Datapath Design II

Operation of Datapath

Instruct	Reg Dst	ALU Src	Mem toReg	Reg Write	Mem Read	Mem Write	Branch	ALU Op1	ALU Op0
R- Type									
lw									
sw									
beq									

Example

• What is necessary to extend the Datapath to allow the Jump Instruction to be executed?

What not use a Single Cycle Implementation?

- Every clock cycle is of equal length
 - -CPI = 1
 - Clock cycle time determined by longest path (almost certainly load instruction in our datapath)

Example

- Which of the following implementations would be faster and by how much
 - Implementation which uses a fixed length clock cycle
 - Implementation where clock cycle length determined by instruction
- Assume
 - Memory units have 2ns delay
 - ALU and adders have 2ns delay
 - Register file has 1ns delay
 - All other units have 0 delay
- · Assume following instruction mix:
 - 24% loads
 - 12% stores
 - 44% R-Type
 - 18% branches
 - 2% Jumps

MultiCycle Implementation

- Instruction execution can be broken into the following steps
 - Instruction Fetch
 - Instruction Decode
 - Operand Fetch
 - Execute
 - Store Results
- Also allows sharing of components
 - single memory for data and instructions
 - Single ALU
- Extra registers required to store results between stages

Additional Registers

- Determined by:
 - What combination units can fit in a clock cycle
 - What data is required in later clock cycles
- Assume at most one of the following can be accommodated by a single clock cycle:
 - A memory access
 - A register file access (two reads or one write)
 - An ALU operation
- Require the following additional registers
 - IR
 - MDR
 - A and B registers
 - ALUout register
- All new regs except IR only have to hold values from one clock cycle to next so do not require write control signal

Combining ALUs

- Merging all ALUs and adders into a single datapath requires two main changes:
 - An additional multiplexer on the A input to the ALU, selects:
 - PC
 - A register
 - Extend multiplexer on second input
 - The constant 4 for incrementing PC
 - The sign extended and shifted 16-bit offset field used in branch address computation

