Datapath Design

Chapter5P & H

Introduction

 Designing an implementation which
contains subset of core MIPS instruction
set:
— Memory reference instructions (lw & sw)

— Arithmetic-logic instructions (add, sub, and, or
and slt)

— Branch and jump instructions (beq, j)

Processor Design

« Clocking Methodology
— Defines when signals can be read and written
— Going to assume an edge triggered clocking methodology

State!
element
1

State
element
2

Combinational logic

Clock cycle —,—\—,_

Control Step

» Each control step takes one clock cycle

Source Destination

registers registers

output Clock cycle read values

here \ ‘ﬂ / here
Signals propagate

through system

State
element

—>{ Combinational logic

Overview of Implementation

» Consider execution of an instruction
* First two steps identical
— Use PC to fetch an instruction from memory

—Read 1 or 2 registers as specified in
instruction

» Rest of steps dependent on instruction
class
— Most will use ALU
— Many write value back to register file

Overview of Implementation

L Data

Register #
Registers Address
Register #

PC—s{ Address Instruction
Instruction
memory

Data

Register # memory

Data

« Will start with simple single cycle
implementation

* Implementation will comprise datapath plus
control

Instruction Fetch

R-type Instructions

’op RS [RT |RD SHAMT | FUNC ‘
(6 bits) [(5 bits) | (5 bits) | (5 bits) | (5 bits) (6 bits)
Add
4 * All R-type instructions:
e Foag — Read two registers
e — Perform some ALU operation
Instruction « add, sub, slt, and, or, etc.
Instruction — Write the result back to the register file
memory
Components Datapath for R-Type Instructions
5 | Read ALU control ALU operation
| Rea Read e
) register 1 dggald - [| register 1 Read
Register | Read data 1
a 2 Read
numbers reglsmg?egisters Data Instruction register 2
2, wiite _— _ Registers
register Read _,| Write
Dat | wrie data2 [register dRead
ata data | Write ata 2
data
RegWrite
RegWrite

a. Registers

b. ALU

Ilw and sw Instructions

Or sw $7, offset($8)

IMMEDIATE ‘
(16 bits)

Iw $7, offset($8)

oP
(6 bits)

RS
(5 bits)

RT
(5 bits)

Datapath for Iw and sw

___,|Read .
* These instructions :9‘5:'1 (Read Memwi
s | Re
— Compute the memory address (16 bit signed offset + instucton [~ |regster2
base register) e, , Address Rea
. eal
— If sw then value must also be loaded from reg file | wie data 2 -
data
— If lw the value read from memory must be stored to r" - wie memo
reg file . data
— rs contains base, rt contains src/dst register MemRea
* Need to sign-extend offset to 32-bit value
¢ OP, RS, RT are same format/place as w/ R-type
— Simplicity favours regularity
beq Instruction beq datapath
* beq $7, $8, offset
o if ($7 == $8) then PC + 4 from instruction datapath
pc <=pc +4 + (offset << 2) Branch target
else
pc<=pc +4 n
| Read
_instruction [T register 1 Read
Read data 1
o
register Read
Write data 2
data
RegWrite]
16 Sign 32
""" extena

Simple Implementation Scheme

« All instructions execute in single clock
cycle:
— No data path resource used more than once
per clock cycle
— Components of different instruction classes
may be shared if no conflicts occur
* May require multiple connections to same input
» Multiplexer used to select appropriate input

Combining datapath for R-type
and memory instructions

 Datapaths very similar
» Two main differences

— Second input to ALU is a register (for R-type)
or sign-extended lower half of instruction (Iw
and sw)

— Value stored in dest register comes from ALU
(R-type) or memory (Iw)

ALU operation

| Read

register 1 Read

data 1
 ¢—s[Read

Instruction register 2
—— . Registers

| Write

register Read

i data 2
| Write
data

RegWrite

Datapath for R-Type Instructions

Instruction

Datapath for Iw and sw

ALU operatior
Read
register 1 Read
Read data 1
register 2
Registers
wiite "9 Address Read
register Read data
data 2
Write
Data
da@ memory
Write
data
16
MemRead

Combined Datapath

Adding Datapath for instruction fetch

address

Insuuction
memary

. Reas
oa

Add in beq components

X
4 _'V Add Al

Registers N eratior
Reac 3 ALU operatior MemWiite
Read registerl g
address Read datal
register 2
Instruction)
Wrile Read p>{Address Readi
Instruction register data 2 data ’\ﬁ
memory | \dIVTle Data X
ala \Write memory
Regwrite data
16
EEE— MemRe ad’

ALU Control

00 Add
01
10 Use func field

Operation

2 6

For R-Type instructions need to
perform operation dependent of
function field

000 AND For load instructions use ALU to

001 OR compute memory address by

010 ADD addition

110 Subtract For branch instructions ALU used
for subtraction

111 Set on less

Truth Table for ALU control

ALUOp Funct field Operation
ALUOp1|[ALUOpPO|F5|F4|F3|F2|F1|FO
0 0 XIX|X[X[X]X 010
X 1 XIX|X[X[X]X 110
1 X X|x|ojojofo0 010
1 X X[X|0|0|1]0 110
1 X X{X|0|1/0]0 000
1 X X{X|0|1/0]1 001
1 X X[{X]1]0]1]0 111

« Note multiple levels of control
— Main control unit generates ALUOp
— ALU control generates operation

Main Control Unit Design

‘o ‘RS‘RT‘RD‘SHAMT‘FUNC‘
35 or 43[RS ‘RT ‘ IMMEDIATE ‘

‘ a ‘RS ‘RT ‘ IMMEDIATE ‘

« Opcode fields always bits 31 — 26 (Op[5-0])
« Two regs to be read are always rs and rt
« Base reg for loads and stores always rs
« 16 bit offset always bits 15 — 0
« Destination register is in one of two places
— r-type instructions RD
— lwitis RT

Datapath

4=

Instruction [25-21] ead
Read

address Instruction [20- 16]

Instruction
31-01[1

Instruction Instruction [15- 11
memory 1

1
M
U
X

.

[l

Instruction (15— 0] 16 [sign |32

@
Instruction [5-0]

Datapath with Control Unit

wsweion 2 |

Instauction 25 21)
Read
Hddress

Instsuction 20-16)

Instuction
10

Instnction
memory

Instrucion 15-0)

