
1

Moving Atom to Windows NT for Alpha
Eric B. Betts David P. Hunter Sharon L. Smith

Software Partner Engineering
Digital Equipment Corporation1

January 30,1999

Copyright ©Compaq Computer Corporation 1999. All rights reserved.

ABSTRACT
For the last several years, the ATOM technology has provided a flexible tool for instrumenting and
analyzing programs on DIGITAL Unix platforms. It has been used to design useful performance and
debugging tools, such as basic block counters, cache simulators, and hierarchical profilers, that have been
applied to a wide variety of applications. In this paper we present NT-Atom, a new implementation of the
Atom technology for Alpha-based Windows NT systems. NT-Atom, which is built on top of the image
modification capabilities of SPIKE, is a complete tool development framework for performance tuning and
debugging. We discuss the challenges in migrating Atom to Windows NT and maintaining its
compatibility with the Unix version of Atom. We also describe how the NT-ATOM graphical user
interface supports several new features that facilitate ease-of-use and aid in the development, maintenance,
and deployment of custom analysis tools.

INTRODUCTION
As processor implementations become increasingly complex, program behavior becomes
more sensitive to a machine’s memory hierarchy and other architectural features. A
good arsenal of software tools can help illuminate bottlenecks in a program and find
potential problems, thereby facilitating performance debugging and tuning.
Unfortunately the development of powerful performance tools does not always keep up
with changes in hardware.

In order to address this issue, researchers at DIGITAL’s Western Research Laboratory in
Palo Alto developed the Atom application programming framework [Atom1, Atom2]. A
major advantage of this technology is that it allows programmers to develop their own
performance tools. The Atom framework does this by allowing the flexible
instrumentation and analysis of programs. Atom is based on object modification
technology, in which transformations are applied to the program as a postlink step.
These transformations allow the rewriting of binary images without requiring source
code. The Atom technology has been used to design useful performance and debugging
tools, such as basic block counters, cache simulators, and hierarchical profilers, that have
been applied to a wide variety of applications. DIGITAL has effectively deployed Atom
as a product on DIGITAL Unix platforms [Atom3].

 DIGITAL’s Software Partner Engineering (SPE) group is chartered with assisting
software vendors in migrating their applications to DIGITAL Unix, OpenVMS and
Microsoft’s Windows NT operating systems. The Atom framework had been an

1 Since the time of writing DIGITAL has been acquired by Compaq Computer Corporation, and Sharon
Smith and David Hunter have joined Compaq’s Advanced and Emerging Technologies group.

2

invaluable tool for isolating application anomalies and for performance profiling under
DIGITAL Unix. Unfortunately, a similar tool development framework was not available
for Windows NT. In response, the SPE group in Palo Alto in collaboration with the
Architecture and Compiler Advanced Development group in Hudson, migrated the Atom
technology to the Windows NT operating system for Alpha. The result of this effort is
NT-Atom.

In bringing the Atom framework to Windows NT, the primary goal was to provide a
framework for a tool development environment that would improve support for building
performance tools. Experiences with the DIGITAL Unix implementation and feedback
from our software partners indicated that a simple port of the application programming
interface alone might not be sufficient to get most engineers using NT-Atom. While
users are very supportive and enthusiastic about the technology, it appeared that only the
most sophisticated users ventured beyond using the example Atom toolset that ships with
DIGITAL Unix. The goal was thus to build an environment that would allow users to
develop, deploy, and maintain custom Atom tools.

We had several objectives for creating the NT-Atom tool development environment. The
first was to preserve the existing Unix application programming interface as much as
possible. This would allow users from the Unix environment to port their existing Atom
tools to Windows NT with minimal changes. A second objective was to port a set of the
example tools that existed on DIGITAL Unix. A third objective was to maintain the
simplicity of Atom and expand it in ways that would promote its ease-of-use. A final
objective was to leverage existing work within DIGITAL. DIGITAL’s Architecture and
Compiler Advanced Development group has developed SPIKE, a postlink optimizer
running under Windows NT [SPIKE]. NT-Atom utilizes the image modification
capabilities of SPIKE. In this way NT-Atom is able to handle NT images, without our
having to migrate the Atom mechanisms that are specific to Unix images.

In the remainder of the paper we describe the implementation of NT-Atom for Alpha-
based Windows NT systems. The paper is organized as follows. The next sections give
background on Atom and related tools and describe the implementation and design of the
core NT-Atom engine. We then describe the NT-Atom tool development environment
and illustrate its functionality using a hierarchical profiling tool. The final section
summarizes the contributions of this work and describes our plans for future work.

Background
The Atom technology, developed by DIGITAL’s Western Research Laboratory in Palo
Alto, is a framework that allows for the instrumentation of executable images.
Instrumentation is accomplished by inserting instrumentation points into an executable
image at procedure, basic block, or instruction boundaries. At these specified points, new
procedure invocations are introduced into a user program. Instrumented programs are
executed in the same manner as the original program, with the new procedures being
invoked at the instrumented points in the user program. These new procedures, or
analysis routines, provide the capability for debugging and other types of analysis of the

3

program. When executed, the instrumented application produces the desired type of
analysis output as it runs.

There are examples of other efforts, mostly within the research community, that have
produced framework tools that operate in a manner similar to Atom. The most general of
these is Etch, a tool for instrumenting x86 binaries [Etch]. Etch was developed at the
University of Washington as a research vehicle for understanding program behavior and
for facilitating postlink optimization, as is done in SPIKE [SPIKE] and OM [OM]. Etch
was influenced by the Atom project and has a very similar instrumentation API.

Another research project similar to the Atom work is EEL, the Executable Editing
Library, that was developed at the University of Wisconsin [EEL]. EEL has primarily
been used to modify executables for the purpose of testing new architectural designs.
Like Atom, EEL creates an intermediate representation of the executable image that can
be easily modified to add instructions to the text segment. In addition, EEL provides a
compact description file for different RISC architectures that facilitates translation of the
intermediate representation into the appropriate instruction set.

In addition to framework tools that can be programmed to modify an executable in a
specific way, various commercial products have been developed that use instrumentation
to perform a specific function. Among these are hierarchical profilers to instrument and
analyze executables and their components, such as Hiprof by Tracepoint Technology
[Hiprof], and Visual Quantify by Pure Atria Corporation, and tools for detecting memory
leaks and access violations, such as Purify [Purify] also by Pure Atria and
BoundsChecker[NuMega] by NuMega.

Design and implementation of NT-Atom.
In the NT-Atom framework, instrumentation and analysis are accomplished with tools
that specify how an executable image is to be instrumented and subsequently analyzed.
An NT-Atom tool consists of two parts: an instrumentation dynamically linked library
(DLL) and an analysis DLL. The instrumentation DLL contains routines that indicate
where to place instrumentation points in an executable image, and the analysis DLL
contains analysis routines to be called at the various instrumentation points.

The major steps in the NT-Atom instrumentation process are as follows:

1. The user specifies an application to be instrumented and a tool to accomplish the
instrumentation:

A. An application consists of an executable image (EXE) and possibly several DLLs.
The user specifies the program EXE and some subset of the program’s DLLs for
instrumentation.

B. The user specifies a tool consisting of an instrumentation DLL and an analysis
DLL to NT-Atom. Alternatively, the user can specify an instrumentation program
and an analysis program that NT-Atom uses to create the instrumentation and
analysis DLLs.

4

2. NT-Atom loads the instrumentation DLL into memory. The instrumentation DLL
contains a routine that is called by NT-Atom that specifies how to instrument the
EXE and, if applicable, any specified DLLs. The result of this step is an instrumented
program.

3. When the instrumented program is executed, the analysis DLL specified in step 1B
above is loaded into the program’s address space so that calls to the routines in the
analysis DLL can be made at the instrumented points in the program. This step
produces any analysis output specified by the tool.

All of these steps are illustrated in Figure 1. As described above in Step 1, a user can
specify an existing tool for instrumentation, such as the example tools provided, or write
a custom user defined tool. In the latter case, source files (written in C) for the custom
defined tool are compiled into dynamically linked libraries (DLLs), either by the
developer or NT-Atom. Step 1B is depicted on the left side of the light blue dotted line
in Figure 1. Step 2 is illustrated in the middle of Figure 1 for a hypothetical program,
myprog.exe. The result of the instrumentation process is the instrumented executable,
myprog-atm.exe. Figure 1 shows a dotted dark blue line between myprog-atm.exe and
the analysis DLL, anal.dll. This represents Step 3 of the instrumentation process in
which the instrumented program is executed, the analysis DLL loaded into the same
address space as the program, and calls into the analysis DLL are made at the
instrumented points in the program.

Figure 1: NT-Atom process overview.

inst.c

anal.c

ntatom

myprog.exe

inst.dll

anal.dll

myprog-atm.exentatom
libraries

5

The remainder of this section is concerned with how the instrumentation capability of
NT-Atom (Step 2) is implemented. To perform instrumentation on the user program, NT-
Atom first builds an intermediate representation of the program’s executable image. The
program is then navigated as specified by the instrumentation DLL and instructions
inserted at the appropriate places to provide calls to the analysis routines. Building the
program’s intermediate representation and the navigation of the program are
accomplished through calls to the SPIKE library. SPIKE is an optimizer for Alpha/NT
executables and works directly with manipulating the executable image [SPIKE]. The
developers of SPIKE have provided us with a special packaging of the SPIKE internal
library calls for the NT-Atom project. In the next sections we describe the NT-Atom
application programming interface and how it uses this special SPIKE library.

NT-Atom application programming interface and implementation.
The NT-Atom application programming interface consists of data structures that
represent the various constructs in the program, and routines that allow the manipulation
of these data structures. The user level data structures in NT-Atom are shown in Table 1.
There are objects (or executable images and dynamically linked libraries in NT),
procedures, basic blocks, and instructions. The NT-Atom application programming
interface (API) allows for the instrumentation of a whole program, that is, an executable
image and the dynamically linked library images on which the executable image depends.

The NT-Atom API set consists of several groups of functions. There are functions for
navigating a program, functions for querying information about a program and its
constructs, functions for adding instrumentation analysis calls to a program, and
functions for building the intermediate representation of an executable image and writing
out an instrumented program as a new image. Table 2 lists the function groups and
some representative routines from each group.

Data Structure Description
Obj Executable Image or DLL data structure.

Proc Procedure data structure.

Block Basic block data structure (all blocks of instructions
with a single exit and entry).

Inst Instruction data structure.

Table 1: Data structures used in the NT-Atom API.

6

Function Type
Function Name Description

Navigation Routines GetFirstObj(void)
GetNextObj(Obj *)
GetFirstObjProc(Obj *)
GetNextProc(Proc *)
GetFirstBlock(Proc *)
GetNextBlock(Block *)
GetFirstInst(Block *)
GetNextInst(Inst *)

Returns the first object in the program.
Returns the next object in the program.
Returns the first proc in the object.
Returns the next proc in the object.
Returns the first block in the procedure.
Returns the next block in the procedure.
Returns the first instruction in the block.
Returns the next instruction in the block.

Query Routines GetObjInfo(Obj *,ObjInfoType)

GetProcInfo(Proc *, ProcInfoType)

GetBlockInfo(Block *,
BlockInfoType)
GetInstInfo(Inst *, InstInfoType)

IsInstType(Inst *, ITypeType)

Get specified information about the
given object.
Get specified information about the
given procedure.
Get specified information about the
given block.
Get specified information about the
given instruction.
Determine if instruction is of specified
type.

Instrumentation
Routines

AddCallProto(const char *)

AddCallProgram(PlaceType, const
char *, ...)
AddCallProc(Proc *, PlaceType,
const char *, ...)
AddCallInst(Inst *, PlaceType,
const char *, ...)

Add a prototype for the routine named
by the const char * string.
Add an analysis call before or after a
program with the given arguments.
Add an analysis call before or after a
procedure with the given arguments.
Add an analysis call before or after an
instruction with the given arguments.

Image Building and
Writing Routines

BuildObj (Obj *)

WriteObj(Obj *)

Builds up the intermediate
representation of the object.
Writes out the instrumented version of
object.

Table 2: Some representative routines in NT-Atom.

To implement the API functions, we started with a snapshot of the Unix Atom software.
We reused several of the Unix Atom internal data structures and much of the code that
manages the instrumentation at a high level. At lower levels of abstraction, for example
in the navigation of the program constructs, we used functions from the SPIKE library
and SPIKE data structures in order to accomplish the task. The SPIKE library provides
data structures that describe the executable image as a collection of routines. Each
routine is a collection of basic blocks and each basic block contains several instructions.
NT-Atom uses these data structures for the representation of the text segment of an

7

image. All of these structures are visible to the user. SPIKE also provides several data
structures that are used internally in the NT-Atom instrumentation engine. Examples of
these are data structures representing relocations, imported symbols and exported
symbols in a program.

The NT-Atom navigation, query, and image building functions have the most
straightforward implementation using SPIKE library functions. In many cases the NT-
Atom navigation and query functions map into one or two SPIKE library functions. The
NT-Atom API provides additional error checking in order to be consistent with its
exposed data structures, but the details of manipulating data structures such as
instructions, are left to the SPIKE library. An exception is the navigation of object (or
image) level data structures. NT-Atom maintains and navigates a linked list of these data
structures. SPIKE operates on a single image at a time, so NT-Atom manages the
bookkeeping associated with the images.

The NT-Atom image building and writing functions are implemented with several calls to
the SPIKE library. SPIKE provides all of the functions for laying out and writing an
image, so NT-Atom deals only with high level abstractions. In this way, NT-Atom is
cleanly separated from image level manipulations. This is advantageous since future
changes to the executable image format are completely transparent to NT-Atom.

The NT-Atom functions for adding analysis calls to an executable image require the
introduction of new instructions and possibly new argument data into the image. NT-
Atom calls routines in the SPIKE library to insert new instructions into an image. In
addition, SPIKE provides primitives to add new data to an image, so that array or
character string argument data can be passed to an analysis function. In order to pass
arguments by reference to an analysis routine in NT-Atom, each added piece of argument
data is associated with a relocation entry when the image is written. The placement of the
relocation in the image is managed by SPIKE. Any instruction referencing the new
argument data references the argument’s relocation. In this way, the exact addresses for
argument data do not have to be known when the instructions to pass argument data are
added to the instrumented executable.

NT-Atom has several functions that allow the introduction of calls to analysis routines
into an executable image. Most analysis routines that occur in the text are added with
AddCallProcedure, AddCallBlock, and AddCallInst, that each add calls to analysis
routines that occur before or after the given procedure, basic block, or instruction
executes. Calls before or after a program or DLL is loaded are achieved with
AddCallProgram or AddCallObj. AddCallProgram adds a call to an analysis routine to
occur before a program starts or after it completes, and AddCallObj adds a call to an
analysis routine to occur before any code in a DLL is executed or after all code in the
DLL completes.

AddCallProgram analysis calls that occur before a program is executed are implemented
in the following manner. Recall that the analysis routines are compiled and linked into a
separate DLL, which we refer to as the analysis DLL, that is loaded into the program’s
address space when the instrumented program is run. We link the analysis DLL with a

8

library that provides a special startup routine for the analysis DLL. This startup routine,
which is called DllMain, calls back to a routine added to the instrumented executable that
contains all of the code for invoking the analysis procedures that must occur before a
program is executed. In Windows NT, the user specified DllMain startup routine is
executed before any user code at the time the DLL is loaded. The analysis DLL is loaded
when the program is loaded and executes its DllMain routine before the program exe’s
startup routine or any other functions in the main program are executed. The steps
involved are illustrated in Figure 2. The implementation of AddCallProgram calls that
must occur after a program finishes and the implementation of AddCallObj routines are
accomplished in a similar fashion.

Variations from Unix Atom
The NT-Atom application programming interface (API) is very similar to that used in
Unix. Maintaining the same API was one of our goals in migrating Atom to Windows
NT and we accomplished this by keeping the same data structures and functionality as in
Unix. The majority of differences between NT-Atom and Unix Atom arise in the
underlying implementation of the data structures and API functions.

One major difference is that NT-Atom uses SPIKE data structures for the internal
program representation, whereas the Unix implementation of Atom has explicit data
structures for procedures, basic blocks, and instructions. Furthermore, the management of
these data structures is accomplished transparently in NT-Atom through calls to the
SPIKE library. In contrast, the manipulation of data structures for the Unix

Myprog-atm.exe

…

instrumented
program text

...

ProgramBefore:
call analrtn1
call analrtn2

...
return

anal.dll

Dllmain {
if (first time)
 call ProgramBefore
return
}

...

analrtn1 {
…
}

analrtn2 {
…
}

1. Myprog-atm.exe is
loaded.
2. DllMain is called
3.ProgramBefore routine
in instrumented image is
called.
4. Analysis routines in
anal.dll are called.

1

2

3

4

Figure 2: Implementation of AddCallProgram for ProgramBefore analysis routines.

9

implementation is done within the Unix Atom instrumentation engine. The exception is
that both Unix Atom and NT-Atom have the same high-level representation for objects
and navigate them in the same manner. In principal, it would be possible to place the
navigation of object level data structures in NT-Atom at the SPIKE level, although the
SPIKE library does not currently provide this functionality. Functions for manipulating
objects, such as laying out and writing an image, are all done at the SPIKE level in NT-
Atom. In Unix Atom, all of the code layout and adjustment of addresses is done within
the core instrumentation engine.

Another major difference between the NT-Atom and Unix Atom implementations
appears in the functions that add analysis calls to a program. As indicated above, adding
analysis calls to an executable image requires the introduction of new instructions and
possibly new argument data into the image. NT-Atom uses SPIKE library routines to add
new instructions and data to the image, and to manage relocations that are used in passing
analysis data arguments by reference. In Unix Atom, the insertion of new instructions
and data into the image is done explicitly by the instrumentation engine. Unix Atom also
explicitly manages the calculation of addresses for passing arguments by reference. It
does this by determining the offset between argument data and a referencing instruction
during the layout and adjustment of addresses, just prior to writing out the executable
image.

A further difference for functions that add analysis calls to a program is in the
implementation of AddCallProgram and AddCallObj. In the implementation of
AddCallProgram, for example, we do not assume that debugging symbols are available
for an image in NT-Atom. Thus we cannot instrument the canonical startup and exit
routines (for example, __start and _exit in C) in a program’s executable image, as is
done in Unix Atom. The NT-Atom implementation for AddCallProgram, described in
the previous section, is considerably more complex than its Unix counterpart. The
advantage is that the NT-Atom implementation does not limit instrumentation of images
to only those possessing debugging symbols.

In addition to differences in the implementation of the Atom API, we have added two
new functions to the NT-Atom API that did not exist in Unix. These are
BuildProcFlowGraph, and ReleaseProcFlowGraph, which build and destroy the control
flow graph for a given procedure. Their addition was necessary because the NT-Atom
implementation builds flow graphs for procedures one at a time, whereas Unix Atom
builds the flow graphs of all of the procedures at the beginning of instrumentation. The
NT-Atom implementation is done in this way in order to minimize the amount of
memory required to instrument an executable. The disadvantage of this approach is that
we only have access to the flow graph of one procedure at a time, and this complicates
the implementation of certain NT-Atom API routines, such as ResolveTargetProc.

BuildProcFlowGraph, and ReleaseProcFlowGraph are used implicitly in the
implementation of the navigation routines GetFirstProc and GetNextProc in order to
allow navigation through the basic blocks and instructions of a procedure, so the user
does not need to call them explicitly when navigating and instrumenting procedures in a
sequential manner. When procedures are accessed arbitrarily, however, as with the use of

10

the ResolveNamedProc function, these new functions must be used to explicitly build and
destroy a flow graph before and after the procedure is instrumented via AddCallInst,
AddCallBlock or AddCallProc. This change is the only extension of the Atom API.

A final difference between the two implementations is the way in which the analysis
routines are handled. In NT-Atom, all of the analysis routines are compiled into a
separate DLL, that is loaded into the instrumented program’s address space at the time
that the instrumented program is run (see Step 3 in Figure 1.) In contrast, in Unix Atom
the binary representation of the analysis code is inserted directly into the same image as
the instrumented program.

User Interface Implementation Issues
NT-Atom has both a command line interface and a graphical user interface (GUI). The
command line interface is similar in appearance to that used in Unix Atom. The
command line arguments are parsed by functions in a separate DLL that we call the
common library, or COMLIB. The interaction between COMLIB, the command line
interface, the GUI and the rest of the NT-Atom software is shown in Figure 3. COMLIB
determines, for example, if a tool has been specified or if instrumentation and analysis
routines have been specified and need to be built into DLLs. In addition to parsing the
command line arguments, the COMLIB has functions to build the instrumentation and
analysis DLLs if necessary, perform various types of error checking, and prepare for
instrumentation. The NT-Atom GUI takes advantage of this same functionality by calling
a function in the COMLIB that it passes arguments to, in the same format as accepted by
the command line interface. Thus both the command line interface and the GUI use the
same set of pre-instrumentation routines to prepare for the NT-Atom instrumentation
engine.

Figure 3: Components of the NT-Atom software system.

CCoommmmoonn LLiibbrraarryy SSeerrvviicceess

GGrraapphhiiccaall UUsseerr
IInntteerrffaaccee

CCoommmmaanndd
LLiinnee

NNTT--AAttoomm CCoorree SSeerrvviicceess

SSPPIIKKEE

11

In addition to the functions listed above, COMLIB has functions that provide a list of all
of the DLLs upon which a program may depend. It does this by examining the DLLs
listed in the executable image of a program, as well as the DLLs used in each DLL that
the program calls. Both the command line interface and the GUI use this function to
determine all of the DLLs that are available to be instrumented. The user selects a subset
of these DLLs to instrument. In particular, operating system DLLs cannot be
instrumented at this time. All other DLLs are eligible for instrumentation and, when
instrumented, are renamed so as not to conflict with other applications that may use the
same DLL.

The next section describes the NT-Atom tool development environment and graphical
user interface.

NT-Atom Tool Development Environment
A main objective in the development of NT-Atom was to improve its overall ease-of-use.
To accomplish this, we created the NT-Atom Tool Development Environment (TDE).
The TDE provides a streamlined graphical user interface that highlights the
instrumentation and analysis process. The TDE visually presents NT-Atom’s features
and functionality in a Microsoft Windows style point and click environment. The TDE
takes advantage of Windows user interface features such as tree views and tabbed
dialogs for organized data presentation and effortless manipulation of user and analysis
output data. The TDE has full on-line help support in the familiar Windows help format.
The TDE also has printing capabilities as well as the ability to cut and paste analysis
output data directly to other Windows programs.

Instrumenting a program and gathering analysis information with NT-Atom is
accomplished in four basic phases:

1. Select a program and optionally select some subset of the program’s
DLLs.

2. Select an instrumentation tool.
3. Instrument the program.
4. Run the program.

The TDE assists the user by enforcing these basic four phases. For example, the TDE’s
main display is shown in Figure 4. In this Figure, the “Instrument Options”, “Execute
Options” and “Output” tabs are disabled until a program to instrument and an
instrumentation tool have been selected. As the user completes each phase of the
instrumentation process, the TDE’s main display automatically updates and changes to
the next display panel. Each of these panels displays data relevant to the current phase of
instrumentation.

12

When using the Tool Development Environment the user first selects a program for
instrumentation. Once a program is selected, the TDE automatically displays all of the
program’s dependent DLLs in a flat list directly beneath the program name. At this point
the user has the option to selectively click and choose which program dependent DLLs to
instrument together with the main program. When a program dependent DLL is selected,
the light bulb icon preceding the DLL lights and text following the DLL name indicate
that it has been selected. Figure 4 shows a list of dependent DLLs for the program
clock.exe. Its dependent DLLs, comdlg32.dll, shell32.dll, kernel32.dll and rpcrt4.dll, are
selected for instrumentation.

For instrumentation, the user can select an example tool or specify a custom tool, as well
as add new tools to the environment, as described below. Once a tool is selected, the user
can then initiate the instrumentation of the program and its DLLs. After the program is
instrumented, the analysis phase is accomplished by executing the program. When the
program’s execution is complete, analysis data are displayed in the TDE’s output

Figure 4: The graphical user interface for NT-Atom’s Tool Development Environment.

13

window. The user can repeat the instrumentation phase for other tools or other
combinations of programs. The ability to quickly select programs, their DLLs and
instrumentation tools allows for the efficient analysis of programs and greatly contributes
to NT-Atom’s ease-of-use.

Tool and Package Management
In the Unix version of Atom, there is no consistent way to group tools together or easily
distribute custom developed tools. These two functions have a direct impact on the ease-
of-use of Atom. We have addressed these two issues with the concept of Tool Packages.

A Tool Package is a hierarchical grouping of custom NT-Atom tools for program
analysis, performance tuning or program debugging. Similar to the directory structure in
UNIX or Windows NT, the package concept provides a convenient way to group together
related tools in a logical manner. In addition to the grouping mechanism provided by
directories, packages also allow the user to save information specific to a tool that is used
by the TDE whenever an application is instrumented and executed. This feature
promotes the ability to easily experiment with and evaluate different tools.

Figure 5: Package and Tool maintenance in the NT-Atom TDE.

14

The TDE provides a Tool Maintenance facility to manage the addition, modification, and
removal of packages and tools through an integrated management framework, as shown
in Figure 5. This provides for package and tool grouping selections as chosen by the NT-
Atom user. The names of packages and tools are of the user’s choice and there are no
limitations on how tools can be assigned to packages other than a tool must belong to at
least one package. The only package that cannot be directly managed is the group of
example

The Tool Development Environment maintains package and tool information through
integration with the Windows NT registry. The use of the registry over a file guarantees
that information for the TDE cannot be inadvertently deleted. In this manner, package
and tool information is dynamically preserved and readily available for the current and
future analysis sessions.

Finally, the easy deployment of groups of tools was a goal in the design of the TDE and
we have achieved this using the package concept. Packages can be shared and modified
among groups of users. This facilitates the distribution of packages that pertain to a
particular problem area, such as database applications.

Project State Management
The Tool Development Environment also assists the user in the analysis process by
embracing the need to preserve specific user run-time state information. This state
information is preserved in an NT-Atom Project. An NT-Atom Project is a snapshot of
the current analysis session that preserves the program selected for instrumentation, the
selected tool and any command line arguments for tool creation or the execution of the
instrumented program. Once preserved, the user can easily continue a previous analysis
session or test with different analysis tools and settings. The information for an NT-
Atom Project is physically stored in files with the .NAP extension. These files are
directly created and maintained by the Tool Development Environment. At any phase of
analysis, an NT-Atom project file can be created or a previously stored project retrieved.

NT-Atom projects give the user the flexibility and freedom to explore and preserve
different analysis scenarios. This is an important feature that contributes to NT-Atom’s
ease-of-use by simplifying the analysis process when one or more types of analysis are
to be performed on one or more programs.

NT-Atom Example Tools
One of our major objectives in moving Atom to Windows NT was to enable the easy
migration of Atom tools developed for DIGITAL UNIX to Windows NT for Alpha. We
wanted to ensure that anyone who had built an Atom tool would be able to quickly and
transparently port it to NT-Atom. By maintaining the complete API set, we achieved this
goal. To validate this, we ported a set of the example Atom tools available and solicited
other Atom users to port their tools to NT-Atom. Lastly, we created a few new tools using
NT-Atom and ported them back to UNIX Atom. For an overview of how to create tools for
Atom refer to the DIGITAL UNIX documentation set [UnixCh9] and the NT-Atom help
documentation.

15

Conversion of Existing Tools
Table 3 lists the set of tools that are distributed with UNIX Atom and indicates which ones
are currently available on NT-Atom. The majority of the tools listed were ported in a matter
of days or hours. Platform specific code consumed the most amount of time in the port. This
includes operating system specific code —thread identifiers, memory heaps, process models,
etc. … — and variations in data types. To give an example of the steps that were required in
tool migration and how we addressed them, we describe the steps involved in porting the
example tool that required the most amount of effort, Hiprof, a hierarchical profiler. In
addition, we demonstrate how Hiprof might be used to identify performance problems on
Windows NT for Alpha.

Tool Description Available on NT-Atom

Hiprof Produces a flat profile of an application that

shows the execution time spent in a given

procedure, and a hierarchical profile that shows

the execution time spent in a given procedure and

all its descendents.

Yes. Additional output

format in HTML.

Pixie Produces a profile of an application - by

procedure, source line, or instruction by

partitioning it into basic blocks and counting the

number of times each basic block is executed

Yes.

Branch Instruments all conditional branches to determine

how many are predicted correctly.

Yes.

Cache Determines cache miss ratio for an 8KB direct-

mapped cache.

Yes, updated to handle a 16KB

direct-mapped cache also.

Dtb Determines the number of data translation buffer

misses.

Yes.

Dyninst Provides fundamental dynamic counts of

instructions, loads, stores, blocks, and

procedures.

Yes.

Inline Identifies potential candidates for inlining. No.

Iprof Prints the number of times each procedure is called

and the number of instructions executed by each

procedure.

Yes.

Malloc Records each call to malloc and prints out a

summary of the application's allocated memory.

Yes.

Prof Prints out the dynamic instructions executed by

procedure.

Yes.

Trace Generates an address trace, logs the effective

address of each load and store operation.

Yes.

Table 3: Atom Tools.

16

Hiprof
Hiprof is a hierarchical program profiler tool that was originally developed for Atom by
Russell Kao and is distributed with Atom on the DIGITAL Unix platform [UnixCh8].
The tool generates both flat and hierarchical profiles. The flat profile, similar to the prof
[UnixCh8] tool, displays the execution tick count of each procedure. This tick count can
either be based on instruction counts or time. The hierarchical profile records and
displays the same information, but collates the information into a parent-child
relationship. This is similar to the UNIX gprof profiler, however gprof uses statistical
tick counts whereas Hiprof uses actual tick counts. This additional information provides
the user with more insight into the actual operation of a program. To illustrate the
difference between the two let us look at the program in Figure 6. This program's call
tree would look like Figure 7 with each edge in the tree illustrating the number of times
the call was made, as well as the number of ticks, or events, that are associated with each
edge. If we use the example NT-Atom tool prof, we will see a flat profile as illustrated in
Figure 8. The same call tree profiled using the hierarchical method, would produce a
profile that presented the data for each procedure that included

1. The time spent in its children on its behalf,

2. The time spent within its own procedure excluding its children,

3. The number of times it called each of its children,

4. The total amount of ticks spent in each child procedure, and

5. The total ticks spent in each parent procedure and its children.

#include <windows.h>
int one(void);
int two(void);
int three(void);
int b(int);

void main(void) {
 int i,j,k;
 i = one();
 for (i=0;i<10; i++) {
 j = two();
 }
}
int one()
{
 int i,j,k=1,l;
 for (i=0; i<15; i++) {
 k = k*(i+1);
 l = b(k);
 }
 return(k);
}

int two()
{
 int i,j,k=1,l;
 for (i=0; i<105; i++) {
 k = k*(i+1);
 l = three();
 }
 return(k);
}
int three()
{
 int i,j,k=1,l;

 for (i=0; i<1545; i++) {
 k = k*(i+1);
 }
 return(k);
}
int b(int in)
{
 int i,j,k,l;
 for (j=1; j<1; j++) {
 in = in * j;
 }
 return(in);
}

Figure 6. An Example Program

17

Figure 9 illustrates what the same call-tree would look like using a hierarchical profiler.

Hiprof works by selectively instrumenting procedures to record procedure entry and exit
points. It does this either at the procedure level, for time based ticks or at the basic block
level, for instruction based tick counting. In order to maintain the correct call invocation
tree, Hiprof implements a simple stack machine to keep track of the nested procedure
calls and to handle incidents of abnormal procedure exits, such as setjmp/longjmp
pairings. As each element on the stack is manipulated, information is recorded such as the
time or number of instructions executed, the caller of the procedure and the number of

 Procedure Instructions Percentage
__
 main 91 0.001
 one 221 0.001
 two 13760 0.077
 three 17855250 99.920
 b 120 0.001
proc_at_0x4022c0 65 0.000
proc_at_0x402530 1 0.000
proc_at_0x402560 6 0.000
 Total 17869514
__

Figure 8: Output from prof tool

C all T ree

b
Ticks : 120
C alls: 15

one
Ticks : 221

C alls: 1

three
T icks: 17855250

C alls: 1050

two
Ticks: 13760

C alls : 10

m ain
T icks: 91
C alls : 1

0x402560
Ticks: 36
C alls : 1

0x402530
Ticks: 1
C alls: 1

0x4022c0
T icks: 35
C alls : 1

Figure 7: Call graph for example program.

18

Figure 9: Example Hiprof HTML Output

19

times the call is made. This information is later used to reconstruct the flat and
hierarchical profile of the program’s execution. The core Hiprof functionality is
contained in approximately 8000 lines of code spread out among ten separate
instrumentation and analysis modules.

Instrumentation Routines
Only a few instrumentation procedures were modified in the initial port of Hiprof. The
majority of the code was easily transported, because of compliance with ANSI C and because
of the fact that the NT-Atom API set is essentially identical to that used in Unix. The
majority of these changes dealt with subtle differences in the compilers available on each
platform — DIGITAL's cc for UNIX and Microsoft's Visual C/C++ for Windows NT.
For example, Hiprof uses a long variable to hold the tick counts. Under DIGITAL
UNIX, a long is 64 bits wide, whereas on Windows NT, a long is only 32 bits wide. To
correct this, we modified the variable and others like it to Windows NT Alpha's 64 bit
type, __int64.

Another area that required modification was in the handling of threads. The UNIX
version of Atom had a mechanism to support threads that was tied tightly to DIGITAL
UNIX's thread implementation. When we looked at duplicating this on Windows NT, it
became apparent that this method would not effectively work under Windows NT. To
handle threads in NT-Atom's version of Hiprof, we have implemented a mechanism that
stores the unique thread identifier with each tick entry and records it into a memory
buffered log. We rely upon our mechanism for maintaining the correct call-stack to keep
the profile synchronized. At reconstruction time, we use this log to generate the
appropriate tick counts for each parent-child relationship created by the call-tree
hierarchy.

Analysis Routines
Porting the analysis routines required attention to the same general porting issues that are
observed when moving an application from UNIX to Windows NT [UnixNT]. In
addition to the standard textual output of the UNIX Hiprof, we took advantage of
hypertext markup language (HTML) to produce an easy to navigate display mechanism.
This output format can be viewed in a web browser and easily navigated by clicking on
the page links. In designing the ability to output HTML format, we also generate and
document an additional output format that describes the call-tree and resulting collected
data. We envision that other utilities can use this data to perform such actions as
generating graphical views of the data or comparing different runs of the same
application. Figure 9 illustrates the HTML style output.

20

Figure 10: Example program to illustrate the Hiprof performance tool.

A performance example using Hiprof
The following example illustrates how Hiprof might be used to identify performance
problems that are peculiar to Windows NT and Alpha. The example program shown in
Figure 10 contains computations that are often found in applications that perform two and

55 #include <windows.h>

56 #include <winnt.h>
57 #include <math.h>

58 void DotProd();
59 void FloatInit();
60 void BuggyFloatInit();

61 typedef struct _point{
62 double x, y, z;
63 } point;

64 point a[10000], b[10000];
65 double c[10000];

66 void main(int argc, char *argv[])
67 {
68 BuggyFloatInit(a, b, c);
69 FloatInit (a, b, c);
70 }

71 void FloatInit(point a[], point b[], double c[])
72 {
73 int i;
74 for (i = 0; i < 10000; i++)
75 {
76 a[i].x = (double) i;
77 a[i].y = (double) i;
78 a[i].z = 0.0;
79 b[i].x = -(double) i;
80 b[i].y = -(double) i;
81 b[i].z = 0.0;
82 }
83 DotProd(a, b, c);
84 }

85 void BuggyFloatInit(point a[], point b[], double c[])
86 {
87 int i;
88 double x = 1.6e308;
89 double y = 1.0e308;
90 for (i = 0; i < 10000; i++)
91 {
92 a[i].x = (double) i;
93 a[i].y = (double) i;
94 a[i].z = x;
95 b[i].x = -(double) i;
96 b[i].y = -(double) i;
97 b[i].z = y;
98 }
99 DotProd(a, b, c);
100 }

101 void DotProd(point a[], point b[], double c[])
102 {
103 int i;
104 for (i = 0; i < 10000; i++)
105 {
106 c[i] = a[i].x * b[i].x + a[i].y * b[i].y + a[i].z * b[i].z;
107 }
108 }

21

three-dimensional numerical computations. In the example, functions FloatInit and
BuggyFloatInit are called from the main program, and each of these functions calls
the function DotProd . DotProd computes the dot product of two arrays of three-
dimensional points. The dot product computation is an important operation in graphical
and CAD/CAM applications.

In the example shown, both functions FloatInit and BuggyFloatInit are
identical, with the one exception that function FloatInit initializes the z component
of the point data structure to 0 for arrays a and b. Function BuggyFloatInit stores a
very tiny floating point number into the z component of its arrays a and b. Calls to the
DotProd function from functions FloatInit and BuggyFloatInit are the same,
so that the dot product computation is performed twice on identically sized arrays.

The program was compiled under Visual C/C++ using the /QAieee switch, that forces the
compiler to use floating point instructions that adhere to the IEEE floating point standard.
In the Windows NT implementation, this means that if a floating point exception arises,
the hardware will trap to the NT kernel, and the floating point operation will be
completed in software without generating a user level exception. In the example
program, the floating point computation on line number 52 of the function DotProd
would normally result in a user level floating point underflow exception on the Alpha if
the DotProd function is called from BuggyFloatInit . Using IEEE arithmetic, the
result of the product is not affected by underflow and can be used in subsequent floating
point operations.

This program was instrumented using NT-Atom’s Hiprof. The output from an
instrumented run of the program is shown in Figure 11. In this Figure, the surprising
result is that the times measured for the functions FloatInit and BuggyFloatInit
are considerably different, despite the fact that they are doing almost the same
computation. Further investigation shows that the large difference in time is not due to
the different way in which functions FloatInit and BuggyFloatInit initialize
their arrays, but primarily due to the DotProd function itself. Since the DotProd is
operating on the same sized arrays, one would expect the time spent in FloatInit ’s
invocation of DotProd to be equal to the time spent in BuggyFloatInit ’s
invocation of DotProd . This is not the case because the z component of the arrays used
in BuggyFloatInit causes the DotProd computation on line 52 to underflow and be
completed in software on Windows NT for Alpha. This incurs a significant performance
penalty, as illustrated by the Hiprof output of our instrumented example program.

The example program illustrates a common problem with numerical codes that are ported
from Intel based NT systems to Alpha NT systems, and one that we have observed on a
CAD/CAM application in our performance work. Because the Intel architecture
implements the IEEE floating point software standard in hardware, bugs, such as
underflow due to the product of two very small numbers, are often overlooked. In order

22

Figure 11: Hiprof output from floating point performance example

23

to get such code to run on an Alpha, it is necessary to compile with the IEEE software
enabled and have the operating system step in when floating point exceptions occur.
Unfortunately this leads to a degradation in performance on the Alpha.

The Hiprof tool is instrumental in illuminating such performance problems. A flat profile
would break down the times for each procedure, and it would not have been apparent that
there was a performance problem in the BuggyFloatInit ’s invocation of the
DotProd function. The hierarchical breakdown of times becomes even more important
when there are thousands of procedures in a program, as opposed to just two or three.

Other Tools
When we released our first beta, we contacted several members of DIGITAL's research
community who had developed several sophisticated Atom tools. These tools were being
used to study various compiler and processor issues. We asked them to port their tools
over to NT-Atom. To our delight, the researchers were able, through the efforts of a
summer intern, to quickly port one of the simulator-input tools from Unix to Windows
NT for Alpha. In doing so they uncovered no Atom API incompatibilities. Additional
researchers have begun to move their Atom tool suites over to NT-Atom. Currently
several internal and three university research groups are using NT-Atom to look at issues
such as processor design, cache hierarchy mechanisms, and cache prefetching algorithms.
This expansion of research into the Windows NT realm is a benefit to DIGITAL as
Windows NT increases in use.

Future Directions
When we started out to port Atom to Windows NT for Alpha, one of the lessons we
observed from the UNIX version was that it took a more sophisticated user to benefit
from the Atom framework. There was a larger potential audience for NT-Atom, namely,
those who were either unwilling or unable to develop sophisticated program analysis
tools. To reach these users, we have begun to think of ways to make NT-Atom more user
friendly while maintaining its framework concept. Several ideas we are looking at
include the graphical display of collected data, automated tool development and
integration with other performance tools.

As we examined the unique challenges of keeping NT-Atom as a tool development
framework, it became apparent that a means for uniformly displaying the data collected
would be very useful. Other tools such as Pure Atria's Purify and NuMega's tool suites
present their data in this manner [Purify, NuMega]. Since we have decided to keep the
paradigm of a tool building framework, we have begun to work on adding a third phase
to the NT-Atom structure. We have named this new phase the Data Display phase. It
will provide a concise way in which the user will describe their data and how they would
like to graphically display it. This new phase will take advantage of existing
applications, such as Excel, for graphical data display. In addition, we foresee the
creation of new display functionality as appropriate.

24

We also plan to investigate the area of ease-of-use. We are looking at providing the
header files and definitions to more easily allow users to develop both instrumentation as
well as analysis files using Microsoft's Visual Basic programming language. In addition,
we believe that research in tool development automation would improve NT-Atom's ease
of use. For example, in creating an instrumentation tool, we can use a wizard to generate
the code that navigates an image.

A final area that we would like to explore is integrating the NT-Atom framework with
other performance tools such as SPIKE for optimization and DCPI for sample-based
profiling [DCPI]. The goal of this work would be to have a common interface for all of
the tools, so that instrumentation, analysis, profiling, and optimization could be easily
accomplished without having to use several separate programs.

Conclusions
In this paper we presented the implementation of the Atom technology under the
Windows NT operating system. Because of DIGITAL’s increased presence in the NT
market, NT-Atom was developed in order to address a growing need for performance
tools. NT-Atom’s core instrumentation engine, built on top of the SPIKE system for
optimization of Alpha NT executables, provides the complete functionality of the Atom
application programming interface.

The NT-Atom core instrumentation engine has two main innovations. First, the design of
NT-Atom using SPIKE allows a clean separation between the details of the executable
image and the high level Atom API implementation. This will make it easy to adapt to
future changes to the executable image format. Second, the implementation of program
level analysis calls in NT-Atom can be accomplished on images that do not contain
symbols.

In addition to contributions made in the NT-Atom core implementation, we have
substantially improved the user interface for NT-Atom. This paper introduced the NT-
Atom tool development environment that provides a graphical user interface for the
instrumentation process. In addition, we introduced the concept of tool packages, that
allow the development and easy deployment of groups of tools for various user interests.
Finally, the concept of NT-Atom projects helps users utilize the tool environment in an
efficient way.

In making NT-Atom available, we now have the ability to develop sets of tools to
conduct performance investigations and debug programs that can be used on either
DIGITAL Unix or Windows NT for Alpha. We hope that NT-Atom will encourage new
collaboration between the two user communities and will benefit DIGITAL's developers,
partners and customers.

Acknowledgments
NT-Atom did not become a reality on its own. Many people were instrumental in helping
us to bring it to fruition. We would like to thank Robert Cohn, David Goodwin and

25

Geoff Lowney for helping us to integrate with the SPIKE environment and source, and
for providing us with the code for the COMLIB DLL image finder. We want to thank
Paul Hebert for helping with the design of the GUI, as well as our summer interns, Jack
Tihon and Lisa Eklund, for working on the porting of the UNIX tools and a first version
of the GUI. We wish to thank Jamey Hicks and summer intern Edwin Foo for being the
first fearless users of NT-Atom. Finally, we would like to thank Sas Durvasula and
Vehbi Tasar for their encouragement and support of this project.

References
[Atom1] A. Eustace and A. Srivastava, “ATOM: A Flexible Interface for Building High
Performance Program Analysis Tools,” Proceedings of the Winter 1995 USENIX
Conference, New Orleans, LA. (January 1995).

[Atom2] A. Eustace and A. Srivastava, “ATOM: A System for Building Customized
Program Analysis Tools,” Proceedings of the SIGPLAN ’94 Conference on Programming
Language Design and Implementation, Orlando, Fla. (June 1994).

[Atom3] L. S. Wilson, C. A. Neth, and M. J. Rickabaugh, “Delivering Binary Object
Modification Tools for Program Analysis and Optimization”, Digital Technical Journal,
Vol. 8 No. 1 (1996).

[SPIKE] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Spike: An Optimizer for
Alpha/NT Executables”, Proceeding of the USENIX Windows NT Workshop, August 11-
13, 1997.

[EEL] J. Larus and E. Schnarr, “EEL: Machine-Independent Executable Editing,”
SIGPLAN Conference on Programming Language Design and Implementation. (June
1995), La Jolla, CA, pp. 291-300.

[NuMega] SmartDebugging for Component-based, Multi-language Software
Environments: A White Paper from NuMega Technologies, Inc., (www.numega.com).

[Purify] NTSL Final Report for Rational Software: Performance Testing of Rational
Software's software product Purify, (http://www.rational.com/support/techpapers/pnt-
ntsl.pdf) , 9 October 1997

[UnixNT] UNIX to Windows NT Application Migration Guide,Digital Equipment
Corporation, Maynard, MA., May 1996.

[UnixCh9] DIGITAL UNIX Programmers Guide, Chapter 9 Using and Developing
Atom Tools, Digital Equipment Corporation, Maynard, MA, March 1996

[UnixCh8] DIGITAL UNIX Programmers Guide, Chapter 8 Profiling Programs to
Improve Performance, Digital Equipment Corporation, Maynard, MA, March 1996.

26

[Etch] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, and Brian
Bershad, “Instrumentation and Optimization of Win32/Intel Executables Using Etch”,
Proceeding of the USENIX Windows NT Workshop, August 11-13, 1997.

[Om] A. Srivastava and D. Wall, “A Practical System for Intermodule Code
Optimization at Link-time”, Journal of Programming Languages, vol 1 (1993): 1-18.

[Hiprof] S. Sipe, “C++ Code Profilers”, PC Magazine Online, October 21, 1997.

[DCPI] J. M. Anderson, L. Berc, S. Ghemawat, M. Henzinger, S. A. Leung, R. Sites, M.
Vandevoorde, C. Waldspurger, , and W. E. Weihl. “Continuous profiling: Where have
all the cycles gone?.” Proceedings of the 16th Symposium on Operating Systems
Principles, pages 1-14. ACM SIGOPS, October 1997.

