Datapath Il --
Microprogramming

Example

Which of the following implementations would be faster and by how
much

— Implementation which uses a fixed length clock cycle
— Implementation where clock cycle length determined by instruction
Assume:
— Memory units have 2ns delay
— ALU and adders have 2ns delay
— Register file has 1ns delay
— All other units have 0 delay
Assume following instruction mix:
— 24% loads
— 12% stores
44% R-Type
— 18% branches
2% Jumps

Example

« Timing results
— Loads: 8ns
— Stores: 7ns
— R-type: 6ns
— Branch: 5ns
—Jump: 2ns
e (8 x24%) + (7 x 12%) + (6 x 44%) + (5 x
18%) + (2 x 2%) = 6.3ns
e 8/6.3 = 1.27 times faster

MultiCycle Implementation

* Instruction execution can be broken into the
following steps
— Instruction Fetch
— Instruction Decode
— Operand Fetch
— Execute
— Store Results
» Also allows sharing of components
— single memory for data and instructions
— Single ALU
» Extra registers required to store results between
stages

High Level Datapath

Instruction

register
, Data
Address
A
[Register #
Instruction
Memory ordata Registers ALU |-o—» ALUOUY

Memory q Register #
d‘u R _’E
Data b
’_> register L Register #

Additional Registers

Determined by:
— What combination units can fit in a clock cycle
— What data is required in later clock cycles
Assume at most one of the following can be accommodated by a
single clock cycle:
— A memory access
— A register file access (two reads or one write)
— An ALU operation
Require the following additional registers
- IR
— MDR
— A and B registers
— ALUout register

All new regs except IR only have to hold values from one clock cycle
to next so do not require write control signal

Combining ALUs

* Merging all ALUs and adders into a single
datapath requires two main changes:
— An additional multiplexer on the A input to the ALU,
selects:
- PC
» Aregister
— Extend multiplexer on second input
» The constant 4 for incrementing PC

» The sign extended and shifted 16-bit offset field used in
branch address computation

Datapath

Instrudtion|
[25-21]

Instrudtion|
[20-16]

AU

Instruction|
[15-0]
Instruction
register
Instruction —»(0 3
[15-q

Menory
deta 16 s 32
jster Ap| S
™ V'l exterd

resut

P xcZ

v

Datapath with Control Signals

loD MemRead MenmWie IRWite RegDst Reg\ie ALUSIA
O\
M Instuction Read
u [*|Address [e5-21] regster 1
X | . Read Readl__, .
>\ Memay _ [0-16] ~N regaerz A1
MenData | . 0 .
NSTUCHON | M frmmp| Wi
1501 | rtruction | u regser @2 _’EII
| Wiite I i X
it Instruction [1 w
Instruction ~>(0
[15-0] M
u
X
Menmory 1
data Y 16 2| (s
regster 3\ Sign
~ |extend \eft2
Insrudion [5-0]
MermioReg ALUSIEB ALUOp
/}ﬁcy—' Pomteart/\ pesue
s
Vergead]| ﬁ‘ Lk
Vemie | Cord HALSA
MenRec | ’:\w'm
e Qvg /_Lu t
] AL
o\ e
Irscion, U
) B X]) PCRL-28)
M L M
u [Addess -1 u =]
X
Insirudtion X a
‘5 Memay 1 Zexo
MerrDeta [T go-l Lo AU Al
INSuction _fed M resut
e 50T rsuton | u ()
> insrucion [415) X 1M
daia regiter 1 > g
rsincion >0 3
[15-0] M
u
X
Memory 1
daa 16 2 ALU
regiser A} Esgﬂ =\ contral
Instiuction [5—0]

Microprogramming

Contrd unit PCWhite
[| PCWhiteCond
loD

Microcode memary MemRead Datapath
Mem\\ite

IRWhite
BWiite
Ouputs < | MemioReg
PCSaurce
ALUQD
ALUSICB
ALUSICA
Reg\Wite

\ | [RedDst
AddrCyl

Input

Microprogram counter

Addesssked logc [

Op5-0]

Instruction regjister
opoode field

What are the “microinstructions” ?

Microprogramming

» A specification methodology
— appropriate if hundreds of opcodes, modes, cycles, etc.
— signals specified symbolically using microinstructions

ALU Register PCWrite
Label control BRC1 |SRC2 control [Memory control Bequencing
Fetch Add PC 4 Read PC |ALU Seq
Add PC Extshft [Read Dispatch 1
Mem1l Add A Extend Dispatch 2
LW?2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl [Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

* W/ll two implementations of the same architecture have the same
microcode?

* What would a microassembler do?

Microinstruction format

Field name. Value Signals active Comment
Add ALUOD = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSICA = 0 Use the PC as the first ALU input.
A ALUSIcA=1 Register A is the first ALU input.
B ALUSICB = 00 Reaister B is the second ALU input.
SRC2 4 ALUSICB = 01 Use 4 as the second ALU input.
Extend ALUSICB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSIcB =11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register
numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst = 1, the contents of the ALUOuLt as the data.
control MemtoReqg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst =0, the contents of the MDR as the data.
MemtoReg = 1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD=0 the MDR).
Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
looD=1
Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
looD=1 data.
ALU PCSource = 00 \Write the output of the ALU into the PC.
PCWrite
PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOuL.
jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.
Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

Maximally vs. Minimally
Encoded

* No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
» Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
» Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It's easy to add new instructions

Microcode: Trade-offs

Distinction between specification and implemermtatis sometimes blurred

Specification Advantages:
— Easy to design and write
— Design architecture and microcode in parallel
Implementation (off-chip ROM) Advantages
— Easy to change since values are in memory
— Can emulate other architectures
— Can make use of internal registers
Implementation Disadvantages, SLOWER now that:
— Control is implemented on same chip as processor
— ROM is no longer faster than RAM

— No need to go back and make changes

Summary

Can reduce the length of time some classes of
instructions take to execute by moving to a multi-
cycle implementation.

CPI for multi-cycle implementation will be > 1

But: goal is to maximise the number of
instructions executed per clock cycle
Next week:

— Pipelining

— Hazards

