperation (UlONG) - input 
Drop operation code. 

DO_DEFAULT 
DO_COPY 
DO_MOVE 
DO LINK 

Default operation. 
Operation is a copy. 
Operation is a move. 
Operation is a link. 

pptlDrop (PPOINTl) - input 
Pointer to the drop location in desktop coordinates. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Objects are successfully dropped. 
An error occurred. 

Drg PostTransferMsg 
This function posts a message to the other application involved in the direct manipulation 
operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOlDrgPostTransferMsg (HWND hwndTo, UlONG ulMsgid, 
PDRAGTRANSFER ·pdxfer, UlONG fs, 
UlONG ulReserved, BOOl fRetry) 

Parameters 
hwndTo (HWND) - input 

Window handle to which the message 
is to be posted. 

Target hwndltem in the DRAGITEM structure. 
Source hwndClient in the DRAGTRANSFER structure. 

12-62 PM Advanced Programming Guide 



ulMsgid (ULONG) - input 
Identifier of the message to be posted. 

pdxfer (PDRAGTRANSFER) - input 
Pointer to the DRAGTRANSFER structure. 

fs (ULONG) - input 
Flags to be passed in the param2 parameter of the message identified by ulMsgid. 

ulReserved (ULONG) - input 
Reserved value, must be O. 

fRetry (BOOL) - input 
Retry indicator. 

TRUE If the destination queue is full, the message posting is retried at 1-second 
intervals until the message is posted successfully. 

In this case, DrgPostTransferMsg dispatches any messages in the queue by 
calling WinPeekMsg and WinDispatchMsg in a loop. The application can 
receive messages sent by other applications while it is trying to post drag 
transfer messages. 

FALSE The call returns FALSE without retrying. 

Returns 
rc (BOOL) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DrgPushDraginfo 
This function gives a process access to a DRAGINFO structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgPushDraginfo (PDRAGINFO pDraginfo, HWND hwndDest) 

Chapter 12. Direct Manipulation 12-63 



Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure. 

hwndDest (HWND) - input 
Handle of the window whose process is to be given access to a DRAGINFO structure. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE Successful completion. 
FALSE Error occurred. 

DrgQueryDraginfoPtrFromDragitem 
This function is called to obtain a pointer to the DRAGINFO structure associated with a given 
DRAG ITEM structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGINFO DrgQueryDraglnfoPtrFromDragitem (PDRAGITEM pDragitem) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to a DRAGITEM structure whose corresponding DRAGINFO is to be returned. 

Returns 
pDraginfo (PDRAGINFO) - returns 

Pointer to the DRAGINFO structure for the specified pDragitem. 

12-64 PM Advanced Programming Guide 



DrgQueryDraginfoPtrFromHwnd 
This function determines whether a particular window has allocated a DRAGINFO structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGINFO DrgQueryDraginfoPtrFromHwnd (HWND hwndSource) 

Parameters 
hwndSource (HWND) - input 

Handle of the window whose associated DRAGINFO pointer is to be returned. 

Returns 
pDraginfo (PDRAGINFO) - returns 

Pointer to the DRAGINFO structure allocated by the window specified by hwndSource. 

DrgQueryDragitem 
This function returns a DRAGITEM structure used in the direct manipulation operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOL DrgQueryDragitem (PDRAGINFO pDraginfo, ULONG cbBuffer, 
PDRAGITEM pDragitem, ULONG iltem) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained. 

cbBuffer (ULONG) - input 
Maximum number of bytes to copy to the buffer. 

Chapter 12. Direct Manipulation 12-65 



pDragitem (PDRAGITEM) - output 
Pointer to the buffer into which the DRAGITEM structure is copied. 

iltem (ULONG) - input 
Zero-based index of the DRAGITEM to be returned. 

Returns 
rc (BOOL) - returns 

Success indicator. 

TRUE 
'FALSE 

Successful completion. 
Error occurred. 

DrgQueryDragitemCount 
This function returns the number of objects being dragged during the current direct 
manipulation operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

ULONG DrgQueryDragitemCount (PDRAGINFO pDraginfo) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure for which number of dragged objects is requested. 

Returns 
cDitem (ULONG) - returns 

Number of objects being dragged. 

12-66 PM Advanced Programming Guide 



DrgQueryDragitemPtr 
This function returns a pointer to the DRAG ITEM structure used in the direct manipulation 
operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGITEM DrgQueryDragitemPtr (PDRAGINFO pDraginfo, ULONG ullndex) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained. 

ullndex (ULONG) - input 
Zero-based index of the DRAGITEM structure for which the pointer is to be returned. 

Returns 
Dragitem (PDRAGITEM) - returns 

Pointer to the DRAGITEM structure. 

DrgQueryDragStatus 
This function determines the status of the current drag operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

ULONG DrgQueryDragStatus 0 

Parameters 
None. 

Chapter 12. Direct Manipulation 12-67 



Returns 
rc (UlONG) - returns 

Flag indicating the current drag status. 

o 
DGS_DRAGINPROGRESS 
DGS_LAZYDRAGINPROGRESS 

DrgQueryNativeRMF 

A drag operation is not currently in progress. 
A standard drag operation is in progress. 
A lazy drag operation is in progress. 

This function obtains the ordered pair that represents the native rendering mechanism and 
format of the dragged object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOL DrgQueryNativeRMF (PDRAGITEM pDragitem, ULONG cbBuffer, 
PCHAR ppBuffer) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure. 

cbBuffer (UlONG) - input 
Maximum number of bytes to copy to the buffer. 

ppBuffer (PCHAR) - output 
Pointer to the buffer in which the null-terminated string is to be returned. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

12-68 PM Advanced Programming Guide 



DrgQueryNativeRMFLen 
This function obtains the length of the string representing the native rendering mechanism 
and format of the dragged object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

ULONG DrgQueryNativeRMFLen (PDRAGITEM pDragitem) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAG ITEM structure whose native rendering mechanism and format 
string length are to be obtained. 

Returns 
ulLength (ULONG) - returns 

String length of the ordered pair. 

o Error occurred. 
Other String length of the ordered pair, excluding the null-terminating byte. 

DrgQueryStrName 
This function gets the contents of a string associated with a string handle. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

ULONG DrgQueryStrName (HSTR Hstr, ULONG cbBuflen, PSZ pBuffer) 

Chapter 12. Direct Manipulation 12-69 



Parameters 
Hstr (HSTR) - input 

The handle must have been created with DrgAddStrHandle. 

cbBuflen (ULONG) - input 
Maximum number of bytes to copy into pBuffer. 

pBuffer. (PSZ) - output 
Buffer where the null-terminated string is returned. 

Returns 
ulLength (ULONG) - returns 

Number of bytes written to pBuffer. 

DrgQueryStrNameLen 
This function gets the length of a string associated with a string· handle. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

ULONG DrgQueryStrNameLen (HSTR Hstr) 

Parameters 
Hstr (HSTR) - input 

String handle. 

Returns 
cLength (ULONG) - returns 

Length of the string associated with Hstr. 

o The string handle is NULLHANDLE or is not valid. 
Other The length of the string associated with the string handle, excluding the null 

terminating byte. 

12-70 PM Advanced Programming Guide 



DrgQueryTrueType 
This function obtains the true type of a dragged object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgQueryTrueType (PDRAGITEM pDragltem, UlONG cbBuflen, 
PSZ pBuffer) 

Parameters 
pDragltem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose type is to be obtained. 

cbBuflen (ULONG) - input 
Maximum number of bytes to copy to pBuffer. Must be > O. 

pBuffer (PSZ) - output 
Buffer in which the null-terminated string is to be returned. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE Successful completion. 
FALSE Error occurred. 

DrgQueryTrueTypeLen 
This function obtains the length of the string that represents the true type of a dragged 
object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

UlONG DrgQueryTrueTypelen (PDRAGITEM pDragitem) 

Chapter 12. Direct Manipulation 12-71 



Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose type length is to be obtained. 

Returns 
ulLength (ULONG) - returns 

String length of the first element of the character string associated with hstrType. 

o Error occurred. 
Other The length of the first element of the character string associated with hstrType, 

excluding the nUll-terminating byte. 

DrgReallocDraglnfo 
This function releases the current DRAGINFO structure and reallocates a new one. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

PDRAGINFO DrgReallocDraglnfo (PDRAGINFO pdinfoOld, ULONG cditem) 

Parameters 
pdinfoOld (PDRAGINFO) - input 

Pointer to the current DRAGINFO structure. 

cditem (ULONG) - input 
Number of DRAG ITEM structures to be allocated. 

Returns 
pdinfoCurrent (PDRAGINFO) - returns 

Pointer to a newly allocated DRAGINFO structure. 

12· 72 PM Advanced Programming Guide 



DrgReleasePS 
This function releases a presentation space obtained by using the DrgGetPS function. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BeOl DrgReleasePS (HPS Hps) 

Parameters 
Hps (HPS) - input 

Handle of the presentation space to release. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DrgSendTransferMsg 
This function sends a message to the other application involved in the direct manipulation 
operation. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

MRESUl T DrgSendTransferMsg (HWND hwndTo, UlONG ulMsgid, 
MPARAM mpParam1, MPARAM mpParam2) 

Parameters 
hwndTo (HWND) - input 

Window handle to which the message is to be sent. 

Target hwndltem in the DRAGITEM structure. 
Source hwndClient in the DRAGTRANSFER structure. 

ulMsgld (UlONG) - input 
Identifier of the message to be sent. 

Chapter 12. Direct Manipulation 12-73 



mpParam1 (MPARAM) - input 
First message parameter. 

mpParam2 (MPARAM) - input 
Second message parameter. 

Returns 
mresReply (MRESUL T) - returns 

Message-return data. 

DrgSetDraglmage 
This function sets the image that is being dragged. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgSetDraglmage (PDRAGINFO pDraginfo, PDRAGIMAGE pdimg, 
UlONGcdimg, PVOID pReserved) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure. representing the drag operation for which the 
pointer is to be set. 

pdimg (PDRAGIMAGE) - input 
Pointer to an array of DRAGIMAGE structures. 

cdimg (ULONG) - input 

Number of DRAGIMAGE structures in the pdimg array. 

pReserved (PVOID) - input 
Reserved value, must be NULL. 

Returns 
rc (BOOL) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

12-74 PM Advanced Programming Guide 



DrgSetDragitem 
This function sets the values in a DRAG ITEM structure. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgSetDragitem (PDRAGINFO pOraginfo, PDRAGITEM pDragitem, 
UlONG cbBuffer, UlONG iltem) 

Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure in which to place the DRAGITEM. 

pDragitem (PDRAGITEM) - input 
Pointer to the DRAGITEM structure to place in DRAGINFO. 

cbBuffer (UlONG) - input 
Size of the DRAGITEM addressed by pDragitem. 

iltem (UlONG) - input 
Zero-based index of the DRAGITEM to be set. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE Successful completion. 
FALSE Error occurred. 

DrgSetDragPointer 
This function sets the pointer to be used while over the current target. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgSetDragPointer (PDRAGINFO pDraginfo, HPOINTER hptrHandle) 

Chapter 12. Direct Manipulation 12-75 



Parameters 
pDraginfo (PDRAGINFO) - input 

Pointer to the DRAGINFO structure. to be used for this drag. j! 

hptrHandle (HPOINTER) - input 
Handle to the pointer to use. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DrgVerifyNativeRMF 
This function determines if the native rendering mechanism and format of an object match 
any supplied by the application. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgVerifyNativeRMF (PDRAGITEM pDragitem, PSZ pRMF) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure. whose native rendering mechanism and format are 
to be verified. 

pRMF (PSZ) - input 
A String specifying the rendering mechanism and format. 

Returns 
rc (BOOl) - returns 

Validity indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

12-76 PM Advanced Programming Guide 



DrgVerifyRMF 
This function determines if a given rendering mechanism and format are supported for a 
dragged object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgVerifyRMF (PDRAGITEM pDragitem, PSZ pMech, PSZ pFormat) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose native rendering mechanism and format are 
to be validated. 

pMech (PSZ) - input 
String specifying the rendering mechanism to search for. 

pFormat (PSZ) - input 
String specifying the rendering format to search for. 

Returns 
rc (BOOl) - returns 

Validity indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DrgVerifyTrueType 
This function determines if the true type of a dragged object matches an application-supplied 
type string. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgVerifyTrueType (PDRAGITEM pDragitem, PSZ pType) 

Chapter 12. Direct Manipulation 12-77 



Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose true type is to be verified. 

pType (PSZ) - input 
String specifying a type. 

Returns 
rc (BOOl) - returns 

Validity indicator. 

TRUE 
FALSE 

DrgVerifyType 

Successful completion. 
Error occurred. 

This function verifies whether a given type is present in the list of types defined for a drag 
object. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOl DrgVerifyType (PDRAGITEM pDragitem, PSZ pType) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose hstrType is to be verified. 

pType (PSZ) - input 
String specifying the types to search for. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

12-78 PM Advanced Programming Guide 



DrgVerifyTypeSet 
This function returns the intersection of the contents of the string associated with the 
type-string handle for an object and an application-specified type string. 

Syntax 

#define INCL_WINSTDDRAG 

#include <os2.h> 

BOOlDrgVerifyTypeSet (PDRAGITEM pDragitem, PSZ pType, UlONG cbBuflen, 
PSZ pBuffer) 

Parameters 
pDragitem (PDRAGITEM) - input 

Pointer to the DRAGITEM structure whose hstrType is to be verified. 

pType (PSZ) - input 
String specifying the types to search for. 

cbBuflen (UlONG) - input 
Size of the return buffer. 

pBuffer (PSZ) - output 
Buffer where the intersection string is returned. 

Returns 
rc (BOOl) - returns 

Match indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

Chapter 12. Direct Manipulation 12-79 



Related Window Messages 
This section covers the window messages that are related to direct manipulation. 

DM_DISCARDOBJECT 
This message is sent to a source that supports the "DRM_DISCARD" rendering method. 

Parameters 
param1 

pOraglnfo (PDRAGINFO) 
Pointer to the DRAGINFO structure representing the items to be discarded. 

mpparam2 

ulReserved (MPARAM) 
Reserved value, should be NULL. 

Returns 
ulAction (ULONG) 

Flag. 

ORR_SOURCE The source window procedure accepts responsibility for the operation. 

ORR_TARGET The target window procedure is to accept responsibility for the 
operation. The OS/2 shell supports the discarding of dragitems that 
can be rendered by the DRM_OS2FILE method. 

ORR_ABORT Abort the entire OM_DROP action. 

DM_DRAGERROR 
This message is sent to the caller of DrgDragFiles or DrgAcceptDroppedFiles when an error 
occurs during a move or copy operation for a file. 

Parameters 
param1 

usError (USHORT) 
Error code. 

Re~urned from DosCopy, DosMove, or DosDelete. 

12-80 PM Advanced Programming Guide 



usOperation (USHORT) 
Flag. 

Flag indicating the operation that failed. 

param2 

DFF_MOVE 
DFF_COPY 
DFF_DELETE 

hstr (HSTR) 

DosMove failed. 
DosCopy failed. 
DosDelete failed. 

HSTR of file contributing to the error. 

Returns 
hstrAction (HSTR) 

Action indicator. 

DMEJGNORECONTINUE Do not retry the operation, but continue with the rest of the 
files. 

DME_IGNOREABORT Do not retry the operation, and do not try any other files. 

DME RETRY Retry the operation. 

DME_REPLACE Replace the file at the destination. Used if FALSE is not 
specified. 

Other HSTR of new file name to use for retry. 

OM ORAGFILECOMPLETE 
This message is sent when a direct manipulation operation on a file or files is complete. 

Parameters 
param1 

hstr (HSTR) 
File handle. 

param2 

usOperation (USHORT) 
Flags. 

DF_MOVE The operation was a move. If this flag is not set, the 
operation was a copy. 

The receiving window was the source of the drag. If this flag 
is not set, the receiver was the target of the drop. 

Chapter 12. Direct Manipulation 12-81 



OF_SUCCESSFUL The drag operation was successful for the file. If this flag is 
not set, the operation failed. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

DM_DRAGLEAVE 
This message is sent to a window that is being dragged over when one of these conditions 
occur: 

• The object is dragged outside the boundaries of the window. 
• The drag operation is terminated while the object is over the window. 

Parameters 
param1 

pDraginfo (PORAGINFO) 
Pointer to the ORAGINFO structure for the drag operation. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

DM_DRAGOVER 
This message allows the window under the mouse pointer to determine if the object or 
objects currently being dragged can be dropped. 

param2 is the pointing device pointer location. 

Parameters 
param1 

pDraginfo (PORAGINFO) 
Pointer to the DRAGINFO structure representing the object being dragged. 

12-82 PM Advanced Programming Guide 



param2 

sxDrop (SHORT) 
X-coordinate of the pointing device pointer in desktop coordinates. 

syOrop (SHORT) 
Y -coordinate of the pointing device pointer in desktop coordinates. 

Returns 
ReturnCode 

usDrop (USHORT) 
Drop indicator. 

DOR_DROP Object can be dropped. When this reply is given, 
usDefaultOp must be set to indicate which operation is 
performed if the user should drop at this location. 

DOR _ NODROP Object cannot be dropped at this time. The target can 
accept the object in the specified type and format using the 
specified operation, but the current state of the target will not 
allow it to be dropped on. The target may change state in 
the future so that the same object may be acceptable. 

DOR_NODROPOP Object cannot be dropped at this time. The target can 
accept the object in the specified type and format, but the 
current operation is not acceptable. A change in the drag 
operation may change the acceptability of the object. 

DOR_NEVERDROP Object cannot be dropped. The target cannot accept the 
object now and will not change state so that the object will 
be acceptable in the future. If this response is returned, no 
more DM _ DRAGOVER messages will be sent to the target 
until the pointer is moved out of and back into the target 
window. / 

usDefaultOp (USHORT) 
Target-defined default operation. 

DO_COPY Operation is a copy. 

DO_LINK Operation is a link. 

DO_MOVE Operation is a move. 

Other Operation is defined by the application. 

This value should be greater than or equal to (>=) DO_UNKNOWN. 

Chapter 12. Direct Manipulation 12·83 



DM_DRAGOVERNOTIFY 
This message is sent to the source of a drag operation immediately after a DM_DRAGOVER 
message is sent to a target window. 

param2 is the target's reply to the DM_DRAGOVER message. 

Parameters 
param1 

pDraginfo (PDRAGINFO) 
Pointer to the DRAGINFO structure that represents the object being dragged. 

param2 
Target's reply. 

usDrop (USHORT) 
Drop indicator. 

usDefaultOp (USHORT) 
Default operation. 

Target-defined default operation. 

Returns 
ulReserved (ULONG) 

Reserved value. 

·DM DROP 
This message is sent to the target when the dragged object is dropped. 

Parameters 
param1 

pDraginfo (PDRAGINFO) 
Pointer to the DRAGINFO structure. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

12-84 PM Advanced Programming Guide 



Returns 
ulReserved (ULONG) 

Reserved value, should be o. 

DM_DROPHELP 
This message requests help for the current drag operation. 

Parameters 
param1 

pDraginfo (PDRAGINFO) 
Pointer to the DRAGINFO structure used in the drag operation. 

param2 

ulReserved (ULONG) 
Reserved value, should be o. 

Returns 
ulReserved (ULONG) 

Reserved value, should be o. 

DM_DROPNOTIFY 
This message provides the source window with the target window handle and a pointer to 
the DRAGINFO structure allocated by the source window. 

Parameters 
param1 

pDraginfo (PDRAGINFO) 
Pointer to the DRAGINFO structure allocated by the source window receiving the 
message. 

Chapter 12. Direct Manipulation 12-85 



param2 

hwndTarget (HWND) 
Handle of the target window that the drag set was dropped on. 

Note: If hwndTarget is equal to zero, the drag is canceled, and the drag set is not 
dropped. DrgCancelLazyDrag posts a DM_DROPNOTIFY message with an 
hwndTarget value of zero to the source window. 

Returns 
returns 

ulReserved (ULONG) 
Reserved value, must be o. 

OM EMPHASIZETARGET 
This message is sent to the caller of DrgAcceptDroppedFiles to inform it to either apply or 
remove target emphasis from itself. 

Parameters 
param1 

sx (SHORT) 
X-coordinate. 

X-coordinate of the pointing device pointer in window coordinates. 

sy (SHORT) 
Y -coordinate. 

V-coordinate of the pointing device pointer in window coordinates. 

usparam2 

usEmphasis (USHORT) 
Flags. 

TRUE 
FALSE 

Apply emphasis. 
Remove emphasis. 

Returns 
ulReserved (ULONG) 

Reserved value, should be o. 

12-86 PM Advanced Programming Guide 



OM_ENOCONVERSATION 
The target uses this message to notify a source that a drag operation is complete. 

Parameters 
param1 

ulitemlD (ULONG) 
Item ID. 

The u/ltemlD from the DRAGITEM that was contained within the DRAGINFO 
structure when the object was dropped. 

param2 

ulFlags (ULONG) 
Flags. 

The flags are set as follows: 

DMFL_ TARGETSUCCESSFUL The target successfully completed its portion of 
the rendering operation. 

DMFL_ TARGETFAIL The target failed to complete its portion of the 
rendering operation. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

OM FILERENOERED 
This message is sent to the window handling the drag conversation for the caller of 
DrgDragFiles. 

Parameters 
param1 

rndf (PRENDERFILE) 
Pointer to a RENDERFILE structure. 

Chapter 12. Direct Manipulation 12-87 



param2 

usOperation (USHORT) 
Flags. 

TRUE 
FALSE 

Operation succeeded 
Operation failed. 

Returns 
ulReserved (ULONG) 

Reserved value, should be o. 

DM_PRINTOBJECT 
This message is sent to a source that supports the "DRM_PRINT" rendering method when 
objects are dropped on a printer object. 

Parameters 
param1 

pDraglnfo (PDRAGINFO) 
Pointer to the DRAGINFO structure representing the objects to be printed. 

param2 

pPrintDest (PPRINTDEST) 
Pointer to the PRINTDEST structure representing printer object to print to. 

The structure contains all the parameters required to call the functions 
DevPostDeviceModes and DevOpenDC. 

Returns 
ulAction (ULONG) 

Flag. 

DRR_SOURCE The source window procedure/object procedure will take responsibility 
for the print operation. 

DRR_TARGET The target printer object will take responsibility for the print operation 
(this will only work on objects which are of the pre-registered 
rendering method; "DRM..;.OS2FILE." 

DRR_ABORT Abort the entire DM_DROP action (do not send any more 
DM_PRINTOBJECT messages to any sel'ected source object involved 
in this DM DROP. 

12·88 PM Advanced Programming Guide 



DM RENDER 
This message is used to request a source to provide a rendering of an object in a specified 
rendering mechanism and format. 

Parameters 
param1 

pOxfer (PDRAGTRANSFER) 
Pointer to the DRAGTRANSFER structure. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
rc (BOOL) 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Error occurred. 

DM_RENDERCOMPLETE 
This message is posted by a source to a target window. It informs the target that the source 
has completed a requested rendering operation. 

Parameters 
param1 

pOxfer (PDRAGTRANSFER) 
Pointer to the DRAGTRANSFER structure. 

param2 

usFS (USHORT) 
Flag field. 

Flag field indicating successful completion. 

DMF~RENDERFAIL The source is unable to perform the rendering operation. 
The target may be allowed to retry. If the target -is 
allowed to retry and chooses not to, it must send a 
DM_ENDCONVERSATION message to the source. 

Chapter 12. Direct Manipulation 12-89 



DMFL_RENDEROK The source has completed the rendering operation. 
When the target completes its part of the rendering 
operation, it must post a DM_RENDERCOMPLETE 
message to the source. 

DMFL_RENDERRETRY The source has completed the rendering operation and 
will allow the target to retry its part of the operation if it 
fails. This flag can be set in conjunction with either the 
DMFL_RENDERFAIL or DMFL_RENDEROK flags. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

OM RENOERFILE 
This message is sent to the caller of DrgDragFiles to tell it to render a file. 

Parameters 
param1 

rndf (PRENDERFILE) 
Pointer to a RENDERFILE structure. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
rc (BOOL) 

Render handling. 

TRUE 
FALSE 

The receiver handled the rendering. 
DrgDragFiles should render this file. 

12·90 PM Advanced Programming Guide 



OM RENOERPREPARE 
This message tells a source to prepare for the rendering of an object. 

Parameters 
param1 

pOxfer (PDRAGTRANSFER) 
Pointer to a DRAGTRANSFER structure. 

param2 

ulReserved (UlONG) 
Reserved value, should be O. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE The message was processed by the recipient and it is ready to perform the 
rendering operation. The target of the drop sends a DM_RENDER message 
to request the rendering with a specific rendering mechanism and format. 

FALSE The message either was not processed by the recipient, or it is unprepared to 
perform the rendering. The hwndltem field in DRAGITEM may not be properly 
initialized, and therefore the target should not send a 
DM _ ENDCONVERSATION message. 

Chapter 12. Direct Manipulation 12-91 



Related Data Structures 
This section covers the data structures that are related to direct manipulation. 

DRAGIMAGE 
Dragged-object-image structure which describes the images that are to be drawn under the 
direct-manipulation pointer for the duration of a drag operation. 

Syntax 

Fields 
cb (USHORT) 

Size, in bytes, of the DRAGIMAGE structure. 

cptl (USHORT) 
The number of points in the point array if fI is specified as DRG_POLYGON. 

hlmage (LHANDLE) 
Handle representing the image to display. 

The type is determined by fl. 

sizlStretch (SIZEL) 
Dimensions for stretching when fI is specified as DRG_STRETCH. 

fl (ULONG) 
Flags. 

DRGJCON 
DRG_BITMAP 
DRG_POL YGON 

DRG_STRETCH 

hlmage is an HPOtNTER. 
hlmage is an HBITMAP. 
hlmage is a pointer to an array of points that will be connected 
with GpiPolyLine to form a polygon. The first point of the 
array should be (0,0), and the other points should be placed 
relative to this position. 
If DRGJCON or DRG_BITMAP is specified, the image is 
expanded or compressed to the dimensions specified by 
sizlStretch. 

12-92 PM Advanced Programming Guide 



DRG_ TRANSPARENT If DRGJCON is specified, an outline of the icon is generated 
and displayed instead of the original icon. 

DRG_CLOSED If DRG_POLYGON is specified, a closed polygon is formed by 
moving the current position to the last point in the array before 
calling GpiPolyLine. 

cxOffset (SHORT) 
X-offset from the pointer hot spot to the origin of the image. 

cyOffset (SHORT) 
Y -offset from the pointer hot spot to the origin of the image. 

DRAGINFO 
Drag-information structure. 

Syntax 

-,"." ". " .. " .... " ....... " ............ ' 

:'. t},:P~~~f:'6~AG~·~F().*:~~~~l~~P;::' :,,', 

Fields 
cbDraginfo (ULONG) 

Structure size, in bytes. 

The size includes the array of DRAG ITEM structures. 

cbDragitem (USHORT) 
Size, in bytes, of each DRAG ITEM structure. 

usOperation (USHORT) 
Modified drag operations. 

An application can define its own modified drag operations for use when simulating a 
drop. These operations must have a value greater than DO_UNKNOWN. Possible 
values are described in the following list: 

DO_DEFAULT 
DO_COPY 
DO_LINK 

Execute the default drag operation. No modifier keys are pressed. 
Execute a copy operation. The Ctrl key is pressed. 
Execute a link operation. The Ctrl+Shift keys are pressed. 

Chapter 12. Direct Manipulation 12-93 



DO_MOVE Execute a move operation. The Shift key is pressed. 
DO_UNKNOWN An undefined combination of modifier keys is pressed. 

hwndSource (HWND) 
Window handle of the source of the drag operation. 

xDrop (SHORT) 
X-coordinate of drop point expressed in desktop coordinates. 

yDrop (SHORT) 
V-coordinate of drop point expressed in desktop coordinates. 

cditem (USHORT) 
Count of DRAGITEM structures. 

us Reserved (USHORT) 
Reserved. 

DRAGITEM 
Drag-object structure. 

Syntax 

Fields 
hwndltem (HWND) 

Window handle of the source of the drag operation. 

ulitemlD (ULONG) 
Information used by the source to identify the object being dragged. 

12-94 PM Advanced Programming Guide 



hstrType (HSTR) 
String handle of the object type. 

The string handle must be created using the DrgAddStrHandle function. The string is of 
the form: 

type[. type •.. J 

The first type in the list must be the true type of the object. The following types are 
used by the OS/2* shell: 

DRT_ASM 
DRT_BASIC 
DRT _BINDATA 
DRT_BITMAP 
DRT_C 
DRT_COBOL 
DRT_DLL 
DRT_DOSCMD 
DRT_EXE 
DRT_FONT 
DRT _FORTRAN 
DRTJCON 
DRT_LlB 
DRT_METAFILE 
DRT_OS2CMD 
DRT_PASCAL 
DRT _RESOURCE 
DRT_TEXT 
DRT_UNKNOWN 

hstrRMF (HSTR) 

Assembler code 
BASIC code 
Binary data 
Bit map 
C code 
COBOL code 
Dynamic link library 
DOS command file 
Executable file 
Font 
FORTRAN code 
Icon 
Library 
Metafile 
OS/2 command file 
Pascal code 
Resource file 
Text 
Unknown type. 

String handle of the rendering mechanism and format. 

The string handle must be created using the DrgAddStrHandle function. The string is of 
the form: 

mechfmt[,mechfmt ... J 

where mechfmt can be in either of the following formats: 

• <mechanism(1),format(1» 
• (mechanism(1)[, mechanism(n) ... ]) x (format(1 )[,format(n) ... ]) 

The first mechanism/format pair must be the native rendering mechanism and format of 
the object. 

Valid mechanisms are: 

"DRM_DDE" 
"DRM _OBJECT" 

Dynamic data exchange 
Item being dragged is a workplace object. 

Chapter 12. Direct Manipulation 12-95 



"DRM_OS2FILE" 
"DRM_PRINT" 

Valid formats are: 

"DRF _BITMAP" 
"DRF_DIB" 
"DRF_DIF" 
"DRF _DSPBITMAP" 
"DRF _METAFILE" 
"DRF _ OEMTEXT" 
"DRF _ OWNERDISPLA Y" 
"DRF _PTRPICT" 
"DRF_RTF" 
"DRF_SYLK" 
"DRF_TEXT" 
"DRF _TIFF" 
"DRF _UNKNOWN" 

hstrContainerName (HSTR) 

OS/2 file 
Object can be printed using direct manipulation. 

OS/2 bit map 
DIB 
DIF 
Stream of bit-map bits 
Metafile 
OEM text 
Bit stream 
Printer picture 
Rich text 
SYLK 
Null-terminated string 
TIFF 
Unknown format. 

String handle of the name of the container holding the source object. 

The string handle must be created using the DrgAddStrHandle function. 

hstrSourceName (HSTR) 
String handle of the name of the source object. 

The string handle must be created using the DrgAddStrHandle function. 

hstrTargetName (HSTR) 
String handle of the suggested name of the object at the target. 

It is the responsibility of the source of the drag operation to create this string handle 
before calling DrgDrag. 

cxOffset (SHORT) 
X-offset from the pointer hot spot to the origin of the image that represents this object. 

This value is copied from cxOffset in the DRAGIMAGE structure by DrgDrag. 

cyOffset (SHORT) 
V-offset from the pointer hot spot to the origin of the image that represents this object. 

This value is copied from cyOffset in the DRAGIMAGE structure by DrgDrag. 

fsControl (USHORT) 
Source-object control flags. 

DC_OPEN 
DC_REF 
DC_GROUP 
DC_CONTAINER 
DC_PREPARE 

Object is open 
Reference to another object 
Group of objects 
Container of other objects 
Source requires a DM_RENDERPREPARE message 
before it establishes a data transfer conversation 

12-96 PM Advanced Programming Guide 



DC_REMOVEABLEMEDIA Object is on removable media, or object cannot be 
recovered after a move operation. 

fsSupportedOps (USHORT) 
Direct manipulation operations supported by the source object. 

DO _ COPY ABLE 
DO_LINKABLE 
DO_MOVEABLE 

DRAGTRANSFER 

Source supports DO_COPY 
Source supports DO_LINK 
Source supports DO_MOVE. 

Drag-conversation structure. 

Syntax 

typedef struct _DRAGTRANSFER { 
ULONG cb; 
HWND hwndClient; 
PDRAGITEM pditem; 
HSTR hstrSelectedRMF; 
HSTR hstrRenderToName; 
ULONG ulTargetlnfo; 
USHORT usOperation; 
USHORT fsReply; 
} DRAGTRANSFER; 

typedef DRAGTRANSFER *PDRAGTRANSFER; 

Fields 
cb (ULONG) 

Size, in bytes, of the structure. 

hwndClient (HWND) 
Handle of the client window. 

This can be the target window or a window that represents an object in a container that 
was dropped on. 

pditem (PDRAGITEM) 
Pointer to the DRAGITEM structure that is to be rendered. 

This structure must exist within the DRAGINFO structure that was passed in the 
DM_DROP message. 

hstrSelectedRMF (HSTR) 
String handle for the selected rendering mechanism and format for the transfer 
operation. 

Chapter 12. Direct Manipulation 12-97 



This handle must be created using DrgAddStrHandle. The target is responsible for 
deleting this handle when the conversation is complete. The string is in the format: 
<MECHANISM,FORMAT>. 

hstrRenderToName (HSTR) 
String handle representing the name where the source places, ana the target finds, the 
data that is rendered. 

The target is responsible for deleting this string handle when the conversation 
terminates. The contents of this field vary according to the rendering mechanism. See 
hstrRMF field in DRAG ITEM. 

OS/2 File 

DOE 
Print 

The string handle represents the fully qualified name of the file where the 
rendering will be placed. 
This field is not used. 
This field is not used. 

ulTargetlnfo (ULONG) 
Reserved. 

Reserved for use by the target. The target can use this field for information about the 
object and rendering operation. 

usOperation (USHORT) 
The operation. 

Values are: 

DO_COPY 
DO_LINK 
DO_MOVE 
OTHER 

fsReply (USHORT) 
Reply flags. 

Execute a copy operation. 
Execute a link operation. 
Execute a move operation. 
Execute an application-defined operation. 

Replay flags for the message. These flags can be set as follows: 

DMFL_NATIVERENDER The source does not support rendering for this object. A 
source should not set this flag unless it provides sufficient 
information at the time of the drop for the target to perform 
the rendering operation. The target must send 
DM_ENDCONVERSATION to the source after carrying out 
the rendering operation, or when it elects not to do a native 
rendering. 

DMFL_RENDERRETRY The source supports rendering for the object, but does not 
support the selected rendering mechanism and format. The 
target can try another mechanism and format by sending 
another DM_RENDER message. If the target does not retry, 
it must send a DM_RENDERCOMPLETE message to the 
source. This flag is set in conjunction with the 
DMFL_NATIVERENDER flag. 

12-98 PM Advanced Programming Guide 



Summary 
Following are tables that describe the OS/2 functions used by the source, functions used by 
the target, window messages, notification code, and data structures used in direct 
manipulation: 

Table 12-3. Direct Manipulation Functions Used by the Source 

Function Name Description 

DrgAddStrHandle Creates a handle for an input string. 

DrgAllocDraginfo Allocates a DRAGINFO data structure in shared memory. 

DrgAllocDragtransfer Allocates a specified number of DRAGTRANSFER data 
structures from a single segment. 

DrgDrag Handles movement of the source-specified pointer around 
the screen. Provides visible feedback to the user. 

DrgFreeDraginfo Deallocates the memory associated with a DRAGINFO 
data structure. 

DrgLazyDrag Called when alt + mouse button 2 is pressed to initiate a 
pickup and drop (lazy drag) operation. 

DrgReallocDraginfo Releases the current DRAGINFO data structure and 
reallocates a new one. 

DrgSetDragitem Initializes each object element in a DRAGINFO data 
structure. 

Table 12-4 (Page 1 of 3). Direct Manipulation Functions Used by the Target 

Function Name Description 

DrgAcceptDroppedFiles Handles the file direct manipulation protocol for a given 
window. 

DrgAccessDraginfo Provides access to the shared segment containing the 
DRAGINFO data structure. 

DrgCancelLazyDrag Cancels the current drag operation. 

DrgDeleteDraginfoStrHandles Does a DrgDeleteStrHandle for all string handles in a 
DRAGINFO data structure. 

DrgDeleteStrHandle Disassociates a string from the handle that was assigned 
to it by DrgAddStrHandle. 

DrgDragFiles Begins a direct manipulation operation for one or more 
files. 

DrgFreeDraginfo Releases the memory associated with a DRAGINFO data 
structure. This function should be called when the target 
no longer needs the DRAGINFO structure, or has 
previously called DrgAccessDraginfo, or a drop has 
occurred. 

DrgFreeDragtransfer Frees the storage associated with a DRAGTRANSFER 
data structure. 

Chapter 12. Direct Manipulation 12-99 



Table 12-4 (Page 2 of 3). Direct Manipulation Functions Used by the Target 

Function Name 

DrgGetPS 

DrgLazyDrop 

DrgPostTransferMsg 

DrgPushDraginfo 

DrgQueryDraginfoPtrFromDragitem 

DrgQueryDraginfoPtrFromHwnd 

DrgQueryDragitem 

DrgQueryDragitemCount 

DrgQueryDragitemPtr 

DrgQueryDragStatus 

DrgQueryNativeRMF 

DrgQueryNativeRMFLen 

DrgQueryStrName 

DrgQueryStrNameLen 

DrgQueryTrueType 

DrgQueryTrueTypeLen 

DrgReleasePS 

DrgSendTransferMsg 

DrgSetDraglmage 

DrgSetDragPointer 

DrgVerifyNativeRMF 

12-1 00 PM Advanced Programming Guide 

Description 

Returns a handle to a cached presentation space that the 
target can use to provide target emphasis. 

Invokes a drop during a Pickup and Drop operation. 

Posts a messageto the other application involved in the 
direct manipulation. 

Gives a process access to a DRAGINFO data structure. 

Obtains a pointer to the DRAGINFO data structure 
associated with a given DRAG ITEM data structure. 

Determines whether a particular window has allocated a 
DRAGINFO data structure. 

Copies a given object in a DRAGINFO data structure. 

Returns the number of objects involved in a drag 
operation. 

Returns a pointer to a given DRAGITEM data structure. 

This function determines the status of the current drag 
operation. 

Returns the ordered pair representing the native rendering 
mechanism and format for an object. 

Returns the length of the string representing the native 
rendering mechanism and format of an object, excluding 
the null terminating byte. 

Returns the contents of a string associated with a given 
string handle that was created by DrgAddStrHandle. 

Returns the length of the string associated with a given 
string handle that was created by DrgAddStrHandle. 

Returns the string representing the true type of an object 
being dragged. 

Returns the length of the string representing the true type 
of an object being dragged, excluding the null terminating 
byte. 

Releases the cache presentation space obtained using 
DrgGetPS. 

Sends a message to the other application involved in the 
direct manipulation. 

Enables a target to provide a customized image to be 
dragged. 

Enables a target to provide a customized image while it is 
the target of a drop. 

Verifies that the native rendering mechanism and format 
for an object being dragged is one of a set of 
application-supplied rendering mechanisms and formats. 



Table 12-4 (Page 3 of 3). Direct Manipulation Functions Used by the Target 

Function Name Description 

DrgVerifyRMF Verifies that an application-specified rendering mechanism 
and format is valid for an object being dragged. 

DrgVerifyTrueType Verifies that an application-specified type is the true type 
of the object being dragged. 

DrgVerifyType Verifies that an application-specified type is valid for an 
object being dragged. 

DrgVerifyTypeSet Returns the intersection between the contents of the 
string represented by the type string handle and an 
application-supplied type string. 

Table 12-5 (Page 1 of 2). Direct Manipulation Window Messages 

Message Name 

DM_DISCARDOBJECT 

DM_DRAGFILECOMPLETE 

DM_DRAGOVERNOTIFY 

DM_DROP 

DM_DROPHELP 

DM_DROPNOTIFY 

DM_EMPHASIZETARGET 

DM_ENDCONVERSATION 

DM_FILERENDERED 

Description 

Sent to a source that supports the "DRM_DISCARD" 
rendering method. 

Sent to the caller of DrgDragFiles or 
DrgAcceptDroppedFiles when an error occurs during a 
Move or Copy operation. 

Sent when a direct manipulation operation on a file is 
complete. 

Sent to a window that is being dragged over when one of 
the following occurs: 

• The object is dragged outside the boundaries of the 
window. 

• The drag operation is terminated while the object is 
over the window. 

Lets the window under the pointer determine whether the 
object currently being dragged can be dropped. 

Sent to the source of a drag immediately after a 
DM_DRAGOVER message is sent to a target window. 

Sent to the target when the dragged object is dropped. 

Requests help for the current drag operation. 

Notifies the source window of a drop operation. 

Sent to the caller of DrgAcceptDroppedFiles to tell it to 
either apply or remove target emphasis from itself. 

The target used this message to notify a source that a 
drag operation is complete. 

Sent to the window handling the drag conversation for the 
caller of DrgDragFiles. 

Sent to a source to request it to print the current view of 
an object. 

Chapter 12. Direct Manipulation 12-1 01 



Table 12-5 (Page 2 of 2). Direct Manipulation Window Messages 

Message Name Description 

OM_RENDER Used to request a source to provide a rendering of an 
object in a specified rendering mechanism and format. 

DM_RENDERCOMPLETE Posted by a source to a target window. 

DM_RENDERFILE Sent to the caller of DrgDragFiles to tell it to render a file. 

DM_RENDERPREPARE Tells a source to prepare for the rendering of an object. 

WM_PICKUP Adds objects to the pickup set during a Pickup and Drop 
operation. 

Table 12-6. Direct Manipulation Notification Code 

Code Name Description 

CN_PICKUP Determines if mouse position is over target object, white 
space, or desktop. The container control sends a 
WM_CONTROL message with the CN_PICKUP 
notification code to its owner when a Pickup and Drop 
operation is initiated over a container (WM_PICKUP 
message is received). 

Table 12-7. Direct Manipulation Data Structures 

Data Structure Name Description 

DRAGIMAGE Dragged-image structure. 

DRAGINFO Drag-information data structure. 

DRAGITEM Drag-object data structure. 

DRAGTRANSFER Drag-conversation data structure. 

12-1 02 PM Advanced Programming Guide 



Chapter 13. Hooks 

A hook is a point in a system-defined function where an application can supply additional 
code that the system processes as though it were part of the function. This chapter 
describes how to use hooks in PM applications. 

About Hooks 
Many operating system functions provide pOints where an application can hook in its own 
code to enhance or override the default processing of the function. Most hooks enable an 
application to monitor some aspect of the message stream. For example, the input hook 
enables an application to monitor all messages posted to a particular message queue. 

A hook function can be associated with the system-message queue, so that it monitors 
messages for all applications. These system-queue hook functions can be called in the 
context of any application. However, they must be defined in separate dynamic link library 
(OLL) modules, because it is not possible to call application-module procedures from other 
applications. 

A hook function can also be associated with the message queue of an individual thread, so 
that it monitors messages for that thread only. These message-queue hook functions are 
called only in the context of the thread. Therefore, these hook functions are typically defined 
locally. 

OS/2 operating system contains many types of hooks, and the system maintains a separate 
hook list for each type of hook supported. 

Hook Lists 
A hook list contains the addresses of the functions that the system calls while processing a 
hook. An application can take advantage of a particular type of hook by defining a hook 
function and using WinSetHook to enter the address of the function in the corresponding 
hook list. To specify the hook type in WinSetHook, the application uses one of the constants 
listed in Table 13-1. 

Table 13-1 (Page 1 of 2). Hook Constants 

Constant Name Description 

HK_CODEPAGECHANGED Enables applications to determine when the code page 
changes. 

HK_FINDWORD Enables applications to control where WinDrawText 
places line breaks. 

HK_HELP Monitors the WM_HELP message. 

HK_INPUT Monitors messages in the specified message queue. 

HK_JOURNALPLAYBACK Enables applications ,to insert messages into the system 
message queue. 

© Copyright IBM Corp. 1994 13-1 



Table 13-1 (Page 2 of 2). Hook Constants 

Constant Name Description 

HK_JOURNALRECORD Allows applications to record mouse and keyboard input 
messages. 

HK_MSGFIL TER Monitors input events during system modal loops. 

HK_SENDMSG Monitors messages sent by using WinSendMsg. 

While executing a function that contains a hook, the system checks for any function 
addresses in the hook list that correspond to the type of hook. If an address is found, the 
system tries to locate and execute the function. 

Hook Chains 
In the hook lists associated with most message-monitoring hooks, the function addresses are 
linked to form chains. The system passes a message to each hook function in the list, one 
after the other. Each function can modify the message or stop its progress through the 
chain, thereby preventing it from reaching the next hook or the destination windoYJ. The 
system calls chained hook functions in last-installed, first-called order. 

Hook Types 
Each type of hook passes a characteristic set of arguments to the functions referenced in the 
corresponding hook list. For an application to use a particular hook, it must define a function 
that processes those arguments and enter the address of the function in the hook list using 
WinSetHook. This section describes the types of hooks available in OS/2 operating system 
and the requirements of the functions that process each hook type. 

Input Hook 
The input hook enables an application to monitor the system-message queue or an 
application-message queue. The system calls an input-hook function whenever WinGetMsg 
or WinPeekMsg is about to return a message. Typically, an application uses the input hook 
to monitor mouse and keyboard input and other messages posted to a queue. Figure 13-1 
shows the syntax for an input-hook function. 

Figure 13-1. Syntax for an Input-Hook Function 

The pQmsg parameter is a pOinter to a QMSG data structure that contains information about 
the message. 

The fs parameter of InputHook can contain the following flags from WinPeekMsg, indicating 
whether or. not the message is removed from the queue: 

PM_NOREMOVE 
PM_REMOVE 

13-2 PM Advanced Programming Guide 



If an input-hook function returns TRUE, the system does not pass the message to the rest of 
the hook chain or to the application. If the function returns FALSE, the system passes the 
message to the next hook in the chain or to the application if no other hooks exist. 

An input-hook function can modify a message by changing the contents of the QMSG data 
structure, then returning FALSE to pass the modified message to the rest of the chain. The 
following problems can occur when a hook modifies a message: 

• If the caller uses WinPeekMsg or WinGetMsg with a message filter range (msgFilterFirst 
through msgFilterLast), the message is checked before the hook functions are called, 
not after. If the input-hook function modifies the msg field of the QMSG data structure, 
the caller can receive messages that are not in the range of the message filter of the 
caller. 

• If the input-hook function changes a WM_CHAR message from one character into 
another-for example, if the function modifies all Tab messages into F6 messages-an 
application that depends on the key state is unable to interpret the result. (When the 
Tab key is translated into the F6 key, the application receives the F6 keystroke and 
enters a process loop, waiting for the F6 key to be released; the application calls 
WinGetKeyState with the HWND_DESKTOP and VK_F6 arguments). 

Send-Message Hook 
The send-message hook enables an application to monitor messages that the system does 
not post to a queue. The system calls a send-message hook function while processing 
WinSendMsg, before delivering the message to the recipient window. By installing an 
input-hook function and a send-message hook function, an application can monitor all 
window messages effectively. Figure 13-2 shows the syntax for a send-message hook 
function. 

VOIPEXPENTRY· SendMsgHOok(HAB hab,PSMHStRUCTpsmh, 
SOOLtI nterJask) 

Figure 13-2. Syntax for a Send-Message Hook Function 

The psmh parameter is a pointer to an SMHSTRUCT data structure that contains information 
about the message. 

The' flnterTask parameter is TRUE if the message is sent between two threads, or FALSE if 
the message is sent within a thread. 

A send-message hook function does not return a value, and the next function in the chain is 
always called. The function can modify values in the SMHSTRUCT data structure before 
returning. 

Chapter 13. Hooks 13-3 



Message-Filter Hook 
The message-filter hook allows an application to provide input filtering (such as monitoring 
hot keys) during system-modal loops. The system calls a message-filter hook function while 
tracking the window size and movement, displaying a modal dialog window or message box, 
tracking a scroll bar, and during window-enumeration operations. Figure 13-3 shows the 
syntax for a message-filter hook function. 

Figure 13-3. Syntax for a Message-Filter Hook Function 

The msgf parameter can have one of the three values shown in Table 13-2. 

Table 13-2. Hook Parameter Values (Message-Filter) 

Parameter Value Description 

MSGF _DIALOG BOX Message originated while processing a modal dialog window or a 
message box. 

MSGF_MESSAGEBOX Message originated while processing a message box. 

MSGF_TRACK Message originated while tracking a control (such as a scroll bar). 

The pQmsg parameter of MsgFilterHook is a pointer to a QMSG data structure containing 
information about the message. 

If a message-filter hook function returns TRUE, the system does not pass the message to 
the rest of the hook chain or to the application. If the function returns FALSE, the system 
passes the message to the next hook function in the chain or to the application if no other 
functions exist. 

This hook enables applications to perform message filtering during modal loops that is 
equivalent to the typical filtering for the main message loop. For example, applications often 
examine a new message in the main event loop between the time they retrieve the message 
from the queue and the time they dispatch it, performing special processing as appropriate. 
An application usually cannot do this sort of filtering during a modal loop, because the 
system executes the loop created by WinGetMsg and WinDispatchMsg. If an application 
installs a message-filter hook function, the system calls the function between WinGetMsg and 
WinDispatchMsg in the modal processing loop. 

An application can also call the message-filter hook function directly by calling 
WinCallMsgFilter. With this function, the application can use the same code as the main 
message loop to filter messages during modal loops. To do so, the application encapsulates 
the filtering operations in a message-filter hook function and calls WinCallMsgFilter between 
WinGetMsg and WinDispatchMsg calls, as shown in the following code fragment illustrated in 
Figure 13-4 on page 13-5. 

13-4 PM Advanced Programming Guide 



while (Wi nGetMsg (hah, (PQMSG)&qmsg, (HWND) NVLL,e"eJ ) 
{ 

if {IWinCallMsgFjlter(hab,(PQMSG)&qms9, en 
Wi nDispatchMsg (hab, . (PQMSG) &ql11sg); . 

Figu~e 13-4. Sample Code Calling WinCallMsgFilter Directly 

The last argument of WinCallMsgFilter is passed to the hook function; the application can 
enter any value. By defining a constant such as MSGF _MAINLOOP, the hook function can 
use that value to determine from where the function was called. 

Journal-Record Hook 
The journal-record hook allows an application to monitor the system-message queue and to 
record input events. Typically, an application uses this hook to record a sequence of mouse 
and keyboard events that it can play back later by using the journal-playback hook. A 
journal-record hook function can be associated only with the system-message queue. 
Figure 13-5 shows the syntax for a journal-record hook function. 

VOl o EXPENTRYJournalRecordHook(HAB . hab, PQMSG pQrnsg) 

Figure 13-5. Syntax for a Journal-Record Hook Function 

The pQmsg parameter is a pointer to a QMSG data structure containing information about 
the message. The system calls the journal-record hook function after processing the raw 
input enough to create valid WM_CHAR or mouse messages and after setting the 
window-handle field of the QMSG data structure. 

A journal-record hook function does not return a value, and the system always calls the next 
function in the chain. Typically, a journal-record hook function saves the input events to a 
disk file to be played back later. The hwnd field of the QMSG data structure is not important 
and is ignored when the message is played back. 

The following messages are passed to the journal-record hook: 

WM_CHAR 
WM_BUTTONIDOWN 
WM_BUTTONlUP 
WM_BUTTON2DOWN 
WM_BUTTON2UP 
WM_BUTTON3DOWN 
WM_BUTTON3UP 
WM_MOUSEMOVE. 

The positions stored in the mouse messages are in screen coordinates. The system does 
not combine mouse clicks into double clicks before calling the hook, because there is no 
guarantee that both clicks will be in the same window when they are played back. 

Chapter 13. Hooks 13-5 



The system passes a WM_JOURNALNOTIFY message to the journal-record hook function 
whenever an application calls WinGetPhysKeyState or WinQueryQueueStatus. This 
message is necessary because the system-message queue is only one message deep while 
a playback hook is active. For example, the user might press the A, B, and C keys while in 
record mode. While the application is processing the A character message, the B key might 
be down; WinGetPhysKeyState returns this information. However, during playback mode, 
the system knows only that it currently is processing the A key. 

Journal-Playback Hook 
The journal-playback hook enables an application to insert messages into the 
system-message queue. Typically, an application uses this hook to play back a series of 
mouse and keyboard events that were recorded earlier using the journal-record hook. A 
journal-playback hook function can be associated only with the system-message queue. 

Regular mouse and keyboard input is disabled as long as a journal-playback hook is 
installed. It is important to notice that, because mouse and keyboard input are disabled, this 
hook can easily hang the system. Figure 13-6 shows the syntax for a journal-playback hook 
function. 

Figure 13-6. Syntax for a Journal-Playback Hook Function 

The pQmsg parameter is a pointer to a QMSG data structure that the journal-playback hook 
function fills in with the message to be played back. If the fSkip parameter is FALSE, the 
function fills in the QMSG data structure with the current recorded message. The function 
returns the same message each time it is called, until fSkip is TRUE. The same message is 
returned many times if an application is examining the queue but not removing the message. 
If fSkip is TRUE, the function advances to the next message without filling in the QMSG data 
structure, because the pQmsg parameter is NULL when fSkip is TRUE. 

The journal-playback hook returns a ULONG time-out value that tells the system how many 
milliseconds to wait before processing the current message from the playback hook. This 
enables the hook to control the timing of the events it plays back. 

The time field of the QMSG data structure is filled in with the current time before the 
playback hook is called. The hook should use the time stored in this field, instead of the 
system clock, to set up delays between events. 

Help Hook 
The help hook allows an application to include online help. The system calls a help-hook 
function during the default processing of the WM _HELP message. Help processing is done 
in two stages: creating the WM_HELP message and calling the help hook. The WM_HELP 
message can come from the following sources: 

13-6 PM Advanced Programming Guide 



• WM_CHAR message, after translation by an ACCEL data structure with the AF _HELP 
style. The default system accelerator table translates the F1 key into a help message. 
The WM_HELP message is posted to the current focus window, which can be a menu, a 
button, a frame, or your client window. 

• Menu-bar selection, when the MIS_HELP style is specified for the menu-bar item. The 
WM_HELP message is posted to the current focus window. 

• Dialog-window push button, when the BS_HELP style is specified for the push button. 
The WM_HELP message is posted to the owner window of the button, which normally is 
the dialog window. 

• Message box, when the MB_HELP style is specified for the message box. The 
WM_HELP message is posted to the message box. 

The WM_HELP message is posted to the current focus window. The default processing in 
WinDefWindowProc is to pass the message up to the parent window. If the message 
reaches the client window, it can be processed there. If the message reaches a frame 
window, the default frame-window procedure calls the help hook. The help hook is also 
called if a WM_HELP message is generated while the application is in menu mode, that is, 
while a selection is being made from a menu. Figure 13-7 shows the syntax for a help-hook 
function. 

BOOLEXPENTRY Hel pHook(HABhab, ULONG usMode" ULONG···; dropi c, 
UlQNG idSubTopie, PRECTL prePosition) 

Figure 13-7. Syntax for a Help-Hook Function 

If a help-hook function returns TRUE, the system does not call the next help-hook function in 
the chain. If the function returns FALSE, the system calls the next help-hook function in the 
chain. The arguments passed to the function provide contextual information, such as the 
screen coordinates of the focus window and whether the message originated in a message 
box or a menu. 

The WM_HELP message often goes to a frame window instead of to the client window. The 
frame window processes a WM_HELP message as follows: 

• If the window with the focus is the FID_CLlENT window, the frame window passes the 
WM_HELP message to the FID_CLlENT window. 

• If the parent of the window with the focus is the FID _CLIENT frame-control window, the 
frame window calls the help hook, specifying in Figure 13-8. 

Figure 13-8. Fields to Specify when Focus Is FlO_CLIENT 

Chapter 13. Hooks 13-7 



• If the parent of the focus window is not an FlO_CLIENT window (it could be the frame 
window or a second-level dialog window), the frame window calls the help hook, 
specifying in Figure 13-9. 

Figure 13-9. Fields to Specify when Focus Is Not FID_CLlENT 

An application receives the WM_HELP message in its dialog-window procedure. The 
application can ignore the message, in which case the frame-window action occurs as 
described, or the application can handle the WM_HELP message directly. 

Menu windows receive a WM_HELP message when the user presses the Help accelerator 
key (F1 by default) while a menu is displayed. Menu windows process WM_HELP 
messages by calling the help hook, specifying in Figure 13-10. 

Figure 13-10. Fields to Specify when Processing WM_HELP 

A help-hook function should respond by displaying information about the selected menu item. 

WinDefWindowProc processes WM_HELP messages by passing the message to the parent 
window. Typically, the message moves up the parent chain until it arrives at a frame 
window. 

Find-Word Hook 
The find-word hook allows an application to control where WinOrawText breaks a character 
string that is too wide for the drawing rectangle. If the OT _ WOROBREAK flag is set, the 
system calls this hook from within WinOrawText. Typically, this hook is used to avoid 
awkward line breaks in applications that use double-byte character sets. Figure 13-11 on 
page 13-9 shows the syntax for a find-word hook function. 

13-8 PM Advanced Programming Guide 



ULONG EXPENTRY FindWordHook(USHORT usCodePage, 
PSZ pszText, ULONG cb, 
ULONG ich, 
PULONG pichStart, 
PULONG pichEnd, 
PULONG pichNext) 

Figure 13-11. Syntax for a Find-Hook Function 

The usCodePage parameter contains the code page identifier of the string to be formatted; 
the pszText parameter contains a pointer to the actual string. 

The cb parameter contains a value specifying the number of bytes in the string. This value 
is 0 if the string is null-terminated. 

The ich parameter contains the index of the character in the string that intersects the right 
edge of the drawing rectangle. 

A find-word hook function uses these four parameters to determine the word that contains 
the intersecting character. It then fills the remaining three parameters, pichStart, pichEnd, 
and pichNext, with the indexes of the starting character of the word, ending character of the 
word, and starting character of the next word in the string. 

If the find-word hook function returns TRUE, WinDrawText draws the string only up to, but 
not including, the specified word. If the function returns FALSE, WinDrawText formats the 
string in the default manner. 

Codepage-Changed Hook 
The codepage-changed hook notifies an application when the code page associated with the 
specified message queue has been changed. The system calls a codepage-changed hook 
function after setting the new code page. Typically, the codepage-changed hook is used in 
applications that support multiple languages. Figure 13-12 shows the syntax for a 
codepage-changed hook function. 

Figure 13-12. Syntax for a Codepage-Changed Hook Function 

The hmq parameter receives the handle of the message queue that is changing its 
codepage. The usOldCodepage is the codepage identifier of the previous. code page; 
usNewCodepage is the identifier of the new code page. 

A codepage-changed hook function does not return a value, and the system always calls the 
next function in the chain. 

Chapter 13. Hooks 13-9 



Using Hooks 
This section explains how to perform the following tasks: 

• Install hook functions 
• Release hook functions and free memory 
• Record and play back input events. 

Note: Much of the sample codes in this section are part of a complete program which is 
illustrated in "Sample Code for Hooks" on page 13-14. 

Installing Hook Functions 
You can install hook functions by calling WinSetHook, specifying the type of hook that calls 
the function-whether the function is to be associated with the system-message queue or 
with the queue of a particular thread-and a pointer to a function entry point. The sample 
code illustrated in Figure 13-13 shows how to install a hook function into the message queue 
of a thread. 

Figure 13-13. Sample Code Installing a Hook into a Thread Message Queue 

Place hook functions associated with the system-message queue in a dynamiC link library 
(DLL) separate from the application that installs the hook function. The installing application 
needs the handle of the DLL module before it can install the hook function. DosLoadModule, 
given the name of the DLL, returns the handle of the DLL module. Once you have the 
handle, you can call DosQueryProcAddr to obtain the address of the hook function. Finally, 
use WinSetHook to install the hook-function address in the appropriate hook list. 
WinSetHook passes the module handle, a pointer to the hook-function entry point, and NULL 
for the message-queue argument, indicating that the hook function should be associated with 
the system queue. The sample code illustrated in Figure 13-14 on page 13-11 shows 
functions, called from the application's main routine, that initialize a DLL and install the hook 
function. . 

13-1 0 PM Advanced Programming Guide 



HAB habDLL; 
HMODULE hMod; 
PFN pfnlnput; 

I ********************,*************************************************** I 
1* InitDLL: This function sets up the OLL and sets all variables. *1 
1***********************************************************************1 
void EXPENTRY InitDLL(HAB hab) 
{ 

habDLL = hab; 

1***********************************************************************1 
1* Load the dll -actually, just get our module handle. *1 
1***********************************************************************1 

DosLoadModule(NULL, 0, "HOOKDLL", &hMod); 

1***********************************************************************1 
1* Find the address, of the input hook procedure. *1 
1****************************************************,,:******************1 

DosQueryProcAddr(hMod, 0, II InputProcll , &pfnlnput); 

1***********************************************************************1 
1* StartlnputHook: Thjs function starts the hook filtering. *1 
1***********************************************************************1 
void EXPENTRYStartlnputHook(void) 
{ 

1***********************************************************************1 
1* Set a hOok to our input fflterroutine. *1 
1***********************************************************************1 

Wi nSetHoQk (habOll, ··NULlHANOLE, ·HK~ INPUT,pfn Input," hMod) ; 
} 

Figure 13-14. Sample Code Installing a Hook in a DLL 

Releasing Hook Functions 
You can release a hook function and remove its address from the hook list by calling 
WinReleaseHook with the same arguments that you used when installing the hook function, 
as shown in the sample code illustrated in Figure 13-15 on page 13-12. 

Chapter 13. Hooks 13-11 



' .. 

Figure 13-15. Sample Code Releasing a Hook from a Thread Message Queue 

Release all hook functions before the application terminates, even though the system 
automatically releases them if the application does not. You also need to free the memory 
associated with the hook. 

Freeing Memory 
How memory for the hook is freed depends on the type of hook chain an event is linked to: 

• Queue (current) hook chain 
• System hook chain. 

A queue hook chain is a private hook chain. It applies only to the current calling thread that 
created the queue with which the hook chain is associated. It mayor may not reside in a 
DLL. If it is not associated with a DLL, its memory can be freed by WinReleaseHook, as 
shown in the sample code illustrated in Figure 13-15. 

A system hook chain must reside in a DLL; therefore, it affects the entire system. 
WinSetHook allocates memory and associates it with a DLL. This memory is not freed until 
the DLL module is freed. WinReleaseHook cannot free the OLL's memory, because another 
process cannot free the DLL and its associated memory. However, this memory can be 
freed by launching a thread that does the following: 

• Loads the DLL and sets the hook 

• When the playback sequence is complete, releases the hook and frees the OLL, thus 
relinquishing its memory. 

As long as any DLL associated with the hook is alive, WinReleaseHook cannot free the 
memory. 

The implication here is straightforward: 

• If a queue hook is being installed and it is not associated with a DLL, WinReleaseHook 
can free its memory. ' 

• If a system hook is being installed, its memory cannot be freed until the DLL is freed. 
WinReleaseHook has to do a DosFreeModule, but it cannot do this for another process. 
The application must use DosFreeModule to relinquish hook-allocated memory 
associated with a DLL. 

13-12 PM Advanced Programming Guide 



The sample code illustrated in Figure 13-16 shows a function, called from an application's 
main routine, that releases the hook and frees the memory of the hook installed in 
Figure 13-14 on page 13-11. 

1******************************************1:****************************/ 1* S~opln~utHook:This, function stops the hook filtering. *1 
l*.**"!*****:*~************************************************************/ 
voidEXPENTRYstoplnputHook(voi d) { ...• 

I*'*'*'*******~************************************************************/ 
r*J)rop.ahoQkto .our input fi Her rout ine. . * / 

.. l******~*****:***"It******************************************************* 1 
WinRele.aseHook.(habDLL,NULLHANDLE, HK_INPUT, pfnlnput t hMod); 

" ... l**"!*****:**t************************************************************ / 
<l*'D~cremel1t .'. theJ)LL .·usage count. * / 
; /1r:***+*+*1t.*.************************************************************* / 

.:.UqsFre:eMQdule.(hMod)· ; 
i·.··l··· 

Figure 13-16. Sample Code Releasing a Hook from a DLL 

Recording and Playing Back Input Events 
To record and play back input events, use the journal-record hook to create a local queue to 
store the recorded events, then use the journal-playback hook to create a second thread to 
read from the queue. Do not attempt to spend any significant cycles within 
JournalRecordHook. Because the recorded events include semaphores, Win calls, and I/O 
functions, it can cause system deadlocks. The pseudocode illustrated in Figure 13-17 
describes how to play back recorded functions. 

Figure 13-17 (Part 1 of 2). Pseudocode Describing how to Play Back Recorded Functions 

Chapter 13. Hooks 13-13 



Figure 13-17 (Part 2 of 2). Pseudocode Describing how to Play Back Recorded Functions 

An alternative method for installing a system-queue hook function is to provide an installation 
function in the DLL along with the hook function. With this method, the installing application 
does not need the handle of the DLL module. By linking with the DLL, the application gains 
access to the installation function, which can supply the DLL module handle and other details 
in the call to WinSetHook. The DLL can also contain a function that releases the 
system-queue hook function. The application can call this hook-releasing function when it 
terminates. 

Sample Code for Hooks 
This section illustrates a complete hook sample program. Several parts of this program are 
explained in "Using Hooks" on page 13-10. 

Hooks Application Sample Code 
The hook application includes the following files: 

• Hookdemo.C 
• HookdlLC 
• Hookdemo.RC 
• Hookdemo.H 
• Hookdemo.DEF 
• Hookdemo.LNK 
• HookdlLDEF 
• HookdlLLNK 
• Hookdemo.MAK 

Figure 13-18 on page 13-15 illustrates the hook application sample code. 

13-14 PM Advanced Programming Guide 



============ 

HOOKDEMO.C 
========.==== 

#define 
#define 

INCL_WIN 
INCL_GPI 

#include <os2.h> 
#include IIhookdemo.h" 

#pragma 
INT 

linkage (main,optlink) 
main(VOID) ; 

/***********************************************************************/ 
/* MainO - program entry point. */ 
/***********************************************************************/ 
MRESULT EXPENTRY LocalWndProc(HWND, ULONG; MPARAM, MPARAM); 

HAS 
HWND 
PFNWP 

hab; 
hFrameWnd; 
SysWl'ldPrpc; 

INT rna; n (VOID) 
{ 

if (l(hab Winlnitialize(0»)) 
ret.urnFA~SE; 

.I**************~******************~"****~"******************"************"*~I 
1* . InitializeourQLL,whichholdsthesystem hook routines. .... . *1 
1 ************~****.****************************************************** 1 

InitDIL{hap); 

ifi{!.·.(r~~l •• ·:::Wj.riCr(!at¢~sgQ.ueue.(hab; 
r¢turo~FAt~E~ .. . 

Figure 13-18 (Part 1 of 9). Sample Code for a Hook Application 

Chapter 13. Hooks 13-15 



fcd.hmodResourees 
fed. i dResources 

Figure 13-18 (Part 2 of 9). Sample Code for a Hook Application 

13-16 PM Advanced Programming Guide 



/***********************************************************************/ 
/* We must intercept the frame window's messages. */ 
/* We save the return val ue (the current WndProc). */ 
/* so we can pass it all the other messages the frame gets. */ 
/***********************************************************************/ 

SysWndProc = WinSubclassWindow(hFrameWnd, (PFNWP)LocalWndProc); 

WinShowWindow(hFrameWnd,TRUE); 

/******~****************************************************************/ 
/* Standard PM message loop - get it, dispatch it. */ 
/*************************************~*********************************/ 

while (WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0» 
{ 

WinDispatchMsg(hab, &qmsg); 

1***********************************************************************/ 
/* Cleanup on the way out. */ 
/***********************************************************************/ 

} 

WinDestroyWindow(hFrameWnd); 
WinDestroyMsgQueue,(hmq) ; 
WinTerminate(hab); 

return TRUE; 

/***********************************************************************/ 
/* Loc~lWndProc() - window procedure for the frame window. */ 
/* Called by PM whenever a message is sent to the frame. */ 

, 1***,******************************************************************** / 
MRESULTEXPENTRYloca lWndProc (HWNDhwnd, ULONG msg ,MPARAM mpl,MPARAM mp2) 
{ 

char 
POINTL 
tnt 

swiich(msg) 
{ 

szBuffer[80]; 
pt; 
X; 

Figure 13-18 (Part 3 of 9). Sample Code for a Hook Application 

Chapter 13. Hooks 13-17 



Figure 13-18 (Part 4 of 9). Sample Code for a Hook Application 

13-18 PM Advanced Programming Guide 



=========:==-= 
HOOKDLLC 
=;::==-======;== 
#defi neINCL_WIN 
#define INCL DOS 
#include <os2:-h> 

/***********************************************************************/ 
/* Globarvariables. */ 
/***********************************************************************/ 
HAS habDLL; 
HMODULE hMod; 
PFN pfnlnput; 

/***********************************************************************/ 
/* InitDLL: This function sets up the OLL and sets all variables */ 
/ ********,******************************************************** ******* / 
void EXPENTRY InitOLL(HAB,hab) 
{ 

habOlL :::. hab; 

/**,********fr*******'****t-*****,******************************************* / 
/* Load the OLL ~. actually, just get our module handle. */ 
/***********************************************************************/ 

DosLoadModule(NULL, 0, "HOOKOLLu , &hMod); 

/******~*********~************"/(*****************************************/ 
!* .. Findth~addressofthe .. ;nput··hookprocedure. . */ 
/*******~*****~***t*****************************************************/ 

D()sQuery~rocAddr(hMod,0, II InputProG u, &pfnlnput); 

1**************************'/dr******,*************************************/ 
/* ' .. StCl~tlnputHook: Thisfunction,.starts the hook filtering. . . '.' . */ 
l*:*********,******************~****************************************** / 
void EXPENTRY ,StartInputHook(votd) 
{ 

Figure 13-18 (Part 5 of 9). Sample Code for a Hook Application 

Chapter 13. Hooks 13-19 



Figure 13-18 (Part 6 of 9). Sample Code for a Hook Application 

13-20 PM Advanced Programming Guide 



/***********************************************************************/ 
l* Pa.ss the message on to the next hook in line. */ 
/********************.**.****************************-1<.~*******-I<***********l' 

return FALSE; .' . 

HOOKOEMO.RC 
===========:== 
#include<()s2.h> 
#include "hookdemo.h ll 

MENU HOOKOEMO 
BEGIN 

SUBMENU 
BEGIN 

MENU ITEM 
MENU ITEM 
MENUItEM 

ENO 
END 

============ 
HOOKOEMO.H 
==========-== 

"Command", 

"Start II • 
IIStopll , 
llEx; t ", 

#defi neHOOKOEMO 
#defi ne ··10M·· CMD 
#defineIOM--SrART 
#derJne Im(STOP 
#defi ne .' 10M ... EXIT 

IDM_CMO 

10M_START 
IDMSTOP 
IDM:EXIT 

Figure 13-18 (Part 7 of 9). Sample Code for a Hook Application 

Chapter 13. Hooks 13-21 



hQokdem.o.oO.1 ··INOI 
hookdemo .·exe 

.. hO?kdenio>ll1ap 
hookdll.1 ib 
hookdemo.der 

HOOKDLL.DEF' 
:::===="===.:::====.= 
LIBRARY··· HOOKOLV 

Figure 13-18 (Part 8 of 9). Sample Code for a Hook Application 

13-22 PM Advanced Programming Guide 



========.==-== 
HOOKDLl.LNK 
============ 
hookdl1.obj INO! 
hookdll .dl1 
hookdll.map 
hookdll.def 

HOOKDEMO.MAK 

CC == icc Ie IGe IGd-/Se IRe Iss IGm+ 
LINK ~link386 

HEADERS = hookdemo.h 

f-~------------~------------~--------~-~----------------------------
fA list of all of the object files. 
f-~.;.---·""-""---";-----",-";,;,----,,----,,,,,;,--·---------,,;---,,;,.,;..,------ .. -------
ALL_OSJl = hookdemo.obj 

ALL_OSJ2 .., hookdll. obj 

all: hookdemo.exe hoakdll.dll 

hookdemo.res: ho()kdemo.rchookdemo.h 

hQakdemo.obj: hookdemo.c '$(HEADERS) 
icc jCISs·/W3hookdemo.c 

hoa.kdll. obj:' h09kdll.t, ...... ' ... . 
icC ·.IC+ lGe;.. .. lGlllf :h()okd 11' ~" c'" • 

, .. :.:::.:: ... , ..... :., .. , ........ : ......... : .. :::' 

$(ALU ... ·• •. OB~2} •• ·.··· •• ··hQOkalr •• ·def· .. ·hOOkdl··1·.··· •. filk .. 

. $ (LINKJ~~~~kdll.1nk ........ ' •..•..•.. '.' •.... '. ' .. 
'implibhookdll;1 ibhookd:lt~def' 

Figure 13-18 (Part 9 of 9). Sample Code for a Hook Application 

Chapter 13. Hooks 13-23 



Related Functions 
This section covers the functions that are related to hooks. 

MsgFilterHook 
This hook filters messages from inside a mode loop. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl MsgFilterHook (HAB hab, PQMSG pQmsg, UlONG msgf) 

Parameters 
hab (HAB) - input 

Anchor-block handle. 

pQmsg (PQMSG) - input 
A queue message data structure. 

msgf (UlONG) - input 
Context in which the hook has been called. 

MSGF _DIALOG BOX 

MSGF_TRACK 

Dialog-box mode loop. 

Window-movement and size tracking. When this hook is 
used the TRACKINFO structure specified the ptiTrackinfo 
parameter of the WinTrackRect function is updated to give the 
current state before the hook is called. Only the rc/Track and 
the fs parameters are updated. 

MSGF _DRAG Direct manipulation mode loop. 

MSGF _DDEPOSTMSG DDE post message mode loop. 

Returns 
rc (BOOl) - returns 

Processed indicator. 

TRUE The message is not passed on to the next hook in the chain or to the 
application 

FALSE The message is passed on to the next hook in the chain or to the application. 

13-24 PM Advanced Programming Guide 



RegisterUserHook 
This hook is called whenever a user message or data type is registered. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl RegisterUserHook (HAB hab, SHORT idContext, USHORT msg, 

Parameters 
hab (HAS) - input 

SHORT type1, SHORT dir1, SHORT type2, SHORT dir2, 
SHORT typer, SHORT uShort, PSHORT arRMP, 
PBOOl fRegistered) 

The application anchor block. 

idContext (SHORT) - input 
Origin of the call to hook. 

RUMHK_DATATYPE 
RUMHK_MSG 

msg (USHORT) - input 
Message identifier. 

type1 (SHORT) - input 
Data type. 

dir1 (SHORT) - input 

WinRegisterUserDatatype was called. 
WinRegisterUserMsg was called. 

Direction of message parameter 1. 

type2 (SHORT) - input 
Data type of message parameter 2. 

dir2 (SHORT) - input 
Direction of message parameter 2. 

typer (SHORT) - input 
Data type of message reply. 

uShort (SHORT) - input 
Number of data type codes. 

arRMP (PSHORT) - input 
Array of data type codes. 

Chapter 13. Hooks 13-25 



, fRegistered (PBOOl) - input 
Flag indicating that a message or data type was registered. 

TRUE 
FALSE 

Message/data type was registered. 
Message/data type was not registered. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Errors occurred. 

WinCallMsgFilter 
This function calls a message-filter hook. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

SOOL WinCallMsgFilter (HAS hab, PQMSG pqmsg, ULONG ulFilter) 

Parameters 
hab (HAB) - input 

Anchor-block handle. 

pqmsg (PQMSG) - input 
Message to be passed to the message-filter hook. 

ulFilter (UlONG) - input 
Filter. 

MSGF _DIAlOGBOX 

MSGF_TRACK 

Dialog-box mode loop. 

Window-movement and size tracking. When this hook is 
used the TRACKINFO structure specified the ptiTrackinfo 
parameter of the WinTrackRect function is updated to give the 
current state before the hook is called. Only the rc/Track and 
the fs parameters are updated. 

MSGF DRAG Direct manipulation mode loop. 

MSGF _DDEPOSTMSG DDE post message mode loop. 

13-26 PM Advanced Programming Guide 



Returns 
rc (Baal) - returns 

Message-filter hook return indicator. 

A message-filter hook returns TRUE TRUE 
FALSE All message-filter hooks return FALSE, or no message-filter hooks are 

defined. 

WindowDCHook 
This hook is called when a device context is allocated or freed. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

Baal WindowDCHook (HAB hab, HDC hdc, HWND HWND, Boal flAssociate) 

Parameters 
hab (HAB) - input 

The application anchor block. 

hdc (HDC) - input 
The current device-context handle. 

HWND (HWND) - input 
The current window handle. 

flAssociate (Baal) - input 
Association flag. 

TRUE Device context has been allocated. 
FALSE Device context has been freed. 

Returns 
rc (Baal) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion. 
Errors occurred. 

Chapter 13. Hooks 13-27 



WinReleaseHook 
This function releases an application hook from a hook chain. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinReleaseHook (HAB hab, HMQ hmq, LONG IHook, PFN pAddress, 
HMODULE Module) 

Parameters 
hab (HAS) - input 

Anchor-block handle. 

hmq (HMO) - input 
Handle of message queue from which the hook is to be released. 

HMO_CURRENT The hook is released from the message queue associated with the 
current thread (calling thread). 

NULLHANDLE The hook is released from the system hook chain. 

IHook (LONG) - input 
Type of hook chain. 

HK_CHECKMSGFILTER 
HK_CODEPAGECHANGE 
HK_DESTROYWINDOW 
HK_HELP 
HKJNPUT 
HK_JOURNALPLA YSACK 
HK_JOURNALRECORD 
HK_LOADER 
HK_MSGCONTROL 
HK_MSGFILTER 
HK_SENDMSG 

pAddress (PFN) - input 
Address of the hook routine. 

Module (HMODULE) - input 
Module handle. 

See CheckMsgFilterHook. 
See CodePageChangedHook. 
See DestroyWindowHook. 
See HelpHook. 
See InputHook. 
See JournalPlaybackHook. 
See JournalRecordHook. 
See LoaderHook. 
See MsgControlHook. 
See MsgFilterHook. 
See SendMsgHook. 

NULLHANDLE The hook procedure is in the application's .EXE file. 
Module This is the module that contains the application procedure, as returned 

by the DosLoadModule or DosOueryModuleHandle call. 

13-28 PM Advanced Programming Guide 



Returns 
rc (BOOL) - returns 

Success indicator. 

TRUE 
FALSE 

WinSetHook 

Successful completion 
Error occurred. 

This function installs an application procedure into a specified hook chain. 

Syntax 

#define INCL_WINHOOKS /* Or use INCL_WIN. INCL_PM. */ 

#include <os2.h> 

BOOl WinSetHook (HAB hab, HMQ hmq, lONG IHookType, PFN pHookProc, 
HMODULE Module) 

Parameters 
hab (HAB) - input 

Anchor-block handle. 

hmq (HMQ) - input 
Queue identity. 

IHookType (LONG) - input 
Hook-chain type. 

HK_CHECKMSGFILTER 
HK_CODEPAGECHANGE 
HK_DESTROYWINDOW 
HK_FINDWORD 
HK_FLUSHBUF 
HK_HELP 
HK_INPUT 
HK_JOURNALPLAYBACK 
HK_JOURNALRECORD 
HK_LOADER 
HK_LOCKUP 
HK_MSGCONTROL 
HK_MSGFILTER 
HK_MSGINPUT 
HK_REGISTERUSERMSG 
HK_SENDMSG 
HK_WINDOWDC 

See CheckMsgFilterHook 
See CodePageChangedHook 
See DestroyWindowHook 
See FindWordHook 
See FlushBufHook 
See HelpHook 
See InputHook 
See JournalPlaybackHook 
See JournalRecordHook 
See LoaderHook 
See LockupHook 
See MsgControlHook 
See MsgFilterHook 
See MsglnputHook 
See RegisterUserHook 
See SendMsgHook 
See WindowDCHook 

Chapter 13. Hooks 13-29 



pHookProc (PFN) - input 
Address of the application hook procedure. 

Module (HMODUlE) - input 
Resource identity. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

WinTrackRect 

Successful completion 
An error occurred. 

This function draws a tracking rectangle. 

Syntax 

#define INCL_WINTRACKRECT /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinTrackRect (HWND hwnd, HPS hps, PTRACKINFO ptiTrackinfo) 

Parameters 
hwnd (HWND) - input 

Window handle where tracking is to take place. 

HWND_DESKTOP Track over the entire screen 
Other Track over specified window only. 

hps (HPS) - input 
Presentation-space handle. 

NUllHANDlE The hwnd parameter is used to calculate a presentation space for 
tracking. It is assumed that tracking takes place within hwnd and that 
the style of this window is not WS_CLlPCHllDREN. Thus, when the 
drag rectangle appears, it is not clipped by any children within the 
window. If the window style is WS_CLlPCHllDREN and the 
application causes the drag rectangle to be clipped, it must explicitly 
pass an appropriate presentation space. 

Other Specified presentation-space handle. 

ptiTrackinfo (PTRACKINFO) - in/out 
Track information. 

13-30 PM Advanced Programming Guide 



Returns 
rc (Baal) - returns 

Success indicator. 

TRUE Tracking successful. 

FALSE Tracking canceled, or the pOinting device was already captured when this 
function was called. 

Only one tracking rectangle can be in use at one time. 

Chapter 13. Hooks 13-31 



Related Data Structures 
This section covers the data structures that are related to hooks. 

QMSG 
Message structure. 

Syntax 

Fields 
hwnd (HWND) 

Window handle. 

msg (ULONG) 
Message identity. 

mp1 (MPARAM) 
Parameter 1. 

mp2 (MPARAM) 
Parameter 2. 

time (ULONG) 
Message time. 

ptl (POINTL) 
Pointer position when message was generated. 

reserved (ULONG) 
Reserved. 

13-32 PM Advanced Programming Guide 



SMHSTRUCT 
Send-message-hook structure. 

Syntax 

typ~def>stru<:t,SMHS'J'~UCT 
:,MPARAM',' . ·mp?:';<; 

MPAMM mpl, 
ULO"G msg; 
HWHD ~wnd; 
O~()NG; ' .. ,.:< model; , 
; }.SMHSTRUCT; . . 

'tYpedefSMHSTRUCT*PSt41:tSl"RUCT. 

Fields 
mp2 (MPARAM) 

Parameter 2. 

mp1 (MPARAM) 
Parameter 1. 

mag (ULONG) 
Message identity. 

hwnd (HWNO) 
Window handle. 

model (ULONG) 
Message identity. 

Chapter 13. Hooks 13-33 



SWP 
Set-window-position structure. 

Syntax 

Fields 
fl (ULONG) 

Options. 

In alphabetic order: 

SWP _ACTIVATE 
SWP _DEACTIVATE 
SWP_HIDE 
SWP _MAXIMIZE 
SWP _MINIMIZE 
SWP_MOVE 
SWP _NOADJUST 
SWP _NOERASEWINDOW 
SWP _NOREDRAW 
SWP _RESTORE 
SWP_SHOW 
SWP_SIZE 
SWP_ZORDER 

ey (LONG) 
Window height. 

ex (LONG) 
Window width. 

13-34 PM Advanced Programming Guide 



y (LONG) 
V-coordinate of origin. 

x (LONG) 
X-coordinate of origin. 

hwndlnsertBehind (HWND) 
Window behind which this window is placed. 

hwnd (HWND) 
Window handle. 

uiReserved1 (ULONG) 
Reserved value, must be o. 

uiReserved2 (ULONG) 
Reserved value, must be o. 

TRACKINFO 
Tracking-information structure. 

Syntax 

Chapter 13. Hooks 13-35 



Fields 
exBorder (LONG) 

Border width. 

The width of the left and right tracking sides. 

eyBorder (LONG) 
Border height. 

The height of the top and bottom tracking sides. 

exGrid (LONG) 
Grid width. 

The horizontal bounds of the tracking movements. 

eyGrid (LONG) 
Grid height. 

The vertical bounds of the tracking movements. 

exKeyboard (LONG) 
Character cell width movement for arrow key. 

eyKeyboard (LONG) 
Character cell height movement for arrow key. 

relTraek (RECTL) 
Starting tracking rectangle. 

This is modified as the rectangle is tracked and holds the new tracking position, when 
tracking is complete. 

rei Boundary (RECTL) 
Boundary rectangle. 

This is an absolute bounding rectangle that the tracking rectangle cannot extend; see 
also TF _ALLINBOUNDARY. 

ptlMinTraekSize (POINTL) 
Minimum tracking size. 

ptlMaxTraekSize (POI NTL) 
Maximum tracking size. 

13-36 PM Advanced Programming Guide 



fs (ULONG) 
Tracking options. 

In alphabetic order: 

TF _ALLINBOUNDARY 
The default tracking is such that some part of the tracking rectangle is within the 
bounding rectangle defined by re/Boundary. This minimum size is defined by 
exBorder and eyBorder. 

If TF _ALLINBOUNDARY is specified, the tracking is performed so that no part of the 
tracking rectangle ever falls outside of the bounding rectangle. 

TF_BOTTOM 
Track the bottom side of the rectangle. 

TF_GRID 
Tracking is restricted to the grid defined by exGrid and eyGrid. 

TF_LEFT 
Track the left side of the rectangle. 

TF_MOVE 
Track all sides of the rectangle. 

TF_RIGHT 
Track the right side of the rectangle. 

TF _SETPOINTERPOS 
The pointer is repositioned according to other flags as follows: 
none Pointer is centered in the tracking rectangle. 
TF _MOVE Pointer is centered in the tracking rectangle. 
TF _LEFT Pointer is vertically centered at the left of the tracking rectangle. 
TF _TOP Pointer is horizontally centered at the top of the tracking rectangle. 
TF _RIGHT Pointer is vertically centered at the right of the tracking rectangle. 
TF _BOTTOM Pointer is horizontally centered at the bottom of the tracking rectangle. 

TF _STANDARD 
ex, ey, exGrid, and eyGrid are all multiples of exBorder and eyBorder. 

TF_TOP 
Track the top side of the rectangle. 

Chapter 13. Hooks 13-37 



Summary 
Following are the OS/2 functions and data structures used with hook controls: 

Table 13-3. Hook Functions 

Function Name Description 

MsgFilterHook Filters messages from inside a mode loop. 

RegisterUserHook Called whenever a user message or data structure is 
registered. 

WinCallMsgFilter Calls a message-filter hook. 

WindowDCHook Called when a device context is allocated or freed. 

WinReleaseHook Releases an application hook from a hook chain. 

WinSetHook Installs an application procedure in a specified hook 
chain. 

WinTrackRect Draws a tracking rectangle. 

Table 13-4. Hook Data Structures 

Data Structure Name Description 

QMSG Message data structure. 

SMHSTRUCT Send-message-hook data structure. 

SWP Set-window-position data structure. 

TRACKINFO Tracking-information data structure. 

13-38 PM Advanced Programming Guide 



Chapter 14. Dynamic Data Exchange 

The Dynamic Data Exchange (DOE) protocol uses messages to communicate between 
applications that share data and uses shared memory as the means of exchanging data 
between applications. Applications can use DOE for one-time data transfers and for ongoing 
exchanges in which the applications send updates to each other as new data becomes 
available. This chapter explains how to use DOE in PM applications. 

About Dynamic Data Exchange 
DOE is different from the clipboard data-transfer component that is also part of this operating 
system. The clipboard is almost always used as a one-time response to a specific action by 
the user, such as choosing Paste from a menu. DOE, on the other hand, is often initiated by 
a user but typically continues without the user's further involvement. DOE is separate from 
and does not use the clipboard. 

DOE always takes place between two applications: a client application and a server 
application. The client initiates the exchange by requesting that the server perform a 
particular action, such as supply data. The client's request to the server is called a 
transaction. If it is able, the server responds by performing the requested action. The 
important distinction between a client and a server is that the client always initiates DOE 
transactions. 

A server can have many clients simultaneously, and a client can request data from multiple 
servers. An application can be both a client and a server at the same time. For example, 
one application could receive data from another application as a client and then act as a 
server by passing the data to yet another application. 

Client and Server Interaction 
A DOE conversation actually takes place between two windows: one for each of the 
participating applications. Applications open a window for each conversation in which they 
engage. Because a window is identified by its handle, these windows are not necessarily 
visible. The window belonging to the server application is the server window. The window 
belonging to the client application is the client window. 

DOE System Example 
DOE has many potential uses in real-time data acquisition applications. Consider the 
example of a DOE-based, real-time system for tracking portfolios. Two hypothetical PM 
applications cooperate in this example. One application, named the col/ector, is a 
specialized interface that draws data from an online data service. The other application is a 
spreadsheet. Both applications use the DOE protocol. Figure 14-1 on page 14-2 shows the 
sample spreadsheet layout. 

© Copyright IBM Corp. 1994 14-1 



A B C D 

1 Stock Shares Pr;ce Extens;on 

2 ABCD 1000 148 148000 

3 EFGH 2000 26 52000 

4 IJKL 200 24 4800 

5 MNOP 2000 93 186000 

6 390800 

Figure 14-1. Sample Spreadsheet Layout 

Without DOE, this spreadsheet could be updated by using the clipboard to manually copy 
numbers from the screen display of the collector application to the spreadsheet. This would 
require screen sharing or switching between applications. The user also would have to pay 
close attention to the price data, then undertake the data exchange personally whenever the 
price data changes. 

With DOE, this system could be much more automatic, providing the spreadsheet with the 
current values for multiple data items, without user intervention. DOE enables the user to set 
up an exchange between the two applications that updates the spreadsheet whenever a 
change occurs in the value of specified stocks. After this connection is established, the cell 
values in the spreadsheet always reflect the most current data available from the collector. 
This system facilitates the timely analysis of real-time data. 

The usefulness of the DOE protocol is not restricted to specialized real-time data-acquisition 
applications. Productivity software, in general, can benefit significantly from the protocol. 
For example, a monthly report is prepared using word processor, and the report includes 
graphs generated in a separate business-graphics package. Without DOE, someone must 
manually copy and paste each month's new graphs into each month's report. With DOE, the 
word processor can establish a permanent link to the graphics application so that any 
changes made to the graphs are reflected in the word-processing document, either 
automatically or on request. 

Figure 14-2 on page 14-3 shows a detailed view of the workings of the DOE protocol and 
describes the collector and spreadsheet interaction and illustrates the forwarding of stock 
quotes from the collector application to the spreadsheet. For simplicity, this example is 
limited to the exchange of quotes for a single stock, ABeD. 

14-2 PM Advanced Programming Guide 



I 
Spreadsheet 
(Client) 

Start application 

Load stock-portfolio document 

Calls WinDdelnitiate which 

Collector I 

(Server) 

Start application 

sends WM_DDE_INITIATE --------+--. 

Calls WinDdePostMsg which 

Accepts and calls 
WinDdeRespond 
with positive 

..... ------- WM_DDE_INITIATEACK 

posts WM_ADVISE --------.... ~. 

Request to send info each time 
data item ABCD changes; send 
in format DDEFMT TEXT 

Retrieves information from 
shared-memory object indicated 
by pOinter in WM_DDE_DATA 

Updates value of ABCD in 
spreadsheet 

Records request in 
database and calls 

WinDdePostMsg which posts 
..... ---------- WM_DDE_ACK 

Whenever data changes 
for item ABCD, calls 

WinDdePostMsg which posts 
..... ---------- WM DOE DATA 

Figure 14-2 (Part 1 of 2). Detailed DDE Example 

Chapter 14. Dynamic Data Exchange 14-3 



When ready to end updates, 
calls WinDdePostMsg which posts 
WM_DDE_UNADVISE -. 

To end DDE transaction, 
calls WinDdePostMsg which posts 

Removes request from 
database and calls 

WinDdePostMsg which posts 
.... ---------- WM_DDE_ACK 

WM_DDE_TERMINATE -. 

Responds by calling 
WinDdePostMsg which posts 

.... -------- WM_DDE_TERMINATE 

Figure 14-2 (Part 2 of 2). Detailed DOE Example 

The collector DOE server application is started first. Typically, applications designed to 
operate as dedicated DOE servers have a user interface for initialization, and then run 
minimized. As part of the initialization process, the collector DOE server application performs 
the necessary tasks (such as entering passwords and testing) to ensure that it can provide 
data to clients. 

The spreadsheet is started next, and the stock-portfolio document is loaded. At this time, the 
spreadsheet calls WinDdelnitiate, which sends a WM_DDEJNITIATE message to all 
top-level frame windows, that is, frame windows that have HWND_DESKTOP as their parent. 
The WM_DDEJNITIATE message is a request to initiate an exchange with an application on 
a specified topic-in this case, STOCKS. An application can accept this message by 
responding with a positive WM_DDE_INITIATEACK message, or decline the message by 
passing the message on to WinDefWindowProc. If no application accepts the request, the 
spreadsheet assigns an error value to the external reference and its DOE activity concludes. 

If the collector acknowledges the request, the spreadsheet can use the newly established 
exchange to request that the collector provide continuous updates on a specified data item .. 
To make this request, the spreadsheet posts a WM_DDE_ADVISE message to the collector 
(actually, to a window within the collector that acts as the message recipient for DOE 
messages), indicating that updates must be sent every time there is a new value available 
for the data item, ABeD, and that the updates should be in a particular format-for example, 
DDEFMT _TEXT. 

Upon receiving this message, the collector application records the request in its database 
and posts a WM _DOE _ ACK message to the spreadsheet. From then on, whenever the 
collector receives a new ABCD stock quote, it posts a WM ~ DOE_OAT A message to the 
window in the spreadsheet that initiated the exchange. Each of these messages carries a 
pointer to a shared-memory object that contains the data, rendered in the requested format. 
When the spreadsheet receives such a message, it retrieves the data from the referenced 

14-4 PM Advanced Programming Guide 



memory object and uses the data to update the value of the cell containing the external 
reference. 

The periodic updates continue until the spreadsheet document is closed. At that point, the 
spreadsheet application posts a WM_DDE_UNADVISE message to the collector application, 
indicating that further updating is unnecessary. Upon receipt of this message, the collector 
application removes the corresponding data request from its database and posts a positive 
WM _ DOE _ ACK message back to the spreadsheet. 

Finally, unless the spreadsheet initiates other data exchanges under this same topic, it posts 
a WM_DDE_ TERMINATE message to the collector application, indicating the end of the 
DOE transaction. The collector application responds with a WM_DDE_ TERMINATE 
message. 

Note: At any time during the transaction, both the spreadsheet and collector are free to post 
a WM_DDE_TERMINATE message to the other application. 

Applications, Topics, and Items 
DOE uses the three-level hierarchy-application, topic, and item-to uniquely identify a unit 
of data. An application is the name of the server from which the data is desired. A topic is a 
logical data context. For applications that operate on file-based documents, topics are 
usually file names; for other applications, they are other application-specific strings. An item 
is a data object that can be passed in a DOE transaction. For example, an item might be a 
single integer, a string, several paragraphs of text, or a bit map. In the collector and \ 
spreadsheet model described in the previous section, the application name is col/ector, the 
topic name is STOCKS, and the item name is ABCD. 

The System Topic 
The system topic provides a context for information that might be of general interest to any 
partners in a DOE transaction. Server applications are encouraged to support the system 
topic at all times. The string used for the system topic is defined in the PM header files as 
SZDDESYS _TOPIC. 

DOE applications should request an exchange on the system topic with a zero-length 
application name when they start up, to find out what kinds of information other DOE-capable 
programs can provide. 

The system topiC must support the items in Table 14-1 as well as any other items the 
application uses. 

Table 14-1 (Page 1 of 2). DDE System Topics 

Item Description 

SZDDESYS_ITEM_FORMATS A list of strings equivalent to CF _CONSTANTS with the 
CF_ prefix removed. For example, CF _TEXT = TEXT. 

SZDDESYS_ITEM_HELP A text description of the server's DOE services. 

Chapter 14. Dynamic Data Exchange 14-5 



Table 14-1 (Page 2 of 2). DOE System Topics 

Item 

SZDDESYS_ITEM_PROTOCOLS 

SZDDESYSJTEM_RESTART 

SZDDESYSJTEM_RTNMSG 

SZDDESYS_ITEM_SECURITY 

SZDDESYSJTEM_STATUS 

SZDDESYS_ITEM_SYSITEMS 

SZDDESYSJTEM_ TOPICS 

Description 

A list of protocol names the server supports. A protocol is 
a set of DDE execute commands, each having a standard 
meaning. 

A string that a client can pass to DosExecPgm to invoke 
a server that is not running. 

Supporting detail for the most recently issued 
WM_DDE_ACK message. This is useful when more than 
8 bits of application-specific return code are required. 

A security-sensitive server application. Any client can 
initiate a conversation with a security-sensitive server, but 
the server responds only to the Security topic. Typically, 
the server requires a password from the client before any 
further data exchange can take place. 

An indication of the current status of the server: "Ready" 
or "Busy." 

A list of the items supported under the system topic by 
this server. 

A list of the topics currently supported by the application. 
This. can vary from moment to moment. 

Individual elements of lists should be delimited by tabs, as in the DDEFMT _TEXT format. 

DOE Initiation 
A client application initiates a DDE conversation by calling WinDdelnitiate, specifying the 
server application-name string and the topic-name string. WinDdelnitiate fills a DDEINIT 
data structure with the specified strings, then sends a WM_DDEJNITIATE message to all 
frame windows that have HWND_DESKTOP as their parent. The message contains the 
handle of the client application and a pointer to the DDEINIT data structure. Figure 14-3 
illustrates the DDEINIT data structure. 

Figure 14-3. DDEINIT Data Structure. 

Because the message is sent rather than posted, WinDdelnitiate requires a response from all 
recipients of the message before it returns control to the client application. Figure 14-4 on 
page 14-7 illustrates the initial flow of a DDE conversation. 

14-6 PM Advanced Programming Guide 



DDE Client Top-level frame 

WinDdelnitiate () 

case WMXDDE-INITIATEACK: Top-level frame 

Top-level frame 

WMXDDE-INITIATE: 

WinDDERESPOND 0 

Figure 14-4. Initiating a DOE Conversation 

Any potential server must contain a server window, a top-level frame window that has been 
subclassed to receive and process WM_DDEJNITIATE messages. When a server window 
receives WM_DPE_INITIATE, it examines the application-name and topic-name strings in the 
DDEINIT data structure. If the application-name string matches and the server supports the 
requested topic, the server acknowledges the client's request. 

Either the application-name or topic-name string can be zero-length. If the application-name 
string is zero-length, all servers check the topic-name string. Each server that supports the 
topic sends a separate acknowledgment to the client. If the topic-name string is zero-length, 
the server sends an acknowledgment for each supported topic. Using zero-length strings, a 
client can obtain the names of all the active servers in the system or the names of all the 
topics a server supports. 

Figure 14-5 shows how servers respond to WM_DDEJNITIATE messages. 

Figure 14-5. How Servers Respond to DOE_INITIATE Messages 

Chapter 14. Dynamic Data Exchange 14-7 



A server acknowledges its support of a specific topic by calling WinDdeRespond, specifying 
the handle of its server window, its application name, and the name of the supported topic. 
WinDdeRespond fills a DDEINIT data structure with the specified strings, then sends a 
WM_DDE_INITIATEACK message to the client. The message contains the handle of the 
server window and a pointer to the DDEINIT data structure. The client examines the 
topic-name string in the DDEINIT data structure and decides whether to begin a transaction 
on the topic. 

If two applications agree on some unspecified protocol and can exchange window handles by 
some means, they can use DOE messages on those window handles without going through 
an initiate sequence. 

An application does not need to fill in a DDEINIT data structure; WinDdelnitiate and 
WinDdeRespond automatically fill the data structure. However, applications must extract the 
application name and topic name from the DDEINIT data structure when receiving a 
WM_DDEJNITIATE or WM_DDEJNITIATEACK message. 

Shared-Memory Object 
After initiating a conversation, the client interacts with the server by issuing transactions. A 
transaction is a client's request that the server perform a particular action. 

To issue a transaction, the client allocates a shared-memory object, writes data about its 
request to the object using a DDESTRUCT data structure, then calls WinDdePostMsg to post 
a transaction message to the server. The transaction message contains the client-windo~ 
handle and a pointer to the shared-memory object. When the server receives the message, 
it uses the pointer to access the shared-memory object. 

The server responds by allocating a shared-memory object, writing its response to the object 
using a DDESTRUCT data structure, then calling WinDdePostMsg to post a response 
message to the client. The response message contains the server-window handle and a 
pointer to the shared-memory object. 

A DDESTRUCT data structure occupies the first part of the memory object. Next comes the 
item-name string, followed by the actual data being exchanged. The offset fields of the 
DDESTRUCT data structure must be set to point to the name string and the beginning of the 
data. The cbData field also must be set to indicate the number of bytes of data. 

The sender of a DOE transaction message must allocate a shared-memory object using 
DosAllocSharedMem, then call DosGiveSharedMem to share the object with the receiving 
application. To share an object, the sender must know the process identifier of the recipient. 
The process identifier can be obtained by calling WinQueryWindowProcess for the recipient's 
window handle. WinDdePostMsg also gives the memory object. 

The sender should not try to access the object after sending it to the recipient in a DOE 
message. After posting a transaction message, WinDdePostMsg automatically frees the 
shared-memory object from the sender's virtual address space. An application need not call 
DosFreeMem for this purpose. However, the recipient must call DosFreeMem when it is 
finished using the object. 

14-8 PM Advanced Programming Guide 



Transaction Status Flags 
DOE client and server applications can specify status flags in the DDESTRUCT data 
structure. These flags are constant values that applications use to control various aspects of 
a DOE transaction. They can be combined in the fsStatus word of the DDESTRUCT data 
structure by using the OR operator. Table 14-2 lists the DOE status flags. 

Table 14-2. DOE Status Flags 

Flag Name Description 

DDE_FACK I ndicates a positive acknowledgment. 

DDE_FACKREQ Requests an acknowledgment from the receiving application. 

DDE_FAPPSTATUS Indicates that the upper 8 bits of the status word are used for 
application-specific data. 

DDE_FBUSY Indicates that the application received a request but cannot respond 
because it is busy filling an earlier request. 

DDE_FNODATA Indicates that no data is to be transferred in response to the 
WM_DDE_ADVISE message. 

DDE_FRESERVED Reserved; must be O. 

DDE_FRESPONSE Indicates a response to a WM_DDE_REQUEST message. 

DDE_NOTPROCESSED Indicates that the message received is not supported. 

Transaction and Response Messages 
DOE applications use WinDdePostMsg to communicate during data-exchange transactions. 
A client application posts transaction messages to a server, which responds by posting 
acknowledgment messages to the client. Transaction and acknowledgment messages have 
the same data structure. The first message parameter contains the handle of the sending 
window; the second contains a pointer to the shared-memory object that contains message 
information. 

The DOE protocol defines five transaction types: 

• Advise 
• Unadvise 
• Request 
• Poke 
• Execute. 

These transactions are permitted only within an exchange begun by using the 
WM_DDE_INITIATE message. Each transaction type has a corresponding message that a 
client uses to initiate the transaction with a server: 

• WM_DDE_ADVISE 
• WM_DDE_UNADVISE 
• WM_DDE_REQUEST 
• WM DOE POKE 
• WM_DDE_EXECUTE. 

Chapter 14. Dynamic Data Exchange 14-9 



A server acknowledges a transaction message by posting a WM_DDE_ACK message to the 
client. The client must examine the status field of the DDESTRUCT data structure to 
determine whether the response is positive or negative. 

A server application posts a WM_DDE_DATA message to the client to indicate that 
requested data is available. If the status bit of the DDESTRUCT structure has the 
DDE_FACKREQ flag set, the client must acknowledge receipt of the data by sending a 
WM _ DDE _ ACK message to the server. 

The fifth parameter of WinDdePostMsg is a flag used to specify whether to try to post a 
message again if the first attempt failed because the destination queue was full (server 
returns the DDE _FBUSY flag). If the retry flag is set, WinDdePostMsg posts the message at 
1-second intervals until the message is posted successfully. 

The following sections explain the five basic types of DDE transactions and the messages 
involved with each. These messages are posted with WinDdePostMsg, which automatically 
builds and fills a DDEINIT data structure. 

Request and Poke Transactions 
A client application can use the DDE protocol to obtain a data item from a server 
(WM_DDE_REQUEST) or to submit a data item to a server (WM_DDE_POKE). 

The client posts a WM_DDE_REQUEST message to the server, specifying an item and 
format by allocating a shared-memory object, filling in a DDESTRUCT data structure, and 
passing the data structure to WinDdePostMsg. 

If the server is unable to satisfy the request, it sends the client a negative WM_DDE_ACK 
message. If the server can satisfy the request, it renders the item in the requested format, 
includes it with a DDESTRUCT data structure in a shared-memory object, and posts a 
WM_DDE_DATA message to the client. 

Upon receiving a WM_DDE_DATA message, the client processes the data item. At the 
beginning of the shared-memory object, the DDESTRUCT data structure contains a status 
word indicating whether the sender requested an acknowledgment message. If the 
DDE_FACKREQ bit of the status word is set, the client must send the server a positive 
WM_DDE_ACK message. 

Upon receiving a negative WM_DDE_ACK message, the client can ask for the same item 
again, specifying a different DDE format. Typically, a client first asks for the most complex 
format it can support, then steps down, if necessary, through progressively simpler formats, 
until it finds one the server can provide. 

Advise and Unadvise Transactions 
A client application can use DDE to establish a link to an item in a server application. When 
such a link is established, the server sends periodic updates about the linked item to the 
client (typically, whenever the data associated with the item in the server application has 
changed). A permanent data stream is established between the two applications and 
remains in place until it is explicitly disconnected. 

14-1 0 PM Advanced Programming Guide 



The client sends the server a WM_DDE_ADVISE message to set up the data link. The 
advise message contains a shared-memory pointer containing a DDESTRUCT data structure 
with the item name, format information, and status information. 

If the server has access to the requested item and can render it in the desired format, the 
server records the new link, then sends the client a positive WM_DDE_ACK message. Until 
the client issues a WM_DDE_UNADVISE message, the server sends data messages to the 
client every time a change occurs in the source data associated with the item in the server 
application. 

If the server is unable to satisfy the request, it sends the client a negative WM_DDE_ACK 
message. 

When a link is established with the DDE_FNODATA status bit cleared, the client is sent the 
data each time the data changes. In such cases, the server renders the new version of the 
item in the previously specified format and posts a WM_DDE_DATA message to the client. 

When the client receives a WM_DDE_DATA message, it extracts data from the 
shared-memory object by using the DDESTRUCT data structure at the beginning of the 
object. If the DDE_FACKREQ status bit in the status word of the DDESTRUCT data 
structure is set, the client must post a positive WM _ DDE _ ACK message to the server. 

When a link is established with the DDE_FNODATA status flag set, a notification, not the 
data itself, is posted to the client each time the data changes. In this case, the server does 
not render the new version of the item when the source data changes, but simply posts a 
WM_DDE_DATA message with 0 bytes of data and the DDE_FNODATA status flag set. 

The client can request the latest version of the data by performing a regular one-time 
WM_DDE_REQUEST transaction, or it can simply ignore the data-change notice from the 
server. In either case, if the DDE_FACKREQ status bit is set, the client should send a 
positive WM_DDE_ACK message to the server. 

When a client sends a WM_DDE_ADVISE message on a topiC/item pair that is already 
engaged in an advise loop but has a different format specified, the server interprets this as a 
request to add an advise loop with the given format requested. Therefore, several advise 
loops can exist for a given topiC/item pair. If a server does not support this extent of advise 
loops, it rejects the advise request. 

Correspondingly, when a server receives a WM_DDE_UNADVISE message, the server must 
compare the format field with the current format of the advise loop. Only if the specified 
format is 0, meaning all advise loops, or matches an active advise loop does the server stop 
the advise loop and return a positive acknowledgment. 

To terminate a specific item link, the client posts a WM_DDE_UNADVISE message to the 
server. The server ensures that the client currently has a link to the specified item in this 
exchange. If the link exists, the server sends a positive WM_DDE_ACK message to the 
client and no longer sends updates on the item in this exchange. If the server has no such 
link, it sends a negative WM _ DDE _ ACK message. 

Chapter 14. DynamiC Data Exchange 14-11 



To terminate all links for a particular exchange, the client application posts a 
WM_DDE_UNADVISE message with a zero-length item name to the seNer. The seNer 
ensures that the exchange has at least one link currently established. If so, the seNer posts 
a positive WM_DDE_ACK message to the client, and no longer sends any updates in the 
exchange. If the seNer has no links in the exchange, it posts a negative WM_DDE_ACK 
message. 

Execute Transaction 
A PM application can use the DOE protocol to cause commands to be executed in another 
application. Such remote executions are performed by the WM_DDE_EXECUTE transaction. 

To execute a remote command, the client application posts to the seNer a 
WM_DDE_EXECUTE message containing a pointer to a shared-memory object that contains 
a DDESTRUCT data structure and a command string. 

The server attempts to execute the specified string according to some agreed-upon protocol. 
If successful, the seNer posts a positive WM_DDE_ACK message to the client. If 
unsuccessful, a negative WM_DDE_ACK message is posted. 

DDE Termination 
At any time, either the client or the seNer may terminate an exchange by issuing a 
WM_DDE_TERMINATE message. Similarly, both the client application and seNer 
application must be able to receive a WM_DDE_ TERMINATE message at any time. 

An application must end its exchanges before terminating. The application posts a 
WM_DDE_ TERMINATE message with a zero-length shared-memory pOinter. A 
WM_DDE_TERMINATE message stops all transactions for a given exchange. 

The WM_DDE_TERMINATE message means that the sender sends no further messages in 
that exchange and that the recipient can destroy its DOE window. The recipient must always 
send a WM_DDE_TERMINATE message promptly in response; it is not permissible to send 
a negative, busy, or positive WM_DDE~CK message instead. 

If the original sender of the termination request receives any other message before the 
WM_DDE_TERMINATE message arrives from the recipient of the request, it should not 
respond, because the sender of the other message might have already destroyed the 
window to which the response would be sent. 

Unique Data Formats 
Whenever an application exchanges data using the DOE protocol, it must specify the format 
of the data in the usFormat field of the DDESTRUCT data structure. The system-defined 
standard format for exchanging text data is DDEFMT _TEXT. Applications can also use 
constant names to specify the format of data to be exchanged listed in Table 14-3 on 
page 14-13. 

14-12 PM Advanced Programming Guide 



Table 14-3. DDE Data Formats 

Data Format Name Description 

SZFMT _BITMAP Specifies that the data is a bit map. 

SZFMT_CPTEXT Specifies text whose format is defined by a CPTEXT data 
structure. Applications can use this format to pass 
multiple-language strings without changing the 
conversation context. 

SZFMT_DIF Specifies that the data is in Data Image Format (DIF). 

SZFMT _DSPBITMAP Specifies that the data is a bit-map representation of a 
private data format. 

SZFMT _DSPMETAFILE Specifies that the data is a metafile representation of a 
private data format. 

SZFMT _DSPMETAFILEPICT Specifies that the data is a metafile picture representation 
of a private data format. 

SZFMT_DSPTEXT Specifies that the data is a text representation of a private 
data format. 

SZFMT_LINK Specifies that the data is in link-file format. 

SZFMT _METAFILE Specifies that the data is a metafile. 

SZFMT _METAFILEPICT Specifies that the data is a metafile picture defined by an 
MFP data structure. 

SZFMT_OEMTEXT Specifies that the data is in OEM Text format. 

SZFMT_PALETTE Specifies that the data is in palette format. 

SZFMT_SYLK Specifies that the data is in Synchronous Link format. 

SZFMT_TEXT Specifies that the data is an array of text characters. 
These characters can include new-line characters to 
indicate linebreaks. The zero-length character indicates 
the end of the text data. 

SZFMT_TIFF Specifies that the data is in Tag Image File Format 
(TIFF). 

Applications can define their own data formats. However, each nonstandard DOE format 
must have a unique identification number. To receive an identification number for a 
nonstardard format, the application must register the name of the format in the system atom 
table. Other applications that have the name of the format can then query the system atom 
table for the format's identification number. This method ensures that all applications use the 
same atom to identify a format. 

Synchronization Rules 
A window processing DOE requests from another window must process them strictly in the 
order in which the requests were received. 

Chapter 14. Dynamic Data Exchange 14-13 



A window does not need to apply this first-in first-out (FIFO) rule between requests from 
different windows-that is, it may provide asynchronous support for multiple processes. For 
example, a window might have the following requests in its queue: 

1. Request message from window x 
2. Request message from window y 
3. Request message from window x. 

The window must process request message 1 before request message 3, but it does not 
have to process request message 2 before request message 3. If Y has a lower priority than 
x, the window follows the order 1, 3, 2. 

If a server is unable to process an incoming request because it is waiting for an external 
process, it must post a busy WM_DDE_ACK message to the client, to prevent deadlock. A 
busy WM_DDE_ACK message can also be sent if the server is unable to process an 
incoming request quickly. 

Language-Sensitive DOE Applications 
DOE applications written for the international market must be able to exchange data in 
several different languages. The CONVCONTEXT data structure, along with WinDdelnitiate 
and WinDdeRespond, provide this support. 

A language-sensitive DDE applicatiotn defines the context of a conversation by filling a 
CONVCONTEXT data structure with the appropriate country code and code-page identifiers. 
The CONVCONTEXT data structure also contains a context flag. If this flag is set to 
DDECTXT _ CASESENSITIVE, applications must compare strings in a case-sensitive manner. 
Language-sensitive DDE applications use WinDdelnitiate and WinDdeRespond to establish a 
DOE conversation. These functions pass a pointer to a CONVCONTEXT data structure. 

Using Dynamic Data Exchange 
This section explains how to perform the following tasks: 

• Initiate a DDE conversation 
• Create a shared-memory object for DOE 
• Send positive acknowledgment messages 
• Send negative acknowledgment messages 
• Perform a one-time data transfer 
• Establish a permanent data link 
• Execute commands in a remote application 
• Terminate a DOE conversation. 

Note: Much of the sample codes in this section are part of a complete program for either a 
client application or a server application. Both programs are illustrated in "Sample Code for 
Dynamic Data Exchange" on page 14-22. 

14-14 PM Advanced Programming Guide 



Initiating a DOE Conversation 
The client application initiates a DDE conversation by calling WinDdelnitiate, specifying the 
server application-name string and the topic-name string. 

The client application in "Sample Code for Dynamic Data Exchange" on page 14-22 allows 
the user to initiate a DOE conversation from a context menu. The sample code illustrated in 
Figure 14-6 shows how the client application processes that request. 

/* User starts DOE conversation */ 
case IDM POLL: 

WinPostMsg (hL i stWnd, LMJ)ELETEALL, a, a); 
ShowMessage( hpolli ng •.. II); 
context.c~~sizeof(CONVCONTEXT); 
context.fsContext ,.; Gj 
WinDdelnitiate(hwnd, szApp, szTopic, &context); 
ShowMessage(" Poll i n9 compl ete. "); 
break; 

Figure 14-6. How the Client Application Respond to a DDE Conversation 

The sample code illustrated in Figure 14-7 shows how the server application determines 
whether to send a positive or negative acknowledgment to the WinDdelnitiate call. 

/*********************************************************************/ 
1* Check incoming poll ~ if the AppandTopi cmatch,.. */ 
1* we must aCknowledge •. If both are zero-length, the client ;s *1 
1* searching for anyone to talk to ~send ournames*/ 
I***~********************'#*******~~***********'#***********************/ 
szCltentApp. .= pDDEi nif->pszAppName; 
szCli.entTopic""PPDEini t~>pszTop;c; 
S~owMess~ge(szClientApp); 
ShQwM~ss~ge(szCJ·i ent Topic}; 

Figure 14-7 (Part 1 of 2). How the Server Determines the Acknowledgment to Send 

Chapter 14. Dynamic Data Exchange 14-15 



if rlS~~C~pi{$TCli.··~.htApp·~.·.·.·$zApp}··ill··· 
I:strcmp1{szCl i¢ntl;\pp, . NULL) 

break; 

Figure 14-7 (Part 2 of 2). How the Server Determines the Acknowledgment to Send 

Creating a Shared-Memory Object for DOE 
The sample code illustrated in Figure 14-8 shows how to create a shared-memory object for 
a DDE transaction. The parameters include the destination window for the DDE message, 
item name for the transaction, status word, format of the data, actual data to be transferred 
(if any), and the length of the data. The allocated object must be big enough to hold the 
DDESTRUCT data structure, item name, and the actual data to be transferred. The sample 
returns a pOinter (PDDESTRUCT) to a shared-memory object that is ready to post as part of 
a DDE message. 

/* Getsomesharabl e memory */ 
OasAll ocSharedMem( (PVOIO}&mem, 

. NULL, 
size<>f(DOESTRUCT) +21, 
PAG~COMMITI 
PAG_READ\ 
PAG_WRITE ... ·I 
OBJ~GIVEABLE}; 

Figure 14-8 (Part 1 of 2). How to Create a Shared-Memory Object 

14-16 PM Advanced Programming Guide 



/* Get the serverls IDand give it access to the */ 
/*sharedmemory ..... . •....... .. ..... */ 
Wi nQueryWi ndowProcess(hS.erverWnd;.&pid,&tJd}; 
DosGiveSharedMem.(&memtpidtPAG...;.READI PAG_WRITE); 

/*Setup DDE data structures */ 
/* (11 byte name length, 10 plus NULL, 10 byte data length) */ 
pDDEdata = (PDDESTRUCJ)mern; 
pDDEdata~>cbData = 10; /*Datal ehgth */ 
pODEdata->fSStatus= 0; /* Status *! 
pDDEdata .. >u'sFormat = DDEFMT_TEXTi /* Text format */ 

1* .Gopastendofdata structure for the name*/ 
pDDEdata->offszltemName ""sizeof(DDESTRUCT); 

/* Go past end of structure (plus past the name) */ 
/* for the data */ 
pDDEdata->offabData· = si zeof (DDESTRUCT) +11; 

. strcpy( (BYTE *)(pDDEdatq+(pDDEdafa->offszI temNarne)), 
II STATUS II); , 

Figure 14-8 (Part 2 of 2). How to Create a Shared-Memory Object 

Sending a Positive Acknowledgment 
You can send a positive acknowledgment by posting a WM_DDE_ACK message with the 
DDE_FACK and DDE_FRESPONSE flags set in the status word of the shared-memory data 
structure. The sample code illustrated in Figure 14-9 on page 14-18 shows how to do so. 

Chapter 14. Dynamic Data Exchange 14-17 



Figure 14-9. How to Send a Positive Acknowledgment 

Sending a Negative Acknowledgment 
You can send a negative acknowledgment by posting a WM_DDE_ACK message with the 
DDE_NOTPROCESSED flag set in the status word of the shared-memory data structure. By 
not specifying DDE_FACK, it is legal to specify DDE_NOTPROCESSED, but only if the 
message is not supported, such as WM_DDE_POKE for the specified item. 
DDE_NOTPROCESSED is not the negative respond. The sample code illustrated in 
Figure 14-10 shows how to do so. 

Figure 14-10. How to Send a Negative Acknowledgment 

If an application is busy when it receives a DOE message, it can post a WM_DDE_ACK 
message with the DDE_FBUSY flag set. 

Performing a One-Time Data Transfer 
A client application posts a WM_DDE_REQUEST or WM_DDE_POKE message to perform a 
one-time data transfer with a server application. The item-name portion of the 
shared-memory object passed with the message contains the name of the desired item. 

14-18 PM Advanced Programming Guide 



When the client posts a WM_DDE_POKE message, the data portion of the shared-memory 
object contains the data being sent to the server. 

If the server can satisfy the request, it renders the item in the requested format and includes 
it, with a DDESTRUCT data structure, in a shared-memory object and posts a 
WM_DDE_DATA message to the client, as shown the sample code illustrated in 
Figure 14-11. 

/* The ODE data structure is passed. and */ 
/* the c1 i ent shoul d have shared ; t wi th us * / 
pDDEdata = (PDDESTRUCT)mp2; 
szReqltem = (BYTE *)(pDDEdata+(pDDEdata->offszItemName»; 
ShowMessage(szReqltem); 

/* We support item status, but not anything else */ 
if (!strcmpi(szReqltem, szItem» 

{ 
ShowMessage("sending ... U); 

/*Get some sharable memory */ 
DosAllocSharedMem«PVOID)&mem, 

NULL, 
s;zeof(DDESTRUCT)+21, 
PAG_COMMIT I 
PAG_READ I 
PAG .... WRITEI 
OBJ.;..GIVEABLE); 

/* Get the server's idand give it access to the */ 
1*· shared memory *! 
WinQueryWindowProcess{hClientWndt&pid, &tidl; 
DosGi ve~haredMem(&mem,pid,pAG_READ I<PAG_WRITE}; 

1*. Setup ODE data structures *1 
/* . 01 byte name Jength, 10.plusNULL, 10 byte datal ength) */ 
pDDEdata .. .... . ~.'. = (PDDESTRUCT) mem; 
pDDEdata~>cbData=le; . 1* Datal ength */ 
pDDEgata-':.fs?tatus= 0; .... .•.. . ..... .• 1*. Status */ 
pDDEdata· ... >usFormat=DDEFMT_TEKT; /*Textformat */ 

Figure 14-11 (Part 1 of 2). How to Perform a One-Time Data Transfer 

Chapter 14. DynamiC Data Exchange 14-19 



Figure 14-11 (Part 2 of 2). How to Perform a One-Time Data Transfer 

Establishing a Permanent Data Link 
The client posts a WM_DDE_ADVISE message to the server to set up a permanent data 
link. The advise message contains a shared-memory pOinter containing a DDESTRUCT 
data structure with the item name, format information, and status information. The sample 
code illustrated in Figure 14-12 shows how to establish a link. 

Figure 14-12. How to Establish a Link 

14-20 PM Advanced Programming Guide 



When a link is established with the DDE_FNODATA status flag set, a notification, not the 
data itself, is posted to the client each time the data changes. In this case, the server does 
not render the new version of the item when the source data changes, but simply posts a 
WM_DDE_DATA message with 0 bytes of data and the DDE_FNODATA status flag set, as 
shown in the sample code illustrated in Figure 14-13. 

/* Specify the data length and status flag, */ 
/* when allocating shared memory */ 
pDDEdata->cdData = 0; 
pDDEdata->fstatus = DDE_FNODATA; 

/* Post the message */ 
WinDdePostMsg(hwndClient, 

hwndServer, 
WM DOE DATA, 
pddeStruct, 
DDEPM_RETRY); 

/* Handle of client */ 
/* Handle of server */ 
/* Message */ 
/* Shared-memory pointer */ 
/* Retry */ 

Figure 14-13. When the Link Is Established with DDE_FNODATA 

Terminating a Permanant Link 
The client terminates a data link by posting a WM_DDE_UNADVISE message to the server, 
as shown in the sample code illustrated in Figure 14-14. 

WinDdePostMsg(hwndServer, 
hwndClie.nt, 
WM_DDE_UNADVISE, 
pddeStruct; 
DDEPM...;RETRY); 

/*Handleof server */ 
/*, Handle of .. client *,l 
/* Message */ 
/* Shared~memorypointer*/ 
/* Retry *! 

Figure 14-14. How to Terminate a Permanent Link 

Executing Commands in a Remote Application 
To execute a remote command, the client application posts to the server a 
WM_DDE_EXECUTE message containing a pointer to a shared-memory object that contains 
a DDESTRUCT data structure and a command string, as shown in the sample code 
illustrated in Figure 14-15 on page 14-22. 

Chapter ;14. Dynamic Data Exchange 14-21 



Figure 14-15. How to Execute a Command 

Terminating a DOE Conversation 
At any time, either the client or the server may terminate a DOE conversation by posting a 
WM_DDE_TERMINATE message, as shown in the sample code illustrated in Figure 14-16. 

Figure 14-16. How to Terminate a DOE Conversation 

Sample Code for Dynamic Data Exchange 
This section illustrates a complete sample program for both client and server applications 
involved in dynamic data exchange (DOE). Several parts of this program are explained in 
"Using Dynamic Data Exchange" on page 14-14. 

Client Application Sample Code 
The client application includes the following files: 

• DDEC.C 
• DDEC.RC 
• DDEC.H 
• DDEC.DEF 
• DDEC.LNK 
• DDEC.MAK 

Figure 14-17 on page 14-23 shows the client application sample code. 

14-22 PM Advanced Programming Guide 



INCl,..;WIN 
I NCL_DOS 

Hinclude·<os2.h> 
.Hi n.d lAde. <Sfd i o.h> 
·Hi nc tude; "ddec.h" 

Ipragma ". "1 inkage . (ma; n t opt 1 ink) 
Hi! ; matn(VOl~}; 

ShQWMessage(PSZ) ; 

.1*;1f**.**********.**~*************~**************************************** / 
"1!M~inq.~programentry point.. . .' ....... . .... ". .' ..... ' .. " .... */ 
·l*~*.*:~~*~~*~**~******~~************************************************* / 
MRESUl!EXPENJRY to'calWndPr()c(HWND~ . ULONG, MPARAM~MPAAAM); 

' .. ' 

:··H~8· .• ·. h~b·;>:· 
• HWND>······ 
·PF~WI)······ 

hFrameW.nd, '. htlslWndi 
SysWndProc; . 

Figure 14-17 (Part 1 of 9). Sample Code for a Client Application 

Chapter 14. Dynamic Data Exchange 14-23 



Figure 14-17 (Part 2 of 9). Sample Code for a Client Application 

14-24 PM Advanced Programming Guide 



/***********************************************************************/ 
/* Set an. iconforthefratne window. */ 
1*****************************************************************~*****/ 

WinSendMsg(hFrameWnd t 

WM SETICON, 
(MPARAM) Wi nQuerySysPoi nter{HWND_DESKTOP, 

SPTR FOLDER, 
FALSE) , 

NULL) ; 

/***********************************************************************/ 
/*Create a list window child. */ 
/***********************************************************************/ 

hListWnd= Wi nCreateWi ndow(hFrameWnd, 
WC_LISTBOX, 
NULL, 
LSHORZSCROLL, 
a,:-a, a, 0~ 
hFrameWnd, 
HWND_BOTTOM, 
FID ... CLIENT, 
NULL, 
NULL) ; 

/******************1r****************************************************/ 
/* we must intercept the framewindow's messages */ 
/~ (tocaptur~anyi nput from theconta iner control). * / 
/* we. save the return value ( the. current WndProc), .. ' *! 
I*. ~gwefa~pass> it all th~other messages the frame gets • . '. .'. .... */ 
/*****'k'k*:**~~********1(***************************~***********~**********/' 

SysWndPrQc= '. WinSub.classWi ndow(hFrameWnd, (PFNWP}tocal WndProc); 
'::"::: .. :::":, "'c'; 

Wi nShowWindQw{hFranieWnd, TRUE); 

l**'k**.***~*****t~******~.~******************~**************~*************/ 
.·/* •. Sta~dClr~·P~me~.sageJggp- .. getlt,di ~pa~chi. t .. .. .' .. ' . */ 
/******.**.*****.*.~**.***.***'It'*********~************.*************.************/ 

while,., (Wi nGetMSg{hab; .&.qrl)sgfNULLHAND~Ete, f)}) { .... ... .' :. :.' 

WirriQfsp~tChMsg(hab/&qtnsg) ; 

Figure 14-17 (Part 3 of 9). Sample Code for a Client Application 

Chapter 14. DynamiC Data Exchange 14-25 



Figure 14-17 (Part 4 of 9). Sample Code for a Client Application 

14-26 PM Advanced Programming Guide 



1*l\1lan.swersto th~\4inOl)Elnitateca 11 arr; ve here * / 
caseWMDOE 'INITIATEACK: 

pDD£fntt=tPpOEINIT}mp2 ;: 
. szInApp =:pOQEjnjt~>pszApPName; 

szInTopic ::; pI>OEinit ... >pszTopic; 
Sho~~ssag~("serveranswered: .• II); 
hS,erverWnd= (HWND)mpl; 
·pt~a.k;. 

/*Allanswers toDDE'tequestsarrive here */ 
case·· WM_~P~..:~AJJA: 

Sh()wM~ssag~("data. inll); ..... 
• ···pDOE~~:~a·., ••. ~ ·· •.• (~D~ESTRUCT)~P2; 
D()$GetSbaredMem(pDOEdata~PAG~READI PAG_WRITE); 
szOata·:;(BYTE·*){pODEdata+(pDOEdata->offabData»; 
ShowMessage(szData}; 
b·r~~k.;· ...... . 

u .... · .•.. ·.· ,"',., ... : .... ::.: ; ....•. 

·/~·.Menu •. :it~~.p~Q~e$·$lh!1:·~f 
'::':'""': ;:.: ....... :>: ,:.; C~~$¢·:·:::.W;~l1~Pft1~ ';~'r": < " 

; .•.. ' •••.•..•.••..••...••...••.•.. :::: .;:':; ••••. j ••••••• ~Vii:~·¢b ::l(~· 
:·.;.·;:·<:i:i;~ :(;;ihl!1i'!i':' 

, T ":.;::: :.~:.:::<.:;.:. :·;Y·:<:~:.···;: ?~. "':<'<":.':: :".::: ::.:: :.':'-::"':::: :: .. :": ":::"> .. : 

·t*·Us~r>startsDDeconversati()n '#/ 
. ~~~~:: I~ ... ~~~L.: 

••••• ·· •.• ·~W1ry.~~~t~$9(h~is,tWnd,.LMD~L.fTEAt.L.t a, e); 
.....•.•..•••. ;:~~.Q:~e~~.~~.~f~· ~Q~~;.r1g •.•.• "ii) •. ~ ..••.. 

. ; "', ~()~~ext'+cbf$j?;e~f(CO~VC(}~TEX,.); 
: co ' .' :ifseont~x'ti: >'9. . : •.. : ..... '.' > .....: 

: .. > :: .. :.. . ." :.::.~.;.~~-:~.:;::: r:"' :::;><:.:::.;: ... :"'.:';':' .. ::~.::: .. '.'>:, :;" .:::: ::." :::: .... : .... ::.:.: .. : ..... :.:: .. , . 
.. . \ili :n ..• eoj. "0 t,e~~~n.~~$~A.~R;$~T()Pi,C' .&context); •.. 
':Sh I!.~q~ .1:irt9.€:omp l!e.te~,"); hr ... , ................. , 

Figure 14-17 (Part 5 of 9). Sample Code for a Client Application 

Chapter 14. Dynamic Data Exchange 14-27 



Figure 14-17 (Part 6 of 9). Sample Code for a Client Application 

14-28 PM Advanced Programming Guide 



/*Userterminatesthe conversation */ 
case IDMCLOSET 

.. ·.·WinDd~PostMsg(hServerWndt 
"wnd. 
WM_DDE_TERMINATE, 
NULL, 
DDEPM_RETRY; 

/*Setidthemessi;tgetothe.~sual We_FRAME WndProc */ 
default: 

return 
. ,break·;.' 

Figure 14-17 (Part 7 of 9). Sample Code for a Client Application 

Chapter 14. Dynamic Data Exchange 14-29 



Figure 14-17 (Part 8 of 9). Sample Code for a Client Application 

14-30 PM Advanced Programming Guide 



ddec.obj 
ddec.exe 
ddec.map . 

. ddec.def 

DDEC.MAK 
====:;========== 

CC = icc /c/Ge/Gd- ISe/Re Iss /Gm+ . 
LINK = link386· . 
HEADERS .=ddec.h 

#-:.. .... ---.;.------.;. ...... --':'--------~--':'-":'-':'':''::'':'-'':--:'':-'::'-~-- ..... --------------
# . Al.ist of all. of th~objectf~les. 
#--- ..... _- ... ---.----------,;.-----_ .... ""---.-':'-_.-............. -:-:-::-:--::-:: ..... - ... -----,;.----": 
ALL_OBjl ddeC:obj 

all! ddec.exe 

ddec.res: 

ddec .exe: $(At~ ••.• oB01.J •• ··dtfe~.c~ def.·ddec.'Ink:.ddec •• res 
~(llN~)~~~eC~lnk 
'rc ... p·-x. ddec •• resd:deC. e~e 

Figure 14-17 (Part 9 of 9). Sample Code for a Client Application 

Server Application Sample Code 
The server application includes the following files: 

• DDES.C 
• DDES.RC 
• DDES.H 
• DDES.DEF 
• DDES.LNK 
• DDES.MAK 

Figure 14-18 on page 14-32 shows the server application sample code. 

Chapter 14. Dynamic Data Exchange 14-31 



Figure 14-18 (Part 1 of 10). Sample Code for a Server Application 

14-32 PM Advanced Programming Guide 



/***********************************************************************/ 
/ * Setup theframecontro 1 data. for the framewincJow. * / 
/************************~****c,******************************************/ 

fed .cb= sizeo f(FRAMECI)AT A); 
fed. flCreateFlags = FCF _TITLEBAR 

FCF _SYSMENU 
FCF MENU 
FCF:SIZEBORDER 
FCF _SHELLPOSITION 
FqF_Ml~MAX 

FCF .. JASKLIST; 

fed. hmodResources= NULLHANDLt; . 

/***********************************************************************/ 
!* Set our resource key (so PM can find menus, icons, etc). */ 
/*************'**********************************************************! 

fcd.idResources = DOES; 

/ *******************~******~***************************:***************** / 
!* Create.' theframe·.window. . *l 

/ **********~.~*****************,*~.**************~*.ft***********************1 
hFrameWnd.=.' WinCreateWtndow{HWND;..DESKTOP, 

We_FRAME, . 
IIDDEServer" , 
e,c:), e ,e, a, 
NULLHANDLE~ 

. HW~D,,:,TOP; 
DOES. 
&f~cJ,· 
NULL);" 

Figure 14-18 (Part 2 of 10). Sample Code for a Server Application 

Chapter 14. Dynamic Data Exchange 14-33 



Figure 14-18 (Part 3 of 10). Sample Code for a Server Application 

14-34 PM Advanced Programming Guide 



/***********************************************************************/ 
/* Cleanup on the 'way out. */ 
/***********************************************************************/ 

WinDestroyMsgQueue(hmq}; 
WinTerminate(hab); 

return TRUE; 

/***********************************************************************/ 
/ * Loca 1 WndProc 0 - wi ndow procedure for the frame wi ndow. * / 
/* Called by PM whenever a message is sent to the frame. */ 
/***********************************************************************/ 
MRESULT EXPENTRY LocalWndProc(HWND hwnd,ULONGmsg,MPARAM mpl,MPARAM mp2) 
{ 

/* Our inbound DOE stuff */ 
PSZ szClientApp; 
PSZ szClientTopic; 
PSZ szReqltem; 

/*O~rsupported DDEstuff*/ 
PSZ ~zApp uDOEdemoll; 
PSZ szTopic IISystem" 
PSZ siltem "Status" 
PSZ szStatus IIRUNNING 

/~ SYstem DOE struCtures */ 
CONVCQNTEXT ·.context; 
PDDEINIT pDDEinit; 
PDDESTRUCT' .pDDEdata; 

; 'lW:,.·~1:J:Wiri[)OEln~tateca1J~' 
cas~.· .• ~~ .• ·.·~pE "lNITIAT~: 
'~bpW~e~~~ge{Uin.~ t')';; 

hSl: i~~t~nd ..• '" .•.• :(I1WNOlmp~; 
pDDE;nit=(PDDEINIT)ITIP~; 

Figure 14-18 (Part 4 of 10). Sample Code for a Server Application 

Chapter 14. Dynamic Data Exchange 14-35 



Figure 14-18 (Part 5 of 10). Sample Code for a Server Application 

14-36 PM Advanced Programming Guide 



/* We support item status, but not anythi ngelse */ 
if (!strcmpt(szReqItem, szItem» 
{ 

ShowMessage(Usending ..• U); 

/* Get some sharable memory */ 
DosAllncSharedMem«PVOID)&mem, 

NULL, 
sizeof{DDESTRUCT)+21 , 
PAG_COMMIT I 
PAG_READ I 
PAG_WRITE I 
OBJ_GlVEABLE) ; 

/* Get the server's id and give it access */ 
/* to the shared memory */ 
WinQueryWindowProcess(hClientWnd, &pid, &tid); 
DosGiveSharedMem(&mem, pid, PAG_READ I PAG_WRITE); 

/* Setup DOE data structures */ 
/* (11 byte name length, Hlplus NULL, */ 
/* 10 byte data length) */ 
pDDEdata = (PDDESTRUCT)mem; 
pDDEdata->cbData = 10; /* Data length */ 
pDDEdata->fsStatus = 0; /* Status */ 
pDDEdata->usFormat ::: DDEFMT_TEXT; /* Text format */ 

/* Go past end of structure for the name*/ 
pDDEdata->offszitemName = s;zeof(DDESTRUCT); 

/*Go past end of structure (and name) for the data */ 
pDDEdata->offabData = .si.zeof(DOESTRUCT)+11; 
strcpy«BYTE *)(pDDEdata+(pDDEdata~>offabData», szStatus); 
WinDdePostMsg(hCllentWnd, 

hwnd, 
WM_DDE~.'pATA, 
pDDEdata, 
DDEPM_RETRY; 

Figure 14-18 (Part 6 of 10). Sample Code for a Server Application 

Chapter 14. Dynamic Data Exchange 14-37 



Figure 14-18 (Part 7 of 10). Sample Code for a Server Application 

14-38 PM Advanced Programming Guide 



Figure 14-18 (Part 8 of 10). Sample Code for a Server Application 

Chapter 14. Dynamic Data Exchange 14-39 



Figure 14-18 (Part 9 of 10). Sample Code for a Server Application 

14-40 PM Advanced Programming Guide 



#---.-------------------------------------------,--,---,-- .. --,'"'----------
# A list of all of the object files. . 
#--.;.- .. - ... .:.---'"'-----... ~ .. .;;.:.---.:.-----.. .; ..... - ... ;;,,------...... ;..,;,~"",;,---- .. _: .. , .. .;,,;,;,. .. ---- .. -_ ..... 
ALL_OBJI =ddes.obj 

all: ddes.exe 

dd,es • res : ddes.rc· ddes.h 

ddes.obj: ddes~c $(HEADERS) 

ddes.exe: $(ALL_OBJl) ddes.def ddes.lnk ddes.res 
${LINK)@ddes. lnk 
rc-p -x' ddes ~,res ddes. exe 

Figure 14-18 (Part 10 of 10). Sample Code for a Server Application 

Chapter 14. Dynamic Data Exchange 14-41 



Related Functions 
This section covers the functions that are related to dynamic data exchange. 

WinDdelnitiate 
This function is issued by a client application to one or more other applications, to request 
initiation of a dynamic data exchange conversation with a national'language conversation 
context. 

Syntax 

#define INCL_WINDDE /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinDdelnitiate (HWND hwndClient, PSZ pszAppName, PSZ pszTopicName, 
PCONVCONTEXT pContext) 

Parameters 
hwndClient (HWND) - input 

Client's window handle. 

pszAppName (PSZ) - input 
Application name. 

pszTopicName (PSZ) - input 
Topic name. 

pContext (PCONVCONTEXT) - input 
Conversation context. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE Successful completion. The WM_DDEJNITIATE message is successfully 
sent to all appropriate windows. 

FALSE Error occurred. 

14-42 PM Advanced Programming Guide 



WinDdePostMsg 
This function is issued by an application to post a message to another application with which 
it is carrying out a dynamic data exchange conversation with a national language 
conversation context. 

Syntax 

#define INCL_WINDDE /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

BOOl WinOdePostMsg (HWNO hwndTo, HWNO hwndFrom, UlONG usMsgld, 
POOESTRUCT pOata, UlONG ulOptions) 

Parameters 
hwndTo (HWND) - input 

Window handle of target. 

hwndFrom (HWND) - input 
Window handle of originator. 

usMsgld (ULONG) - input 
Message identifier. 

pOata (PDDESTRUCT) - input 
Pointer to the DDE control structure being passed. 

ulOptions (ULONG) - input 
Options. 

DDEPM RETRY This controls what happens if the message cannot be posted 
because the destination queue is full. 

If this option is set, then message posting is retried at 1-second 
intervals, until the message is posted successfully. In this case, 
this function dispatches any messages in the queue of the 
application issuing this function, by calling the WinPeekMsg and 
WinDispatchMsg functions in a loop, so that messages sent by 
other applications can be received. This means that the 
application can continue to receive DDE messages (or other kinds 
of messages), while attempting to post DDE messages, thereby 
preventing deadlock between two applications whose queues are 
full and who are both attempting to post a message to each other 
with this option set. 

Chapter 14. Dynamic Data Exchange 14-43 



I\> Applications which rely on inspecting messages prior to issuing the 
WinPeekMsg function can either, use the WinSetHook function and 
detect the above situation in the invoked hook procedure by testing 
the MSGF _DDEPOSTMSG value of the msgf parameter, or not 
use this option, in order to avoid the deadlock situation. 

If this option is not set, then this function returns FALSE without 
retrying. 

Note: If the message posting fails for any other reason (for 
example, an invalid window handle is specified), this 
function returns FALSE even if this option has been 
selected. 

DDEPM_NOFREE This option prevents the WinDdePostMsg call from freeing the 
shared memory block passed in on the pData parameter. If this 
option is used, the caller is responsible for freeing the memory 
block at some subsequent time (for example, the same memory 
block could be used in multiple calls to WinDdePostMsg and then 
freed once at the end of those calls. 

If this option is not specified, the DOE structure will be freed. 

Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

14-44 PM Advanced Programming Guide 



WinDdeRespond 
This function is issued by a server application to indicate that it can support a dynamic data 
exchange conversation on a particular topic with a national language conversation context. 

Syntax 

#define INCL_WINDDE /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

MRESULT WinDdeRespond (HWND hwndClient, HWND hwndServer, 
PSZ pszAppName, PSZ pszTopicName, 
PCONVCONTEXT pContext) 

Parameters 
hwndClient (HWND) - input 

Client's window handle. 

hwndServer (HWND) - input 
Server's window handle. 

pszAppName (PSZ) - input 
Application name. 

pszTopicName (PSZ) - input 
Topic name. 

pContext (PCONVCONTEXT) - input 
Conversation context. 

Returns 
mresReply (MRESUL T) - returns 

Message return data. 

Chapter 14. Dynamic Data Exchange 14-45 



Related Window Messages 
This section covers the window messages that are related to dynamic data exchange. 

WM_DDE_ACK 
This message notifies an application of the receipt and processing of a 
WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE, WM_DDE_UNADVISE or 
WM_DDE_POKE message, and in some cases, of a WM_DDE_REQUEST message. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

pDdeStruct (PDDESTRUCT) 
ODE structure. 

This points to a dynamic data exchange structure. See "DDESTRUCT" on 
page 14-56. 

The acknowledging application modifies the fsStatus field to return information about 
the status of the message received: 

DDE_FACK 
DDE_FBUSY 
DDE_NOTPROCESSED 
o DE_FAPPSTATUS 

1 =request accepted, O=request not accepted 
1 =busy, O=not busy 
Reserved for application-specific return codes 
The message wa~ not understood and was ignored. 

An application is expected to set DDE_FBUSY if it is unable to respond to the 
request at the time it is received. The DDE_FBUSY flag is defined only when 
DDE_FACK is O. 

offszltemName identifies the item for which the acknowledgment is being sent. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

14-46 PM Advanced Programming Guide 



WM_DDE_ADVISE 
This message (posted by a client application) requests the receiving application to supply an 
update for a data item whenever it changes. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

pDdeStruct (PDDESTRUCT) 
DDE structure. 

This pOints to a dynamic data exchange structure. See "DDESTRUCT" on 
page 14-56. 

Flags in the fsStatus field are set as follows: 

DDE FNODATA 

If this bit is 1, the receiving (server) application is requested 
to send its WM_DDE_DATA messages with the 
acknowledgment-requested (DDE_FACKREQ) bit set. This 
offers a flow control technique, whereby the client 
application can avoid overload from incoming 
WM_DDE_DATA messages. 

If this bit is 1, the server is requested to send its 
WM_DDE_DATA messages with a zero length data portion. 
These messages are alarms that tell the client the source 
data has changed. Upon receiving one of these alarms, the 
client can choose to call for the latest version of the data 
by issuing a WM_DDE_REQUEST message, or the client 
can choose to ignore the alarm. This is typically used when 
there is a significant resource cost associated with actually 
rendering and/or assimilating the data. 

offszltemName identifies which data item is being requested. 

usFormat is the preferred type of data of the client. It must be a registered DDE 
data format number. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

Chapter 14. Dynamic Data Exchange 14-47 



WM DOE DATA - -
This message notifies a client application of the availability of data. It is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

pDdeStruct (PDDESTRUCT) 
DDE structure. 

This points to a dynamic data exchange structure. See "DDESTRUCT" on 
page 14-56. 

Flags in the fsStatus field are set as follows: 

DDE _FRESPONSE 

If this bit is 1, the receiving (client) application is expected 
to send a WM_DDE_ACK message after the memory 
object has been processed. If it is 0, the client application 
should not send a WM_DDE_ACK message. 

If this bit is 1, this data is offered in response to a 
WM_DDE_REQUEST message. If it is 0, this data is 
offered in response to a WM_DDE_ADVISE message. 

offszltemName identifies which data item is available. 

offabData is the data. The format of the data is a registered DDE data format, 
identified by the usFormat field. 

Returns 
ulReserved (ULONG) 

Reserved value, should be 0. 

14-48 PM Advanced Programming Guide 



WM_DDE_EXECUTE 
This message posts a string to a server application to be processed as a series of 
commands. The server application is expected to post a WM_DDE_ACK message in 
response. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the server. 

param2 

pDdeStruct (PDDESTRUCT) 
DDE structure. 

This points to a dynamic data exchange structure. See "DDESTRUCT' on 
page 14-56. 

offabData contains the commands to be executed. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

WM_DDE_INITIATE 
This message is sent by an application to one or more other applications, to request initiation 
of a conversation. 

This message is always sent. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

Chapter 14. Dynamic Data Exchange 14-49 



param2 

pData (PDDEINIT) 
Pointer to initiation data. 

This points to a DDEINIT structure. pszAppName is the name of the desired server 
application; if this is a zero-length string, any application can respond. pszTopic is 
the name of the desired topic; if this is a zero-length string, each responding 
application responds once for each topic that it can support. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

WM DOE INITIATEACK - -
This message is sent by a server application in response to a WM_DDEJNITIATE message, 
for each topic that the server application wishes to support. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

pData (PDDEINIT) 
Pointer to initiation data. 

This points to a DDEINIT structure. pszAppName is th<e name of the responding 
server application; it must not be a zero-length string. pszTopic is the name of the 
topic that the server is willing to support; it must not be a zero-length string. 

The DDEINIT structure must be in a shareable segment; it is the responsibility of 
the receiving window procedure to free this segment. 

Returns 
rc (BOOl) 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

14-50 PM Advanced Programming Guide 



WM DDE POKE - -
This message requests an application to accept an unsolicited data item. It is always 
posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

pDdeStruct (PDDESTRUCT) 
DOE structure. 

This points to a dynamic data exchange structure. See "DDESTRUCT" on 
page 14-56. 

offszltemName identifies the data item to the receiving application. 

offabOata is the data. The format of the data is a registered DOE data format, 
identified by the usFormat field. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

WM_DDE_REQUEST 
This message is posted from client to server, to request that the server provide a data item 
to the client. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the server. 

Chapter 14. Dynamic Data Exchange 14-51 



param2 

DdeStruct (PDDESTRUCT) 
DDE structure. 

This points to a dynamic data exchange structure. See "DDESTRUCT" on 
page 14-56. 

offszltemName identifies which data item is being requested. 

usFormat identifies in which registered DDE data format the data item is to be 
rendered. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

WM DOE TERMINATE - -
This message is posted by either application participating in a DDE conversation, to 
terminate that conversation. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of the sender. 

param2 

ulReserved (ULONG) 
Reserved value, should be O. 

Returns 
ulReserved (ULONG) 

Reserved value, should be O. 

14-52 PM Advanced Programming Guide 



WM_DDE_UNADVISE 
This message is posted by a client application to a server application to indicate that the 
specified item should no longer be updated. 

This message is always posted. 

Parameters 
param1 

hwnd (HWND) 
Window handle of a sender. 

param2 

DdeStruct (PDDESTRUCT) 
DDE structure. 

This points to a dynamic data exchange structure (see "DDESTRUCT" on 
page 14-56). offszltemName identifies which data update request is to be 
retracted. If this is a zero-length string, data update requests for all items are 
retracted. 

Returns 
ulReserved (ULONG) 

Reserved value,. should be O. 

Chapter 14. DynamiC Data Exchange 14-53 



Related Data Structures 
This section covers the data structures that are related to dynamic data exchange. 

CONVCONTEXT 
Dynamic-data-exchange conversation context structure. 

Syntax 

typeqef.' $tru~ti •• ·J.eON.VC;O~.r5)(T .•• i{'.··, 
9b9.N.~c~; .. ... .. ' 
qtONG:... ' fsCO;l'Itext; 
ULONG i1:iCdUrtld; ., 
ULONG usCodepage; 
ULONG uSLangl0; . 
ULONG .. ' ....... , usSublangllJ; 

} .. tONVCONTEXT; 

.tYPedef· C;ONVCONTE~r , •.. *PC()~~CONTEXT;.' 

Fields 
cb (ULONG) 

Length of structure. 

This must be set to the length of the CONVCONTEXT structure. 

fsContext (ULONG) 
Options. 

DDECTXT _ CASESENSITIVE All strings in this conversation are case sensitive. 

idCountry (ULONG) 
Country code. 

usCodepage (ULONG) 
Code-page identity. 

usLanglD (ULONG) 
Language. 

Zero is valid and means no language information. 

usSubLanglD (ULONG) 
Sub-language. 

Zero is valid and means no sub-language information. 

14-54 PM Advanced Programming Guide 



DDEINIT 
Dynamic-data-exchange initiation structure. 

Syntax 

typedefstruct _DDEINIT { 
ULONG cb; 
PSZ pszAppName; 
PSZ pszTopi c; 
lJLQNG offConvContext; 

}DDEINlT; 

typedefODEINIT*PDDEINIT; 

Fields 
cb (ULONG) 

Length of structure. 

This must be set to the length of the DDEINIT structure. 

pszAppName (PSZ) 
Application name. 

Pointer to name of the server application. 

Application names must not contain slashes or backslashes. These characters are 
reserved for future use in network implementations. 

pszTopic (PSZ) 
Topic. 

Pointer to name of the topic. 

offConvContext (ULONG) 
Conversation context. 

Offset to a CONVCONTEXT structure. 

Chapter 14. Dynamic Data Exchange 14-55 



DDESTRUCT 
Dynamic-data-exchange control structure. 

Syntax 

Fields 
cbData (ULONG) 

Length of the data. -

This is the length of data that occurs after the offabData parameter. If no data exists, 
this field should contain a zero (0). 

fsStatus (USHORT) 
Status of the data exchange. 

DDE_FACK 
ODE FBUSY 
DDE_FNODATA 
DDE_FACKREQ 
DOE FRESPONSE 
DDE_NOTPROCESSED 
DDE_FAPPSTATUS 

usFormat (USHORT) 
Data format. 

Positive acknowledgement 
Application is busy 
No data transfer for advise 
Acknowledgements are requested 
Response to WM_DDE_REQUEST 
DOE message not understood 
A 1-byte field of bits that are reserved for application-specific 
returns. 

One of the DOE data formats. 

DDEFMT TEXT Text format. 
Other DOE format registered with the atom manager, using the system 

atom table. The predefined DOE formats are guaranteed not to 
conflict with the values returned by the atom manager. 

14-56 PM Advanced Programming Guide 



offszltemName (USHORT) 
Offset to item name. 

This is the offset to the item name from the start of this structure. Item name is a null 
(OxOO) terminated string. If no item name exists, there must be a single null (OxOO) 
character in this position. (That is, Item Name is ALWAYS a null terminated string.) 

offabData (USHORT) 
Offset to beginning of data. 

This is the offset to the data, from the start of this structure. This field should be 
calculated regardless of the presence of data. If no data exists, cbData must be zero 
(0). 

For compatibility reasons, this data should not contain embedded pointers. Offsets 
should be used instead. 

Chapter 14. Dynamic Data Exchange 14-57 



Summary 
Following are tables that describe the OS/2 functions, window messages, and data structures 
used in dynamic data exchange: 

Table 14-4. DOE Functions 

Function Name Description 

WinDdelnitiate Issued by a client application to one or more other 
applications, to request initiation of a DDE conversation 
with a national language conversation context. 

WinDdePostMsg Issued by an application to post a message to another 
application with which it is carrying out a DDE 
conversation with a national language conversation. 

WinDdeRespond Issued by a server application to indicate that it can 
support a DDE conversation on a particular topic with a 
national language conversation context. 

Table 14-5. DOE Window Messages 

Message Name Description 

WM_DDE_ACK Notifies an application of the receipt and processing of a 
WM_DDE_EXECUTE, WM_DDE_DATA, 
WM _DDE_ UNADVISE, or WM_DDE_POKE message, 
and in some cases, a WM_DDE_REQUEST message. 

WM_DDE_ADVISE Requests the receiving application to supply an update for 
a data item whenever it changes. 

WM_DDE_DATA Notifies a client application of the availability of data. 

WM_DDE_EXECUTE Posts a string to a server application to be processed as 
a series of commands. 

WM_DDE_INITIATE Sent by an application to one or more other applications 
to request initiation of a conversation. 

WM_DDE_INITIATEACK Sent by a server application in response to a 
WM_DDE_INITIATE message, for each topic that the 
server application wishes to support. 

WM_DDE_POKE Requests an application to accept an unsolicited data 
item. 

WM_DDE_REQUEST Posted from client to server, to request that the server 
provide a data item to the client. 

WM_DDE_ TERMINATE Posted by either application participating in a DOE 
conversation to terminate that conversation. 

WM_DDE_UNADVISE Posted by a client application to a server application to 
indicate that the specified item should be updated no 
longer. 

14-58 PM Advanced Programming Guide 



Table 14-6. DOE Data Structures 

Data Structure Name Description 

CONVCONTEXT Dynamic data exchange conversation context data 
structure. 

DDEINIT Dynamic data exchange initiation data structure. 

DDESTRUCT Dynamic data exchange control data structure. 

Chapter 14. Dynamic Data Exchange 14-59 



14-60 PM Advanced Programming Guide 



Chapter 15. Atom Tables 

Atom tables enable applications to generate unique identifiers and manage strings. This 
chapter describes how to use atom tables in PM applications. 

About Atom Tables 
An atom table is an operating system mechanism that an application uses to obtain unique, 
system-wide identifiers to manage strings efficiently. An application places a string, called an 
atom name, into an atom table and receives a 32-bit integer value, called an atom, that the 
application can use to access that string. 

System Atom Table 
The system atom table is available to all applications. When an application places a string in 
the system atom table, any application that has the atom name can obtain the atom by 
querying the system atom table. 

An application that defines messages, clipboard-data formats, or dynamic data exchange 
(DOE) data formats that are intended for use among applications must place the names of 
the messages or formats in the system atom table. It avoids possible conflicts with 
messages or formats defined by the system or other applications, and makes the atoms for 
the messages or formats available to other applications. Applications should use names that 
are not likely to be used by other applications for other purposes. 

Some PM functions enable applications to use atoms in parameters that normally take 
pointers to strings. For example, WinRegisterClass takes a pointer to a string for its 
pszClassName parameter. WinRegisterClass places the class name string in the system 
atom table. Afterward, an application can query the system atom table to obtain the atom, 
then use the atom as the pszClientClass parameter of WinCreateStdWindow. This process 
can save space in the data segment of applications that create many windows of the same 
private class. 

Every atom table has a unique handle. An application must obtain the handle before 
performing any atom operations. To obtain the handle of the system atom table, an 
application uses WinQuerySystemAtomTable. The atom-table handle returned by this call is 
used for all other atom functions. 

Private Atom Tables 
An application can use a private atom table to efficiently manage a large number of strings 
that are used only within the application. The strings in a private atom table, and the 
resulting atoms, are available only to the application that created the table. 

An application that must use the same string in a number of data structures can save 
data-segment space by using a private atom table. Rather than copying the string into each 
data structure, the application can place the string in the atom table and use the resultant 

© Copyright IBM Corp. 1994 15-1 



atom in the data structures. In this way, a string that appears only once in the data segment 
still can be used many times in the application. 

Applications also can use private atom tables to save time when searching for a particular 
string. To perform a search, an application must place the search string in the atom tabl~ 
only once, then compare the resultant atom with the atoms in the relevant data structures. 
This usually is faster than doing string comparisons. 

Every atom table has a unique handle. An application must obtain the handle before 
performing any atom operations. To create a private atom table and obtain its handle, an 
application must use WinCreateAtomTable. The atom-table handle returned by this call must 
be used for all other atom functions. 

An application that no longer needs its private atom table should call WinDestroyAtomTable 
to destroy the table and free the memory that the system allocated for the table. 

Atom Types 
Applications can use two types of atoms: string and integer. 

String Atoms 
Applications pass null-terminated strings to atom tables and receive string atoms (32-bit 
integers) in return. String atoms have the following properties: 

• The maximum number of string atoms allowed is 16K. The values of string atoms are 
from OxCOOO through OxFFFF. 

• The maximum amount of data that an atom table can store is 60K. This includes the 
control data that the operating system uses to manage the atom table (32 bytes for the 
table plus 8 bytes for each string atom). 

• The maximum length of an atom name is 255 characters. A zero-length string is not a 
valid atom name. 

• Case is significant when searching for an atom name in an atom table, and the entire 
string must match. No substring matching is performed. 

• A usage count is associated with each atom name. The count is incremented each time 
the atom name is added to the table and decremented each time the atom name is 
deleted from the table. This allows different users of the same string atom to avoid 
destroying each other's atom names. When the usage count for an atom name equals 
zero, the system removes the atom and atom name from the table. 

Integer Atoms 
Integer atoms differ from string atoms as follows: 

• Integer atoms are values from Ox0001 through OxBFFF. The values of integer atoms 
and string atoms do not overlap, so the two types of atoms can be intermixed. 

• The string representation of an integer atom is ddddd, where ddddd are decimal digits. 
Leading zeros are ignored. 

• There is no usage count nor storage overhead associated with an integer atom. 

15-2 PM Advanced Programming Guide 



The operating system uses integer atoms to detect whether the same window class name is 
being defined more than once. The system defines the predefined window class names 
using integer atoms as constants. When an application registers a window class, the system 
enters the specified class name in the system atom table. The system then compares the 
resultant atom with the predefined window-class constants and with the atoms representing 
the application-defined class names registered earlier. To be able to do this comparison, the 
system must express the preregistered class names as atoms. By defining the class names 
as integer atoms, the system ensures that the atoms do not conflict with the string atoms it 
generates for application-defined class names. 

Atom Creation and Usage Count 
An application creates an atom by calling WinAddAtom, passing an atom-table handle and a 
pointer to a string. The system searches the specified atom table for the string. If the string 
already resides in the atom table, the system increments the usage count for the string and 
returns the corresponding atom to the application. Repeated calls to add the same atom 
string return the same atom. If the atom string does not exist in the table when WinAddAtom 
is called, the string is added to the table, its usage count is set to 1, and a new atom is 
returned. 

An application can retrieve the usage count associated with a given atom using 
WinQueryAtomUsage. By obtaining the usage count, an application can detect whether 
other applications, or other threads within the application, are using the same atom. 

Atom Deletion 
An application calls WinDeleteAtom when it no longer needs to use an atom. 
WinDeleteAtom reduces the usage count of the corresponding atom by 1. When the usage 
count reaches zero, the system deletes the atom name from the table. 

Atom Queries 
An application can find out if a particular string is already in an atom table by using 
WinFindAtom. WinFindAtom searches the atom table for the specified string and, if the 
string is there, returns the corresponding atom. 

There are two functions that an application can use to retrieve a string from an atom table, 
provided that the application has the atom corresponding to the desired string. The first, 
WinQueryAtomLength, returns the length of the string corresponding to the atom. This 
allows the application to create a buffer of the appropriate size for the string. The second, 
WinQueryAtomName, retrieves the string and copies it to the buffer. 

Chapter 15. Atom Tables 15-3 



Atom String Formats 
The second parameter to WinAddAtom and WinFindAtom, pszAtomName, is a pointer to 
zero-terminated string. An application can specify this pOinter in four ways, as shown in 
Table 15-1. 

Table 15-1. Atom Table String Formats 

Format Name Description 

"!",atom Points to a string in which the atom is passed indirectly, as a value. 

#ddddd Points to an integer atom specified as a decimal string. 

ulong: FFFF(low Passes an atom directly. The atom is in the low word of the 
word) pszAtomName parameter. The operating system uses this format to add 

predefined window classes to the system atom table. 

string atom name The pointer is to a string atom name. Applications typically use this 
format to add an atom string to an atom table and receive an atom in 
return. 

The "r,atom and ulong: FFFF(low word) formats are useful when incrementing the usage 
count of an existing atom for which the original atom string is not known. For example, the 
system clipboard manager uses the ulong: FFFF(low word) format to increment the usage 
count of each clipboard-format atom when that format is placed on the clipboard. By using 
this format, the atom is not destroyed even if the original user of the atom deletes it, because 
the usage count still shows that the clipboard is using the atom. 

Using Atom Tables 
This section explains how to create unique window-message atoms, dynamic data exchange 
(DOE) formats and a clipboard format. 

Creating Unique Window-Message Atoms 
You must create atoms for your application-defined window messages if other applications 
are likely to recognize those messages. For example, your application might communicate 
with another application by using an agreed-upon message that is not defined by the system. 
Both applications must use the same string identifier for the shared message type-for 
example, OUR_LlNK_MESSAGE. Each time the applications run, they add this string to the 
system atom table and receive an atom in return. Both applications register the same string 
in the system atom table, so they both receive the same atom. Then, this atom can be used 
to identify the message without conflicting with other system-wide message identifiers. A 
consequence of using atoms to identify a window message is that the message cannot be 
decoded as a C-Ianguage case statement, as usually done, because the value of the atom 
cannot be known until run time. Instead, you must add a default case that checks the value 
of the message against the value of the atoms you have registered. The sample code 
fragment in Figure 15-1 on page 15-5 shows how to add an application-defined message 
string to the system atom table, then use the resultant atom to broadcast and receive the 
message. 

15-4 PM Advanced Programming Guide 



#define IDM ... BROAoCAST 25 

HATOMTBLhatomtblSYstem; 
ATOMatomLi nkMessage; 

/* Systematomtable:h~ndl e 
1* Atom message 

/* Message text */ 
UCHAR szLinkMessage[] :;:uOUR_llNK_MESSAGP; 

MRESULT EXPENTRY ClientWndProc(HWNo hwnd,ULONGmsg, 
MPARAM mpl,MPARAM mp2) 

1* At<create time obtain atom for text message */ 
switch (msg) 
{ 

case WM CREATE: 
hatomthlSystem = WinQuerySystemAtomTable(); 
atomLinkMessaQe = WinAddAtom(hatomtblSystelTl~ szLinkMessage); 
return FALSE; , 

!*B~()~dc(lSf ,. ~ext ·m~ssage '*/ 
case, WM COMMAND: ,. 

if (SHORTIFROMMP{mpl) ;0= 10M ... BROADCAST) 
{ 

WinBroadcas tMsg (HWND;..oESKTOP, ,atoml in kMes sage, 
(MPARAM) NULL. (MPARAM) NULL, 
BMSG.PESCENDANTS1SMSG .. 'pQ.STQUEUn;" '< 

Figure 15-1. Sample Code for Adding a Message String into the System Atom Table 

Creating DOE Formats and a Unique Clipboard Format 
Applications that define their own clipboard or DDE formats must register those formats in 
the system atom table to avoid conflicting with the predefined formats and any formats used 
by other applications. The sample code fragment in Figure 15-2 on page 15 .. 6 shows how 
to register a custom format. 

Chapter 15. Atom Tables 15-5 



HAB hab; 
HATOMTBl hatomtblSystem; 
ATOM atomFormatID; 
PSZ pszSrc, pszOest; 
BOOl fSuccess; 
CHAR szClipString[MAX_BUF_SIZE]; 
APIRET rc; 

/* Anchor block handle 
/* System atom tabl~ handle 
/* Atom message 
/* String pOinters 

/**********************************************************************/ 
/* Get the handle of the system atom table, */ 
/* then add the format name to the table. */ 
/**********************************************************************/ 

/* System atom table handle */ 
hatomtblSystem = WinQuerySystemAtomTable(); 
/* Register format string */ 
atomFormatID = Wi nAddAtom(hatomtbl System, IISuperCAD_FORMAP) 

/**********************************************************************/ 
/* Obtain data and write data to buffer -(szClipString). */ 
/**********************************************************************/ 

/* Open the clipboard */ 
if (WinOpenClipbrd(hab» 
{ 

/* Allocate a shared memory object for the text data */ 
if (! (rc = DosA 11 ocSha redMem ( 

(PVOIO)&pszDest, /* Pointer to shared memory */ 
/* object */ 

(PSZ) NUll, /* Use unnamed shared memory */ 
(UlONG) strl en ( 

szClipString) + 1, /* Amount of memory */ 
PAG_WRITE I /* Allow write access */ 
PAG_COMMIT I /*Commit the shared memory */ 
OBJ_GIVEABlE») 1* Make pointer giveable */ 

/* Setup the source pointer to point to text */ 
pszSrc = 5zClipString; 

Figure 15-2 (Part 1 of 2). Sample Code for Registering a Custom Format 

15-6 PM Advanced Programming Guide 



/* Copy the string to the allocated memory */ 
while (*pszDest++ = *pszSrc++); 

/* Clear old data from the clipboard */ 
WinEmptyClipbrd(hab); 

/* Pass the pointer to the clipboard in custom format. */ 
/* Notice that the pointer must be a ULONG value. */ 
fSuccess = WinSetClipbrdData(hab, /* Anchor block handle */ 

(ULONG) pszDest, /~ Pointer to text data */ 
atomFormatID, /* Custom format 1D (atom) */ 
CFI_POINTER); /* Passing a pointer */ 

/* Close the clipboard */ 
WinCloseClipbrd(hab); 

Figure 15-2 (Part 2 of 2). Sample Code for Registering a Custom Format 

Chapter 15. Atom Tables 15-7 



Related Functions 
This section covers the functions that are related to atom tables. 

WinAddAtom 
This function adds an atom to an atom table. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

ATOM WinAddAtom (HATOMTBL hatomtblAtomTbl, PSZ AtomName) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

AtomName (PSZ) - input 
Atom name. 

Returns 
atom (ATOM) - returns 

Atom value. 

Atom The atom associated with the passed string 
o Invalid atom-table handle or invalid atom name specified. 

WinCreateAtomTable 
This function creates a private empty atom table. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

HATOMTBL WinCreateAtomTable (ULONG ullnitial, ULONG ulBuckets) 

15-8 PM Advanced Programming Guide 



Parameters 
ullnitial (ULONG) - input 

Initial bytes. 

ulBuckets (ULONG) - input 
Size of the hash table. 

Returns 
hatomtblAtomTbl (HATOMTBL) - returns 

Atom-table handle. 

NULLHANDLE Call failed. 
Other Atom-table handle. This must be passed as a parameter in 

subsequent atom manager calls. 

WinDeleteAtom 
This function deletes an atom from an atom table. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

ATOM WinDeleteAtom (HATOMTBL hatomtblAtomTbl, ATOM atom) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

atom (ATOM) - input 
Atom identifying the atom to be deleted. 

Returns 
rc (ATOM) - returns 

Return code. 

o Call successful 
Other The call fails and the atom has not been deleted, in which case this is equal to 

the atom parameter. 

Chapter 15. Atom Tables 15-9 



WinDestroyAtomTable 
This function destroys a private atom table, which is created by WinCreateAtomTable. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

HATOMTBL WinDestroyAtomTable (HATOMTBL hatomtblAtomTbl) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

Returns 
rc (HATOMTBL) - returns 

Return code. 

o Function successful. 
Other The call fails and the atom table has not been destroyed, in which case this is 

equal to the hatomtblAtomTbl parameter. 

WinFindAtom 
This function finds an atom in the atom table. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

ATOM WinFindAtom (HATOMTBL hatomtblAtomTbl, PSZ pszAtomName) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

pszAtomName (PSZ) - input 
Atom name. 

15-1 0 PM Advanced Programming Guide 



Returns 
atom (ATOM) - returns 

Atom value. 

Atom The atom associated with the passed string 
o Invalid atom table handle or invalid atom name specified. 

WinQueryAtomLength 
This function queries the length of an atom represented by the specified atom. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN. INCL_PM. */ 

#include <os2.h> 

ULONG WinQueryAtomLength (HATOMTBL hatomtblAtomTbl, ATOM atom) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

atom (ATOM) - input 
Atom whose associated character-string length is to be returned. 

Returns 
ulretlen (ULONG) - returns 

String length. 

o The specified atom or the atom table is invalid. 
Other The length of the character string associated with the atom excluding the null 

terminating byte. Integer atoms always return a length of six. 

WinQueryAtomName 
This function returns an atom name associated with an atom. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN. INCL_PM, */ 

#include <os2.h> 

ULONG WinQueryAtomName (HATOMTBL hatomtblAtomTbl, ATOM atom, 
PSZ pszBuffer, ULONG ulBufferMax) 

Chapter 15. Atom Tables 15-11 



Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

atom (ATOM) - input 
Identifies the character string to be retrieved. 

pszBuffer (PSZ) - output 
Buffer to receive the character string. 

ulBufferMax (ULONG) - input 
Buffer size in bytes. 

Returns 
ulretlen (ULONG) - returns 

Length of retrieved character string. 

o The specified atom or the atom table is invalid. 
Other The number of bytes copied to the buffer excluding the terminating zero. 

WinQueryAtomUsage 
This function returns the number of times an atom has been used. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

ULONG WinQueryAtomUsage (HATOMTBL hatomtblAtomTbl, ATOM atom) 

Parameters 
hatomtblAtomTbl (HATOMTBL) - input 

Atom-table handle. 

atom (ATOM) - input 
Atom whose use count is to be returned. 

Returns 
ulcount (ULONG) - returns 

Use count of the atom. 

65535 Integer atom 
o The specified atom or the atom table is invalid 
Other Use count. 

15-12 PM Advanced Programming Guide 



WinQuerySystemAtomTable 
This function returns the handle of the system atom table. 

Syntax 

#define INCL_WINATOM /* Or use INCL_WIN, INCL_PM, */ 

#include <os2.h> 

HATOMTBl WinQuerySystemAtomTable 0 

Parameters 
None. 

Returns 
hatomtblAtomTbl (HATOMTSL) - returns 

System atom-table handle. 

WinRegisterUserDatatype 
This function registers a data type and defines its structure. 

Syntax 

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMaN section */ 

#include <os2.h> 

BOOl WinRegisterUserDatatype (HAB hab, lONG datatype, lONG count, 
PlONG types) 

Parameters 
hab (HAS) - input 

Anchor-block handle. 

datatype (LONG) - input 
Data type code to be defined. 

count (LONG) - input 
Number of elements. 

types (PLONG) - input 
Data type codes of structure components. 

Chapter 15. Atom Tables 15-13 



Returns 
rc (BOOl) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

WinRegisterUserMsg 
This function registers a user message and defines its parameters. 

Syntax 

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */ 

#include <os2.h> 

BOOl WinRegisterUserMsg (HAB hab, UlONG msgid, lONG datatype1, 
lONG dir1, lONG datatype2, lONG dir2, 
lONG datatyper) 

Parameters 
hab (HAS) - input 

Anchor-block handle. 

msgid (ULONG) - input 
Message identifier. 

datatype1 (lONG) - input 
Data type of message parameter 1. 

DTYP_BIT16 

DTYP_BIT32 

DTYP_BIT8 

DTYP_BOOl 

DTYP_lONG 

DTYP_SHORT 

DTYP UCHAR 

DTYP_UlONG 

See BIT16 data type. 

See BIT32 data type. 

See BIT8 data type. 

See BOOl data type. 

See lONG data type. 

See SHORT data type. 

See UCHAR data type. 

See UlONG data type. 

DTYP _ USHORT See USHORT data type. 

DTYP P* A pointer to a system data type. Note that not all of the system data 
types that exist in the CPI are valid. 

< -DTYP _USER A pointer to a user data type. The user data type must have already 
been defined via WinRegisterUserDatatype. 

15-14 PM Advanced Programming Guide 



dir1 (lONG) - input 
Direction of message parameter 1. 

RUM IN Input parameter (inspected by the recipient oUhe message, but not 
altered) 

RUM_OUT Output parameter (altered by the recipient of the message, without 
inspecting its value first) 

RUMJNOUT Input/output parameter (inspected by the recipient of the message, and 
then altered). 

datatype2 (lONG) - input 
Data type of message parameter 2. 

dir2 (lONG) - input 
Direction of message parameter 2. 

datatyper (lONG) - input 
Data type of message reply. 

Returns 
rc (Baal) - returns 

Success indicator. 

TRUE 
FALSE 

Successful completion 
Error occurred. 

Chapter 15. Atom Tables 15-15 



Summary 
Following is a table that describes the OS/2 functions used with atom table: 

Table 15-2. Atom Table Functions 

Function Name Description 

WinAddAtom Adds an atom to an atom table. 

WinCreateAtomTable Creates an empty private atom table. 

WinDeleteAtom Deletes an atom from an atom table. 

WinDestroyAtomTable Destroys a private atom table. 

WinFindAtom Find an atom in the atom table. 

WinQueryAtomLength Queries the length of an atom represented by the 
specified atom. 

WinQueryAtomUsage Returns the number of times an atom has been used. 

WinQuerySystemAtomTable Returns the handle of the system atom table. 

WinRegisterUserDatatype Registers a data type and defines its structure. 

WinRegisterUserMsg Registers a user message and defines its parameters. 

15-16 PM Advanced Programming Guide 



Appendix. Notices 

References in this publication to IBM products, programs, or services do not imply that IBM 
intends to make these available in all countries in which IBM operates. Any reference to an 
IBM product, program or service is not intended to state or imply that only IBM's product, 
program, or service may be used. Any functionally equivalent product, program, or service 
that does not infringe any of IBM's intellectual property rights or other legally protectable 
rights may be used instead of the IBM product, program, or service. Evaluation and 
verification of operation in conjunction with other products, programs, or services, except 
those expressly designated by IBM, are the user's responsibility. 

IBM may have patents or pending patent applications covering subject matter in this 
document. The furnishing of this document does not give you any license to these patents. 
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 
500 Columbus Avenue, Thornwood NY 10594, U.S.A. 

Trademarks 
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM 
Corporation in the United States or other countries: 

Common User Access 
Operating System/2 
PM 
SAA 

CUA 
OS/2 
Presentation Manager 
Systems Application Architecture 

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of 
other companies as follows. Other trademarks are trademarks of their respective companies. 

Helvetica Linotype Company 
Times New Roman Monotype Corporation, Limited 

Double-Byte Character Set (DBCS) 
Throughout this publication, you will see reference to specific values for character strings. 
The values are for single-byte character set (SBCS). If you use the double-byte character 
set (DBCS), note that one DBCS character equals two SBCS characters. 

© Copyright IBM Corp. 1994 A-1 



A-2 PM Advanced Programming Guide 



Glossary 

This glossary defines many of the terms used in this 
book. It includes terms and definitions from the IBM 
Dictionary of Computing, as well as terms specific to 
the OS/2 operating system and the Presentation 
Manager. It is not a complete glossary for the entire 
OS/2 operating system; nor is it a complete 
dictionary of computer terms. 

Other primary sources for these definitions are: 

• The American National Standard Dictionary for 
Information Systems, ANSI X3.172-1990, 
copyrighted 1990 by the American National 
Standards Institute, 11 West 42nd Street, New 
York, New York 10036. These definitions are 
identified by the symbol (A) after the definition. 

• The Information Technology Vocabulary, 
developed by Subcommittee 1, Joint Technical 
Committee 1, of the International Organization 
for Standardization and the International 
Electrotechnical Commission (ISO/IEC 
JTC1/SC1). Definitions of published parts of this 
vocabulary are identified by the symbol (I) after 
the definition; definitions taken from draft 
international standards, committee drafts, and 
working papers being developed by ISO/IEC 
JTC1/SC1 are identified by the symbol (T) after 
the definition, indicating that final agreement has 
not yet been reached among the participating 
National Bodies of SC1. 

© Copyright IBM Corp. 1994 

Glossary Listing 

A 
accelerator. In SAA Common User Access 
architecture, a key or combination of keys that 
invokes an application-defined function. 

accelerator table. A table used to define which key 
strokes are treated as accelerators and the 
commands they are translated into. 

access mode. The manner in which an application 
gains access to a file it has opened. Examples of 
access modes are read-only, write-only, and 
read/write. 

access permission. All access rights that a user 
has regarding an object. (I) 

action. One of a set of defined tasks that a 
computer performs. Users request the application to 
perform an action in several ways, such as typing a 
command, pressing a function key, or selecting the 
action name from an action bar or menu. 

action bar. In SAA Common User Access 
architecture, the area at the top of a window that 
contains choices that give a user access to actions 
available in that window. 

action point. The current position on the screen at 
which the pointer is pointing. Contrast with hot spot 
and input focus. 

active program. A program currently running on 
the computer. An active program can be interactive 
(running and receiving input from-the user) or 
noninteractive (running but not receiving input from 
the user). See also interactive program and 
noninteractive program. 

active window. The window with which the user is 
currently interacting. 

address space. (1) The range of addresses 
available to a program. (A) (2) The area of virtual 
storage available for a particular job. 

X-1 



alphanumeric video output. Output to the logical 
video buffer when the video adapter is in text mode 
and the logical video buffer is addressed by an 
application as a rectangular array of character cells. 

American National Standard Code for Information 
Interchange. The standard code, using a coded 
character set consisting of 7-bit coded characters (8 
bits including parity check), that is used for 
information interchange among data processing 
systems, data communication systems, and 
associated equipment. The ASCII set consists of 
control characters and graphic characters. (A) 

Note: IBM has defined an extension to ASCII code 
(characters 128-255). 

anchor. A window procedure that handles 
Presentation Manager* message conversions 
between an icon procedure and an application. 

anchor block. An area of 
Presentation-Manager-internal resources to allocated 
process or thread that calls Winlnitialize. 

anchor pOint. A point in a window used by a 
program designer or by a window manager to 
position a subsequently appearing window. 

ANSI. American National Standards Institute. 

APA. All points addressable. 

API. Application programming interface. 

application. A collection of software components 
used to perform specific types of work on a 
computer; for example, a payroll application, an 
airline reservation application, a network application. 

application object. In SAA Advanced Common 
User Access architecture, a form that an application 
provides for a user; for example, a spreadsheet form. 
Contrast with user object. 

application programming interface (API). A 
functional interface supplied by the operating system 
or by a separately orderable licensed program that 
allows an application program written in a high-level 
language to use specific data or functions of the 
operating system or the licensed program. 

X;.2 PM Advanced Programming Guide 

application-modal. Pertaining to a message box or 
dialog box for which processing must be completed 
before further interaction with any other window 
owned by the same application may take place. 

area. In computer graphics, a filled shape such as a 
solid rectangle. 

ASCII. American National Standard Code for 
Information Interchange. 

ASCIIZ. A string of ASCII characters that is 
terminated with a byte containing the value O. 

aspect ratio. In computer graphics, the 
width-to-height ratio of an area, symbol, or shape. 

asynchronous (ASYNC). (1) Pertaining to two or 
more processes that do not depend upon the 
occurrence of specific events such as common 
timing Signals. (T) (2) Without regular time 
relationship; unexpected or unpredictable with 
respect to the execution of program instructions. 
See also synchronous. 

atom. A constant that represents a string. As soon 
as a string has been defined as an atom, the atom 
can be used in place of the string to save space. 
Strings are associated with their respective atoms in 
an atom table. See also integer atom. 

atom table. A table used to relate atoms with the 
strings that they represent. Also in the table is the 
mechanism by which the presence of a string can be 
checked. 

atomic operation. An operation that completes its 
work on an object before another operation can be 
performed on the same object. 

attribute. A characteristic or property that can be 
controlled, usually to obtain a required appearance; 
for example, the color of a line. See also graphics 
attributes and segment attributes. 

automatic link. In Information Presentation Facility 
(IPF), a link that begins a chain reaction at the 
primary window. When the user selects the primary 
window, an automatic link is activated to display 
secondary windows. 

AVIO. Advanced Video Input/Output. 



B 
Bezier curve. (1) A mathematical technique of 
specifying smooth continous lines and surfaces, 
which require a starting point and a finishing point 
with several intermediate points that influence or 
control the path of the linking curve. Named after 
Dr. P. Bezier. (2) (D of C) In the AIX Graphics 
Library, a cubic spline approximation to a set of four 
control points that passes through the first and fourth 
control points and that has a continuous slope where 
two spline segments meet. Named after Dr. P. 
Bezier. 

background. (1) In multiprogramming, the 
conditions under which low-priority programs are 
executed. Contrast with foreground. (2) An active 
session that is not currently displayed on the screen. 

background color. The color in which the 
background of a graphic primitive is drawn. 

background mix. An attribute that determines how 
the background of a graphic primitive is combined 
with the existing color of the graphics presentation 
space. Contrast with mix. 

background program. In multiprogramming, a 
program that executes with a low priority. Contrast 
with foreground program. 

bit map. A representation in memory of the data 
displayed on an APA device, usually the screen. 

block. (1) A string of data elements recorded or 
transmitted as a unit. The elements may be 
characters, words, or logical records. (T) (2) To 
record data in a block. (3) A collection of contiguous 
records recorded as a unit. Blocks are separated by 
interblock gaps and each block may contain one or 
more records. (A) 

block device. A storage device that performs I/O 
operations on blocks of data called sectors. Data on 
block devices can be randomly accessed. Block 
devices are designated by a drive letter (for example, 
C:); 

blocking mode. A condition set by an application 
that determines when its threads might block. For 
example, an application might set the Pipemode 
parameter for the DosCreateNPipe function so that 

its threads perform I/O operations to the named pipe 
block when no data is available. 

border. A visual indication (for example, a 
separator line or a background color) of the 
boundaries of a window. 

boundary determination. An operation used to 
compute the size of the smallest rectangle that 
encloses a graphics object on the screen. 

breakpoint. (1) A point in a computer program 
where execution may be halted. A breakpoint is 
usually at the beginning of an instruction where halts, 
caused by external intervention, are convenient for 
resuming execution. (T) (2) A place in a program, 
specified by a command or a condition, where the 
system halts execution and gives control to the 
workstation user or to a specified program. 

broken pipe. When all of the handles that access 
one end of a pipe have been closed. 

bucket. One or more fields in which the result of an 
operation is kept. 

buffer. (1) A portion of storage used to hold input 
or output data temporarily. (2) To allocate and 
schedule the use of buffers. (A) 

button. A mechanism used to request or initiate an 
action. See also barrel buttons, bezel buttons, 
mouse button, push button, and radio button. 

byte pipe. Pipes that handle data as byte streams. 
All unnamed pipes are byte pipes. Named pipes can 
be byte pipes or message pipes. See byte stream. 

byte stream. Data that consists of an unbroken 
stream of bytes. 

c 
cache. A high-speed buffer storage that contains 
frequently accessed instructions and data; it is used 
to reduce access time. 

cached micro presentation space. A presentation 
space from a Presentation-Manager-owned store of 
micro presentation spaces. It can be used for 
drawing to a window only, and must be returned to 
the store when the task is complete. 

CAD. Computer-Aided Design. 

Glossary X-3 



call. (1) The action of bringing a computer program, 
a routine, or a subroutine into effect, usually by 
specifying the entry conditions and jumping to an 
entry point. (I) (A) (2) To transfer control to a 
procedure, program, routine, or subroutine. 

calling sequence. A sequence of instructions 
together with any associated data necessary to 
execute a call. (T) 

Cancel. An action that removes the current window 
or menu without processing it, and returns the 
previous window. 

cascaded menu. In the OS/2 operating system, a 
menu that appears when the arrow to the right of a 
cascading choice is selected. It contains a set of 
choices that are related to the cascading choice. 
Cascaded menus are used to reduce the length of a 
menu. See also cascading choice. 

cascading choice. In SM Common User Access 
architecture, a choice in a menu that, when selected, 
produces a cascaded menu containing other choices. 
An arrow (~) appears to the right of the cascading 
choice. 

CASE statement. In PM programming, provides the 
body of a window procedure. There is usually one 
CASE statement for each message type supported 
by an application. 

CGA. Color graphics adapter. 

chained list. A list in which the data elements may 
be dispersed but in which each data element 
contains information for locating the 
next. (T) Synonymous with linked list. 

character. A letter, digit, or other symbol. 

character box. In computer graphics, the boundary 
that defines, in world coordinates, the horizontal and 
vertical space occupied by a single character from a 
character set. See also character mode. Contrast 
with character cell. 

character cell. The physical, rectangular space in 
which any single character is displayed on a screen 
or printer device. Position is addressed by row and 
column coordinates. Contrast with character box. 

character code. The means of addressing a 
character in a character set, sometimes called code 
point. 

X-4 PM Advanced Programming Guide 

character device. A device that performs I/O 
operations on one character at a time. Because 
character devices view data as a stream of bytes, 
character-device data cannot be randomly accessed. 
Character devices include the keyboard, mouse, and 
printer, and are referred to by name. 

character mode. A mode that, in conjunction with 
the font type, determines the extent to which 
graphics characters are affected by the character 
box, shear, and angle attributes. 

character set. (1) An ordered set of unique 
representations called characters; for example, the 
26 letters of English alphabet, Boolean 0 and 1, the 
set of symbols in the Morse code, and the 128 ASCII 
characters. (A) (2) All the valid characters for a 
programming language or for a computer system. 
(3) A group of characters used for a specific reason; 
for example, the set of characters a printer can print. 

check box. In SM Advanced Common User 
Access architecture, a square box with associated 
text that represents a choice. When a user selects a 
choice, an X appears in the check box to indicate 
that the choice is in effect. The user can clear the 
check box by selecting the choice again. Contrast 
with radio button. 

check mark. (1) (0 of C) In SM Advanced 
Common User Access architecture, a (v) symbol that 
shows that a choice is currently in effect. (2) The 
symbol that is used to indicate a selected item on a 
pull-down menu. 

child process. In the OS/2 operating system, a 
process started by another process, which is called 
the parent process. Contrast with parent process. 

child window. A window that appears within the 
border of its parent window (either a primary window 
or another child window). When the parent window 
is resized, moved, or destroyed, the child window 
also is resized, moved, or destroyed; however, the 
child window can be moved or resized independently 
from the parent window, within the boundaries of the 
parent window. Contrast with parent window. 

choice. (1) An option that can be selected. The 
choice can be presented as text, as a symbol 
(number or letter), or as an icon (a pictorial symbol). 
(2) (0 of C) In SM Common User Access 
architecture, an item that a user can select. 



chord. (1) To press more than one button on a 
pointing device while the pointer is within the limits 
that the user has specified for the operating 
environment. (2) (D of C) In graphics, a short line 
segment whose end points lie on a circle. Chords 
are a means for producing a circular image from 
straight lines. The higher the number of chords per 
circle, the smoother the circular image. 

class. In object-oriented design or programming, a 
group of objects that share a common definition and 
that therefore share common properties, operations, 
and behavior. Members of the group are called 
instances of the class. 

class method. In System Object Model, an action 
that can be performed on a class object. 
Synonymous with factory method. 

class object. In System Object Model, the run-time 
implementation of a class. 

class style. The set of properties that apply to 
every window in a window class. 

client. (1) A functional unit that receives shared 
services from a server. (T) (2) A user, as in a 
client process that uses a named pipe or queue that 
is created and owned by a server process. 

client area. The part of the window, inside the 
border, that is below the menu bar. It is the user's 
work space, where a user types information and 
selects choices from selection fields. In primary 
windows, it is where an application programmer 
presents the objects that a user works on. 

client program. An application that creates and 
manipulates instances of classes. 

client window. The window in which the application 
displays output and receives input. This window is 
located inside the frame window, under the window 
title bar and any menu bar, and within any scroll 
bars. 

clip limits. The area of the paper that can be 
reached by a printer or plotter. 

Clipboard. In SM Common User Access 
architecture, an area of computer memory, or 
storage, that temporarily holds data. Data in the 
clipboard is available to other applications. 

clipping. In computer graphics, removing those 
parts of a display image that lie outside a given 
boundary. (I) (A) 

clipping area. The area in which the window can 
paint. 

clipping path. A clipping boundary in 
world-coordinate space. 

clock tick. The minimum unit of time that the 
system tracks. If the system timer currently counts 
at a rate of X Hz, the system tracks the time every 
1 IX of a second. Also known as time tick. 

CLOCK$. Character-device name reserved for the 
system clock. 

code page. An assignment of graphic characters 
and control-function meanings to all code points. 

code pOint. (1) Synonym for character code. (2) 
(D of C) A 1-byte code representing one of 256 
potential characters. 

code segment. An executable section of 
programming code within a load module. 

color dithering. See dithering. 

color graphics adapter (CGA). An adapter that 
simultaneously provides four colors and is supported 
by all IBM Personal Computer and Personal 
System/2 models. 

command. The name and parameters associated 
with an action that a program can perform. 

command area. An area composed of a command 
field prompt and a command entry field. 

command entry field. An entry field in which users 
type commands. 

command line. On a display screen, a display line, 
sometimes at the bottom of the screen, in which only 
commands can be entered. 

command mode. A state of a system or device in 
which the user can enter commands. 

command prompt. A field prompt showing the 
location of the command entry field in a panel. 

Common Programming Interface (CPI). 
Definitions of those application development 

Glossary X-5 



languages and services that have, or are intended to 
have,-implementations on and a high degree of 
commonality across the SAA environments. One of 
the three SAA architectural areas. See also 
Common User Access architecture. 

Common User Access (CUA) architecture. 
Guidelines for the dialog between a human and a 
workstation or terminal. One of the three SAA 
architectural areas. See also Common Programming 
Interface. 

compile. To translate a program written in a 
higher-level programming language into a machine 
language program. 

composite window. A window composed of other 
windows (such as a frame window, frame-control 
windows, and a client window) that are kept together 
as a unit and that interact with each other. 

computer-aided design (CAD). The use of a 
computer to design or change a product, tool, or 
machine, such as using a computer for drafting or 
illustrating. 

COM1, COM2, COM3. Character-device names 
reserved for serial ports 1 through 3. 

CON. Character-device name reserved for the 
console keyboard and screen. 

container. In SAA Common User Access 
architecture, an object that holds other objects. A 
folder is an example of a container object. See also 
folder and object. 

contextual help. In SAA Common User Access 
Architecture, help that gives specific information 
about the item the cursor is on. The help is 
contextual because it provides information about a 
specific item as it is currently being used. Contrast 
with extended help. 

contiguous. Touching or joining at a common edge 
or boundary, for example, an unbroken consecutive 
series of storage locations. 

control. In SAA Advanced Common User Access 
architecture, a component of the user interface that 
allows a user to select choices or type information; 
for example, a check box, an entry field, a radio 
button. 

X-6 PM Advanced Programming Guide 

control area. A storage area used by a computer 
program to hold control information. (I) (A) 

Control Panel. In the Presentation Manager, a 
program used to set up user preferences that act 
globally across the system. 

Control Program. (1) The basic functions of the 
operating system, including DOS emulation and the 
support for keyboard, mouse, and video input/output. 
(2) A computer program designed to schedule and to 
supervise the execution of programs of a computer 
system. (I) (A) 

control window. A window that is used as part of a 
composite window to perform simple input and 
output tasks. Radio buttons and check boxes are 
examples. 

control word. An instruction within a document that 
identifies its parts or indicates how to format the 
document. 

coordinate space. A two-dimensional set of pOints 
used to generate output on a video display of printer. 

Copy. A choice that places onto the clipboard, a 
copy of what the user has selected. See also Cut 
and Paste. 

correlation. The action of determining which 
element or object within a picture is at a given 
position on the display. This follows a pick 
operation. 

coverpage window. A window in which the 
application's help information is displayed. 

CPl. Common Programming Interface. 

critical extended attribute. An extended attribute 
that is necessary for the correct operation of the 
system or a particular application. 

critical section. (1) In programming languages, a 
part of an asynchronous procedure that cannot be 
executed simultaneously with a certain part of 
another asynchronous procedure. (I) 

Note: Part of the other asynchronous procedure 
also is a critical section. (2) A section of code that is 
not reentrant; that is, code that can be executed by 
only one thread at a time. 

CUA architecture. Common User Access 
architecture. 



current position. In computer graphics, the 
position, in user coordinates, that becomes the 
starting point for the next graphics routine, if that 
routine does not explicitly specify a starting point. 

cursor. A symbol displayed on the screen and 
associated with an input device. The cursor 
indicates where input from the device will be placed. 
Types of cursors include text cursors, graphics 
cursors, and selection cursors. Contrast with pointer 
and input focus. 

Cut. In SM Common User Access architecture, a 
choice that removes a selected object, or a part of 
an object, to the clipboard, usually compressing the 
space it occupied in a window. See also Copy and 
Paste. 

D 
daisy chain. A method of device interconnection for 
determining interrupt priority by connecting the 
interrupt sources serially. 

data segment. A nonexecutable section of a 
program module; that is, a section of a program that 
contains data definitions. 

data structure. The syntactic structure of symbolic 
expressions and their storage-allocation 
characteristics. (T) 

data transfer. The movement of data from one 
object to another by way of the clipboard or by direct 
manipulation. 

DBCS. Double-byte character set. 

DOE. Dynamic data exchange. 

deadlock. (1) Unresolved contention for the use of 
a resource. (2) An error condition in which 
processing cannot continue because each of two 
elements of the process is waiting for an action by, 
or a response from, the other. (3) An impasse that 
occurs when multiple processes are waiting for the 
availability of a resource that will not become 
available because it is being held by another process 
that is in a similar wait state. 

debug. To detect, diagnose, and eliminate errors in 
programs. (T) 

decipoint. In printing, one tenth of a point. There 
are 72 points in an inch. 

default procedure. A function provided by the 
Presentation Manager Interface that may be used to 
process standard messages from dialogs or 
windows. 

default value. A value assumed when no value has 
been specified. Synonymous with assumed value. 
For example, in the graphics programming interface, 
the default line-type is 'solid'. 

definition list. A type of list that pairs a term and 
its description. 

delta. An application-defined threshold, or number 
of container items, from either end of the list. 

descendant. See child process. 

descriptive text. Text used in addition to a field 
prompt to give more information about a field. 

Deselect all. A choice that cancels the selection of 
all of the objects that have been selected in that 
window. 

Desktop Manager. In the Presentation Manager, a 
window that displays a list of groups of programs, 
each of which can be started or stopped. 

desktop window. The window, corresponding to 
the physical device, against which all other types of 
windows are established. 

detached process. A background process that 
runs independent of the parent process. 

detent. A point on a slider that represents an exact 
value to which a user can move the slider arm. 

device context. A logical description of a data 
destination such as memory, metafile, display, 
printer, or plotter. See also direct device context, 
information device context, memory device context, 
metafile device context, queued device context, and 
screen device context. 

device driver. A file that contains the code needed 
to attach and use a device such as a display, printer, 
or plotter. 

device space. (1) Coordinate space in which 
graphics are assembled after all GPI transformations 
have been applied. Device space is defined in 

Glossary X-7 



device-specific units. (2) (D of C) In computer 
graphics, a space defined by the complete set of 
addressable points of a display device. (A) 

dialog. The interchange of information between a 
computer and its user through a sequence of 
requests by the user and the presentation of 
responses by the computer. 

dialog box. In SAA Advanced Common User 
Access architecture, a movable window, fixed in size, 
containing controls that a user uses to provide 
information required by an application so that it can 
continue to process a user request. See also 
message box, primary window, secondary window. 
Also known as a pop-up window. 

Dialog Box Editor. A WYSIWYG editor that 
creates dialog boxes for communicating with the 
application user. 

dialog item. A component (for example, a menu or 
a button) of a dialog box. Dialog items are also used 
when creating dialog templates. 

dialog procedure. A dialog window that is 
controlled by a window procedure. It is responsible 
for responding to all messages sent to the dialog 
window. 

dialog tag language. A markup language used by 
the DTL compiler to create dialog objects. 

dialog template. The definition of a dialog box, 
which contains details of its position, appearance, 
and window ID, and the window ID of each of its 
child windows. 

direct device context. A logical description of a 
data destination that is a device other than the 
screen (for example, a printer or plotter), and where 
the output is not to go through the spooler. Its 
purpose is to satisfy queries. See also device 
context. 

direct manipulation. The action of using the 
mouse to move objects around the screen. For 
example, moving files and directories around in the 
Workplace Shell. 

direct memory access (DMA). A technique for 
moving data directly between main storage and 
peripheral equipment without requiring processing of 
the data by the processing 'unit.(T) 

x-a PM Advanced Programming Guide 

directory. A type of file containing the names and 
controlling information for other files or other 
directories. 

display point. Synonym for pel. 

dithering. (1) The process used in color displays 
whereby every other pel is set to one color, and the 
intermediate pels are set to another. Together they 
produce the effect of a third color at normal viewing 
distances. This process can only be used on solid 
areas of color; it does not work, for example, on 
narrow lines. (2) (D of C ) In computer graphics, a 
technique of interleaving dark and light pixels so that 
the resulting image looks smoothly shaded when 
viewed from a distance. 

DMA. Direct memory access. 

DOS Protect Mode Interface (DPMI). An interface 
between protect mode and real mode programs. 

double-byte character set (DBCS). A set of 
characters in which each character is represented by 
two bytes. Languages such as Japanese, Chinese, 
and Korean, which contain more characters than can 
be represented by 256 code points, require 
double-byte character sets. Since each character 
requires two bytes, the entering, displaying, and 
printing of DBCS characters requires hardware and 
software that can support DBCS. 

doubleword. A contiguous sequence of bits or 
characters that comprises two computer words and 
is capable of being addressed as a unit. (A) 

DPMI. DOS Protect Mode Interface. 

drag. In SAA Common User Access, to use a 
pointing device to move an object; for example, 
clicking on a window border, and dragging it to make 
the window larger. 

dragging. (1) In computer graphics, moving an 
object on the display screen as if it were attached to 
the pointer. (2) (D of C) In computer graphics, 
moving one or more segments on a display surface 
by translating. (I) (A) 

drawing chain. See segment chain. 

drop. To fix the position of an object that is being 
dragged, by releasing the select button of the 
pointing device. 



drop. To fix the position of an object that is being 
dragged, by releasing the select button of the 
pointing device. See also drag. 

DTL. Dialog tag language. 

dual-boot function. A feature of the OS/2 
operating system that allows the user to start DOS 
from within the operating system, or an OS/2 session 
from within DOS. 

duplex. Pertaining to communication in which data 
can be sent and received at the same time. 
Synonymous with full duplex. 

dynamic data exchange (DOE). A message 
protocol used to communicate between applications 
that share data. The protocol uses shared memory 
as the means of exchanging data between 
applications. 

dynamic data formatting. A formatting procedure 
that enables you to incorporate text, bit maps or 
metafiles in an IPF window at execution time. 

dynamic link library. A collection of executable 
programming code and data that is bound to an 
application at load time or run time, rather than 
during linking. The programming code and data in a 
dynamic link library can be shared by several 
applications simultaneously. 

dynamic linking. The process of resolving external 
references in a program module at load time or run 
time rather than during linking. 

dynamic segments. Graphics segments drawn in 
exclusive-OR mix mode so that they can be moved 
from one screen position to another without affecting 
the rest of the displayed picture. 

dynamic storage. (1) A device that stores data in a 
manner that permits the data to move or vary with 
time such that the specified data is not always 
available for recovery. (A) (2) A storage in which 
the cells require repetitive application of control 
signals in order to retain stored data. Such repetitive 
application of the control signals is called a refresh 
operation. A dynamic storage may use static 
addressing or senSing circuits. (A) (3) See also 
static storage. 

dynamic time sliCing. Varies the size of the time 
slice depending on system load and paging activity. 

dynamic-link module. A module that is linked at 
load time or run time. 

E 
EBCDIC. Extended binary-coded decimal 
interchange code. A coded character set consisting 
of 8-bit coded characters (9 bits including parity 
check), used for information interchange among data 
processing systems, data communications systems, 
and associated equipment. 

edge-triggered. Pertaining to an event semaphore 
that is posted then reset before a waiting thread gets 
a chance to run. The semaphore is considered to be 
posted for the rest of that thread's waiting period; the 
thread does not have to wait for the semaphore to 
be posted again. 

EGA. Extended graphics adapter. 

element. An entry in a graphics segment that 
comprises one or more graphics orders and that is 
addressed by the element pointer. 

EMS. Expanded Memory Specification. 

encapsulation. Hiding an object's implementation, 
that is, its private, internal data and methods. 
Private variables and methods are accessible only to 
the object that contains them. 

entry field. In SAA Common User Access 
architecture, an area where a user types information. 
Its boundaries are usually indicated. See also 
selection field. 

entry panel. A defined panel type containing one or 
more entry fields and protected information such as 
headings, prompts, and explanatory text. 

entry-field control. The component of a user 
interface that provides the means by which the 
application receives data entered by the user in an 
entry field. When it has the input focus, the entry 
field displays a flashing pointer at the position where 
the next typed character will go. 

environment segment. The list of environment 
variables and their values for a process. 

environment strings. ASCII text strings that define 
the value of environment variables. 

Glossary X-9 



environment variables. Variables that describe the 
execution environment of a process. These 
variables are named by the operating system or by 
the application. Environment variables named by the 
operating system are PATH, DPATH, INCLUDE, 
INIT, LIB, PROMPT, and TEMP. The values of 
environment variables are defined by the user in the 
CONFIG.SYS file, or by using the SET command at 
the OS/2 command prompt. 

error message. An indication that an error has 
been detected. (A) 

event semaphore. A semaphore that enables a 
thread to signal a waiting thread or threads that an 
event has occurred or that a task has been 
completed. The waiting threads can then perform an 
action that is dependent on the completion of the 
signaled event. 

exception. An abnormal condition such as an I/O 
error encountered in processing a data set or a file. 

exclusive system semaphore. A system 
semaphore that can be modified only by threads 
within the same process. 

executable file. (1) A file that contains programs or 
commands that perform operations or actions to be 
taken. (2) A collection of related data records that 
execute programs. 

exit. To execute an instruction within a portion of a 
computer program in order to terminate the 
execution of that portion. Such portions of computer 
programs include loops, subroutines, modules, and 
so on. (T) Repeated exit requests return the user 
to the point from which all functions provided to the 
system are accessible. Contrast with cancel. 

expanded memory specification (EMS). Enables 
DOS applications to access memory above the 1 MB 
real mode addressing limit. 

extended attribute. An additional piece of 
information about a file object, such as its data 
format or category. It consists of a name and a 
value. A file object may have more than one 
extended attribute associated with it. 

extended help. In SAA Common User Access 
architecture, a help action that provides information 
about the contents of the application window from 
which a user requested help. Contrast with 
contextual help. 

X-10 PM Advanced Programming Guide 

extended-choice selection. A mode that allows 
the user to select more than one item from a 
window. Not all windows allow extended choice 
selection. Contrast with multiple-choice selection. 

extent. Continuous space on a disk or diskette that 
is occupied by or reserved for a particular data set, 
data space, or file. 

external link. In Information Presentation Facility, a 
link that connects external online document files. 

F 
family-mode application. An application program 
that can run in the OS/2 environment and in the 
DOS environment; however, it cannot take 
advantage of many of the OS/2-mode facilities, such 
as multitasking, interprocess communication, and 
dynamic linking. 

FAT. File allocation table. 

FEA. Full extended attribute. 

field-level help. Information specific to the field on 
which the cursor is positioned. This help function is 
"contextual" because it provides information about a 
specific item as it is currently used; the information is 
dependent upon the context within the work session. 

FIFO. First-in-first-out. (A) 

file. A named set of records stored or processed as 
a unit. (T) 

file allocation table (FAT). In IBM personal 
computers, a table used by the operating system to 
allocate space on a disk for a file, and to locate and 
chain together parts of the file that may be scattered 
on different sectors so that the file can be used in a 
random or sequential manner. 

file attribute. Any of the attributes that describe the 
characteristics of a file. 

File Manager. In the Presentation Manager, a 
program that displays directories and files, and 
allows various actions on them. 

file specification. The full identifier for a file, which 
includes its drive designation, path, file name, and 
extension. 



file system. The combination of software and 
hardware that supports storing information on a 
storage device. 

file system driver (FSD). A program that manages 
file 1\0 and controls the format of information on the 
storage media. 

fillet. A curve that is tangential to the end points of 
two adjoining lines. See also polyfillet. 

filtering. An application process that changes the 
order of data in a queue. 

first-in-first-out (FIFO). A queuing technique in 
which the next item to be retrieved is the item that 
has been in the queue for the longest time. (A) 

flag. (1) An indicator or parameter that shows the 
setting of a switch. (2) A character that signals the 
occurrence of some condition, such as the end of a 
word. (A) (3) (0 of C) A characteristic of a file or 
directory that enables it to be used in certain ways. 
See also archive flag, hidden flag, and read-only 
flag. 

focus. See input focus. 

folder. A container used to organize objects. 

font. A particular size and style of typeface that 
contains definitions of character sets, marker sets, 
and pattern sets. 

Font Editor. A utility program provided with the IBM 
Developers Toolkit that enables the design and 
creation of new fonts. 

foreground program. (1) The program with which 
the user is currently interacting. Also known as 
interactive program. Contrast with background 
program. (2) (0 of C) In multiprogramming, a 
high-priority program. 

frame. The part of a window that can contain 
several different visual elements specified by the 
application, but drawn and controlled by the 
Presentation Manager. The frame encloses the 
client area. 

frame styles. Standard window layouts provided by 
the Presentation Manager. 

FSD. File system driver. 

full-duplex. Synonym for duplex. 

full-screen application. An application that has 
complete control of the screen. 

function. (1) In a programming language, a block, 
with or without formal parameters, whose execution 
is invoked by means of a call. (2) A set of related 
control statements that cause one or more programs 
to be performed. 

function key. A key that causes a specified 
sequence of operations to be performed when it is 
pressed, for example, F1 and Alt-K. 

function key area. The area at the bottom of a 
window that contains function key assignments such 
as F1=Help. 

G 
GDT. Global Descriptor Table. 

general protection fault. An exception condition 
that occurs when a process attempts to use storage 
or a module that has some level of protection 
assigned to it, such as I/O privilege level. See also 
IOPL code segment. 

Global Descriptor Table (GDT). A table that 
defines code and data segments available to all 
tasks in an application. 

global dynamic-link module. A dynamic-link 
module that can be shared by all processes in the 
system that refer to the module name. 

global file-name character. Either a question mark 
(?) or an asterisk (*) used as a variable in a file 
name or file name extension when referring to a 
particular file or group of files. 

glyph. A graphic symbol whose appearance 
conveys information. 

GPI. Graphics programming interface. 

graphic primitive. In computer graphics, a basic 
element, such as an arc or a line, that is not made 
up of smaller parts and that is used to create 
diagrams and pictures. See also graphics segment. 

graphics. (1) A picture defined in terms of graphic 
primitives and graphics attributes. (2) (0 of C) The 
making of charts and pictures. (3) Pertaining to 

Glossary X-11 



charts, tables, and their creation. (4) See computer 
graphics, coordinate graphics, fixed-image graphics, 
interactive graphics, passive graphics, raster 
graphics. 

graphics attributes. Attributes that apply to graphic 
primitives. Examples are color, line type, and 
shading-pattern definition. See also segment 
attributes. 

graphics field. The clipping boundary that defines 
the visible part of the presentation-page contents. 

graphics mode. One of several states of a display. 
The mode determines the resolution and color 
content of the screen. 

graphics model space. The conceptual coordinate 
space in which a picture is constructed after any 
model transforms have been applied. Also known as 
model space. 

Graphics programming interface. The formally 
defined programming language that is between an 
IBM graphics program and the user of the program. 

graphics segment. A sequence of related graphic 
primitives and graphics attributes. See also graphic 
primitive. 

graying. The indication that a choice on a 
pull-down is unavailable. 

group. A collection of logically connected controls. 
For example, the buttons controlling paper size for a 
printer could be called a group. See also program 
group. 

H 
handle. (1) An identifier that represents an object, 
such as a device or window, to the Presentation 
Interface. (2) (D of C) In the Advanced DOS and 
OS/2 operating systems, a binary value created by 
the system that identifies a drive, directory, and file 
so that the file can be found and opened. 

hard error. An error condition on a network that 
requires either that the system be reconfigured or 
that the source of the error be removed before the 
system can resume reliable operation. 

header. (1) System-defined control information that 
precedes user data. (2) The portion of a message 

X-12 PM Advanced Programming Guide 

that contains control information for the message, 
such as one or more destination fields, name of the 
originating station, input sequence number, character 
string indicating the type of message, and priority 
level for the message. 

heading tags. A document element that enables 
information to be displayed in windows, and that 
controls entries in the contents window controls 
placement of push buttons in a window, and defines 
the shape and size of windows. 

heap. An area of free storage available for dynamic 
allocation by an application. Its size varies according 
to the storage requirements of the application. 

help function. (1) A function that provides 
information about a specific field, an application 
panel, or information about the help facility. (2) (0 of 
C) One or more display images that describe how to 
use application software or how to do a system 
operation. 

Help index. In SAA Common User Access 
architecture, a help action that provides an index of 
the help information available for an application. 

help panel. A panel with information to assist users 
that is displayed in response to a help request from 
the user. 

help window. A Common-User-Access-defined 
secondary window that displays information when the 
user requests help. 

hidden file. An operating system file that is not 
displayed by a directory listing. 

hide button. In the OS/2 operating system, a small, 
square button located in the right-hand corner of the 
title bar of a window that, when selected, removes 
from the screen all the windows associated with that 
window. Contrast with maximize button. See also 
restore button. 

hierarchical inheritance. The relationship between 
parent and child classes. An object that is lower in 
the inheritance hierarchy than another object, inherits 
all the characteristics and behaviors of the objects 
above it in the hierarchy. 

hierarchy. A tree of segments beginning with the 
root segment and proceeding downward to 
dependent segment types. 



high-performance file system (HPFS). In the 
OS/2 operating system, an installable file system that 
uses high-speed buffer storage, known as a cache, 
to provide fast access to large disk volumes. The 
file system also supports the coexistence of multiple, 
active file systems on a single personal computer, 
with the capability of multiple and different storage 
devices. File names used with the HPFS can have 
as many as 254 characters. 

hit testing. The means of identifying which window 
is associated with which input device event. 

hook. A point in a system-defined function where 
an application can supply additional code that the 
system processes as though it were part of the 
function. 

hook chain. A sequence of hook procedures that 
are "chained" together so that each event is passed, 
in turn, to each procedure in the chain. 

hot spot. The part of the pointer that must touch an 
object before it can be selected. This is usually thE! 
tip of the pointer. Contrast with action point. 

HPFS. high-performance file system. 

hypergraphic link. A connection between one 
piece of information and another through the use of 
graphics. 

hypertext. A way of presenting information online 
with connections between one piece of information 
and another, called hypertext links. See also 
hypertext link. 

hypertext link. A connection between one piece of 
information and another. 

I/O operation. An input operation to, or output 
operation from a device attached to a computer. 

I-beam pOinter. A pointer that indicates an area, 
such as an entry field in which text can be edited. 

icon. In SAA Advanced Common User Access 
architecture, a graphical representation of an object, 
consisting of an image, image background, and a 
label. Icons can represent items (such as a 
document file) that the user wants to work on, and 
actions that the user wants to perform. In the 

Presentation Manager, icons are used for data 
objects, system actions, and minimized programs. 

icon area. In the Presentation Manager, the area at 
the bottom of the screen that is normally used to 
display the icons for minimized programs. 

Icon Editor. The Presentation Manager-provided 
tool for creating icons. 

image font. A set of symbols, each of which is 
described in a rectangular array of pels. Some of 
the pels in the array are set to produce the image of 
one of the symbols. Contrast with outline font. 

indirect manipulation. Interaction with an object 
through choices and controls. 

information device context. A logical description 
of a data destination other than the screen (for 
example, a printer or plotter), but where no output 
will occur. Its purpose is to satisfy queries. See 
also device context. 

information panel. A defined panel type 
characterized by a body containing only protected 
information. 

Information Presentation Facility (IPF). A facility 
provided by the OS/2 operating system, by which 
application developers can produce online 
documentation and context-sensitive online help 
panels for their applications. 

input focus. (1) The area of a window where user 
interaction is possible using an input device, such as 
a mouse or the keyboard. (2) The position in the 
active window where a user's normal interaction with 
the keyboard will appear. 

input router. An internal OS/2 process that 
removes messages from the system queue. 

input/output control. A device-specific command 
that requests a function of a device driver. 

installable file system (IFS). A file system in which 
software is installed when the operating system is 
started. 

instance. A single occurrence of an object class 
that has a particular behavior. 

instruction pOinter. In system/38, a pointer that 
provides addressability for a machine interface 
instruction in a program. 

Glossary X-13 



integer atom. An atom that represents a predefined 
system constant and carries no storage overhead. 
For example, names of window classes provided by 
Presentation Manager are expressed as integer 
atoms. 

interactive graphics. Graphics that can be moved 
or manipulated by a user at a terminal. 

interactive program. (1) A program that is running 
(active) and is ready to receive (or is receiving) input 
from a user. (2) A running program that can receive 
input from the keyboard or another input device. 
Compare with active program and contrast with 
noninteractive program. 

Also known as a foreground program. 

interchange file. A file containing data that can be 
sent from one Presentation Manager interface 
application to another. 

interpreter. A program that translates and executes 
each instruction of a high-level programming 
language before it translates and executes. 

interprocess communication (IPC). In the OS/2 
operating system, the exchange of information 
between processes or threads through semaphores, 
pipes, queues, and shared memory. 

interval timer. (1) A timer that provides program 
interruptions on a program-controlled basis. (2) An 
electronic counter that counts intervals of time under 
program control. 

IOCtl. Input/output control. 

IOPL. Input/output privilege level. 

IOPL code segment. An 10PL executable section 
of programming code that enables an application to 
directly manipulate hardware interrupts and ports 
without replacing the device driver. See also 
privilege level. 

IPC. Interprocess communication. 

'IPF. Information Presentation Facility. 

IPF compiler. A text compiler that interpret tags in 
a source file and converts the information into the 
specified format. 

X-14 PM Advanced Programming Guide 

IPF tag language. A markup language that 
provides the instructions for displaying online 
information. 

item. A data object that can be passed in a DDE 
transaction. 

J 
journal. A special-purpose file that is used to 
record changes made in the system. 

K 
Kanji. A graphic character set used in Japanese 
ideographic alphabets. 

KBD$. Character-device name reserved for the 
keyboard. 

kernel. The part of an operating system that 
performs basic functions, such as allocating 
hardware resources. 

kerning. The design of graphics characters so that 
their character boxes overlap. Used to space text 
proportionally. 

keyboard accelerator. A keystroke that generates 
a command message for an application. 

keyboard augmentation. A function that enables a 
user to press a keyboard key while pressing a 
mouse button. 

keyboard focus. A temporary attribute of a 
window. The window that has a keyboard focus 
receives all keyboard input until the focus changes to 
a different window. 

Keys help. In SM Common User Access 
, architecture, a help action that provides a listing of 

the application keys and their assigned functions. 

L 
label. In a graphics segment, an identifier of one or 
more elements that is used when editing the 
segment. 

LAN. local area network. 



language support procedure. A function provided 
by the Presentation Manager Interface for 
applications that do not, or cannot (as in the case of 
COBOL and FORTRAN programs), provide their own 
dialog or window procedures. 

lazy drag. See pickup and drop. 

lazy drag set. See pickup set. 

LOT. In the OS/2 operating system, Local 
Descriptor Table. 

LIFO stack. A stack from which data is retrieved in 
last-in, first-out order. 

linear address. A unique value that identifies the 
memory object. 

linked list. Synonym for chained list. 

list box. In SM Advanced Common User Access 
architecture, a control that contains scrollable 
choices from which a user can select one choice. 

Note: In CUA architecture, this is a programmer 
term. The end user term is selection list. 

list button. A button labeled with an underlined 
down-arrow that presents a list of valid objects or 
choices that can be selected for that field. 

list panel. A defined panel type that displays a list 
of items from which users can select one or more 
choices and then specify one or more actions to 
work on those choices. 

load time. The point in time at which a program 
module is loaded into main storage for execution. 

load-on-call. A function of a linkage editor that 
allows selected segments of the module to be disk 
resident while other segments are executing. Disk 
resident segments are loaded for execution and 
given control when any entry point that they contain 
is called. 

local area network (LAN). (1) A computer network 
located on a user's premises within a limited 
geographical area. Communication within a local 
area network is not subject to external regulations; 
however, communication across the LAN boundary 
may be subject to some form of regulation. (T) 

Note: A LAN does not use store and forward 
techniques. (2) A network inwhich a set of devices 
are connected to one another for communication and 
that can be connected to a larger network. 

Local Descriptor Table (LOT). Defines code and 
data segments specific to a single task. 

lock. A serialization mechanism by means of which 
a resource is restricted for use by the holder of the 
lock. 

logical storage device. A device that the user can 
map to a physical (actual) device. 

LPT1, LPT2, LPT3. Character-device names 
reserved for parallel printers 1 through 3. 

M 
main window. The window that is positioned 
relative to the desktop window. 

manipulation button. The button on a pointing 
device a user presses to directly manipulate an 
object. 

map. (1) A set of values having a defined 
correspondence with the quantities or values of 
another set. (I) (A) (2) To establish a set of 
values having a defined correspondence with the 
quantities or values of another set. (I) 

marker box. In computer graphics, the boundary 
that defines, in world coordinates, the horizontal and 
vertical space occupied by a single marker from a 
marker set. 

marker symbol. A symbol centered on a point. 
Graphs and charts can use marker symbols to 
indicate the plotted points. 

marquee box. The rectangle that appears during a 
selection technique in which a user selects objects 
by drawing a box around them with a pointing 
device. 

Master Help Index. In the OS/2 operating system, 
an alphabetic list of help topics related to using the 
operating system. 

maximize. To enlarge a window to its largest 
possible size. 

Glossary X-15 



media window. The part of the physical device 
(display, printer, or plotter) on which a picture is 
presented. 

memory block. Part memory within a heap. 

memory device context. A logical description of a 
data destination that is a memory bit map. See also 
device context. 

memory management. A feature of the operating 
system for allocating, sharing, and freeing main 
storage. 

memory object. Logical unit of memory requested 
by an application, which forms the granular unit of 
memory manipulation from the application viewpoint. 

menu. In SM Advanced Common User Access 
architecture, an extension of the menu bar that 
displays a list of choices available for a selected 
choice in the menu bar. After a user selects a 
choice in menu bar, the corresponding menu 
appears. Additional pop-up windows can appear 
from menu choices. 

menu bar. In SM Advanced Common User 
Access architecture, the area near the top of a 
window, below the title bar and above the rest of the 
window, that contains choices that provide access to 
other menus. 

menu button. The button on a pointing device that 
a user presses to view a pop-up menu associated 
with an object. 

message. (1) In the Presentation Manager, a 
packet of data used for communication between the 
Presentation Manager interface and Presentation 
Manager applications (2) In a user interface, 
information not requested by users but presented to 
users by the computer in response to a user action 
or internal process. 

message box. (1) A dialog window predefined by 
the system and used as a simple interface for 
applications, without the necessity of creating 
dialog-template resources or dialog procedures. (2) 
(0 of C) In SM Advanced Common User Access 
architecture, a type of window that shows messages 
to users. See also dialog box, primary window, 
secondary window. 

X-16 PM Advanced Programming Guide 

message filter. The means of selecting which 
messages from a specific window will be handled by 
the application. 

message queue. A sequenced collection of 
messages to be read by the application. 

message stream mode. A method of operation in 
which data is treated as a stream of messages. 
Contrast with byte stream. . 

metacharacter. See global file-name character. 

metaclass. The conjunction of an object and its 
class information; that is, the information pertaining 
to the class as a whole, rather than to a single 
instance of the class. Each class is itself an object, 
which is an instance of the metaclass. 

metafile. A file containing a series of attributes that 
set color, shape and size, usually of a picture or a 
drawing. Using a program that can interpret these 
attributes, a user can view the assembled image. 

metafile device context. A logical description of a 
data destination that is a metafile, which is used for 
graphics interchange. See also device context. 

metalanguage. A language used to specify another 
language. For example, data types can be 
described using a metalanguage so as to make the 
descriptions independent of anyone computer 
language. 

mickey. . A unit of measurement for physical mouse 
motion whose value depends on the mouse device 
driver currently loaded. 

micro presentation space. A graphics presentation 
space in which a restricted set of the GPI function 
calls is available. 

minimize. To remove from the screen all windows 
associated with an application and replace them with 
an icon that represents the application. 

mix. An attribute that determines how the 
foreground of a graphic primitive is combined with 
the existing color of graphics output. Also known as 
foreground mix. Contrast with background mix. 

mixed character string. A string containing a 
mixture of one-byte and Kanji or Hangeul (two-byte) 
characters. 



mnemonic. (1) A method of selecting an item on a 
pull-down by means of typing the highlighted letter in 
the menu item. (2) (D of C) In SM Advanced 
Common User Access architecture, usually a single 
character, within the text of a choice, identified by an 
underscore beneath the character. If all characters 
in a choice already serve as mnemonics for other 
choices, another character, placed in parentheses 
immediately following the choice, can be used. 
When a user types the mnemonic for a choice, the 
choice is either selected or the cursor is moved to 
that choice. 

modal dialog box. In SM Advanced Common 
User Access architecture, a type of movable window, 
fixed in size, that requires a user to enter information 
before continuing to work in the application window 
from which it was displayed. Contrast with modeless 
dialog box. Also known as a serial dialog box. 
Contrast with parallel dialog box. 

Note: In CUA architecture, this is a programmer 
term. The end user term is pop-up window. 

model space. See graphics model space. 

modeless dialog box. In SM Advanced Common 
User Access architecture, a type of movable window, 
fixed in size, that allows users to continue their 
dialog with the application without entering 
information in the dialog box. Also known as a 
parallel dialog box. Contrast with modal dialog box. 

Note: In CUA architecture, this is a programmer 
term. The end user term is pop-up window. 

module definition file. A file that describes the 
code segments within a load module. For example, 
it indicates whether a code segment is loadable 
before module execution begins (preload), or 
loadable only when referred to at run time 
(Ioad-on-call) . 

mouse. In SM usage, a device that a user moves 
on a flat surface to position a pointer on the screen. 
It allows a user to select a choice 0 function to be 
performed or to perform operations on the screen, 
such as dragging or drawing lines from one position 
to another. 

MOUSE$. Character-device name reserved for a 
mouse. 

multiple-choice selection. In SM Basic Common 
User Access architecture, a type of field from which 

a user can select one or more choices or select 
none. See also check box. Contrast with 
extended-choice selection. 

multiple-line entry field. In SM Advanced 
Common User Access architecture, a control into 
which a user types more than one line of information. 
See also single-line entry field. 

multitasking. The concurrent processing of 
applications or parts of applications. A running 
application and its data are protected from other 
concurrently running applications. 

mutex semaphore. (Mutual exclusion semaphore). 
A semaphore that enables threads to serialize their 
access to resources. Only the thread that currently 
owns the mutex semaphore can gain access to the 
resource, thus preventing one thread from 
interrupting operations being performed by another. 

muxwait semaphore. (Multiple wait semaphore). A 
semaphore that enables a thread to wait either for 
multiple event semaphores to be posted or for 
multiple mutex semaphores to be released. 
Alternatively, a muxwait semaphore can be set to 
enable a thread to wait for any ONE of the event or 
mutex semaphores in the muxwait semaphore's list 
to be posted or released. 

N 
named pipe. A named buffer that provides 
client-to-server, server-to-client, or full duplex 
communication between unrelated processes. 
Contrast with unnamed pipe. 

national language support (NLS). The 
modification or conversion of a United States English 
product to conform to the requirements of another 
language or country. This can include the enabling 
or retrofitting of a product and the translation of 
nomen'clature, MRI, or documentation of a product. 

nested list. A list that is contained within another 
list. 

NLS. national language support. 

non-8.3 file-name format. A file-naming convention 
in which file names can consist of up to 255 
characters. See also 8.3 file-name format. 

Glossary X-17 



noncritical extended attribute. An extended 
attribute that ,is not necessary for the function of an 
application. 

nondestructive read. Reading that does not erase 
the data in the source location. (T) 

noninteractive program. A running program that 
cannot receive input from the keyboard or other input 
device. Compare with active program, and contrast 
with interactive program. 

nonretained graphics. Graphic primitives that are 
not remembered by the Presentation Manager 
interface when they have been drawn. Contrast with 
retained graphics. 

null character (NUL). (1) Character-device name 
reserved for a nonexistent (dummy) device. (2) (0 of 
C) A control- character that is used to accomplish 
media-fill or time-fill and that may be inserted into or 
removed from a sequence of characters without 
affecting the meaning of the sequence; however, the 
control of equipment or the format may be affected 
by this character. (I) (A) 

null-terminated string. A string of (n+ 1) characters 
where the (n+ 1 )th character is the 'null' character 
(OxOO). Also known as 'zero-terminated' string and 
'ASCIIZ' string. 

o 
object. A set of data and actions that can be 
performed on that data. 

Object Interface Definition Language (OIDL). 
Specification language for SOM class definitions. 

object window. A window that does not have a 
parent but which might have child windows. An 
object window cannot be presented on a device. 

OIDL. Object Interface Definition Language. 

open. To start working with a file, directory, or other 
object. 

ordered list. Vertical arrangements of items, with 
each item in the list preceded by a number or letter. 

outline font. A set of symbols, each of which is 
created as a series of lines and curves. 

X-18 PM Advanced Programming Guide 

Synonymous with vector font. Contrast with image 
font. 

output area. An area of storage reserved for 
output. (A) 

owner window. A window into which specific 
events that occur in another (owned) window are 
reported. 

ownership. The determination of how windows 
communicate using messages. 

owning process. The process that owns the 
resources that might be shared with other processes. 

p 
page. (1) A 4KB segment of contiguous physical 
memory. (2) (0 of C) A defined unit of space on a 
storage medium. 

page viewport. A boundary in device coordinates 
that defines the area of the output device in which 
graphics are to be displayed. The presentation-page 
contents are transformed automatically to the page 
viewport in device space. 

paint. (1) The action of drawing or redrawing the 
contents of a window. (2) In computer graphics, to 
shade an area of a display image; for example, with 
crosshatching or color. 

panel. In SAA Basic Common User Access 
architecture, a particular arrangement of information 
that is presented in a window or pop-up. If some of 
the information is not visible, a user can scroll 
through the information. 

panel area. An area within a panel that contains 
related information. The three major Common User 
Access-defined panel areas are the action bar, the 
function key area, and the panel body. 

panel area separator. In SAA Basic Common User 
Access architecture, a solid, dashed, or blank line 
that provides a visual distinction between two 
adjacent areas of a panel. 

panel body. The portion of a panel not occupied by 
the action bar" function key area, title or scroll bars. 
The panel body can contain protected information, 
selection fields, and entry fields. The layout and 
content of the panel body determine the panel type. 



panel body area. See client area. 

panel definition. A description of the contents and 
characteristics of a panel. A panel definition is the 
application developer's mechanism for predefining 
the format to be presented to users in a window. 

panel 10. In SAA Basic Common User Access 
architecture, a panel identifier, located in the 
upper-left corner of a panel. A user can choose 
whether to display the panel 10. 

r 

panel title. In SAA Basic Common User Access 
architecture, a particular arrangement of information 
that is presented in a window or pop-up. If some of 
the information is not visible, a user can scroll 
through the information. 

paper size. The size of paper, defined in either 
standard U.S. or European names (for example, A, 
B, A4), and measured in inches or millimeters 
respectively. 

parallel dialog box. See modeless dialog box. 

parameter list. A list of values that provides a 
means of associating addressability of data defined 
in a called program with data in the calling program. 
It contains parameter names and the order in which 
they are to be associated in the calling and called 
program. 

parent process. In the OS/2 operating system, a 
process that creates other processes. Contrast with 
child process. 

parent window. In the OS/2 operating system, a 
window that creates a child window. The child 
window is drawn within the parent window. If the 
parent window is moved, resized, or destroyed, the 
child window also will be moved, resized, or 
destroyed. However, the child window can be 
moved and resized independently from the parent 
window, within the boundaries of the parent window. 
Contrast with child window. 

partition. (1) A fixed-size division of storage. (2) 
On an IBM personal computer fixed disk, one of four 
possible storage areas of variable size; one may be 
accessed by DOS, and each of the others may be 
assigned to another operating system. 

Paste. A choice in the Edit pull-down that a user 
selects to move the contents of the clipboard into a 
preselected location. See also Copy and Cut. 

path. The route used to locate files; the storage 
location of a file. A fully qualified path lists the drive 
identifier, directory name, subdirectory name (if any), 
and file name with the associated extension. 

POD. Physical device driver. 

peeking. An action taken by any thread in the 
process that owns the queue to examine queue 
elements without removing them. 

pel. (1) The smallest area of a display screen 
capable of being addressed and switched between 
visible and invisible states. Synonym for display 
point, pixel, and picture element. (2) (0 of C) Picture 
element. 

physical device driver (POD). A system interface 
that handles hardware interrupts and supports a set 
of input and output functions. 

pick. To select part of a displayed object using the 
pointer. 

pickup. To add an object or set of objects to the 
pickup set. 

pickup and drop. A drag operation that does not 
require the direct manipulation button to be pressed 
for the duration of the drag. 

pickup set. The set of objects that have been 
picked up as part of a pickup and drop operation. 

picture chain. See segment chain. 

picture element. (1) Synonym for pel. (2) (0 of C) 
In computer graphics, the smallest element of a 
display surface that can be independently assigned 
color and intensity. (T) . (3) The area of the finest 
detail that can be reproduced effectively on the 
recording medium. 

PID. Process identification. 

pipe. (1) A named or unnamed buffer used to pass 
data between processes. A process reads from or 
writes to a pipe as if the pipe were a standard-input 
or standard-output file. See also named pipe and 
unnamed pipe. (2) (0 of C) To direct data so that 
the output from one process becomes the input to 
another process. The standard output of one 
command can be connected to the standard input of 
another with the pipe operator (I). 

Glossary X-19 



pixel. (1) Synonym for pel. (2) (0 of C) Picture 
element. 

plotter. An output unit that directly produces a 
hardcopy record of data on a removable medium, in 
the form of a two-dimensional graphic 
representation. (T) 

PM. Presentation Manager. 

pointer. (1) The symbol displayed on the screen 
that is moved by a pointing device, such as a 
mouse. The pointer is used to point at items that 
users can select. Contrast with cursor. (2) A data 
element that indicates the location of another data 
element. (T) 

POINTER$. Character-device name reserved for a 
pointer device (mouse screen support). 

pointing device. In SM Advanced Common User 
Access architecture, an instrument, such as a 
mouse, trackball, or joystick, used to move a pointer 
on the screen. 

pointings. Pairs of x-y coordinates produced by an 
operator defining positions on a screen with a 
pointing device, such as a mouse. 

polyfillet. A curve based on a sequence of lines. 
The curve is tangential to the end pOints of the first 
and last lines, and tangential also to the midpoints of 
all other lines. See also fil/et. 

polygon. One or more closed figures that can be 
drawn filled, outlined, or filled and outlined. 

polyline. A sequence of adjoining lines. 

polymorphism. A concept whereby the behavior of 
an application object is dependent solely upon the 
class and contents of the messages received by that 
object, and is not affected by any other external 
factor. 

pop. To retrieve an item from a last-in-first-out 
stack of items. Contrast with push. 

pop-up window. (1) A window that appears on top 
of another window in a dialog. Each pop-up window 
must be completed before returning to the underlying 
window. (2) (0 of C) In SM Advanced Common 
User Access architecture, a movable window, fixed 
in size, in which a user provides information required 
by an application so that it can continue to process a 
user request. 

X-20 PM Advanced Programming Guide 

presentation drivers. Special purpose I/O routines 
that handle field device-independent I/O requests 
from the PM and its applications. 

Presentation Manager (PM). The interface of the 
OS/2 operating system that presents, in windows a 
graphics-based interface to applications and files 
installed and running under the OS/2 operating 
system. 

presentation page. The coordinate space in which 
a picture is assembled for display. 

presentation space (PS). (1) Contains the 
device-independent definition of a picture. (2) (0 of 
C) The display space on a display device. 

primary window. In SM Common User Access 
architecture, the window in which the main 
interaction between the user and the application 
takes place. In a multiprogramming environment, 
each application starts in its own primary window. 
The primary window remains for the duration of the 
application, although the panel displayed will change 
as the user's dialog moves forward. See also 
secondary window. 

primitive. In computer graphics, one of several 
simple functions for drawing on the screen, including, 
for example, the rectangle, line, ellipse, polygon, and 
so on. 

primitive attribute. A specifiable characteristic of a 
graphic primitive. See graphics attributes. 

print job. The result of sending a document or 
picture to be printed. 

Print Manager. In the Presentation Manager, the 
part of the spooler that manages the spooling 
process. It also allows users to view print queues 
and to manipulate print jobs. 

privilege level. A protection level imposed by the 
hardware architecture of the IBM personal computer. 
There are four privilege levels (number 0 through 3). 
Only certain types of programs are allowed to 
execute at each privilege level. See also IOPL code 
segment. 

procedure call. In programming languages, a 
language construct for invoking execution of a 
procedure. 



process. An instance of an executing application 
and the resources it is using. 

program. A sequence of instructions that a 
computer can interpret and execute. 

program details. Information about a program that 
is specified in the Program Manager window and is 
used when the program is started. 

program group. In the Presentation Manager, 
several programs that can be acted upon as a single 
entity. 

program name. The full file specification of a 
program. Contrast with program title. 

program title. The name of a program as it is listed 
in the Program Manager window. Contrast with 
program name. 

prompt. A displayed symbol or message that 
requests input from the user or gives operational 
information; for example, on the display screen of an 
IBM personal computer, the DOS A> prompt. The 
user must respond to the prompt in order to proceed. 

protect mode. A method of program operation that 
limits or prevents access to certain instructions or 
areas of storage. Contrast with real mode. 

protocol. A set of semantic and syntactic rules that 
determines the behavior of functional units in 
achieving communication. (I) 

pseudocode. An artificial language used to 
describe computer program algorithms without using 
the syntax of any particular programming 
language. (A) 

pull-down. (1) An action bar extension that displays 
a list of choices available for a selected action bar 
choice. After users select an action bar choice, the 
pull-down appears with the list of choices. Additional 
pop-up windows may appear from pull-down choices 
to further extend the actions available to users. (2) 
(0 of C) In SAA Common User Access architecture, 
pertaining to a choice in an action bar pull-down. 

push. To add an item to a last-in-first-out stack of 
items. Contrast with pop. 

push button. In SAA Advanced Common User 
Access architecture, a rectangle with text inside. 
Push buttons are used in windows for actions that 
occur immediately when the push button is selected. 

putback. To remove an object or set of objects 
from the lazy drag set. This has the effect of 
undoing the pickup operation for those objects 

putdown. To drop the objects in the lazy drag set 
on the target object. 

Q 
queue. (1) A linked list of elements waiting to be 
processed in FIFO order. For example, a queue 
may be a list of print jobs waiting to be printed. (2) 
(0 of C) A line or list of items waiting to be 
processed; for example, work to be performed or 
messages to be displayed. 

queued device context. A logical description of a 
data destination (for example, a printer or plotter) 
where the output is to go through the spooler. See 
also device context. 

R 
radio button. (1) A control window, shaped like a 
round button on the screen, that can be in a checked 
or unchecked state. It is used to select a single item 
from a list. Contrast with check box. (2) In SAA 
Advanced Common User Access architecture, a 
circle with text beside it. Radio buttons are 
combined to show a user a fixed set of choices from 
which only one can be selected. The circle is 
partially filled when a choice is selected. 

RAS. Reliability, availability, and serviceability. 

raster. (1) In computer graphics, a predetermined 
pattern of lines that provides uniform coverage of a 
display space. (T) (2) The coordinate grid that 
divides the display area of a display device. (A) 

read-only file. A file that can be read from but not 
written to. 

real mode. A method of program operation that 
does not limit or prevent access to any instructions 
or areas of storage. The operating system loads the 
entire program into storage and gives the program 
access to all system resources. Contrast with 
protect mode. 

realize. To cause the system to ensure, wherever 
possible, that the physical color table of a device is 

Glossary X-21 



set to the closest possible match in the logical color 
table. 

recursive routine. A routine that can call itself, or 
be called by another routine that was called by the 
recursive routine. 

reentrant. The attribute of a program or routine that 
allows the same copy of the program or routine to be 
used concurrently by two or more tasks. 

reference phrase. (1) A word or phrase that is 
emphasized in a device-dependent manner to inform 
the user that additional information for the word or 
phrase is available. (2) (D of C) In hypertext, text 
that is highlighted and preceded by a 
single-character input field used to signify the 
existence of a hypertext link. 

reference phrase help. In SAA Common User 
Access architecture, highlighted words or phrases 
within help information that a user selects to get 
additional information. 

refresh. To update a window, with changed 
information, to its current status. 

region. A clipping boundary in device space. 

register. A part of internal storage having a 
specified storage capacity and usually intended for a 
specific purpose. (T) 

remote file system. A file-system driver that gains 
access to a remote system without a block device 
driver. 

resource. The means of providing extra information 
used in the definition of a window. A resource can 
contain definitions of fonts, templates, accelerators, 
and mnemonics; the definitions are held in a 
resource file. 

resource file. A file containing information used in 
the definition of a window. Definitions can be of 
fonts, templates, accelerators, and mnemonics. 

restore. To return a window to its original size or 
position following a sizing or moving action. 

retained graphics. Graphic primitives that are 
remembered by the Presentation Manager interface 
after they have been drawn. Contrast with 
nonretained graphics. 

X-22 PM Advanced Programming Guide 

return code. (1) A value returned to a program to 
indicate the results of an operation requested by that 
program. (2) A code used to influence the execution 
of succeeding instructions.(A) 

reverse video. (1) A form of highlighting a 
character, field, or cursor by reversing the color of 
the character, field, or cursor with its background; for 
example, changing a red character on a black 
background to a black character on a red 
background. (2) In SAA Basic Common User 
Access architecture, a screen emphasis feature that 
interchanges the foreground and background colors 
of an item. 

REXX Language. Restructured Extended Executor. 
A procedural language that provides batch language 
functions along with structured programming 
constructs such as loops; conditional testing and 
subroutines. 

RGB. (1) Color coding in which the brightness of 
the additive primary colors of light, red, green, and 
blue, are specified as three distinct values of white 
light. (2) Pertaining to a color display that accepts 
signals representing red, green, and blue. 

roman. Relating to a type style with upright 
characters. 

root segment. In a hierarchical database, the 
highest segment in the tree structure. 

round-robin scheduling. A process that allows 
each thread to run for a specified amount of time. 

run time. (1) Any instant at which the execution of 
a particular computer program takes place. (T) (2) 
The amount of time needed for the execution of a 
particular computer program. (T) (3) The time 
during which an instruction in an instruction register 
is decoded and performed. Synonym for execution 
time. 

s 
SAA. Systems Application Architecture. 

SBCS. Single-byte character set. 

scheduler. A computer program designed to 
perform functions such as scheduling,. initiation, and 
termination of jobs. 



screen. In SAA Basic Common User Access 
architecture, the physical surface of a display device 
upon which information is shown to a user. 

screen device context. A logical description of a 
data destination that is a particular window on the 
screen. See also device context. 

SCREEN$. Character-device name reserved for the 
display screen. 

scroll bar. In SAA Advanced Common User 
Access architecture, a part of a window, associated 
with a scrollable area, that a user interacts with to 
see information that is not currently allows visible. 

scrollable entry field. An entry field larger than the 
visible field. 

scrollable selection field. A selection field that 
contains more choices than are visible. 

scrolling. Moving a display image vertically or 
horizontally in a manner such that new data appears 
at one edge, as existing data disappears at the 
opposite edge. 

secondary window. A window that contains 
information that is dependent on information in a 
primary window and is used to supplement the 
interaction in the primary window. 

sector. On disk or diskette storage, an addressable 
subdivision of a track used to record one block of a 
program or data: 

segment. See graphics segment. 

segment attributes. Attributes that apply to the 
segment as an entity, as opposed to the individual 
primitives within the segment. For example, the 
visibility or detectability of a segment. 

segment chain. All segments in a graphics 
presentation space that are defined with the 
'chained' attribute. Synonym for picture chain. 

segment priority. The order in which segments are 
drawn. 

segment store. An area in a normal graphics 
presentation space where retained graphics 
segments are stored. 

select. To mark or choose an item. Note that 
select means to mark or type in a choice on the 

screen; enter means to send all selected choices to 
the computer for processing. 

select button. The button on a pointing device, 
such as a mouse, that is pressed to select a menu 
choice. Also known as button 1. 

selection cursor. In SAA Advanced Common User 
Access architecture, a visual indication that a user 
has selected a choice. It is represented by outlining 
the choice with a dotted box. See also text cursor. 

selection field. (1) In SAA Advanced Common 
User Access architecture, a set of related choices. 
See also entry field. (2) In SAA Basic Common User 
Access architecture, an area of a panel that cannot 
be scrolled and contains a fixed number of choices. 

semantics. The relationships between symbols and 
their meanings. 

semaphore. An object used by applications for 
signalling purposes and for controlling access to 
serially reusable resources. 

separator. In SAA Advanced Common User 
Access architecture, a line or color boundary that 
provides a visual distinction between two adjacent 
areas. 

serial· dialog box. See modal dialog box. 

serialization. The consecutive ordering of items. 

serialize. To ensure that one or more events occur 
in a specified sequence. 

serially reusable resource (SRR). A logical 
resource or object that can be accessed by only one 
task at a time. 

session. (1) A routing mechanism for user 
interaction via the console; a complete environment 
that determines how an application runs and how 
users interact with the application. OS/2 can 
manage more than one session at a time, and more 
than one process can run in a session. Each 
session has its own set of environment variables that 
determine where OS/2 looks for dynamic-link 
libraries and other important files. (2) (0 of C) In the 
OS/2 operating system, one instance of a started 
program or command prompt. Each session is 
separate from all other sessions that might be 
running on the computer. The operating system is 
responsible for coordinating the resources that each 

Glossary X-23 



session uses, such as computer memory, allocation 
of processor time, and windows on the screen. 

Settings Notebook. A control window that is used 
to display the settings for an object and to enable the 
user to change them. 

shadow box. The area on the screen that follows 
mouse movements and shows what shape the 
window will take if the mouse button is released. 

shared data. Data that is used by two or more 
programs. 

shared memory. In the OS/2 operating system, a 
segment that can be used by more than one 
program. 

shear. In computer graphics, the forward or 
backward slant of a graphics symbol or string of 
such symbols relative to a line perpendicular to the 
baseline of the symbol. 

shell. (1) A software interface between a user and 
the operating system of a computer. Shell programs 
interpret commands and user interactions on devices 
such as keyboards, pointing devices, and 
touch-sensitive screens, and communicate them to 
the operating system. (2) Software that allows a 
kernel program to run under different 
operating-system environments. 

shutdown. The process of ending operation of a 
system or a subsystem, following a defined 
procedure. 

sibling processes. Child processes that have the 
same parent process. 

sibling windows. Child windows that have the 
same parent window. 

simple list. A list of like values; for example, a list 
of user names. Contrast with mixed list. 

single-byte character set (SeCS). A character set 
in which each character is represented by a one-byte 
code. Contrast with double-byte character set. 

slider box. In SAA Advanced Common User 
Access architecture: a part of the scroll bar that 
shows the position and size of the visible information 
in a window relative to the total amount of 
information available. Also known as thumb mark. 

SOM. System Object Model. 

X-24 PM Advanced Programming Guide 

source file. A file that contains source statements 
for items such as high-level language programs and 
data description specifications. 

source statement. A statement written in a 
programming language. 

specific dynamic-link module. A dynamic-link 
module created for the exclusive use of an 
application. 

spin button. In SAA Advanced Common User 
Access architecture, a type of entry field that shows 
a scrollable ring of choices from which a user can 
select a choice. After the last choice is displayed, 
the first choice is displayed again. A user can also 
type a choice from the scrol/able ring into the entry 
field without interacting with the spin button. 

spline. A sequence of one or more Bezier curves. 

spooler. A program that intercepts the data going 
to printer devices and writes it to disk. The data is 
printed or plotted when it is complete and the 
required device is available. The spooler prevents 
output from different sources from being intermixed. 

stack. A list constructed and maintained so that the 
next data element to be retrieved is the most 
recently stored. This method is characterized as 
last-in-first-out (LIFO). 

standard window. A collection of window elements 
that form a panel. The standard window can include 
one or more of the following window elements: sizing 
borders, system menu icon, title bar, 
maximize/minimize/restore icons, action bar and 
pull-downs, scroll bars, and client area. 

static control. The means by which the application 
presents descriptive information (for example, 
headings and descriptors) to the user. The user 
cannot change this information. 

static storage. (1) A read/write storage unit in 
which data is retained in the absence of control 
signals. (A) Static storage may use dynamic 
addressing or sensing circuits. (2) Storage other 
than dynamic storage. (A) 

style. See window style. 

subdirectory. In an IBM personal computer, a file 
referred to in a root directory that contains the 



names of other files stored on the diskette or fixed 
disk. 

swapping. (1) A process that interchanges the 
contents of an area of real storage with the contents 
of an area in auxiliary storage. (I) (A) (2) In a 
system with virtual storage, a paging technique that 
writes the active pages of a job to auxiliary storage 
and reads pages of another job from auxiliary 
storage into real storage. (3) The process of 
temporarily removing an active job from main 
storage, saving it on disk, and processing another 
job in the area of main storage formerly occupied by 
the first job. 

switch. (1) In SM usage, to move the cursor from 
one point of interest to another; for example, to 
move from one screen or window to another or from 
a place within a displayed image to another place on 
the same displayed image. (2) In a computer 
program, a conditional instruction and an indicator to 
be interrogated by that instruction. (3) A device or 
programming technique for making a selection, for 
example, a toggle, a conditional jump. 

switch list. See Task List. 

symbolic identifier. A text string that equates to an 
integer value in an include file, which is used to 
identify a programming object. 

symbols. In Information Presentation Facility, a 
document element used to produce characters that 
cannot be entered from the keyboard. 

synchronous. Pertaining to two or more processes 
that depend upon the occurrence of specific events 
such as common timing signals. (T) See also 
asynchronous. 

System Menu. In the Presentation Manager, the 
pull-down in the top left corner of a window that 
allows it to be moved and sized with the keyboard. 

System Object Model (SOM). A mechanism for 
language-neutral, object-oriented programming in the 
OS/2 environment. 

system queue. The master queue for all pointer 
device or keyboard events. 

system-deflned messages. Messages that control 
the operations of applications and provides input an 
other information for applications to process. 

Systems Application Architecture (SAA). A set of 
IBM software interfaces, conventions, and protocols 
that provide a framework for designing and 
developing applications that are consistent across 
systems. 

T 
table tags. In Information Presentation Facility, a 
document element that formats text in an 
arrangement of rows and columns. 

tag. (1) One or more characters attached to a set of 
data that contain information about the set, including 
its identification. (I) (A) (2) In Generalized 
Markup Language markup, a name for a type of 
document or document element that is entered in the 
source document to identify it. 

target object. An object to which the user is 
transferring information. 

Task list. In the Presentation Manager, the list of 
programs that are active. The list can be used to 
switch to a program and to stop programs. 

template. An ASCII-text definition of an action bar 
and pull-down menu, held in a resource file, or as a 
data structure in program memory. 

terminate-and-stay-resident (TSR). Pertaining to 
an application that modifies an operating system 
interrupt vector to point to its own location (known as 
hooking an interrupt). 

text. Characters or symbols. 

text cursor. A symbol displayed in an entry field 
that indicates where typed input will appear. 

text window. Also known as the VIO window. 

text-windowed application. The environment in 
which the operating system performs advanced-video 
input and output operations. 

thread. A unit of execution within a process. It 
uses the resources of the process. 

thumb mark. The portion of the scroll bar that 
describes the range and properties of the data that is 
currently visible in a window. Also known as a slider 
box. 

Glossary X-25 



thunk. Term used to describe the process of 
address conversion, stack and structure realignment, 
etc., necessary when passing control between 16-bit 
and 32-bit modules. 

tilde. A mark used to denote the character that is to 
be used as a mnemonic when selecting text items 
within a menu. 

time slice. (1) An interval of time on the processing 
unit allocated for use in performing a task. After the 
interval has expired, processing-unit time is allocated 
to another task, so a task cannot monopolize 
processing-unit time beyond a fixed limit. (2) In 
systems with time sharing, a segment of time 
allocated to a terminal job. 

time-critical process. A process that must be 
performed within a specified time after an event has 
occurred. 

timer. A facility provided under the Presentation 
Manager, whereby Presentation Manager will 
dispatch a message of class WM_TIMER to a 
particular window at specified intervals. This 
capability may be used by an application to perform 
a specific processing task at predetermined intervals, 
without the necessity for the application to explicitly 
keep track of the passage of time. 

timer tick. See clock tick. 

title bar. In SM Advanced Common User Access 
architecture, the area at the top of each window that 
contains the window title and system menu icon. 
When appropriate, it also contains the minimize, 
maximize, and restore icons. Contrast with panel 
title. 

TLB. Translation lookaside buffer. 

transaction. An exchange between a workstation 
and another device that accomplishes a particular 
action or result. 

transform. (1) The action of modifying a picture by 
scaling, shearing, reflecting, rotating, or translating. 
(2) The object that performs or defines such a 
modification; also referred to as a transformation. 

X-26 PM Advanced Programming Guide 

Translation lookaside buffer (TLB). A 
hardware-based address caching mechanism for 
paging information. 

Tree. In the Presentation Manager, the window in 
the File Manager that shows the organization of 
drives and directories. 

truncate. (1) To terminate a computational process 
in accordance with some rule (A) (2) To remove 
the beginning or ending elements of a string. (3) To 
drop data that cannot be printed or displayed in the 
line width specified or available. (4) To shorten a 
field or statement to a specified length. 

TSR. Terminate-and-stay-resident. 

unnamed pipe. A circular buffer, created in 
memory, used by related processes to communicate 
with one another. Contrast with named pipe. 

unordered list. In Information Presentation Facility, 
a vertical arrangement of items in a list, with each 
item in the list preceded by a special character or 
bullet. 

update region. A system-provided area of dynamic 
storage containing one or more (not necessarily 
contiguous) rectangular areas of a window that are 
visually invalid or incorrect, and therefore are in need 
of repainting. 

user interface. Hardware, software, or both that 
allows a user to interact with and perform operations 
on a system, program, or device. 

User Shell. A component of OS/2 that uses a 
graphics-based, windowed interface to allow the user 
to manage applications and files installed and 
running under OS/2. 

utility program. (1) A computer program in general 
support of computer processes; for example, a 
diagnostic program, a trace program, a sort 
program. (T) (2) A program designed to perform 
an everyday task such as copying data from one 
storage device to another. (A) 

u 
There are no glossary terms for this starting letter. 



v 
value set control. A visual component that enables 
a user to select one choice from a group of mutually 
exclusive choices. 

vector font. A set of symbols, each of which is 
created as a series of lines and curves. 
Synonymous with outline font. Contrast with image 
font. 

VGA. Video graphics array. 

viewing pipeline. The series of transformations 
applied to a graphic object to map the object to the 
device on which it is to be presented. 

viewing window. A clipping boundary that defines 
the visible part of model space. 

VIO. Video Input/Output. 

virtual memory (VM). Synonymous with virtual 
storage. 

virtual storage. (1) The storage space that may be 
regarded as addressable main storage by the user of 
a computer system in which virtual addresses are 
mapped into real addresses. The size of virtual 
storage is limited by the addressing scheme of the 
computer system and by the amount of auxiliary 
storage available, not by the actual number of main 
storage locations. (I) (A) (2) Addressable space 
that is apparent to the user as the processor storage 
space, from which the instructions and the data are 
mapped into the processor storage locations. (3) 
Synonymous with virtual memory. 

visible region. A window's presentation space, 
clipped to the boundary of the window and the 
boundaries of any overlying window. 

volume. (1) A file-system driver that uses a block 
device driver for input and output operations to a 
local or remote device. (I) (2) A portion of data, 
together with its data carrier, that can be handled 
conveniently as a unit. 

w 
wildcard character. Synonymous with global 
file-name character. 

window. (1) A portion of- a display surface in which 
display images pertaining to a particular application 
can be presented. Different applications can be 
displayed simultaneously in different windows. (A) 
(2) An area of the screen with visible boundaries 
within which information is displayed. A window can 
be smaller than or the same size as the screen. 
Windows can appear to overlap on the screen. 

window class. The grouping of windows whose 
processing needs conform to the services provided 
by one window procedure. 

window coordinates. A set of coordinates by 
which a window position or size is defined; measured 
in device units, or pels. 

window handle. Unique identifier of a window, 
generated by Presentation Manager when the 
window is created, and used by applications to direct 
messages to the window. 

window procedure. Code that is activated in 
response to a message. The procedure controls the 
appearance and behavior of its associated windows. 

window rectangle. The means by which the size 
and position of a window is described in relation to 
the desktop window. 

window resource. A read-only data segment 
stored in the .EXE file of an application 0 the .DLL 
file of a dynamiC link library. 

window style. The set of properties that influence 
how events related to a particular window will be 
processed. 

window title. In SAA Advanced Common User 
Access architecture, the area in the title bar that 
contains the name of the application and the OS/2 
operating system file name, if applicable. 

workstation. (1) A display screen together with 
attachments such as a keyboard, a local copy 
device, or a tablet. (2) (D of C) One or more 
programmable or nonprogrammable devices that 
allow a user to do work. 

Glossary X-27 



world coordinates. A device-independent 
Cartesian coordinate system used by the application 
program for specifying graphical input and 
output. (I) (A) 

world-coordinate space. Coordinate space in 
which graphics are defined before transformations 
are applied. 

WYSIWYG. What-You-See-Is-What-You-Get. A 
capability of a text editor to continually display pages 
exactly as they will be printed. 

x 
There are no glossary terms for this starting letter. 

y 
There are no glossary terms for this starting letter. 

X-28 PM Advanced Programming Guide 

z 
z-order. The order in which sibling windows are 
presented. The topmost sibling window obscures 
any portion of the siblings that it overlaps; the same 
effect occurs down through the order of lower sibling 
windows. 

zooming. The progressive scaling of an entire 
display image in order to give the visual impression 
of movement of all or part of a display group toward 
or away from an observer. (I) (A) 

8.3 file-name format. A file-naming convention in 
which file names are limited to eight characters 
before and three characters after a single dot. 
Usually pronounced "eight-dot-three." See also 
non-B.3 file-name format. 



Index 

Special Characters 
*.dat string filter 10-3 

A 
ACCEL data structure 13-6 
accessing 

DRAGINFO 12-4 
networked files 1 0-5 

acknowledging support of specific topic 14-8 
advanced topics, container control 8-27 
advanced topics, notebook control 9-24 
advise transaction type 14-9 
allocating 

DRAGINFO 12-3, 12-18 
memory for container columns 8-17 
memory for container records 8-16 
memory for container records when using 

MINIRECORDCORE 8-37 
shared-memory object 14-8 

allocating memory for container records, code 8-17 
application 

allocating memory for container records 8-16 
as client and server 14-1 
creating a file dialog 10-2 
creating and associating page windows 9-11 
custom dialog procedure 11-3 
customizing notebook to meet needs 9-1 
DDE definition 14-5 
deleting notebook pages 9-16 
extensions 12-17 
freeing allocated memory 8-20 
information displayed 9-12 
input filtering 13-4 
inserting messages into system-message 

queue 13-6 
invalidating pages 9-12 
optimizing container memory usage 8-36 
page windows, working with 9-9 
providing information to user with notebook 9-3 
providing initial slider value 6-18 
sending BKM_SETPAGEWINDOWHWND 9-12 
sending BKM_SETSTATUSLINETEXT 9-10 
specific text for the OK push button 10-3 
specifying deltas for large amounts of data 8-31 

© Copyright IBM Corp. 1994 

application (continued) 
using a container 8-14 
using circular sliders 6-5 
using direct manipulation data transfer 12-3 
using hooks 13-1 
using sliders 6-1 
writing a source 12-3 

application-defined drag operations 12-2 
application-specific available font sizes 11-2 
arranging, value set items 7-9 
associating 

application page windows 9-11 
journal-playback hook with system-message 

queue 13-6 
text string with status line 9-10 
window handle with inserted page 9-12 

atom table 
creating DDE formats and a unique clipboard 

format 15-5 
creating unique window-message atoms 15-4 
creation and usage count 15-3 
deletion 15-3 
description 15-1 
functions table 15-16 
handle 15-1 
private atom table 15-1 
queries 15-3 
string atoms 15-2 
string formats, table 15-4 
system atom table 15-1 
types 15-2 
using 15-4 
WinAddAtom 15-16 
WinCreateAtomTable 15-16 
WinDeleteAtom 15-16 
WinDestroyAtomTable 15-16 
WinFindAtom 15-16 
WinQueryAtomLength 15-16 
WinQueryAtomUsage 15-16 
WinQuerySystemAtomTable 15-16 
WinRegisterUserDatatype 15-16 
WinRegisterUserMsg 15-16 

attributes 
BKA_ALL 9-16 
BKA_AUTOPAGESIZE 9-24 
BKA_FIRST 9-10 

X-29 



attributes (continued) 
BKA_LAST 9-10 
BKA_MAJOR 9-4, 9-9 
BKA_MINOR 9-4, 9-9 
BKA_NEXT 9-10 
BKA_PREV 9-10 
BKA_SINGLE 9-16 
BKA _ STATUSTEXTON 9-10 
BKA_TAB 9-16 
CA_DRAWBITMAP 8-21 
CA_DRAWICON 8-21 
CA_MIXEDTARGETEMPH 8-30 
CA_ORDEREDTARGETEMPH 8-30 
CA_ TITLEREADONL Y 8-32 
CFA_FIREADONL Y 8-32 
CFA_FITITLEREADONLY 8-32 
CMA_DELTA 8-31 
CMA_END 8-19 
CMA_FIRST 8-19 
CMA _FREE 8-20 
CRA_FILTERED 8-36 
CRA_RECORDREADONLY 8-32 
CV _DETAIL 8-11 
CVJCON 8-3 
CV_NAME 8-5 
CV_TEXT 8-7 
CV _TEXT I CV _FLOW 8-7 
CV_TREE 8-8 
extended 12-14 
mapping presentation parameter 9-17 
passing list of extended 10-3 

augmentation emphasis, placing 12-5 
augmentation keys, using 12-32 
augmentation, keyboard 12-31 
automatic selection 7 -10 

B 
back pages, default notebook 9-3 
basics, value set control 7-6 
binding placement, notebook control 9-3 
bit-map/text pairs 8-3 
BKA_ALL 9-16 
BKA_FIRST 9-10 
BKA_LAST 9-10 
BKA_MAJOR 9-4 
BKA_MINOR 9-4 
BKA_NEWPAGESIZE 9-24 
BKA_NEXT 9-10 

X-30 PM Advanced Programming Guide 

BKA _PREY 9-10 
BKA_SINGLE 9-16 
BKA_STATUSTEXTON 9-10 
BKA_TAB 9-16 
BKM_CALCPAGERECT 9-29,9-54 
BKM_DELETEPAGE 9-30, 9-54 
BKMJNSERTPAGE 9-4,9-9,9-31,9-54 
BKMJNVALIDATETABS 9-32,9-54 
BKM_OUERYPAGECOUNT 9-33, 9-54 
BKM_OUERYPAGEDATA 9-34,9-54 
BKM_OUERYPAGEID 9-16,9-34,9-54 
BKM_OUERYPAGEINFO 9-36,9-54 
BKM_OUERYPAGESTYLE 9-36, 9-54 
BKM_OUERYPAGEWINDOWHWND 9-37, 9-54 
BKM_OUERYSTATUSLINETEXT 9-38,9-54 
BKM_OUERYTABBITMAP 9-38,9-54 
BKM_OUERYTABTEXT 9-39,9-54 
BKM_SETDIMENSIONS 9-2,9-40,9-54 
BKM _ SETNOTEBOOKCOLORS 9-18, 9-41, 9-55 
BKM_SETPAGEDATA 9-42, 9-55 
BKM_SETPAGEINFO 9-43,9-55 
BKM_SETPAGEWINDOWHWND 9-12, 9~43, 9-55 
BKM_SETSTATUSLINETEXT 9-10,9-44,9-55 
BKM _ SETT ABBITMAP 9-45, 9-55 
BKM_SETTABTEXT 9-45,9-55 
BKM_TURNTOPAGE 9-46,9-55 
BKN_ * values 9-48 
BKN_HELP 9-56 
BKN_NEWPAGESIZE 9-24,9-56 
BKN _PAGEDELETED 9-56 
BKN_PAGESELECTED 9-12,9-56 
BKN_PAGESELECTEDPENDING 9-12,9-56 
BKS_BACKPAGESBR 9-3 
BKS _ MAJORTABBOTTOM 9-3 
BKS MAJORTABRIGHT 9-3 
BKS _ SOUARETABS 9-4 
BKS _ STATUSTEXTLEFT 9-3 
BOOKTEXT 9-51,9-56 
boundaries, window 8-2, 12-4 
BS_HELP 13-7 

c 
CA _ * values 8-95 

column headings 8-96 
drawing and painting 8-96 
icons or bit maps 8-95 
ordered target emphasis 8-95 
title attributes 8-96 
title position 8-96 



CA_ * values (continued) 
titles 8-96 

CA_DRAWBITMAP 8-21 
CA_DRAWICON 8-21 
CA_MIXEDTARGETEMPH 8-30 
C~ORDEREDTARGETEMPH 8-30 
CA_TITLEREADONLY 8-32 
cb 13-9 
cbCopy 3-7 
cbDraginfo 12-18 
cbDragitem 12-18 
CBM_HILITE 2-4,2-7 
CBM_ISLISTSHOWING 2-4,2-7 
CBM_SHOWLIST 2-5,2-7 
CBN_ * values 2-6 
CBN_EFCHANGE 2-7 
CBN_EFSCROLL 2-7 
CBN_ENTER 2-7 
CBN _ LBSCROLL 2-7 
CBN _ LBSELECT 2-7 
CBN_MEMERROR 2-7 
CBN_SHOWLIST 2-7 
CBS _ DROPDOWN 2-2 
CBS_DROPDOWNLIST 2-2 
CBS_SIMPLE 2-2 
cbSize 10-2, 11-2 
CCS_AUTOPOSITION 8-4 
CDATE 8-85, 8-124 
cditem 12-18 
CFA_* values 8-100 

data types 8-1 00 
CFA_FIREADONLY 8-32 
CFA_FITITLEREADONL Y 8-32 
changing 

color of notebook major tab background 9-18 
color of notebook major tab text 9-18 
color of notebook minor tab background 9-18 
color of notebook minor tab text 9-18 
color of notebook outline 9-17 
color of notebook page background 9-19 
color of notebook selection cursor 9-17 
color of notebook window background 9-17 
colors using 

BKM _ SETNOTEBOOKCOLORS 9-18 
colors using WinSetPresParam 9-17 
container view 8-22 
notebook colors 9-17 
numbers of rows and columns 7-9 
page button size, notebook 9-2 
slider arm location on slider dial 6-5 

changing (continued) 
slider arm location on slider shaft 6-1 
tab dimensions 9-4 

child items, description 8-8 
choosing, value set control 7-1 
ClassName 8-14 
client and server application, DDE 14-1 
client and server interaction, DDE 14-1 
client window, including static control 5-6 
clipboard, comparison with DDE 14-1 
CM_ALLOCDETAILFIELDINFO 8-17,8-50,8-121 
CM_ALLOCRECORD 8-2,8-16,8-50,8-121 
CM_ARRANGE 8-4,8-51, 8-121 
CM_CLOSEEDIT 8-52,8-121 
CM_COLLAPSETREE 8-53,8-121 
CM_ERASERECORD 8-53,8-121 
CM_EXPANDTREE 8-54,8-121 
CM_FILTER 8-54,8-121 
CM_FREEDETAILFIELDINFO 8-55,8-121 
CM_FREERECORD 8-56,8-121 
CM_HORZSCROLLSPLITWINDOW 8-56,8-121 
CM_INSERTDETAILFIELDINFO 8-57, 8-121 
CMJNSERTRECORD 8-17,8-58,8-121 
CM_INVALIDATEDETAILFIELDINFO 8-58,8-121 
CM_INVALIDATERECORD 8-20,8-59,8-121 
CM_OPENEDIT 8-61,8-121 
CM_PAINTBACKGROUND 8-62,8-121 
CM_QUERYCNRINFO 8-29,8-62,8-121 
CM_QUERYDETAILFIELDINFO 8-63,8-121 
CM_QUERYDRAGIMAGE 8-64,8-122 
CM_QUERYRECORD 8-65,8-122 
CM_QUERYRECORDEMPHASIS 8-66, 8-122 
CM_QUERYRECORDFROMRECT 8-68,8-122 
CM_QUERYRECORDINFO 8-69,8-122 
CM_QUERYRECORDRECT 8-69,8-122 
CM_QUERYVIEWPORTRECT 8-70,8-122 
CM_REMOVEDETAILFIELDINFO 8-71,8-122 
CM_REMOVERECORD 8-20,8-72,8-122 
CM_SCROLLWINDOW 8-73,8-122 
CM_SEARCHSTRING 8-74,8-122 
CM_SETCNRINFO 8-16,8-29,8-75,8-122 
CM_SETRECORDEMPHASIS 8-77,8-122 
CM_SORTRECORD 8-78,8-122 
CMA_DELTA 8-31 
CMA_END 8-19 
CMA_FIRST 8-19 
CMA _FREE 8-20 
CN_* values 8-81 
CN_BEGINEDIT 8-123 

Index X-31 



CN_COLLAPSETREE 8-123 
CN_CONTEXTMENU 8-123 
CN_DRAGAFTER 8-123 
CN_DRAGLEAVE 8-123 
CN _ DRAG OVER 8-123 
CN_DROP 8-123 
CN_DROPHELP 8-123 
CN_DROPNOTIFY 8-123 
CN_EMPHASIS 8-123 
CN_ENDEDIT 8-123 
CN_ENTER 8-123 
CN_EXPANDTREE 8-123 
CN_HELP 8-123 
CNJNITDRAG 8-123 
CN_KILLFOCUS 8-123 
CN_PICKUP 8-123,12-102 
CN_QUERYDELTA 8-123 
CN_REALLOCPSZ 8-123 
CN_SCROLL 8-123 
CN_SETFOCUS 8-123 
CNRDRAGINFO 8-85, 8-124 
CNRDRAGINIT 8-87, 8-124 
CNRDRAWITEMINFO 8-87,8-88,8-124 
CNREDITDATA 8-88, 8-124 
CNRINFO 8-11,8-16,8-21,8-91,8-124 
CNRLAZVDRAGINFO 8-98,8-124 
codepage-changed hook 13-9 
Collapsed bit maps, Tree icon view 8-9 
combination-box control 

CBM_HILITE 2-7 
CBMJSLlSTSHOWING 2-7 
CBM_SHOWLIST 2-7 
CBN_EFCHANGE 2-7 
CBN_EFSCROLL 2-7 
CBN_ENTER 2-7 
CBN_LBSCROLL 2-7 
CBN_LBSELECT 2-7 
CBN_MEMERROR 2-7 
CBN_SHOWLIST 2-7 
CBS_DROPDOWN 2-2 
CBS_DROPDOWNLIST 2-2 
CBS_SIMPLE 2-2 
creating 2-3 
description 2-1 
entry-field comparison 2-1 
list-box comparison 2-1 
notification codes table 2-7 
notification messages table 2-7 
styles 2-2 
using 2-3 

X-32 PM Advanced Programming Guide 

combination-box control (continued) 
window messages table 2-7 
WM_ CONTROL 2-7 

COMBOX statement 2-3 
completing a rendering operation 12-12 
components 

destroying spin button 4-2 
notebook control 9-1 
slider 6-18 
slider controls 6-1 
spin button control 4-1 
spin button master 4-1 
spin button servant 4-1 
user interface, notebook 9-1 
value set control 7-1 

considerations for establishing a conversation 12-2 
constants 

common rendering mechanisms and 
formats 12-19 

DTYP _ * 12-19 
HK_CODEPAGECHANGED 13-1 
HK_FINDWORD 13-1 
HK_HELP 13-1 
HKJNPUT 13-1 
HK_JOURNALPLAYBACK 13-1 
HK_JOURNALRECORD 13-1 
HK_MSGFILTER 13-1 
HK_SENDMSG 13-1 
MSGF_MAINLOOP 13-5 
notational conveniences 12-19 

contained object, moving on or off 12-25 
container control 

advanced topics 8-27 
allocating memory for container columns 8-17 
allocating memory for container records 8-37 
ALLOCRECORD 8-121 
COATE 8-124 
CM_ALLOCDETAILFIELDINFO 8-121 
CM_ARRANGE 8-121 
CM_CLOSEEDIT 8-121 
CM_COLLAPSETREE 8-121 
CM_ERASERECORD 8-121 
CM-,EXPANDTREE 8-121 
CM_FILTER 8-121 
CM_FREEDETAILFIELDINFO 8-121 
CM_FREERECORD 8-121 
CM_HORZSCROLLSPLITWINDOW 8-121 
CMJNSERTDETAILFIELDINFO 8-121 
CMJNSERTRECORD 8-121 
CMJNVALIDATEDETAILFIELDINFO 8-121 



container control (continued) 
CMJNVALIDATERECORD 8-121 
CM_OPENEDIT 8-121 
CM_PAINTBACKGROUND 8-121 
CM_QUERYCNRINFO 8-121 
CM_QUERYDETAILFIELDINFO 8-121 
CM_QUERYDRAGIMAGE 8-122 
CM_QUERYRECORD 8-122 
CM_ QUERYRECORDFROMRECT 8-122 
CM_QUERYRECORDINFO 8-122 
CM_ QUERYRECORDMEPHASIS 8-122 
CM_ QUERYRECORDRECT 8-122 
CM_QUERYVIEWPORTRECT 8-122 
CM_REMOVEDETAILFIELDINFO 8-122 
CM_REMOVERECORD 8-122 
CM_SCROLLWINDOW 8-122 
CM_SEARCHSTRING 8-122 
CM_SETCNRINFO 8-122 
CM_SETRECORDEMPHASIS 8-122 
CM_SORTRECORD 8-122 
CN_BEGINEDIT 8-123 
CN_ COLLAPSETREE 8-123 
CN_CONTEXTMENU 8-123 
CN_DRAGAFTER 8-123 
CN_DRAGLEAVE 8-123 
CN_DRAGOVER 8-123 
CN_DROP 8-123 
CN_DROPHELP 8-123 
CN_DROPNOTIFY 8-123 
CN_EMPHASIS 8-123 
CN_ENDEDIT 8-123 
CN_ENTER 8-123 
CN_EXPANDTREE 8-123 
CN_HELP 8-123 
CN_INITDRAG 8-123 
CN_KILLFOCUS 8-123 
CN_PICKUP 8-123 
CN_QUERYDELTA 8-123 
CN_REALLOCPSZ 8-123 
CN_ SCROLL 8-123 
CN_SETFOCUS 8-123 
CNRDRAGINFO 8-124 
CNRDRAGINIT 8-124 
CNRDRAWITEMINFO 8-124 
CNREDITDATA 8-124 
CNRINFO 8-124 
CNRLAZYDRAGINFO 8-124 
creating a container 8-14 
CTIME 8-124 
CV_DETAIL 8-11 

container control (continued) 
CVJCON 8-3 
CV_NAME 8-5 
CV_TEXT 8-7 
CV _TREE 8-8, 
data structures table 8-124 
default view 8-3 
Details view 8-11 
Details view with container title, 8-34 
Details view with split bar example 8-13 
direct editing of text in a container 8-31 
displaying Collapsed and Expanded icon/bit 

map 8-10 
dynamic scrolling 8-23 
extended selection 8-24 
FIELDINFO 8-124 
FIELDINFOINSERT 8-124 
filtering container items 8-36 
first-letter selection 8-24 
flowed Name view 8-6 
flowed Text view 8-7 
flowing container items 8-5 
freeing memory associated with records 8-20 
functions 8-1 
GUI support, description 8-22 
Icon view 8-3 
Icon view with items arranged or automatically 

positioned 8-5 
Icon view with items positioned at 

coordinates 8-4 
in-use emphasis 8-26 
inserting container records 8-17 
inserting records in a container, code 8-17 
items, filtering 8-36 
items, understanding 8-2 
marquee selection 8-24 
MINIRECORDCORE 8-124 
multiple selection 8-24 
Name view 8-5 
non-flowed Name view 8-5 
non-flowed Text view with container title 8-33 
notification codes table 8-122 
notification messages table 8-122 
NOTIFYDELTA 8-124 
NOTIFYRECORDEMPHASIS 8-124 
NOTI FYRECORDENTER 8-124 
NOTIFYSCROLL 8-124 
optimizing container memory usage 8-36 
OWNERBACKGROUND 8-124 
OWNERITEM 8-124 

Index X-33 



container control (continued) 
positioning container items 8-27 
providing emphasis 8-25 
purpose 8-1 
QUERYRECFROMRECT 8-124 
QUERYRECORDRECT 8-124 
range swipe selection 8-24 
RECORDCORE 8-124 
RECORDINSERT 8-124 
removing container records 8-20 
removing records from a container, code 8-20 
scrollable workspace areas 8-28 
scrolling 8-22 
SEARCHSTRING 8-124 
selected-state emphasis 8-26 
selecting container items 8-23 
selection mechanisms 8-23 
selection techniques 8-23 
selection types 8-23 
setting focus 8-21 
single selection 8-24 
specifying container titles 8-33 
specifying deltas for large amounts of data 8-31 
specifying fonts and colors 8-35 
specifying space between container items 8-29 
split bar support for Details view 8-13 
support for GUI 8-22 
swipe selection 8-24 
target emphasis 8-30 
Text view 8-7 
touch swipe selection 8-24 
Tree icon view and Tree text view 8-9 
Tree name view 8-10 
Tree view 8-8 
Tree view showing root level, parent, child 

example 8-8 
TREEITEMDESC 8-11, 8-125 
types of views 8-2 
understanding container items 8-2 
understanding container views 8-2 
using a container 8-14 
using direct manipulation 8-27 
window messages table 8-121 
WM _CONTROL 8-122 
WM_CONTROLPOINTER 8-122 
WM_DRAWITEM 8-122 
WM_PICKUP 8-122 
WM _PRESPARAMCHANGED 8-122 
workspace 8-27 
workspace and work area origins 8-29 

X-34 PM Advanced Programming Guide 

container name 12-20 
container of source object, making known to 

system 12-4 
container views 8-92 
container window, default Move operation 12-31 
container window, defined 12-2 
container window, emphasizing a target 

object 12-24 
container window, monitoring pointer 12-25 
containers for dragging and dropping 12-12 
controls 

combination box 2-1 
container 8-1 
DID _ APPLY_BUTTON 11-26 
DID_APPLY_PB 10-17 
DID_CANCEL_BUTTON 11-26 
DID_CANCEL_PB 10-17 
DID_DIRECTORY_LB 10-17 
DID_DIRECTORY_TXT 10-17 
DID_DISPLAY_FILTER 11-26 
DID_DRIVE_CB 10-17 
DID_DRIVE_TXT 10-17 
DID_EMPHASIS_GROUPBOX 11-26 
DID_FILE_DIALOG 10-17 
DID_FILENAME_ED 10-17 
DID_FILENAME_TXT 10-18 
DID_FILES_LB 10-18 
DID_FILES_TXT 10-18 
DID_FILTER_CB 10-18 
DID_FILTER_TXT 10-18 
DID _FONT_DIALOG 11-26 
DID_HELP _BUTTON 11-26 
DID_HELP _PB 10-18 
DID_NAME 11-26 
DID_NAME_PREFIX 11-26 
DID_OK_BUTTON 11-26 
DID_OK_PB 10-18 
DID_OUTLINE 11-27 
DID_PRINTER_FILTER 11-27 
DID_RESET _BUTTON 11-27 
DID_SAMPLE 11-27 
DID_SAMPLE_GROUPBOX 11,.27 
DID_SIZE 11-27 
DID_SIZE_PREFIX 11-27 
DID_STRIKEOUT 11-27 
DID_STYLE 11-27 
DID_STYLE_PREFIX 11-28 
DID_UNDERSCORE 11-28 
font dialog 11-1 
multiple-line entry field 3-1 



controls (continued) 
notebook 9-1 
pOinting device support, slider 6-18 
slider 6-1 
specifying 10-2 
static 5-1 
value set 7-1 

CONVCONTEXT 14-54, 14-59 
conversation 

after a drop 12-8 
DDE 12-16 
establishing for data exchange 12-5 
initial flow, DDE 14-6 
initiating DDE 14-6 
initiating, direct manipulation 12-27 
initiation procedures, direct manipulation 12-3 
terminating, direct manipulation 12-15 

copy operation, default for device 12-31 
CRA_FILTERED 8-36 
CRA_RECORDREADONLY 8-32 
creating 

a slider 6-8 
a value set, example 7-6 
application page windows 9-11 
circular slider 6-12 
combination box 2-3 
container 8-14 
DDE formats and unique clipboard format 15-5 
file dialog 10-2 
font dialog 11-2 
MLE 3-6 
notebook 9-6 
Open dialog 1 0-3 
sample code for a slider 6-8 
SaveAs dialog 10-4 
string handles 12-18 
unique window-message atoms 15-4 

creating and associating an application page window, 
sample code 9-12 

creating and associating application page 
windows 9-11 

cross products, multiple 12-19 
cross-product notation 12-19 
CSBITMAPDATA 6-45,6-49 
CSM_QUERYINCREMENT 6-23, 6-48 
CSM_QUERYRADIUS 6-23,6-48 
CSM_QUERYRANGE 6-24,6-48 
CSM_QUERYVALUE 6-24,6-48 
CSM_SETBITMAPDATA 6-25,6-48 

CSM_SETINCREMENT 6-25, 6-48 
CSM_SETRANGE 6-26,6-48 
CSM_SETVALUE 6-27, 6-48 
CSN_ CHANGED 6-49 
CSN_ QUERYBACKGROUNDCOLOR 6-49 
CSN _ SETFOCUS 6-49 
CSN_TRACKING 6-49 
CSS_360 6-6 
CSS_MIDPOINT 6-6 
CSS_NOBUTTON 6-6 
CSS_NONUMBER 6-6 
CSS _ NOTEXT 6-6 
CSS_POINTSELECT 6-6 
CSS _PROPORTIONAL TICKS 6-6 
CTIME 8-99, 8-124 
Ctrl key, using 12-32 
Ctrl+Shift, using 12-32 
cursor position, setting by MLM_SETSEL 3-2 
cursor, selection 7 -10 
customized image, providing 12-25 
customizing 

a value set 7-6 
dialog procedure 10-3 
dialog style 10-3, 11-3 
file dialog 10-2 
font dialog 11-1 
sliders 6-2 

cut, copy, and paste operations 3-5 
CV_* values 

CNRINFO 8-92 
SEARCHSTRING 8-119 
view styles 8-94 

CV_DETAIL 8-11 
CVJCON 8-3 
CV_NAME 8-5 
CV_TEXT 8-7 
CV_TREE 8-8 

D 
data exchange 12-5, 12-20 
data structures 

See structures 
data transfer 12-3 
data-transfer operation 12-8 
data, retrieving for value set items 7-8 
database container 12-20 
database manager, direct manipulation 12-21 
DC_* values 12-96 

Index X-35 



DDE 
See dynamic data exchange (DDE) 

DDE formats and unique clipboard format, 
creating 15-5 

DDE_* values 14-46,14-47,14-48,14-56 
DDE_FACK 14-9 
DDE_FACKREQ 14-9,14-10 
DDE_FAPPSTATUS 14-9 
DDE FBUSY 14-9 
DDE FNODATA 14-9 
DDE_FRESERVED 14-9 
DDE_FRESPONSE 14-9 
DDE _ NOTPROCESSED 14-9 
DDEFMT _ TEXT. 14-4 
DDEINIT 14-6,14-8,14-10,14-54,14-59 
DDESTRUCT 14-8, 14-10, 14-12, 14-56, 14-59 
default operation, performing 12-31 
default state, direct manipulation 12-31 
default style and placement of major and minor tabs 

example 9-4 
defining 

character strings 12-19 
default operation 12-31 
deltas for large amounts of data 8-31 
new rendering mechanism 12-17 

DELETENOTI FY 9-52, 9-56 
deleting 

characters, MLE 3-3 
notebook pages 9-16 
string handles 12-13, 12-25 

destroying 
spin button component window 4-2 

Details view with container title 8-34 
Details view, description 8-11 
detent, slider 6-1 
device, default Copy operation 12-31 
dialogs 

BS_HELP 13-7 
creating file 10-2 
creating Open 10-3 
example of Open 10-1 
example of SaveAs 10-1 
including static controls 5-4 
multiple-selection 10-4 
SaveAs 10-4 
single-selection 10-4 

DID_APPLY_BUTTON 11-26 
DID_APPLY_PB 10-17 
DID_CANCEL_BUTTON 11-26 

X-36 PM Advanced Programming Guide 

DID_CANCEL_PB 10-17 
DID_DIRECTORY_LB 10-17 
DID_DIRECTORY_TXT 10-17 
DID_DISPLAY_FILTER 11-26 
DID_DRIVE_CB 10-17 
DID_DRIVE_TXT 10-17 
DID _EMPHASIS_ GROUPBOX 11-26 
DID_FILE_DIALOG 10-17. 
DID_FILENAME_ED 10-17 
DID_FILENAME_TXT 10-18 
DID_FILES_LB 10-18 
DID_FILES_TXT 10-18 
DID_FILTER_CB 10-18 
DID_FILTER_TXT 10-18 
DID _FONT_DIALOG 11-26 
DID_HELP _BUTTON 11-26 
DID_HELP_PB 10-18 
DID NAME 11-26 
DID_NAME_PREFIX 11-26 
DID_OK_BUTTON 11-26 
DID_OK_PB 10-18 
DID_OUTLINE 11-27 
DID PRINTER FILTER 11-27 - -
DID RESET BUTTON 11-27 - -
DID SAMPLE 11-27 
DID_SAMPLE_GROUPBOX 11-27 
DID_SIZE 11-27 
DID_SIZE_PREFIX 11-27 
DID_STRIKEOUT 11-27 
DID STYLE 11-27 
DID STYLE PREFIX 11-28 - -
DID_UNDERSCORE 11-28 
direct editing of text in a container 8-31 
direct manipulation 

application extensions to data transfer 
protocol 12-17 

application-defined drag operations 12-2 
CN_PICKUP 12-102 
completing a rendering 12-12 
considerations for conversation 12-2 
constants for common rendering mechanisms and 

formats 12-19 
container name 12-20 
container window 12-2 
containers with objects to drag or drop on 12-12 
conversation after a drop 12-8 
creating string handles 12-18 
data structures table 12-102 
database container 12-20 
description 12-1 



direct manipulation (continued) 
determining how to exchange data 12-28 
DM_DISCARDOBJECT 12-101 
DM_DRAGERROR 12-101 
DM_DRAGFILECOMPLETE 12-101 
DM_DRAGLEAVE 12-101 
DM_DRAGOVER 12-101 
DM_DRAGOVERNOTIFY 12-101 
OM_DROP 12-25,12-101 
DM_DROPHELP 12-9, 12-101 
DM_DROPNOTIFY 12-101 
DM_EMPHASIZETARGET 12-101 
DM_ENDCONVERSATION 12-101 
DM_FILERENDERED 12-101 
DM_PRINTOBJECT 12-101 
OM_RENDER 12-102 
DM_RENDERCOMPLETE 12-102 
DM_RENDERFILE 12-102 
DM_RENDERPREPARE 12-102 
dragging an object 12-1, 12-22 
DRAGIMAGE 12-3,12-102 
DRAGINFO 12-3,12-102 
DRAGITEM 12-13,12-102 
DRAGTRANSFER 12-102 
DrgAcceptDroppedFiles 12-99 
DrgAccessDraginfo 12-99 
DrgAddStrHandle 12-99 
DrgAllocDraginfo 12-18, 12-99 
DrgAllocDragtransfer 12-99 
DrgCancelLazyDrag 12~99 
DrgDeleteDraginfoStrHandles 12-25, 12-99 
DrgDeleteStrHandle 12-25, 12-99 
DrgDrag 12-99 
DrgDragFiles 12-99 
DrgDrop 12-22 
DrgFreeDraginfo 12-25, 12-99 
DrgFreeDragtransfer 12-99 
DrgGetPS 12-100 
DrgLazyDrag 12-99 
DrgLazyDrop 12-100 
DrgPostTransferMsg 12-100 
DrgPushDraginfo 12-100 
DrgQueryDraginfoPtrFromDragitem 12-100 
DrgQueryDraginfoPtrFromHwnd 12-100 
DrgQueryDragitem 12-100 
DrgQueryDragitemCount 12-100 
DrgQueryDragitemPtr 12-100 
DrgQueryDragStatus 12-100 
DrgQueryNativeRM F 12-100 
DrgQueryNativeRMFLen 12-100 

direct manipulation (continued) 
DrgQueryStrName 12-100 
DrgQueryStrNameLen 12-100 
DrgQueryTrueType 12-100 
DrgQueryTrueTypeLen 12-100 
DrgReallocDraginfo 12-99 
DrgReleasePs 12-100 
DrgSendTransferMsg 12-100 
DrgSetDrag I mage 12-100 
DrgSetDragitem 12-18, 12-99 
DrgSetDragPointer 12-100 
DrgVerifyNativeRMF 12-100 
DrgVerifyRMF 12-101 
DrgVerifyTrueType 12-101 
DrgVerifyType 12-101 
DrgVerifyTypeSet 12-101 
drive and path information 12-20 
dropping an object 12-1, 12-25 
dynamic data exchange 12-15 
ending an operation 12-9 
extended attributes 12-14 
file folder 12-20 
file name of the database 12-20 
functions used by the source table 12-99 
functions used by the target table 12-99 
help for the drag 12-5 
hot link 12-15 
hstrContainerName 12-13 
hstrSourceName 12-13 
hstrType 12-18 
hwndltem 12-13 
initiating conversation 12-27 
keyboard remapping 12-2 
knowing name of target object 12-4 
knowing type of object 12-4 
making rendering mechanism and format 

known 12-4 
making source object container known 12-4 
making source object folder known 12-4 
mechanisms for exchanging data 12-2 
message flows 12-8 
methods of ending an operation 12-9 
mouse button designations 8-25 
multiple cross products 12-19 
name at target 12-20 
naming conventions 12-14, 12-17 
native mechanism actions 12-16 
native rendering by the target 12-13 
native rendering mechanism and format 12-20 
non-native mechanism actions 12-14 

Index X-37 



direct manipulation (continued) 
notification codes table 12-102 
object true type 12-19 
operation emphasis 12-32 
ordered pairs 12-19 
OS/2 File rendering mechanism 12-12 
performance considerations 12-17, 12-29 
post-drop conversation 12-25 
preparing for the drag 12-3 
print mechanism 12-15 
print rendering mechanism 12-14 
redefining keys 12-2 
rendering formats 12-2 
single-object move 12-8 
source container name 12-20 
source window 12-2 
source-supported formats 12-16 
target container name 12-20 
target emphasis 8-30 
target window 12-2 
terminating conversation 12-15 
two-object drag 12-6 
using 8-27 
using data transfer in an application 12-3 
using drag-button release to cancel 12-9 
using Esc key to cancel 12-9 
using F1 to cancel operation 12-9 
using in an application 12-18 
window messages table 12-101 
windows containing multiple objects 12-2 
WM_BEGINDRAG 12-6 
WM_PICKUP 12-102 
writing a source application 12-3 

directory list box 10-5 
displaying 

Collapsed and Expanded icon/bit map 8-1 0 
filter criteria 1 0-5 
individual pages of a notebook 9-2 
information on inserted pages 9-11 
notebook pages and tabs 9-19 
pages using a pointing device 9-20 
tabs using a pointing device 9-20 
text on status line, notebook 9-10 
values 10-3 
values in file list box 10-6 

DM_DISCARDOBJECT 12-80, 12-101 
DM_DRAGERROR 12-80, 12-101 
DM_DRAGFILECOMPLETE 12-81,12-101 
DM_DRAGLEAVE 12-4, 12-25, 12-82, 12-101-

X-38 PM Advanced Programming Guide 

DM_DRAGOVER 12-4, 12-22, 12-82, 12-101 
DM_DRAGOVERNOTIFY 12-84, 12-101 
DM_DROP 12-5,12-25, 12-84, 12-101 
DM_DROPHELP 12-5, 12-9, 12-85, 12-101 
DM_DROPNOTIFY 12-85, 12-101 
DM_EMPHASIZETARGET 12-86, 12-101 
DM_ENDCONVERSATION 12-12, 12-13, 12-87, 

12-101 
DM_FILERENDERED 12-87, 12-101 
DM_PRINTOBJECT 12-15, 12-88, 12-101 
DM_RENDER 12-12, 12-89, 12-102 
DM_RENDERCOMPLETE 12-12, 12-89, 12-102 
DM_RENDERFILE 12-90, 12-102 
DM_RENDERPREPARE 12-29, 12-91, 12-102 
DMFL_ * values. 12-98 
DO_* values 

DRAGINFO 12-93 
DRAG ITEM 12-97 

DO_DEFAULT 12-18 
DOR_DROP 12-5 
DOR_NEVERDROP 12-5 
DOR_NODROP 12-5 
DOR_NODROPOP 12-5 
DosAliocSharedMem 14-8 
DosFreeMem 14-8 
DosFreeModule 13-12 
DosGiveSharedMem 14-8 
DosLoadModule 13-10, 13-12 
DosQFilelnfo 12-14 
DosQueryProcAddr 13-10 
DosSetFilel nfo 12-14 
drag information 

access 12-52 
drag operations, application-defined 12-2 
drag string handles 12-18 
drag transfer 12-13 
dragging 

an object 12-1 
description 12-1 
help for the operation 12-5 
preparing for 12-3 
two objects 12-6 

DRAGIMAGE 12-3, 12-92, 12-102 
DRAGINFO 12-3, 12-25, 12-93, 12-102 
DRAGITEM 12-2, 12-13, 12-29, 12-94, 12-102 
DRAGTRANSFER 12-13, 12-97, 12-102 
DRF _ * values 12-96 
DRG_ * values 12-92 
DrgAcceptDroppedFiles 12-51, 12-99 



DrgAccessDraginfo 12-4, 12-22, 12-52, 12-99 
DrgAddStrHandle 12-19, 12-52, 12-99 
DrgAllocDraginfo 12-18, 12-53, 12-99 
DrgAllocDragtransfer 12-13, 12-54, 12-99 
DrgCancelLazyDrag 12-54, 12-99 
DrgDeleteDraginfoStrHandles 12-25, 12-55, 12-99 
DrgDeleteStrHandle 12-25, 12-56, 12-99 
DrgDrag 12-22, 12-56, 12-99 
DrgDragFiles 12-57, 12-99 
DrgFreeDraginfo 12-25, 12-59, 12-99 
DrgFreeDragtransfer 12-13, 12-59, 12-99 
DrgGetPS 12-24, 12-60, 12-100 
DrgLazyDrag 12-60, 12-99 
DrgLazyDrop 12-61, 12-100 
DrgPostTransferMsg 12-62, 12-100 
DrgPushDraginfo 12-63, 12-100 
DrgQueryDraginfoPtrFromDragitem 12-64, 12-100 
DrgQueryDraginfoPtrFromHwnd 1,2-65, 12-100 
DrgQueryDragitem 12-65, 12-100 
DrgQueryDragitemCount 12-66, 12-100 
DrgQueryDragitemPtr 12-18, 12-67, 12-100 
DrgQueryDragStatus 12-67, 12-100 
DrgQueryNativeRMF 12-28, 12-68, 12-100 
DrgQueryNativeRMFLen 12-28, 12-69, 12-100 
DrgQueryStrName 12-69, 12-100 
DrgQueryStrNameLen 12-70, 12-100 
DrgQueryTrueType 12-71, 12-100 
DrgQueryTrueTypeLen 12-71, 12-100 
DrgReallocDraglnfo 12-72, 12-99 
DrgReleasePS 12-24, 12-73, 12-100 
DrgSendTransferMsg 12-73, 12-100 
DrgSetDraglmage 12-74, 12-100 
DrgSetDragitem 12-18, 12-75, 12-99 
DrgSetDragPointer 12-75, 12-100 
DrgVerifyNativeRMF 12-28, 12-76, 12-100 
DrgVerifyRMF 12-22,12-77,12-101 
DrgVerifyTrueType 12-77,12-101 
DrgVerifyType 12-22, 12-78, 12-101 
DrgVerifyTypeSet 12-22,12-79,12-101 
drive and path information 12-20 
DRM_* values 12-95 
DRM_DDE 12-15 
DRM_OS2FILE 12-12 
DRM_PRINTOBJECT 12-14 
dropping 

an object 1 2-1 
description 12-1 
object on list box 12-5 
objects 12-25 

DRT _ * values 12-95 
DRT_C 12-19 
DRT_TEXT 12-19 
DT _ WORD BREAK 13-8 
DTYP _ * constants 12-19 
dynamic data exchange (DDE) 

advise transaction type 14-9 
applications, topics, and items 14-5 
client and server applications 14-1 
client and server interaction 14-1 
comparison with clipboard data transfer 14-1 
CONVCONTEXT 14-59 
conversation 12-16 
data structures table 14-59 
DDEINIT 14-59 
DDESTRUCT 14-59 
description of transactions 14-1 
detailed example 14-2 
direct manipulation 12-15 
execute transaction type 14-9 
functions table 14-58 
initiation 14-6 
poke transaction type 14-9 
protocol 14-1 
rendering format 12-2 
rendering mechanism 12-15 
request transaction type 14-9 
sample system 14-1 
shared-memory object 14-8 
status flags table 14-9 
system topic 14-5 
SZFMT _BITMAP 14-12 
SZFMT _ CPTEXT 14-12 
SZFMT_DIF 14-12 
SZFMT _ DSPBITMAP 14-12 
SZFMT_DSPMETAFILE 14-12 
SZFMT _ DSPTEXT 14-12 
SZFMT_LlNK 14-12 
SZFMT_METAFILE 14-12 
SZFMT_METAFILEPICT 14-12 
SZFMT _ OEMTEXT 14-12 
SZFMT_PALETTE 14-12 
SZFMT _ SYLK 14-12 
SZFMT _TEXT 14-12 
SZFMT_TIFF 14-12 
termination 14-12 
tracking portfolios 14-1 
transaction and response messages 14-9 
transaction messages 14-9 
transaction status flags 14-9 

Index X-39 



dynamic data exchange (DOE) (continued) 
unadvise transaction type 14-9 
unique data formats 14-12 
uses 14-1 
using to exchange data 12-3 
WinDdelnitiate 14-58 
WinDdePostMsg 14-58 
WinDdeRespond 14-58 
window messages table 14-58 
WM_DDE_ACK 14-58 
WM _DOE_ADVISE 14-58 
WM_DDE_DATA 14-58 
WM_DDE_EXECUTE 14-58 
WM_DDE_INITIATE 14-58 
WM_DDEJNITIATEACK 14-58 
WM_DDE_POKE 14-58 
WM_DDE_REQUEST 14-58 
WM_DDE_TERMINATE 14-58 
WM_DDE_UNADVISE 14-58 
workings of DOE protocol 14-2 

dynamic resizing and scrolling, notebook 
control 9-24 

dynamic resizing, value set control 7-11 

E 
editing 

MLE text 3-2 
text in a container, direct 8-31 

emphasis styles, selecting 11-4 
emphasis, types of 8-25 
EN_ * values 3-48 
enabling word-wrapping 3-3 
ending a direct manipulation operation 12-9 
Esc key, using to cancel direct manipulation 

operation 12-9 
establishing 

conversation between source and target 12-27 
conversation for data exchange 12-5 

examples 
allocating memory for container records 8-17 
changing a container view, code 8-22 
code for changing color of major tab 

background 9-19 
code for changing color of notebook outline 9-18 
conversation after a drop 12-8 
creating a container, sample code 8-15 
creating a value set 7-6 
creation of a notebook 9-6 
default notebook style 9-3 

X-40 PM Advanced Programming Guide 

examples (continued) 
default style and placement of major and minor 

tabs 9-4 
detailed DOE 14-2 
Details view 8-12 
Details view with container title 8-34 
Details view with split bar 8-13 
flowed Name view 8-6 
flowed Text view 8-7 
fully qualified drive and path name for source 

file 12-14 
Icon view with items arranged or automatically 

positioned 8-5 
Icon view with items positioned at 

coordinates 8-4 
initial flow of DOE conversation 14-6 
inserting records in a container 8-17 
name of source file or subdirectory 12-14 
non-flowed Name view 8-5 
non-flowed Text view 8-7 
non-flowed Text view with container title 8-33 
notebook 9-1 
notebook with tab scroll buttons displayed 9-20 
Open dialog 10-1 
removing records from a container 8-20 
sample code for changing notebook style 9-7 
sample code for creating a slider 6-8 
sample code for deleting a notebook page 9-16 
sample code for inserting notebook page 9-10 
sample DOE system 14-1 
SaveAs dialog 10-1 
scroll able area of the workspace 8-28 
setting a value using a circular slider 6-5 
setting a value using a linear slider 6-1 
spin button 4-1 
Tree icon view 8-9 
Tree name view 8-11 
Tree text view 8-10 
Tree view showing root level, parent, child 

items 8-8 
two-object drag 12-6 
value set 7-1 
workspace bounds 8-29 

exchanging 
data 12-5 
data between source and target 12-27 
data, determining how to 12-28 
data, example 14-1 

execute DOE transaction 14-12 



execute transaction type 14-9 
Expanded bit maps, Tree icon view 8-9 
exporting MLE text 3-7 
extended attribute, types 12-14 

F 
F1 key, to request help on canceling direct 

manipulation 12-9 
FACENAMEDESC 11-13,11-25 
family face, font dialog control 11-1 
family name, selecting 11-3 
FATTR_SEL_* values 11-15 
FATTR_TYPE_* values 11-16 
fAttrs 11-3, 11-14, 11-25 
FDM_ERROR 10-9, 10-16 
FDM_FILTER 10-10, 10-16 
FDM_VALIDATE 10-10, 10-16 
FDS _ * values 1 0-11 
FDS_OPEN_DIALOG 10-2 
FDS_SAVEAS_DIALOG 10-2 
FID_CLlENT 13-7 
FIELDINFO 8-11,8-17,8-100,8-124 
FIELDINFOINSERT 8-103,8-124 
fields 

cb 13-9 
cbCopy 3-7 
cbSize 10-2, 11-2 
ClassName 8-14, 9-6 
clrBack, passing color options 11-3 
clrFore, passing color options 11-3 
Drive 10-5 
fAttrs 11-3 
file name 1 0-4 
fl 10-2, 11-3 
flStyle, passing display options 11-3 
fSkip 13-6 
hpsPrinter 11-2, 11-3 
hpsScreen 11-2, 11-3 
hstrContainerName 12-13 
hstrRenderToName 12-13, 12-14 
hstrSourceName 12-13 
ich 13-9 
mapping attributes 9-17 
MSGF _DIALOGBOX 13-4 
MSGF _MESSAGEBOX 13-4 
MSGF _TRACK 13-4 
papszlDriveList 10-5 
papszlTypeList 10-3 
pfnDlgProc 10-3, 11-3 

fields (continued) 
pichEnd 13-9 
pichNext 13-9 
pichStart 13-9 
plOffset 3-7 
pQmsg 13-6 
pszClassName 15-1 
pszClientClass 15-1 
pszlDrive, displaying drive name 10-3 
pszlType 10-3 
pszOKButton 10-3 
pszPreview 11-2 
pszPtSizeList 11-2 
pszText 13-9 
pszTitle 10-3, 11-2 
setting flags 10-3 
sNominalPointSize 11-3 
szFuliFile 10-3 
Type 10-5 
ulCnrStyles 8-14 
ulNotebookStyles 9-6 
ulValueSetStyle 7-6 
usCodePage 13-9 
usFormat 14-12 
usWeight 11-3 
usWidth 11-3 
x, passing initial dialog position 10-3 
y, passing initial dialog position 10-3 

fifth parameter, WinDdePostMsg 14-10 
file dialog control 

accessing networked files 10-5 
basic functions 10-1 
creating Open 10-3 
creating SaveAS 10-4 
customizing 10-2 
data structures table 10-16 
description 10-1 
DID_APPLY_PB 10-17 
DID_CANCEL_PB 10-17 
DID_DIRECTORY_LB 10-17 
DID_DIRECTORY_TXT 10-17 
DID_DRIVE_CB 10-17 
DID_DRIVE_TXT 10-17 
DID_FILE_DIALOG 10-17 
DID_FILENAME_ED 10-17 
DID_FILENAME_TXT 10-18 
DID_FILES_LB 10-18 
DID_FILES_TXT 10-18 
DID_FILTER_CB 10-18 
DID_FILTER_TXT 10-18 

Index X-41 



file dialog control (continued) 
DID_HELP _PB 10-18 
DID_OK_PB 10-18 
directory list box 10-5 
displaying filter criteria 10-5 
displaying values 10-3 
FDM_ERROR 10-16 
FDM_FILTER 10-16 
FDM_VALIDATE 10-16 
file list box 10-4 
FI LEDLG 10-3, 10-16 
functions table 10-16 
initial file to be used in dialog 10-3 
multiple-selection list box 10-4 
Open dialog 10-1 
papszlDriveList 10-5 
passing list of extended attributes 10-3 
passing name of drive 10-3 
pszlType 10-5 
SaveAs dialog 10-1 
selecting a drive 10-5 
single-selection list box 10-4 
specifying a custom dialog procedure 10-3 
standard controls 1 0-2 
standard controls table 1 0-17 
type field 10-5 
user interface 10-4 
using a single-line entry field 10-4 
WinDefFileDlgProc 10-16 
window messages table 10-16 
WinFileDlg 10-16 
WinFreeFileDlgList 10-16 

file list box 10-4 
file name field 10-4 
FILEDLG 10-3,10-11,10-16 
filter check box, font dialog 11-4 
filter flags, initializing 11-3 
filtering 

container items 8-36 
file information 10-3 

find-word hook 13-8 
fl 10-2 
flags 

DDE_FACK 14-9 
DDE_FACKREQ 14-9, 14-10 
DT _ WORDBREAK 13-8 
FAPPSTATUS 14-9 
FBUSY 14-9 
FDS_OPEN_DIALOG 10-2 
FDS_SAVEAS_DIALOG 10-2 

X-42 PM Advanced Programming Guide 

flags (continued) 
flFlags 11-3 
FNODATA 14-9 
FNTF _NOVIEWPRINTERFONTS 11-3 
FNTF _NOVIEWSCREENFONTS 11-3 
FNTS_* 11-3 
FRESERVE 14-9 
FRESPONSE 14-9 
MLFSEARCH_CASESENSITIVE 3-11 
MLFSEARCH_CHANGEALL 3-11 
MLFSEARCH_SELECTMATCH 3-11 
NOTPROCESSED 14-9 
PM_NOREMOVE 13-2 
PM_REMOVE 13-2 
setting, font dialog 11-3 
transaction status 14-9 

flFlags 11-3 
flowed Name view, description 8-6 
flowed Text view, description 8-7 
flowing container items, description 8-5 
flType 11-3 
FNTF _ * values 11-20 
FNTF _NOVIEWPRINTERFONTS 11-3 
FNTF _NOVIEWSCREENFONTS 11-3 
FNTM_FACENAMECHANGED 11-7, 11-25 
FNTM_FILTERLIST 11-7, 11-25 
FNTM_POINTSIZECHANGED 11-9, 11-25 
FNTM_STYLECHANGED 11-9,11-25 
FNTM_UPDATEPREVIEW 11-10, 11-25 
FNTS_ * values 11-19 
focus 

setting container control 8-21 
static control keyboard 5-1 

focus window 
FlO_CLIENT 13-7 

folder for source object, making known to 
system 12-4 

font dialog basic functions, list of 11-1 
font dialog control 

basic functions 11-1 
cbSize 11-2 
creating 11-2 
customizing 11-1 
data structures table 11-25 
DID_APPLY_BUnON 11-26 
DID_CANCEL_BUnON 11-26 
DID_DISPLAY_FILTER 11-26 
DID_EMPHASIS_GROUPBOX 11-26 
DID_FONT_DIALOG 11-26 
DID_HELP_BUnON 11-26 



font dialog control (continued) 
DID_NAME 11-26 
DID_NAME_PREFIX 11-26 

,DID_OK_BUTTON 11-26 
DID_OUTLINE 11-27 
DID_PRINTER_FILTER 11-27 
DID_RESET_BUTTON 11-27 
DID_SAMPLE 11-27 
DID_SAMPLE_GROUPBOX 11-27 
DID_SIZE 11-27 
DID_SIZE_PREFIX 11-27 
DID_STRIKEOUT 11-27 
DID_STYLE 11-27 
DID_STYLE_PREFIX 11-28 
DID_UNDERSCORE 11-28 
FACENAMEDESC 11-25 
fAttrs 11-3, 11-25 
filter check box 11-4 
flFlags 11-3 
FNTM_FACENAMECHANGED 11-25 
FNTM_FILTERLIST 11-25 
FNTM_POINTSIZECHANGED 11-25 
FNTM _ STYLECHANGED 11-25 
FNTM_UPDATEPREVIEW 11-25 
FONTDLG 11-25 
functions table 11-25 
graphical user interface support 11-3 
hpsPrinter 11-2 
hpsScreen 11-2 
invoking dialog first time 11-3 
making controls invisible 11-1 
names of typefaces 11-1 
notification messages table 11-25 
pfnDlgProc 11-3 
preview area 11-4 
pszFamilyname 11-2 
pszPreview 11-2 
pszPtSizeList 11-2 
pszTitle 11-2 
selecting emphasis styles 11-4 
selecting family name 11-3 
selecting font size 11-4 
selecting font style 11-3 
setting flags in fl field 11-3 
sNominalPointSize 11-3 
standard controls 11-1 
standard controls table 11-25 
STYLECHANGE 11-25 
usFamilyBufLen 11-2 
usWeight 11-3 

font dialog control (continued) 
usWidth 11-3 
WinDefFontDlg 11-25 
WinDefFontDlgProc 11-25 
window messages table 11-25 
WM_DRAWITEM 11-25 

font size, selecting 11-4 
font sizes, application-specific 11-2 
font style, selecting 11-3 
FONTDLG 11-17, 11-25 
fonts and colors, specifying 8-35 
format rectangle, MLE field 3-3 
formating text 3-3 
freeing 

DLL module 13-12 
memory associated with records 8-20 

fs 13-2 
fsControl 12-29 
fSkip 13-6 
FsStatus 14-9 
fully qualified drive and path name, source 

file 12-14 
functions 

container control 8-1 
DosAliocsharedMem 14-8 
DosFreeMem 14-8 
DosFreeModule 13-12 
DosGiveSharedMem 14-8 
DosLoadModule 13-10, 13-12 
DosQFilelnfo 12-14 
DosQueryProcAddr 13-10 
DosSetFilelnfo 12-14 
DrgAcceptDroppedFiles 12-99 
DrgAccessDraginfo 12-4, 12-22, 12-99 
DrgAddStrHandle 12-19, 12-99 
DrgAllocBraginfo 12-99 
DrgAllocDragtransfer 12-13, 12-99 
DrgCancelLazyDrag 12-99 
DrgDeleteDraginfoStrHandles 12-99 
DrgDeleteStrHandle 12-99 
DrgDrag 12-99 
DrgDragFiles 12-99 
DrgDrop 12-22 
DrgFreeDraginfo 12-99 
DrgFreeDragtransfer 12-13, 12-99 
DrgGetPS 12-24, 12-100 
DrgLazyDrag 12-99 
DrgLazyDrop 12-100 
DrgPostTransferMsg 12-100 
DrgPushDraginfo 12-100 

Index X-43 



functions (continued) 
DrgQueryDraginfoPtrFromDragitem 12-100 
DrgQueryDraginfoPtrFromHwnd 12-100 
DrgQueryDragitem 12-100 
DrgQueryDragitemCount 12-100 
DrgQueryDragitemPtr 12-100 
DrgQueryDragStatus 12-100 
DrgQueryNativeRMF 12-100 
DrgQueryNativeRM FLen 12-100 
DrgQueryStrName 12-100 
DrgQueryStrNameLen 12-100 
DrgQueryTrue Type 12-100 
DrgQueryTrueTypeLen 12-100 
DrgReallocDraginfo 12-99 
DrgReleasePS 12-24, 12-100 
DrgSendTransferMsg 12-100 
DrgSetDraglmage 12-25, 12-100 
DrgSetDragitem 12-18, 12-99 
DrgSetDragPointer 12-25, 12-100 
DrgVerifyNativeRMF 12-100 
DrgVerifyRMF 12-22, 12-101 
DrgVerifyTrueType 12-101 
DrgVerifyType 12-22, 12-101 
DrgVerifyTypeSet 12-22, 12-101 
file dialog control 1 0-1 
font dialog control 11-1 
help-hook, syntax 13-7 
hooks 13-2 
InputHook 13-2 
journal-playback hook 13-6 
journal-record hook 13-5 
MsgFilterHook 13-4, 13-38 
notebook 9-1 
RegisterUserHook 13-38 
WinAddAtom 15-16 
WinCallMsgFilter 13-4, 13-38 
WinCreateAtomTable 15-2,15-16 
WinCreateStdWindow 15-1 
WinCreateWindow 3-3, 3-6, 4-2, 6-8, 6-47, 7-6, 

7 -32, 8-14, 9-6 
WinDdelnitiate 14-4, 14-6, 14-8, 14-58 
WinDdePostMsg 14-8, 14-9, 14-10, 14-58 
WinDdeRespond 14-8, 14-58 
WinDefFileDlgProc 10-16 
WinDefFontDlg 11-25 
WinDefFontDlgProc 11-25 
WinDefWindowProc 13-7, 14-4 
WinDeleteAtom 15-16 
WinDestroyAtomTable 15-2, 15-16 
WinDestroyWindow 4-2 

X-44 PM Advanced Programming Guide 

functions (continued) 

G 

WinDispatchMsg 13-4 
WindowDCHook 13-38 
WinDrawText 13-8 
WinFileDlg 10-3, 10-16 
WinFindAtom 15-16 
WinFontDlg 11-3 
WinFreeFileDlgList 10-16 
WinGetKeyState 12-32 
WinGetMsg 13-2, 13-4 
WinGetPhysKeyState 13-6 
Win I nvalidateRect 9-54 
WinPeekMsg 13-2 
WinQueryAtomLength 15-16 
WinQueryAtomUsage 15-16 
WinQueryQueueStatus 13-6 
WinQuerySysPointer 5-18 
WinQuerySystemAtom Table 15-1, 15-16 
WinQueryWindowProcess 14-8 
WinRegister 15-1 
WinRegisterCircularSlider 6-12 
WinRegisterUserDatatype 15-16 
WinRegisterUserMsg 15-16 
WinReleaseHook 13-11, 13-12, 13-38 
WinSendMsg 6-47, 7-32, 13-3 
WinSetFocus 8-21 
WinSetHook 13-1, 13-10, 13-38 
WinSetPresParam 9-17, 9-54 
WinSetWindowPos 5-18 
WinSetWindowText 5-18 
WinShowWindow 6-47,7-32 
WinTrackRect 13-38 
WinWindowFromlD 5-18 

graphical user interface (GUI) 
container control support 8-22 
keyboard support for displaying notebooks 9-22 
notebook navigation techniques 9-19 
scrolling 8-22 
support 7-9 
support for sliders 6-18 
support for the font di~log 11-3 
support from notebook control 9-19 

GUI 
See graphical user interface (GUI) 



H 
handles 

deleting string 12-25 
drag string 12-18 
DrgAddStrHandle 12-19 
static control 5-1 
string, types of 12-18 

help for the drag operation, direct 
manipulation 12-5 

help hook 13-6 
HK_* values 13-29 
HK_CODEPAGECHANGED 13-1 
HK_FINDWORD 13-1 
HK_HELP 13-1 
HK-,NPUT 13-1 
HK_JOURNALPLAYBACK 13-1 
HK_JOURNALRECORD 13-1 
HK_MSGFILTER 13-1 
HK_SENDMSG 13-1 
HMQ_ * values 13-28 
home position, slider 6-18 
hook 

codepage-changed 13-9 
data structures table 13-38 
description 13-1 
find-word 13-8 
functions table 13-38 
help 13-6 
HK_CODEPAGECHANGED 13-1 
HK_FINDWORD 13-1 
HK_HELP 13-1 
HK_INPUT 13-1 
HK_JOURNALPLAYBACK 13-1 
HK_JOURNALRECORD 13-1 
H~MSGFILTER 13-1 
HK_SENDMSG 13-1 
input 13-2 
installing 13-10 
journal-playback 13-6 
journal-record 13-5 
list 13-1 
message-filter 13-4, 13-24 
message-monitoring 13-1 
MsgFilterHook 13-4, 13-38 
parameter values, message-filter 13-4 
QMSG 13-38 
receiving WM_HELP 13-8 
RegisterUserHook 13-38 
releasing 13-11, 13-28 

hook (continued) 
send-message 13-3 
set 13-29 
SMHSTRUCT 13-38 
SWP 13-38 
syntax for a send-message function 13-3 
TRACKINFO 13-38 
types of 13-1, 13-2 
using 13-10 
WinCallMsgFilter 13-38 
WindowDCHook 13-38 
WinReleaseHook 13-38 
WinSetHook 13-38 
WinTrackRect 13-38 
WM_BUnON1DOWN 13-5 
WM_BUnON1 UP 13-5 
WM_BUnON2DOWN 13-5 
WM_BUnON2UP 13-5 
WM_BUnON3DOWN 13-5 
WM_BUnON3UP 13-5 
WM _CHAR 13-3, 13-5 
WM_MOUSEMOVE 13-5 

hot link 12-15 
hpsPrinter 11-2, 11-3 
hpsScreen 11-2, 11-3 
hstrContainerName 12-13 
hstrRenderToName 12-13, 12-14 
hstrRMF 12-2 
hstrSourceName 12-13 
hstrType 12-18 
HWND _ * values 5-10 
HWND_DESKTOP 14-4, 14-6 
hwndltem 12-13, 12-29 
hwndSource window 12-29 

ich 13-9 
icon size, how determined 8-94 
Icon view, description 8-3 
icon, customized 12-25 
icon/text pairs 8-3 
importance of back pages, notebook control 9-3 
importing MLE text 3-7 
in-use emphasis 8-25 
include, static control in dialog window 5-4 
initializing 

conversation 12-27 
default action with OK push button 10-6 
DRAG IMAGE 12-3 

Index X-4S 



initializing (continued) 
DRAGINFO 12-3 
DRAGITEM 12-18 
FILEDLG 10-3 
filter flags 11-3 
FONTDLG 11-2 
values for users 11-3 

initiation, DDE 14-6 
InputHook 13-2 
inserting 

container records 8-17 
notebook pages 9-9 
page, sample code 9-10 
pages in a notebook 9-4 
text in MLE field 3-2 

installing hook functions 13-10 
integer atoms, description 15-2 
invalidating application page window 9-12 
invoking 

J 

dialog first time 10-3, 11-3 
file dialog 10-3 
font dialog 11-3 
Open dialog 10-3 

journal-playback hook 13-6 
journal-record hook 13-5 

K 
KC _ * values 3-43 
kerning 

enable 11-16 
keyboard 

augmentation 12-31 
focus, static control 5-1 
navigation 8-25 
remapping 12-2 

keyboard control codes 3-43 

L 
limiting user selections 10-3 
list box, dropping on 12-5 
list of flags, file dialog 10-3 

X-46 PM Advanced Programming Guide 

M 
major tabs, placing in notebook 9-4 
making choices with graphics 7-1 
making controls invisible, font dialog 11-1 
MB_HELP 13-7 
memory 

allocating for container records 8-37 
freeing 8-20 
optimizing container usage 8-36 

menu, receiving WM_HELP 13-8 
message boxes, MB_HELP style 13-7 
message flows, direct manipulation 12-8 
message queues 

inserting messages 13-6 
journal-record hook 13-5 
message-monitoring hooks 13-1 

message-monitoring hooks 13-1 
messages 

ALLOCRECORD 8-121 
BKM_,QUERYPAGEID 9-54 
BKM_,QUERYPAGEINFO 9-54 
BKM_DELETEPAGE 9-54 
BKMJNSERTPAGE 9-4,9-9,9-54 
BKMJNVALIDATETABS 9-54 
BKM_QUERYPAGECOUNT 9-54 
BKM_QUERYPAGEDATA 9-54 
BKM_QUERYPAGEID 9-16 
BKM_QUERYPAGESTYLE 9-54 
BKM_QUERYPAGEWINDOWHWND 9-54 
BKM _ QUERYSTATUSLINETEXT 9-54 
BKM_QUERYTABBITMAP 9-54 
BKM_QUERYTABTEXT 9-54 
BKM_SETDIMENSIONS 9-2,9-4,9-54 
BKM_SETNOTEBOOKCOLORS 9-18,9-55 
BKM_SETPAGEDATA 9-55 
BKM_SETPAGEINFO 9-55 
BKM_SETPAGEWINDOWHWND 9-12,9-55 
BKM_SETSTATUSLINETEXT 9-:10,9-55 
BKM_SETTABBITMAP 9-55 
BKM _ SETT ABTEXT 9-55 
BKM_TURNTOPAGE 9-55 
CALCPAGERECT 9-54 
CBM_HILITE 2-7 
CBM_ISLISTSHOWING 2-7 
CBM_SHOWLIST 2-7 
CM_ALLOCDETAILFIELDINFO 8-17,8-121 
CM_ALLOCRECORD 8-2,8-16 
CM_ARRANGE 8-4,8-121 
CM_CLOSEEDIT 8-121 



messages (continued) 
CM_COLLAPSETREE 8-121 
CM_ERASERECORD 8-121 
CM_EXPANDTREE 8-121 
CM_FILTER 8-121 
CM_FREEDETAILFIELDINFO 8-121 
CM_FREERECORD 8-121 
CM _ HORZSCROLLSPLITWI NDOW 8-121 
CM-,NSERTDETAILFIELDINFO 8-121 
CM-,NSERTRECORD 8-17,8-121 
CM-,NVALIDATEDETAILFIELDINFO 8-121 
CM-,NVALIDATERECORD 8-20,8-121 
CM_OPENEDIT 8-121 
CM_PAINTBACKGROUND 8-121 
CM_QUERYCNRINFO 8-29,8-121 
CM_QUERYDETAILFIELDINFO 8-121 
CM_QUERYDRAGIMAGE 8-122 
CM_QUERYRECORD 8-122 
CM_ QUERYRECORDFROMRECT 8-122 
CM_ QUERYRECORDINFO 8-122 
CM_QUERYRECORDMEPHASIS 8-122 
CM _ QUERYRECORDRECT 8-122 
CM_ QUERYVIEWPORTRECT 8-122 
CM_REMOVEDETAILFIELDINFO 8-122 
CM_REMOVERECORD 8-20,8-122 
CM_SCROLLWINDOW 8-122 
CM_SEARCHSTRING 8-122 
CM_SETCNRINFO 8-16,8-22,8-29,8-122 
CM_SETRECORDEMPHASIS 8-122 
CM_SORTRECORD 8-122 
CN_PICKUP 8-123, 12-102 
CSM_QUERYINCREMENT .6-48 
CSM_QUERYRADIUS 6-48 
CSM_ QUERYRANGE 6-48 
CSM_QUERYVALUE 6-48 
CSM_SETBITMAPDATA 6-48 
CSM_SETINCREMENT 6-48 
CSM_SETRANGE 6-48 
CSM_SETVALUE 6-48 
DM_DISCARDOBJECT 12-101 
DM_DRAGERROR 12-101 
DM_DRAGFILECOMPLETE 12-101 
DM_DRAGLEAVE 12-4, 12-25, 12-101 
DM_DRAGOVER 12-4, 12-101 
DM_DRAGOVERNOTIFY 12-101 
DM_DROP 12-5, 12-25, 12-101 
DM_DROPHELP 12-5, 12-9, 12-101 
DM_DROPNOTIFY 12-101 
DM_EMPHASIZETARGET 12-101 
DM_ENDCONVERSATION 12-12, 12-13, 

12-101 

messages (continued) 
DM_FILERENDERED 12-101 
DM_PRINTOBJECT 12-15, 12-101 
DM_RENDER 12-12, 12-102 
DM_RENDERCOMPLETE 12-12,12-102 
DM_RENDERFILE 12-102 
DM _ RENDERPREPARE 12-29, 12-102 
DOR_DROP 12-5 
DOR_NEVERDROP 12-5 
DOR_NODROP 12-5 
DOR_NODROPOP 12-5 
drag transfer 12-13 
FDM_ERROR 10-16 
FDM_FILTER 10-16 
FDM_VALIDATE 10-16 
FNTM_FACENAMECHANGED 11-25 
FNTM_FIL TERLIST 11-25 
FNTM_POINTSIZECHANGED 11-25 
FNTM_STYLECHANGED 11-25 
FNTM_UPDATEPREVIEW 11-25 
inserting into system-message queue 13-6 
MLM_CHARFROMLINE 3-59 
MLM_CLEAR 3-3,3-5,3-59 
MLM_COPY 3-5,3-59 
MLM_CUT 3-5,3-59 
MLM_DELETE 3-3,3-59 
MLM_DISABLEREFRESH 3-4,3-59 
MLM_ENABLEREFRESH 3-4,3-59 
MLM_EXPORT 3-4,3-9,3-59 
MLM_FORMAT 3-59 
MLM-,MPORT 3-4,3-7,3-59 
MLM_INSERT 3-2,3-59 
MLM_LlNEFROMCHAR 3-59 
MLM_PASTE 3-5,3-59 
MLM_QUERYBACKCOLOR 3-4,3-59 
MLM_QUERYCHANGED 3-2,3-59 
MLM_QUERYFIRSTCHAR 3-1,3-59 
MLM_QUERYFONT 3-4,3-59 
MLM_QUERYFORMATLINELENGTH 3-4, 3-59 
MLM_QUERYFORMATRECT 3-3,3-59 
MLM_QUERYFORMATTEXTLENGTH 3-4,3-59 
MLM _ QUERYIMPORTEXPORT 3-59 
MLM_QUERYLINECOUNT 3-59 
MLM_QUERYLINELENGTH 3-59 
MLM_QUERYREADONLY 3-3,3-59 
MLM_QUERYSEL 3-2,3-59 
MLM_QUERYSELTEXT 3-5,3-60 
MLM_QUERYTABSTOP 3-3,3-60 
MLM_QUERYTEXTCOLOR 3-4,3-60 
MLM_QUERYTEXTLENGTH 3-60 

Index X-47 



messages (continued) 
MLM_QUERYTEXTLIMIT 3-60 
MLM_QUERYUNDO 3-3, 3-60 
MLM_QUERYWRAP 3-60 
MLM_RESETUNDO 3-3, 3-60 
MLM_SEARCH 3-5,3-11,3-60 
MLM_SETBACKCOLOR 3-4,3-60 
MLM_SETCHANGED 3-2,3-60 
MLM_SETFIRSTCHAR 3-1, 3-60 
MLM_SETFONT 3-4,3-60 
MLM_SETFORMATRECT 3-3,3-60 
MLM_SETIMPORTEXPORT 3-4,3-7,3-60 
MLM_SETREADONLY 3-3,3-60 
MLM_SETSEL 3-2,3-60 
MLM_SETTABSTOP 3-3,3-60 
MLM_SETTEXTCOLOR 3-4,3-60 
MLM_SETTEXTLIMIT 3-60 
MLM_SETWRAP 3-3,3-60 
MLM_UNDO 3-3, 3-60 
responding to DM _ DRAG OVER 12-22 
send, WinSendMsg 6-21 
sending DM_DRAGOVER to a target 12-22 
SLM_ADDDETENT 6-47 
SLM_QUERYDETENTPOS 6-47 
SLM_QUERYSCALETEXT 6-47 
SLM_QUERYSLIDERINFO 6-11, 6-47 
SLM_QUERYTICKPOS 6-47 
SLM_QUERYTICKSIZE 6-47 
SLM_REMOVEDETENT 6-47 
SLM_SETSCALETEXT 6-47 
SLM_SETSLIDERINFO 6-18,6-47 
SLM_SETTICKSIZE 6-47 
SM._QUERYHANDLE 5-1,5-2,5-18 
SM_SETHANDLE 5-1,5-2,5-18 
SPBM_OVERRIDESETLIMITS 4-15 
SPBM_QUERYLIMITS 4-15 
SPBM_QUERYVALUE 4-15 
SPBM_SETARRAY 4-15 
SPBM_SETCURRENTVALUE 4-15 
SPBM_SETLIMITS 4-15 
SPBM_SETMASTER 4-15 
SPBM_SETTEXTLIMIT 4-15 
SPBM_SPINDOWN 4-15 
SPBM_SPINUP 4-15 
transaction and response, DDE 14-9 
VM_QUERYITEM 7-8, 7-32 
VM_QUERYITEMATTR 7-8,7-32 
VM_QUERYMETRICS 7-32 
VM_QUERYSELECTEDITEM 7-8 
VM_QURYSELECTEDITEM 7-32 

X-48 PM Advanced Programming Guide 

messages (continued) 
VM_SELECTITEM 7-10, 7-32 
VM_SETITEM 7-32 
VM_SETITEMATTR 7-32 
VM_SETMETRICS 7-32 
WM_ADJUSTWINDOWPOS 5-2 
WM_BEGINDRAG 12-6 
WM_BUTTON1 DOWN 13-5 
WM_BUTTON1 UP 13-5 
WM_BUTTON2DOWN 13-5 
WM_BUTTON2UP 13-5 
WM_BUTTON3DOWN 13-5 
WM_BUTTON3UP 13-5 
WM_CHAR 6-47,6-48,7-32,9-55, 13-3, 13-5 
WM_CONTROL 5-18,9-55 
WM_CONTROLPOINTER 9-55 
WM_DDE_ACK 12-16, 14-4, 14-10,14-58 
WM_DDE_ADVISE 12-15, 14-4, 14-9, 14-58 
WM_DDE_DATA 12-16, 14-4, 14-10, 14-58 
WM_DDE_EXECUTE 14-9, 14-58 
WM_DDEJNITIATE 12-15, 14-4, 14-6, 14-9, 

14-58 
WM_DDEJNITIATEACK 14-4, 14-8, 14-58 
WM_DDE_POKE 14-9, 14-58 
WM_DDE_REQUEST 12-15,14-9,14-58 
WM_DDE_TERMINATE 12-15, 12-16, 14-5, 

14-58 
WM_DDE_UNADVISE 12-15,14-5,14-9, 14-58 
WM_DESTROY 5-2 
WM_DRAWITEM 9-55, 11-25 
WM_ENABLE 5-2 
WM_HELP 13-6 
WM_HITTEST 5-2 
WM_JOURNALNOTIFY 13-6 
WM_MATCHMNEMONIC 5-2,5-18 
WM_MOUSEMOVE 5-2,13-5 
WM_PAINT 5-2 
WM_PICKUP 8-122, 12-102 
WM_PRESPARAMCHANGED 5-18,6-47,6-49, 

7 -32, 8-122, 9-55 
WM_QUERYCONVERTPOS 5-18 
WM_QUERYDLGCODE 5-2 
WM_QUERYWINDOWPARAMS 5-2,5-18,6-47, 

6-49,7-32 
WM_SETFOCUS 5-1,5-2 
WM_SETWINDOWPARAMS 5-2, 5-18,6-47, 

6-49,7-32 
WM_SIZE '7-11,7-32,9-55 

mini-icon size, how determined 8-94 



MINIRECORDCORE 8-2,8-104,8-124 
MLE 

See multiple-line entry (MLE) field control 
MLE_SEARCHDATA 3-5,3-11,3-57 
MLECTLDATA 3-54,3-62 
MLEMARGSTRUCT 3-55, 3-62 
MLEOVERFLOW 3-56,3-62 
MLESEARCHDATA 3-62 
MLFIE_CFTEXT 3-4 
MLFIE_NOTRANS 3-4 
MLFIE_WINFMT 3-4 
MLFSEARCH_ CASESENSITIVE 3-11 
MLFSEARCH_CHANGEALL 3-5,3-11 
MLFSEARCH _ SELECTMATCH 3-5, 3-11 
MLM_CHARFROMLINE 3-13, 3-59 
MLM_CLEAR 3-3,3-5,3-13,3-59 
MLM_COPY 3-5,3-13,3-59 
MLM_CUT 3-5,3-14,3-59 
MLM_DELETE 3-3,3-15,3-59 
MLM_DISABLEREFRESH 3-4,3-15,3-59 
MLM_ENABLEREFRESH 3-4,3-16,3-59 
MLM_EXPORT 3-4,3-9,3-16,3-59 
MLM_FORMAT 3-16,3-59 
MLM_IMPORT 3-4,3-7,3-17,3-59 
MLMJNSERT 3-2,3-18,3-59 
MLM_LlNEFROMCHAR 3-18,3-59 
MLM_PASTE 3-5,3-19,3-59 
MLM_OUERYBACKCOLOR 3-4,3-19,3-59 
MLM_OUERYCHANGED 3~,~19,3~9 

MLM_OUERYFIRSTCHAR 3-1,3-20,3-59 
MLM_ OUERYFONT 3-4, 3-21, 3-59 
MLM_OUERYFORMATLINELENGTH 3-4,3-21, 

3-59 
MLM_OUERYFORMATRECT 3-3, 3-22, 3-59 
MLM_OUERYFORMATTEXTLENGTH 3-4, 3-22, 

3-59 
MLM_OUERYIMPORTEXPORT 3-22, 3-59 
MLM_OUERYLINECOUNT 3-23,3-59 
MLM_OUERYLINELENGTH 3-24,3-59 
MLM_OUERYREADONLY 3-3,3-24,3-59 
MLM_OUERYSEL 3-2,3-24,3-59 
MLM_OUERYSELTEXT 3-5,3-25,3-60 
MLM_OUERYTABSTOP 3-3,3-26,3-60 
MLM_ OUERYTEXTCOLOR 3-4, 3-27, 3-60 
MLM_ OUERYTEXTLENGTH 3-27, 3-60 
MLM_OUERYTEXTLIMIT 3-28, 3-60 
MLM_OUERYUNDO 3-3,3-28,3-60 

,MLM_OUERYWRAP 3-29,3-60 
MLM_RESETUNDO 3-3,3-30, 3-60 

MLM_SEARCH 3-5, 3-11, 3-31,3-60 
MLM_SETBACKCOLOR 3-4,3-31,3-60 
MLM_SETCHANGED 3-2,3-32,3-60 
MLM_SETFIRSTCHAR 3-1, 3-32, 3-60 
MLM_SETFONT 3-4,3-33,3-60 
MLM_SETFORMATRECT 3-3, 3-33, 3-60 
MLM_SETIMPORTEXPORT 3-4, 3-7, 3-35,3-60 
MLM_SETREADONLY 3-3, 3-35, 3-60 
MLM_SETSEL 3-2,3-36,3-60 
MLM_SETTABSTOP 3-3,3-36,3-60 
MLM_SETTEXTCOLOR 3-4, 3-37, 3-60 
MLM_SETTEXTLIMIT 3-37,3-60 
MLM_SETWRAP 3-3,3-38, 3-60 
MLM_UNDO 3-3,3-38,3-60 
MLN_CHANGE 3-61 
MLN_CLPBDFAIL 3-61 
MLN_HSCROLL 3-61 
MLN_KILLFOCUS 3-61 
MLN_MARGIN 3-61 
MLN_MEMERROR 3-61 
MLN_OVERFLOW 3-61 
MLN_PIXHORZOVERFLOW 3-61 
MLN_PIXVERTOVERFLOW 3-61 
MLN_SEARCHPAUSE 3-61 
MLN_SETFOCUS 3-61 
MLN_TEXTOVERFLOW 3-61 
MLN_UNDOOVERFLOW 3-61 
MLN_ VSCROLL 3-61 
MLS_BORDER 3-1,3-6 
MLS_DISABLEUNDO 3-1 
MLS_HSCROLL 3-1 
MLSJGNORETAB 3-1 
MLS_READONLY 3-1,3-3 
MLS_VSCROLL 3-1 
MLS_WORDWRAP 3-1,3-3 
mnemonic selection 7 -11 
monitoring pointer, container window 12-25 
Move operation, default for container window 12-31 
moving on or off contained object 12-25 
MSGF _ * values 13-24, 13-26 
MSGF _DIALOG BOX 13-4 
MSGF _MAINLOOP 13-5 
MSGF _ MESSAGEBOX 13-4 
MSGF _TRACK 13-4 
MsgFilterHook 13-4, 13-24, 13-38 
multiple-line entry (MLE) field control 

creating 3-6 
cut, copy, and paste operations 3-5 
data structures table 3-62 
description 3-1 

Index X-49 



multiple-line entry (MLE) field control (continued) 
DISABLEUN,DO 3-1 
importing and exporting MLE text 3-7 
MLECTLDATA 3-62 
MLEMARGSTRUCT 3-62 
MLEOVERFLOW 3-62 
MLESEARCHDATA 3-62 
MLM_COPY 3-59 
MLM_CUT 3-59 
MLM_DELETE 3-59 
MLM_DISABLEREFRESH 3-59 
MLM_ENABLEREFRESH 3-59 
MLM_EXPORT 3-59 
MLM_FORMAT 3-59 
MLMJMPORT 3-59 
MLM_INSERT 3-59 
MLM_LlNEFROMCHAR 3-59 
MLM_PASTE 3-59 
MLM_OUERYBACKCOLOR 3-59 
MLM_OUERYCHANGED 3-59 
MLM_OUERYFIRSTCHAR 3-59 
MLM_OUERYFONT 3-59 
MLM_OUERYFORMATLINELENGTH 3-59 
MLM_OUERYFORMATRECT 3-59 

. MLM_OUERYFORMATTEXTLENGTH 3-59 
MLM_OUERYIMPORTEXPORT 3-59 
MLM_OUERYLINECOUNT 3-59 
MLM_OUERYLINELENGTH 3-59 
MLM_OUERYREADONLY 3-59 
MLM_OUERYSEL 3-59 
MLM_OUERYSELTEXT 3-60 
MLM_OUERYTABSTOP 3-60 
MLM_OUERYTEXTCOLOR 3-60 
MLM_OUERYTEXTLE:NGTH 3-60 
MLM_OUERYTEXTLIMIT 3-60 
MLM_OUERYUNDO 3-60 
MLM_OUERYWRAP 3-60 
MLM_RESETUNDO 3-60 
MLM_SEARCH 3-60 
MLM_SETBACKCOLOR 3-60 
MLM_SETCHANGED 3-60 
MLM_SETFIRSTCHAR 3-60 
MLM_SETFONT 3-60 
MLM_SETFORMATRECT 3-60 
MLM_SETIMPORTEXPORT 3-60 
MLM_SETREADONLY 3-60 
MLM_SETSEL 3-60 
MLM_SETTABSTOP 3-60 
MLM_SETTEXTCOLOR 3-60 
MLM_SETTEXTLIMIT 3-60 

X-50 PM Advanced Programming Guide 

multiple-line entry (MLE) field control (continued) 
MLM_SETWRAP 3-60 
MLM_UNDO 3-60 
MLN_CHANGE 3-61 
MLN_CLPBDFAIL 3-61 
MLN_HSCROLL 3-61 
MLN_KILLFOCUS 3-61 
MLN_MARGIN 3-61 
MLN_MEMERROR 3-61 
MLN_OVERFLOW 3-61 
MLN_PIXHORZOVERFLOW 3-61 
MLN_PIXVERTOVERFLOW 3-61 
MLN_SEARCHPAUSE 3-61 
MLN_SETFOCUS 3-61 
MLN_TEXTOVERFLOW 3-61 
MLN_UNDOOVERFLOW 3-61 
MLN_ VSCROLL 3-61 
MLS_BORDER 3-1 
MLS _ HSCROLL 3-1 
MLSJGNORETAB 3-1 
MLS_READONLY 3-1 
MLS _ VSCROLL 3-1 
notification codes 3-1 
notification codes table 3-61 
notification messages table 3-61 
purpose 3-1 
search and replace operations 3-5 
searching text 3-11 
styles table 3-1 
text editing 3~2 

text formats table 3-4 
text formatting 3-3 
text import and export operations 3-4 
using 3-6 
window messages received table 3-59 
window messages sent table 3-60 
WM_BUTTON1 DBLCLK 3-60 
WM_BUTTON1 DOWN 3-60 
WM_BUTTON1UP 3-60 
WM_ CHAR 3-60 
WM _CONTROL 3-61 
WM_ENABLE 3-60 
WM_MOUSEMOVE 3-60 
WM_OUERYWINDOWPARAMS 3-61 
WM_SETWINDOWPARAMS 3-61 
WNDPARAMS 3-62 

MYSOURCE.C 12-14 
MYSOURCE.H 12-14 



N 
name at target 12-20 
name of target object, making known to 

system 12-4 
Name view, description 8-5 
naming conventions, direct manipulation 12-17 
native 

copy action 12-17 
rendering by the target 12-13 
rendering mechanism and format 12-2, 12-4, 

12-12,12-20 
navigation techniques 7-10 
non-flowed Name view, description 8-5 
non-flowed Text view with container title 8-33 
non-native mechanism 12-14 
normal presentation space 
notational conveniences 12-19 
notebook control 

advanced topics 9-24 
appearance 9-6 
associating window handle with inserted 

page 9-12 
back pages 9-3 
binding placement 9-3 
BKM_DELETEPAGE 9-54 
BKMJNSERTPAGE 9-9,9-54 
BKM_INVALIDATETABS 9-54 
BKM_QUERYPAGECOUNT 9-54 
BKM_QUERYPAGEDATA 9-54 
BKM_QUERYPAGEID 9-54 
BKM_QUERYPAGEINFO 9-54 
BKM_QUERYPAGESTYLE 9-54 
BKM_QUERYPAGEWINDOWHWND 9-54 
BKM_QUERYSTATUSLINETEXT 9-54 
BKM _ QUERYT ABBITMAP 9-54 
BKM_QUERYTABTEXT 9-54 
BKM_SETDIMENSIONS 9-54 
BKM _ SETNOTEBOOKCOLORS 9-55 
BKM_SETPAGEDATA 9-55 
BKM_SETPAGEINFO 9-55 
BKM_SETPAGEWINDOWHWND 9-55 
BKM_SETSTATUSLINETEXT 9-55 
BKM_SETTABBITMAP 9-55 
BKM_SETTABTEXT 9-55 
BKM_ TURNTOPAGE 9-55 
BKN_HELP 9-56 
BKN_NEWPAGESIZE 9-56 
BKN_PAGEDELETED 9-56 
BKN_PAGESELECTED 9-56 

notebook control (continued) 
BKN_PAGESELECTEDPENDING 9-56 
BKS _MAJORTABBOTTOM 9-3 
BKS_MAJORTABRIGHT 9-3 
BKS _ STATUSTEXTLEFT 9-3 
BOOKTEXT 9-56 
CALCPAGERECT 9-54 
changing color of major tab background 9-18 
changing color of major tab text 9-18 
changing color of minor tab background 9-18 
changing color of minor tab text 9-18 
changing color of notebook page 

background 9-19 
changing color of outline 9-17 
changing color of selection cursor 9-17 
changing color of window background 9-17 
changing colors using 

BKM_SETNOTEBOOKCOLORS 9-18 
changing page button size 9-2 
colors 9-17 
creating 9-6 
customizing 9-1 
data structures table 9-56 
defining sections 9-9 
DELETENOTIFY 9-56 
deleting pages 9-16 
description 9-1 
displaying text on status line 9-10 
dynamic resizing and scrolling 9-24 
enhancing performance 9-24 
example with tab scroll buttons displayed 9-20 
functions table 9-54 
graphical user interface (GUI), support for 9-19 
importance of back pages 9-3 
inserting pages 9-4, 9-9 
invalidating application window 9-12 
major tab placement 9-3 
minor tab placement 9-3 
notebook navigation techniques 9-19 
notification codes table 9-56 
notification messages table 9-55 
organizing data 9-1 
page buttons 9-2 
page buttons, unavailable-state emphasis 9-2 
PAGESELECTNOTIFY 9-56 
PPAGEINFO 9-56 
purpose 9-1 
sample code for changing color of major tab 

background 9-19 
sample code for changing color of notebook 

outline 9-18 

Index X-51 



notebook control (continued) 
sample code for changing style 9-7 
sample code for inserting page 9-10 
selecting pages for display 9-2 
shape of tabs 9-4 
specifying major tabs 9-3 
specifying minor tabs 9-4 
status line 9-3, 9-10 
style table 9-4 
styles 9-5 
using BKM_OUERYPAGEID 9-16 
using page buttons 9-20 
using pointing device to display pages 9-20 
using tab scroll buttons 9-20 
window messages table 9-54 
WinlnvalidateRect 9-54 
WinSetPresParam 9-54 
WM _CHAR 9-55 
WM _CONTROL 9-55 
WM_CONTROLPOINTER 9-55 
WM_DRAWITEM 9-55 
WM_PRESPARAMCHANGED 9-55 
WM_SIZE 9-55 

notification codes 
BKN_HELP 9-56 
BKN_NEWPAGESIZE 9-56 
BKN_PAGEDELETED 9-56 
BKN_PAGESELECTED 9-12,9-56 
BKN_PAGESELECTEDPENDING 9-12,9-56 
CBN_EFCHANGE 2-7 
CBN_EFSCROLL 2-7 
CBN _ ENTER 2-7 
CBN_LBSCROLL 2-7 
CBN_LBSELECT 2-7 
CBN_MEMERROR 2-7 
CBN _ SHOWLIST 2-7 
CN_BEGINEDIT 8-123 
CN _ COLLAPSETREE 8-123 
CN_CONTEXTMENU 8-123 
CN _ DRAGAFTER 8-123 
CN_DRAGLEAVE 8-123 
CN _ DRAGOVER 8-123 
CN_DROP 8-123 
CN_DROPHELP 8-123 
CN_DROPNOTIFY 8-123 
CN_EMPHASIS 8-123 
CN_ENDEDIT 8-123 
CN_ENTER 8-123 
CN_EXPANDTREE 8-123 
CN_HELP 8-123 

X-52 PM Advanced Programming Guide 

notification codes (continued) 
CNJNITDRAG 8-123 
CN_KILLFOCUS 8-123 
CN_OUERYDELTA 8-123 
CN_REALLOCPSZ 8-123 
CN_SCROLL 8-123 
CN _ SETFOCUS 8-123 
CSN_CHANGED 6-49 
CSN_QUERYBACKGROUNDCOLOR 6-49 
CSN _ SETFOCUS 6-49 
CSN_TRACKING 6-49 
MLE 3-1 
MLN_CHANGE 3-61 
MLN_CLPBDFAIL 3-61 
MLN_HSCROLL 3-61 
MLN_KILLFOCUS 3-61 
MLN_MARGIN 3-61 
MLN_MEMERROR 3-61 
MLN OVERFLOW 3-61 
MLN_PIXHORZOVERFLOW 3-61 
MLN_PIXVERTOVERFLOW 3-61 
MLN_SEARCHPAUSE 3-61 
MLN_SETFOCUS 3-61 
MLN_ TEXTOVERFLOW 3-61 
MLN_UNDOOVERFLOW 3-61 
MLN_ VSCROLL 3-61 
SLN_CHANGE 6-48 
SLN_KILLFOCUS 6-48 
SLN _ SETFOCUS 6-48 
SLN SLiDERTRACK 6-48 
SPBN_CHANGE 4-15 
SPBN _ DOWNARROW 4-15 
SPBN ENDSPIN 4-15 
SPBN_KILLFOCUS 4-15 
SPBN _ SETFOCUS 4-15 
SPBN_UPARROW 4-15 
VN .DRAGLEAVE 7-33 
VN DRAGOVER 7 -33 
VN_DROP 7-33 
VN_DROPHELP 7-33 
VN_ENTER 7-33 
VN_HELP 7-33 
VNJNITDRAG 7-33 
VN _ KI LLFOCUS 7 -33 
VN_SELECT 7-33 
VN_SETFOCUS 7-33 

notification messages 
WM BUTTON1 DBLCLK 3-60 
WM _BUTTON 1 DOWN 3-60 
WM_BUTTON1UP 3-60 



notification messages (continued) 
WM _CHAR 3-60 
WM_CONTROL 2-7,3-61,4-15,6-48,6-49, 

7-33, 8-122 
WM_CONTROLPOINTER 6-48, 6-49, 7-33, 

8-122 
WM_DRAWITEM 6-48,7-33,8-122 
WM_ENABLE 3-60 
WM_MOUSEMOVE 3-60 
WM_OUERYWINDOWPARAMS 3-61 
WM_SETWINDOWPARAMS 3-61 

NOTIFYDELTA 8-106,8-124 
NOTIFYRECORDEMPHASIS 8-107,8-124 
NOTIFYRECORDENTER 8-108,8-124 
NOTIFYSCROLL 8-109,8-124 

o 
Open dialog 10-1 
operation emphasis, direct manipulation 12-32 
operations 

cut, copy, and paste 3-5 
MLE text import and export 3-4 
search and replace 3-5, 

optimizing container memory usage 8-36 
ordered-pair notation 12-19 
OWNERBACKGROUND 8-110, 8-124 
OWNERITEM 8-111, 8-124, 11-11 

WM_DRAWITEM for font dialog 11-11 

p 
page buttons, notebook 9-2, 9-20 
PAGESELECTNOTIFY 9-52,9-56 
painting tabs, notebook control 9-24 
papszlDriveList 10-5 
papszlTypeList 10-3 
parameters 

See fields 
parent items, description 8-8 
passing 

color options 11-3 
display options 11-3 
initial position of dialog 10-3 
list of extended attributes 10-3 
name of extended-attribute filter 10-3 
the family name 11-2 

performance considerations 12-29 
pfnDlgProc 10-3, 11-3 

pichEnd 13-9 
pichNext 13-9 
pichStart 13-9 
pi Offset 3-7 
PM _ NOREMOVE 13-2 
PM REMOVE 13-2 
point selection, circular slider 6-7 
pointing device support, notebook control 9-20 
poke transaction type 14-9 
positioning container items 8-27 
post-drop conversation 12-25 
PPAGEINFO 9-56 
pOmsg 13-2, 13-6 
preparing for a drag 12-3 
Presentation Manager interface 

displaying application page window 9-11 
presentation space, container window 12-24 
preventing target rendering 12-13 
preview area, font dialog 11-4 
print rendering mechanism 12-14 
printer fonts 11-3 
private atom, description 15-1 
providing 

customized images 12-25 
emphasis 8-25 
pointers, container records 8-17 
target emphasis 12-24 
visible feedback 12-25 

pszClassName 15-1 
pszClientClass 15-1 
pszFamilyname 11-2 
pszlType 10-3, 10-5 
pszOKButton 10-3 
pszPreview 11 -2 
pszPtSizeList 11-2 
pszText 13-9 
pszTitle 10-3, 11-2 

Q 
OMSG 13-2, 13-32, 13-38 
OUERYRECFROMRECT 8-112, 8-124 
OUERYRECORDRECT 8-113,8-124 

R 
receiving, WM_HELP menu 13-8 
RECORDCORE 8-2, 8-114, 8-124 
RECORDINSERT 8-17,8-117,8-124 

Index X-53 



rectangle 
invalidate 9-26 

redefining keys 12-2 
refreshing values in the directory list box 10-6 
registering circular slider class 6-12 
RegisterUserHook 13-25, 13-38 
releasing 

drag button to cancel direct manipulation 
operation 12-9 

hook functions 13-11 
resources 12-12 

releasing the storage, direct manipulation 12-25 
removing 

container records 8-20 
target emphasis 12-5 

rendering 
format, direct manipulation 12-2 
mechanism 12-3 
mechanism and format 12-19 
mechanism and format, making known to 

system 12-4 
native, allowed 12-12 
operation 12-12 
preventing target 12-13 
request for 12-12 

requesting 
render for a object 12-12 
source to render 12-13 
transaction type 14-9 

resizing, dynamic 7-11 
response to DM_DRAGOVER message 12-5, 

12-22 
retrieving 

anchor point and cursor position 3-2 
data for value set items 7-8 
data represented by slider 6-11 

RUM_* values 15-15 

S 
sample code 

allocating memory for container records 8-17 
changing a container view 8-22 
creating a container 8-15 
creating a spin button 4-2 
creating an MLE by using 

WinCreateWindow 3-6 
creating an MLE field using an MLE 

statement 3-6 
creating and associating an application page 

window 9-12 

X-54 PM Advanced Programming Guide 

sample code (continued) 
exporting text from an MLE field, then 

storing 3-10 
for creating a value set 7-6 
for retrieving data for value set items 7-8 
how servers respond to 

WM_DDEJNITIATE 14-7 
installing hook function in thread message 

queue 13-10 
messages filtering 13-4 
reading text from a file to a buffer, then 

importing 3-8 
syntax for a message-filter hook 13-4 
syntax for a send-message hook function 13-3 
syntax for codepage-changed hook 

function 13-9 
syntax for find-word hook function 13-9 
syntax for help-hook function 13-7 
syntax for input-hook function 13-2 
syntax for journal-playback hook function 13-6 
syntax for journal-record hook function 13-5 

sample value set 7-1 
SaveAs dialog 10-1 
scrolling 

dynamic 8-23 
in container control 8-22 
workspace areas 8-28 

search and replace operations. 3-5 
searching MLE text 3-11 
SEARCHSTRING 8-118, 8-124 
selected-state emphasis 7-10, 8-25 
selecting 

container items 8-23 
drive 10-5 
emphasis styles 11-4 
family name 11-3 
font size 11-4 
font style 11-3 
initial drive and directory 10-3 
pages for display 9-2 
slider values 6-18 
spin button values 4-1 
tabs in a notebook 9-20 
value set control 7-1 
value set items 7-10 
values using detents 6-19 
values using slider arm 6-18 
values using slider buttons 6-18 
values using slider shaft 6-18 



send-message hooks 13-3 
setting 

a value using a circular slider, example 6-5 
a value using a linear slider, example 6-1 
colors and fonts 3-4 
container control focus 8-21 
cursor position 3-2 
FDS_* 10-3 
flags, font dialog 11-3 
line length, MLE field 3-3 
notebook default 9-6 

shared memory 
allocating 14-8 
freeing 12-13 
in DDE 14-1 
issuing transactions 14-8 
object 14-8 

sharing memory DDE object 14-8 
Shift key, using 12-32 
single selection, notebook control 9-20 
single selection, slider 6-18 
single selection, value set item 7-10 
single-line entry (SLE) fields 

spin field 4-1 
using in file dialogs 10-4 

single-object move, direct manipulation 12-8 
single-selection directory list box 10-5 
SLDCDATA 6-45, 6-48 
SLE 

See single-line entry (SLE) fields 
slider controls 6-1 

and the CUA user interface 6-2 
arm 6-1 , 6-5, 6-18 
buttons 6-18 
circular example 6-5 
controls 6-1 
creating 6-8 
CSBITMAPDATA 6-49 
CSM_QUERYINCREMENT 6-48 
CSM_QUERYRADIUS 6-48 
CSM_QUERYRANGE 6-48 
CSM_QUERYVALUE 6-48 
CSM _ SETBITMAPDATA 6-48 
CSM_SETINCREMENT 6-48 
CSM _ SETRANGE 6-48 
CSM_SETVALUE 6-48 
CSN CHANGED 6-49 
CSN= QUERYBACKGROUNDCOLOR 6-49 
CSN_SETFOCUS 6-49 
CSN_TRACKING 6-49 

slider controls (continued) 
customizing 6-2 
data structures table 6-48, 6-49 
detents 6-19 
functions table 6-47 
graphical user interface support for 6-18 
home position 6-18 
initial value 6-18 
keyboard support 6-19 
linear example 6-1 
messages 6-8 
navigation techniques 6-19 
notification codes table 6-48, 6-49 
notification messages table 6-48, 6-49 
pointing device support 6-18 
retrieving represented data 6-11 
sample code for creating 6-8 
selecting values 6-18 
selection techniques 6-19 
shaft 6-1, 6-18 
SLDCDATA 6-48 
SLM_ADDDETENT 6-47 
SLM_QUERYDETENTPOS 6-47 
SLM_QUERYSCALETEXT 6-47 
SLM_QUERYSLIDERINFO 6-47 
SLM_QUERYTICKPOS 6-47 
SLM_QUERYTICKSIZE 6-47 
SLM_REMOVEDETENT 6-47 
SLM_SETSCALETEXT 6-47 
SLM_SETSLIDERINFO 6-47 
SLM_SETTICKSIZE 6-47 
SLN _CHANGE 6-48 
SLN_KILLFOCUS 6-48 
SLN _ SETFOCUS 6-48 
SLN_SLlDERTRACK 6-48 
specifying variables 6-8 
style variable 6-8 
using 6-1 
using circular 6-5 
values 6-1 
values on circular 6-5 
which control window has focus 6-18 
WinCreateWindow 6-47 
window messages table 6-47,6-48 
WinSendMsg 6-47 
WinShowWindow 6-47 
WM_CHAR 6-47,6-48 
WM_CONTROL 6-48,6-49 
WM_CONTROLPOINTER 6-48,6-49 
WM_DRAWITEM 6-48 

Index X-55 



slider controls (continued) 
WM_PRESPARAMCHANGED 6-47,6-49 
WM_QUERYWINDOWPARAMS 6-47, 6-49 
WM_SETWINDOWPARAMS 6-47,6-49 

SLM_ADDDETENT 6-27, 6-47 
SLM_QUERYDETENTPOS 6-28,6-47 
SLM_QUERYSCALETEXT 6-29,6-47 
SLM_QUERYSLIDERINFO 6-11,6-30,6-47 
SLM_QUERYTICKPOS 6-31,6-47 
SLM_QUERYTICKSIZE 6-32,6-47 
SLM_REMOVEDETENT 6-32,6-47 
SLM_SETSCALETEXT 6-33,6-47 
SLM_SETSLIDERINFO 6-18,6-34,6-47 
SLM_SETTICKSIZE 6-36,6-47 
SLN_CHANGE 6-48 
SLN_KILLFOCUS 6-48 
SLN_SETFOCUS 6-48 
SLN_SLlDERTRACK 6-48 
SLS _ * values 6-8 
SLS_PRIMARYSCALE1 6-18 
SLS_PRIMARYSCALE2 6-18 
SM_QUERYHANDLE 5-1,5-2,5-14,5-18 
SM_SETHANDLE 5-1, 5-2, 5-14, 5-18 
SMHSTRUCT 13-3, 13-33, 13-38 
sNominalPointSize 11-3 
source application, writing 12-3 
source container name 12-20 
source file, fully qualified drive and path 

name 12-14 
source name, direct manipulation 12-20 
source-supported formats 12-16 
source,· direct manipulation 12-2 
SPBCDATA 4-14 
SPBM_OVERRIDESETLIMITS 4-5,4-15 
SPBM_QUERYLIMITS 4-5, 4-15 
SPBM_QUERYVALUE 4-6,4-15 
SPBM_SETARRAY 4-8,4-15 
SPBM_SETCURRENTVALUE 4-8,4-15 
SPBM_SETLIMITS 4-8,4-15 
SPBM_SETMASTER 4-9,4-15 
SPBM_SETTEXTLIMIT 4-10,4-15 
SPBM_SPINDOWN 4-10,4-15 
SPBM_SPINUP 4-11,4-15 
SPBN_CHANGE 4-15 
SPBN_DOWNARROW 4-15 
SPBN_ENDSPIN 4-15 
SPBN_KILLFOCUS 4-15 
SPBN_SETFOCUS 4-15 
SPBN_UPARROW 4-15 

X-56 PM Advanced Programming Guide 

specifying 
container titles 8-33 
custom dialog procedure 10-3 
deltas for large amounts of data 8-31 
fonts and colors 8~35 
major tabs 9-3 
minor tabs, notebook control 9-4 
notebook colors, sizes, orientations 9-1 
rows and columns 7-6 
space between container items 8-29 
standard controls 1 0-2 
style bits 6-8 
variables for slider control 6-8 
word wrapping 3-3 

spin button control 
control 4-1 
data structure table 4-16 
description 4-1 
input parameter to WinDestroyWindow 4-2 
master component 4-1 
multi-field 4-1 
notification codes table 4-15 
notification messages table 4-15 
purpose of 4-1 
scrolling a list of values 4-4 
selecting several values 4-1 
servant components 4-1 
single-line entry field 4-1 
SPBM_OVERRIDESETLIMITS 4-15 
SPBM_QUERYLIMITS 4-15 
SPBM_QUERYVALUE 4-15 
SPBM_SETARRAY 4-15 
SPBM_SETCURRENTVALUE 4-15 
SPBM_SETLIMITS 4-15 
SPBM_SETMASTER 4-15 
SPBM_SETTEXTLIMIT 4-15 
SPBM_SPINDOWN 4-15 
SPBM_SPINUP 4-15 
SPBN_CHANGE 4-15 
SPBN_DOWNARROW 4-15 
SPBN_ENDSPIN 4-15 
SPBN_KILLFOCUS 4-15 
SPBN_SETFOCUS 4-15 
SPBN_UPARROW 4-15 
style flags 4-2 
user interaction 4-4 
viewing values in a spin field 4-4 
WinCreateWindow 4-2 
window messages table 4-15 
WM_CONTROL 4-15 



split bar support for Details view 8-13 
SPTR_ * values 5-9 
SS_BITMAP 5-1 
SS_BKGNDFRAME 5-1 
SS_BKGNDRECT 5-1 
SS_FGNDFRAME 5-1 
SS_FGNDRECT 5-1 
SS_GROUPBOX 5-1 
SS_HALFTONEFRAME 5-1 
SS_HALFTONERECT 5-1 
SS_ICON 5-1 
SS_SYSICON 5-1 
SS_TEXT 5-1 
standard controls, font dialog 11-1 
standard controls, set for file dialog 10-2 
standard rendering mechanisms 12-12 
starting direct manipulation operation 12-3 
static control 

default performance 5-2 
description 5-1 
functions table 5-18 
handle 5-1 
including in client window 5-6 
including in dialog window 5-4 
keyboard focus 5-1 
SM_QUERYHANDLE 5-18 
SM_SETHANDLE 5-18 
styles 5-1 
using 5-4 
window messages table 5-18 
WinQuerySysPointer 5-18 
WinSetWindowPos 5-18 
WinSetWindowText 5-18 
WinWindowFromlD 5-18 
WM_CONTROL 5-18 
WM_MATCHMNEMONIC 5-18 
WM_PRESPARAMCHANGED 5-18 
WM_ QUERYCONVERTPOS 5-18 
WM_ QUERYWINDOWPARAMS 5-18 
WM_SETWINDOWPARAMS 5-18 

static control styles 
SS_BITMAP 5-1 
SS_BKGNDFRAME 5-1 
SS_BKGNDRECT 5-1 
SS_FGNDRECT 5-1 
SS _ GROUPBOX 5-1 
SS_HALFTONEFRAME 5-1 
SS_HALFTONERECT 5-1 
SSJCON 5-1 
SS_SYSICON 5-1 

static control styles (continued) 
SS_TEXT 5-1 

status line, notebook 9-3, 9-10 
string atoms, description 15-2 
string filter 10-3 
string handle 

create 12-52 
delete 12-55, 12-56 

structures 
ACCEL 13-6 
allocating temporary for sliders 6-8 
BOOKTEXT 9-56 
COATE 8-124 
CNRDRAGINFO 8-124 
CNRDRAGINIT 8-124 
CNRDRAWITEMINFO 8-124 
CNREDITDATA 8-124 
CNRINFO 8-11, 8-16, 8-21, 8-124 
CNRLAZYDRAGINFO 8-124 
CONVCONTEXT 14-59 
CSBITMAPDATA 6-49 
CTIME 8-124 
DDEINIT 14-6, 14-8, 14-10, 14-59 
DDESTRUCT 14-8, 14-10, 14-12, 14-59 
DELETENOTIFY 9-56 
DRAGIMAGE 12-3,12-102 
DRAGINFO 12-3, 12-18, 12-102 
DRAGITEM 12-13,12-18,12-102 
DRAGTRANSFER 12-13, 12-102 
DrgAllocDraginfo 12-18 
DrgFreeDraginfo 12-25 
FACENAMEDESC 11-25 
FATIRS 11-25 
FIELDINFO 8-11,8-17,8-124 
FIELDINFOINSERT 8-124 
FILEDLG 10-3, 10-16 
FONTDLG 11-2, 11-25 
MINIRECORDCORE 8-2,8-124 
MLE_SEARCHDATA 3-5, 3-11 
MLECTLDATA 3-62 
MLEMARGSTRUCT 3-62 
MLEOVERFLOW 3-62 
MLESEARCHDATA 3-62 
NOTIFYDELTA 8-124 
NOTIFYRECORDEMPHASIS 8-124 
NOTIFYRECORDENTER 8-124 
NOTIFYSCROLL 8-124 
OWNERBACKGROUND 8-124 
OWNERITEM 8-124 
PAGESELECTNOTIFY 9-56 

Index X-57 



structures (continued) 
PPAGEINFO 9-56 
QMSG 13-2, 13-38 
QUERYRECFROMRECT 8-124 
QUERYRECORDRECT 8-124 
RECORDCORE 8-2,8-4,8-124 
RECORDINSERT 8-17,8-124 
SEARCHSTRING 8-124 
SLDCDATA 6-8, 6-48 
SMHSTRUCT 13-3, 13-38 
STYLECHANGE . 11-25 
SWP 13-38 
TRACKINFO 13-38 
TREEITEMDESC 8-11, 8-125 
VSCDATA 7-6,7-33 
VSDRAGINFO 7-33 
V8DRAGINIT 7-33 
VSTEXT 7-33 
WNDPARAMS 3-62 

STYLECHANGE 11-23, 11-25 
styles 

DISABLEUNDO 3-1 
MLE 3-1 
MLS_ 3-6 
MLS_BORDER 3-1 
MLS_HSCROLL 3-1 
MLSJGNORETAB 3-1 
MLS_READONLY 3-1,3-3 
MLS_ VSCROLL 3-1 
MLS_WORDWRAP 3-3 
notebook control 9-5 
WS_GROUP 3-6 
WS_TABSTOP 3-6 

summary 
atom table functions 15-16 
combination-box control notification codes 2-7 
combination-box control notification 

messages 2-7 
combination-box control window messages 2-7 
container control data structures 8-124 
container control notification codes 8-122 
container control notification messages 8-122 
container control window messages 8-121 
DOE data structures 14-59 
DDE functions 14-58 
DOE window messages 14-58 
direct manipulation data structures 12-102 
direct manipulation functions used by the 

source 12-99 
direct manipulation functions used by the 

target 12-99 

X-58 PM Advanced Programming Guide 

summary (continued) 
direct manipulation notification codes 12-102 
direct manipulation window messages 12-101 
file dialog control data structures 10-16 
file dialog control functions 10-16 
file dialog control standard controls 1 0-17 
file dialog control window messages 10-16 
font dialog control data structures 11-25 
font dialog control functions 11-25 
font dialog control notification messages 11-25 
font dialog control standard controls 11-25 
font dialog control window messages 11-25 
hook data structures 13-38 
hook functions 13-38 
MLE data structures 3-62 
MLE notification codes 3-61 
MLE notification messages 3-61 
MLE window messages received 3-59 
MLE window messages sent 3-60 
notebook control data structures 9-56 
notebook control functions 9-54 
notebook control notification codes 9-56 
notebook control notification messages 9-55 
notebook control window messages 9-54 
slider control data structures 6-48, 6-49 
slider control functions 6-47 
slider control notification codes 6-48, 6-49 
slider control notification messages 6-48, 6-49 
slider control window messages 6-47,6-48 
spin button control data structure 4-16 
spin button control notification codes 4-15 
spin button control notification messages 4-15 
spin button control window messages 4-15 
static control functions 5-18 
static control window messages 5-18 
value set control data structures 7-33 
value set control functions 7-32 
value set control notification codes 7 -33 
value set control notification messages 7-33 
value set control window messages 7 -32 

support 
for sliders, keyboard 6-19 
graphical user interface 7-9 
mouse 7-10 
pointing device 7 -10, 9-20 
pointing device, slider 6-18 
specific topic 14-8 
split bar for Details view 8-13 

SV_* values 
effect on container icon size 8-94 



SV _ * values (continued) 
effect on container mini-icon size 8-94 

SWP 13-34, 13-38 
SWP _ * values 5-11, 13-34 
syntax for a message-filter hook, code 13-4 
syntax for a send-message hook function, 

code 13-3 
syntax for codepage-changed hook function, 

code 13-9 
syntax for find-word hook function, code 13-9 
syntax for help-hook function 13-7 
syntax for journal-playback hook function, 

code 13-6 
syntax for journal-record hook function 13-5 
system atom, description 15-1 
system pointer 

query 5-9 
system topic, DDE 14-5 
SZDDESYS _ITEM_FORMATS 14-5 
SZDDESYS-,TEM_HELP 14-5 
SZDDESYS -'TEM _PROTOCOLS 14-6 
SZDDESYS_ITEM_RESTART 14-6 
SZDDESYS-,TEM_RTNMSG 14-6 
SZDDESYS -'TEM _SECURITY 14-6 
SZDDESYS-,TEM_STATUS 14-6 
SZDDESYS -'TEM _ SYSITEMS 14-6 
SZDDESYS-,TEM_TOPICS 14-6 
SZDDESYS_ TOPIC 14-5 
SZFMT _BITMAP 14-12 
SZFMT _ CPTEXT 14-12 
SZFMT_DIF 14-12 
SZFMT_DSPBITMAP 14-12 
SZFMT_DSPMETAFILE 14-12 
SZFMT _ DSPTEXT 14-12 
SZFMT_LlNK 14-12 
SZFMT_METAFILE 14-12 
SZFMT_METAFILEPICT 14-12 
SZFMT _ OEMTEXT 14-12 
SZFMT_PALETTE 14-12 
SZFMT _ SYLK 14-12 
SZFMT _TEXT 14-12 
SZFMT_TIFF 14-12 
szFuliFile 10-3 

T 
tab placement, notebook control 9-3 
tab scroll buttons, using 9-20 
table 

atom string formats 15-4 

table (continued) 
atom table functions 15-16 
combination-box control notification codes 2-7 
combination-box control notification 

messages 2-7 
combination-box control window messages 2-7 
combination-box styles 2-2 
container control data structures 8-124 
container control notification codes 8-122 
container control notification messages 8-122 
container control window messages 8-121 
DDE data structures 14-59 
DDE functions 14-58 
DDE status flags 14-9 
DDE system topics 14-5 
DDE window messages 14-58 
direct manipulation data structures 12-102 
direct manipulation functions used by the 

source 12-99 
direct manipulation functions used by the 

target 12-99 
direct manipulation notification codes 12-102 
direct manipulation window messages 12-101 
file dialog control data structures 10-16 
file dialog control functions 10-16 
file dialog control standard controls 10-17 
file dialog control window messages 10-16 
file dialog standard controls 10-2 
font dialog control data structures 11-25 
font dialog control functions 11-25 
font dialog control notification messages 11-25 
font dialog control standard controls 11-25 
font. dialog control window messages 11-25 
hook data structures 13-38 
hook functions 13-38 
hook parameter values (message-filter) 13-4 
hook types 13-1 
messages handled by WC_STATIC Class 5-2 
MLE data structures 3-62 
MLE notification codes 3-61 
MLE notification messages 3-61 
MLE styles 3-1 
MLE text formats 3-4 
MLE window messages received 3-59 
MLE window messages sent 3-60 
multiple-line entry field control notification 

codes 3-1 
notebook control data structures 9-56 
notebook control functions 9-54 
notebook control notification codes 9-56 

Index X-59 



table (continued) 
notebook control notification messages 9-55 
notebook control styles 9-4 
notebook control window messages 9-54 
slider control data structures 6-48, 6-49 
slider control functions 6-47 
slider control notification codes 6-48, 6-49 
slider control notification messages 6-48, 6-49 
slider control window messages 6~47, 6-48 
spin button control data structure 4-16 
spin button control notification codes 4-15 
spin button control notification messages 4-15 
spin button control window messages 4-15 
static control functions 5-18 
static control styles 5-1 
static control window messages 5-18 
value set control data structures 7-33 
value set control functions 7-32 
value set control notification codes 7-33 
value set control notification messages 7 -33 
value set control window messages 7 -32 
views of a container's contents 8-2 

target 
assessing drop acceptance 12-22 
container 12-8 
container name 12-20 
de-emphasizing 12-25 
direct manipulation 12-2 
DOR_DROP response 12-5 
DOR_NEVERDROP response 12-5 
DOR_NODROP response 12-5 
DOR_NODROPOP response 12-5 
emphasis 12-5 
emphasis, container control 8-26 
emphasis, providing 12-24 
establishing conversation with source 12-27 
object 12-24 
possible responses to DM_DRAGOVER 12-5, 

12-22 
presentation space 12-24 
preventing rendering 12-13 
understanding native rendering mechanism and 

format 12-13 
target emphasis 8-25 
techniques, navigation 7 -10 
techniques, selection 7 -10 
terminating 

DDE 14-12 
text import and export operations, MLE 3-4 

x-so PM Advanced Programming Guide 

Text view, description 8-7 
TF _ * values 13-37 
tick mark, circular slider 6-5 
tick mark, slider 6-1 
topics 

acknowledging support 14-8 
definition 14-5 
system 14-5 
SZDDESYS JTEM _FORMATS 14-5 
SZDDESYSJTEM_HELP 14-5 
SZDDESYSJTEM_PROTOCOLS 14-6 
SZDDESYS JTEM _RESTART 14-6 
SZDDESYSJTEM_RTNMSG 14-6 
SZDDESYSJTEM_SECURITY 14-6 
SZDDESYSJTEM_STATUS 14-6 
SZDDESYS_ITEM_SYSITEMS 14-6 
SZDDESYS _ITEM_TOPICS 14-6 

TRACKINFO 13-35, 13-38 
tracking modes for circular slider 6-7 
tracking portfolios 14-1 
transaction and response messages, DDE 14-9 
transaction status flags 14-9 
transaction, definition 14-8 
transaction, issuing 14-8 
Tree icon view and Tree text view, description 8-9 
Tree name, description 8-10 
Tree view, description 8-8 
TREEITEMDESC 8-11,8-120,8-125 
true type 12-13 
true type, object 12-19 
two-object drag 12-6 
Type 10-5 
type filter criteria, file dialog 10-5 
type of object, making known to system 12-4 
typefaces, common types 11-1 
typefaces, names of 11-1 
types, extended attribute 12-14 

U 
ulValueSetStyle 7-6 
unadvise transaction type 14-9 
unavailable-state emphasis 7 -10 
unavailable-state emphasis, notebook control 9-2 
understanding 

container items 8-2 
container views 8-2 
default notebook style 9-6 

unique data formats 14-12 



usCodePage 13-9 
user interface support, graphical 7-9 
user interface, file dialog 10-4 
usFamilyBufLen 11-2 
usFormat 14-12 
using 

a container 8-14 
atom tables 15-4 
augmentation keys 12-32 
BKA_FIRST 9-10 
BKA_LAST 9-10 
BKA_MAJOR 9-9 
BKA_MINOR 9-9 
BKA_NEXT 9-10 
BKA_PREV 9-10 
BKA_STATUSTEXTON 9-10 
BKM_SETSTATUSLINETEXT 9-10 
circular sliders 6-5 
combination boxes 2-3 
Ctrl key 12-32 
Ctrl+Shift 12-32 
data transfer in an application 12-3 
detents 6-19 
direct manipulation 8-27 
direct manipulation in an application 12-18 
drag button to cancel direct manipulation 

operation 12-9 
Esc key to cancel direct manipulation 

operation 12-9 
F1 to cancel direct manipulation operation 12-9 
hooks 13-10 
multiple-line entry field controls 3-6 
page buttons 9-20 
pointing device to display pages 9-20 
pointing device to display tabs 9-20 
Shift key 12-32 
slider arm 6-18 
slider buttons 6-18 
slider shaft 6-18 
sliders 6-1 
static controls 5-4 
tab scroll buttons 9-20 
value set controls 7-1 
WC_ VALUESET 7-6 
workspace coordinates 8-4 

usOperation 12-18, 12-32 
usWeight 11-3 
usWidth 11-3 

v 
value set control 

and the CUA user interface 7-1 
arranging items 7-9 
basics 7-6 
creating a value set, sample code 7-6 
data structures table 7-33 
dynamic resizing 7 -11 
functions table 7 -32 
graphical user interface support 7-9 
keyboard support 7 -10 
making choices with graphics 7-1 
navigating to items 7 -10 
navigation techniques 7 -10 
notification codes table 7 -33 
notification messages table 7 -33 
pointing device support 7 -10 
purpose 7-1 
retrieving data for items 7-8 
selected-state emphasis 7 -10 
selecting value set items 7-10 
selection techniques 7 -10 
selection types 7 -1 0 
single selection 7 -10 
styles 7-2 
supporting a pointing device 7 -10 
types of selection 7 -10 
unavailable-state emphasis 7 -10 
using 7-1 
VM_OUERYITEM 7-32 
VM_OUERYITEMATTR 7-32 
VM_OUERYMETRICS 7-32 
VM_OURYSELECTEDITEM 7-32 
VM_SELECTITEM 7-32 
VM_SETITEM 7-32 
VM _ SETITEMA TTR 7 -32 
VM_SETMETRICS 7-32 
VN_DRAGLEAVE 7-33 
VN _ DRAGOVER 7 -33 
VN_DROP 7-33 
VN_DROPHELP 7-33 
VN_ENTER 7-33 
VN_HELP 7-33 
VN_INITDRAG 7-33 
VN_KILLFOCUS 7-33 
VN_SELECT 7-33 
VN_SETFOCUS 7-33 
VSCDATA 7-6, 7-33 
VSDRAGINFO 7-33 

Index X-61 



value set control (continued) 
VSDRAGINIT 7-33 
VSTEXT 7-33 
WinCreateWindow 7 -32 
window messages table 7-32 
WinSendMsg 7-32 
WinShowWindow 7-32 
WM _CHAR 7-32 
WM _CONTROL 7 -33 
WM_CONTROLPOINTER 7-33 
WM--,-DRAWITEM 7-33 
WM _PRESPARAMCHANGED 7 -32 
WM_OUERYWINDOWPARAMS 7-32 
WM_SETWINDOWPARAMS 7-32 
WM_SIZE 7-32 

values, selecting slider 6-18 
variables 

See fields 
views 

changing container 8-22 
Details 8-11 
flowed name 8-6 
flowed text 8-7 
icon 8-3 
name 8-5 
non-flowed Name 8-5 
split bar support for Details 8-13 
Text 8-7 
Tree 8-8 
Tree icon and Tree text 8-9 
Tree name 8-1 ° 

visible cue, given to user 12-5 
visible feedback, providing 12-25 
VK_F6 arguments 13-3 
VM_OUERYITEM 7-8,7-12,7-32 
VM_OUERYITEMATTR 7-8,7-13,7-32 
VM_OUERYMETRICS 7-14,7-32 
VM_OUERYSELECTEDITEM 7-8,7-15,7-32 
VM_SELECTITEM 7-16,7-32 
VM_SETITEM 7-17,7-32 
VM_SETITEMATTR 7-18,7-32 
VM_SETMETRICS 7-20, 7-32 
VN_DRAGLEAVE 7-33 
VN_DRAGOVER 7-33 
VN_DROP 7-33 
VN_DROPHELP 7-33 
VN_ENTER 7-33 
VN_HELP 7-33 
VNJNITDRAG 7-33 

X-62 PM Advanced Programming Guide 

VN_KILLFOCUS 7-33 
VN_SELECT 7-33 
VN_SETFOCUS 7-33 
VS_* values 7-2 
VSCDATA 7 -6, 7-28, 7-33 
VSDRAGINFO 7-29, 7-33 
VSDRAGINIT 7-29,7-33 
VSTEXT 7-30,7-33 

W 
WC_CONTAINER 8-1,8-14 
WC_NOTEBOOK 9-1 
WC_SLlDER 6-1 
WC_SPINBUTTON 4-1, 4-2 
WC_VALUESET 7-1,7-6 
WinAddAtom 15-8, 15-16 
WinCallMsgFilter 13-4, 13-26, 13-38 
WinCreateAtomTable 15-2, 15-8, 15-16 
WinCreateStdWindow 15-1 
WinCreateWindow 3-3, 3-6, 6-8, 6-20, 6.:47, 7-6, 

7 -32, 8-14, 9-6 
WinDdelnitiate 14-4, 14-6, 14-8, 14-42, 14-58 
WinDdePostMsg 14-8, 14-9, 14-10, 14-43, 14-58 
WinDdeRespond 14-8, 14-45, 14-58 
WinDefFileDlgProc 10-7, 10-16 
WinDefFontDlgProc 11-5, 11-25 
WinDefWindowProc 13-7, 14-4 
WinDeleteAtom 15-9, 15-16 
WinDestroyAtomTable 15-2,15-10,15-16 
WinDestroyWindow 4-2 
WinDispatchMsg 13-4 
window boundaries 8-2, 12-4 
window classes 

ClassName 9-6 
WC_CIRCULARSLIDER 6-1 
WC_COMBOBOX 2-3 
WC_CONTAINER 8-1,8-14 
WC_NOTEBOOK 9-1 
WC_SLlDER 6-1 
WC_SPINBUTTON 4-1,4-2 
WC_VALUESET 7-1 

window styles 
AF HELP 13-6 
BS_HELP 13-7 
MIS_HELP 13-6 
SS_BITMAP 5-1 
SSJCON 5-1 
WS_GROUP 2-3 
WS_TABSTOP 2-3 



window styles (continued) 
WS_ VISIBLE 2-3, 4-2 

window types of 
container 12-2 
source 12-2 
target 12-2 

window-message atoms, creating 15-4 
WindowDCHook 13-27, 13-38 
windows 

create 6-20 
query handle from identifier 5-13 
set position 5-1 ° 
set text 5-12 
set visibility state 6-22 
show 6-22 

WinDrawText 13-8 
WinFileDlg 10-3, 10-7, 10-16 
WinFindAtom 15-10, 15-16 
WinFontDlg 11-3, 11-5, 11-25 
WinFreeFileDlgList 10-8, 10-16 
WinGetKeyState 12-32 
WinGetMsg 13-2, 13-4 
WinGetPhysKeyState 13-6 
WinlnvalidateRect 9-26, 9-54 
WinPeekMsg 13-2 
WinQueryAtomLength 15-11, 15-16 
WinQueryAtomName 15-11 
WinQueryAtomUsage 15-12, 15-16 
WinQueryQueueStatus 13-6 
WinQuerySysPointer 5-9, 5-18 
WinQuerySystemAtomTable 15-1,15-13, 15-16 
WinQueryWindowProcess 14-8 
WinRegisterCircularSlider 6-12 
WinRegisterClass 15-1 
WinRegisterUserDatatype 15-13, 15-16 
WinRegisterUserMsg 15-14, 15-16 
WinReleaseHook 13-11, 13-28, 13-38 
WinSendMsg 6-21, 6-47, 7-32, 13-3 
WinSetFocus 8-21 
WinSetHook 13-1, 13-10, 13-29, 13-38 
WinSetPresParam 9-17,9-27,9-54 
WinSetWindowPos 5-10,5-18 
WinSetWindowText 5-12,5-18 
WinShowWindow 6-22,6-47,7-32 
WinTrackRect 13-30, 13-38 
WinWindowFromlD 5-13,5-18 
WM_ADJUSTWINDOWPOS 5-2 
WM_BEGINDRAG 12-6 
WM_BUnON1DBLCLK 3-40,3-60 

WM_BunON1DOWN 3-41,3-60,13-5 
WM_BUnON1 UP 3-42,3-60, 13-5 
WM_BUnON2DOWN 13-5 
WM_BUnON2UP 13-5 
WM_BUnON3DOWN 13-5 
WM_BUnON3UP 13-5 
WM_CHAR 3-43,3-60,6-47,6-48,7-32,9-55, 

13-3, 13-5 
WM_CONTROL 2-7,3-61,4-15,5-15,5-18,6-48, 

6-49,7-33,8-122,9-55 
container control 8-81 
notebook control 9-48 
slider control 6-42 
value set control 7-25 

WM_ CONTROL (in Circular Slider Controls) 6-41 
WM_ CONTROL (in Combination Boxes) 2-6 
WM_ CONTROL (in Container Controls) 8-81 
WM_CONTROL (in Multiline Entry Fields) 3-48 
WM_CONTROL (in Notebook Controls) 9-48 
WM_CONTROL (in Slider Controls) 6-42 
WM_CONTROL (in Spin Button Controls) 4-12 
WM_CONTROL (in Value Set Controls) 7-25 
WM_CONTROLPOINTER 6-42,6-43,6-48,6-49, 

7-33,8-122,9-55 
WM_ CREATE 5-2 
WM_DDE_ACK 12-16,14-4,14-10,14-46,14-58 
WM_DDE_ADVISE 12-15, 14-4,14-9, 14-47, 14-58 
WM_DDE_DATA 12-16, 14-4, 14-10, 14-47, 14-58 
WM_DDE_EXECUTE 14-9, 14-49, 14-58 
WM_DDE_INITIATE 12-15, 14-4, 14-6, 14-9, 14-49, 

14-58 
WM_DDE_INITIATEACK 14-4, 14-8, 14-50, 14-58 
WM_DDE_POKE 14-9,14-51,14-58 
WM_DDE_REQUEST 12-15,14-9,14-51,14-58 
WM_DDE_TERMINATE 12-15, 12-16, 14-5, 14-52, 

14-58 
WM_DDE_UNADVISE 12-15, 14-5, 14-9, 14-53, 

14-58 
WM_DESTROY 5-2 
WM_DRAWITEM 6-43,6-48,7-33,8-122,9-55, 

11-25 
container control 8-82 
font dialog 11-11 
notebook control 9-49 
value set control 7-26 

WM_DRAWITEM (in Container Controls) 8-82 
WM_DRAWITEM (in Font Dialog) 11-11 
WM_DRAWITEM (in Notebook Controls) 9-49 
WM_DRAWITEM (in Value Set Controls) 7-26 

Index X-63 



WM_ENABLE 3-44, 3-60, 5-2 
WM_HELP 13-6 
WM_HITTEST 5-2 
WM_JOURNALNOTIFY 13-6 
WM_MATCHMNEMONIC 5-2,5-16,5-18 
WM_MOUSEMOVE 3-45,3-60,5-2,13-5 
WM_PAINT 5-2 
WM_PICKUP 8-79,8-122, 12-102 
WM_PRESPARAMCHANGED 5-16,5-18, 6-47, 

6-49,7-32,8-122,9-55 
container control 8-79 
notebook control 9-47 
slider control 6-37 
value set control 7 -22 

WM_PRESPARAMCHANGED (in Container 
Controls) 8-79 

WM_PRESPARAMCHANGED (in Notebook 
Controls) 9-47 

WM_PRESPARAMCHANGED (in Slider 
Controls) 6-37 

WM_PRESPARAMCHANGED (in Value Set 
Controls) 7-22 

WM_OUERYCONVERTPOS 5-16,5-18 
WM_OUERYDLGCODE 5-2 
WM_OUERYWINDOWPARAMS 3-46,3-61,5-2, 

5-18,6-47,6-49,7-32 
slider control 6-37 
value set control 7-23 

WM_OUERYWINDOWPARAMS (in Slider 
Controls) 6-37 

WM_OUERYWINDOWPARAMS (in Value Set 
Controls) 7 -23 

WM_SETFOCUS 5-1,5-2 
WM_SETWINDOWPARAMS 3-46,3-61,5-2,5-18, 

6-47, 6-49, 7-32 
slider ((ontrol 6-39 
value set control 7 -23 

WM_SETWINDOWPARAMS (in Slider 
Controls) 6-39 

WM_SETWINDOWPARAMS (in Value Set 
Controls) 7 -23 

WM_SIZE 7-11, 7-24, 7-32, 9-55 
WNDPARAMS 3-57,3-62 
word-wrapping, MLE field 3-3 
working with notebooks 9-9 
workspace and work area origins 8-29 
workspace bounds illustration 8-29 
workspace coordinates 8-4 
writing 

source application 12-3 

X-64 PM Advanced Programming Guide 

writing (continued) 
target application 12-4 

WS_GROUP 3-6 
WS_ TABSTOP 3-6 
WS_ VISIBLE 4-2 

x 
x and y fields, file dialog control 10-3 
xDrop 12-18 

y 
yDrop 12-18 



@ : • • • • 

G25H-71 04-00 

IIH 
P25H7104 


