Intro to Pipelining

Chapter 6 P&H

Pipelining

« Multiple instructions are overlapped in
execution

« Key to making modern processors fast
« Example — laundry

—wash load of clothes in machine

— Dry load of washing in dryer

— Fold dry load of washing

— Flatmate puts clothes away

Example — laundry

9 10 11 12 1

Time »
Task
order

Example — pipelined laundry

Tim e

Task

order

@

o

o

\/

Pipelined CPU

» Can apply same principles to CPU Design

* MIPS instructions classically take 5 steps:
— Fetch instructions from memory
— Decode instruction and read registers
— Execute the operation or calculate address
— Access operand in data memory
— Write result to a register

Program
execution .
order Time
(in instructions)
Iw $1, 100($0)
Iw $2, 200($0)
Iw $3, 300($0)
Program
execution ;
order Time

(in instructions)
Iw $1, 100($0)

Iw $2, 200($0)

Iw $3, 300($0)

Example MIPS CPU

2 4 6 8 10 12 14 16 18
T T T T T T T T [
Instruction Data
fetch Reg ALU access Reg
Instruction Data
8ns fetch Reg ALY access Reg
Instruction
8ns fetch
8ns
2 4 6 8 10 12 14
T T T T T T T >
Instruction Data
fetch Reg ALY access Reg
Instruction Data
2ns fetch Reg ALY access Reg
“——*{instruction Data
2ns fetch Reg ALU access Reg

P>

Designing Instruction sets for

pipelining

All MIPS instructions are the same length

Only a few instruction formats
— Source register fields in same place

Memory operands only appear in loads

and stores

— Can calculate address in execute stage
Operands must be aligned in memory

Single Cycle Datapath

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access

WB: Write back

Pipelined version of Datapath

e

[
#
g
l

Instrution [

Regsters Reg
menory Wite i 0
regster 2 M
| wite X

u
X
D i Bavew vawms
_ L
4 A e
Shift
left 2,
L Attess et
E - L
AU
It

xcZghH

Pipelined version of Datapath

* Pipeline Reg naming conventions
— Named by two stages separated by that
register e.g. ID/EX
« Work trough stages of executing a store
instruction
— Instruction Fetch
e« PC+4->IF/ID
«PC+4->PC
* Imem[PC] -> IF/ID

LW instruction

— Instruction Decode

* IF/ID supplies 16 bit Immediate which is signed extended ->
ID/EX

» Two regs are read -> ID/EX
e PC + 4 from IF/ID -> ID/EX
— Execute or address calculation

» Contents reg and signed extended immediate added ->
Ex/Mem

— Memory Access

» Address in EX/Mem used to get data value from data mem ->
Mem/WB

— Write back
« Mem/Wb data val -> reg file

LW instruction

* Any information that might be needed in a later
stage must be passed via the pipeline registers
» Each resource can only be used in a single
pipeline stage (otherwise have structural hazard)
* Bug in previous data-path

— Which instruction provides address for destination
register in lw

» Dest reg numb needs to be passed through pipeline registers

Updated Datapath

B
M
L
il IDEX BXVEM NEVVB

u
X
IFID oe XV
Add| ’\
— o
St
left2
—{ Read
e Atfess g regster 1 Reed|—y
E Red daal 0 b
Inerugion (- R e
nerfay Wie B) YAy
regser M
—| Wi X
ldm | -

Pipelined Control

 Start off by ignoring hazards

Datapath control signals

IFID

1 llrsmcam

PCSc

MemRead

MenoReg
—
M
u
X
Q

I

Ex==™)

Values on the Control Lines

Instruct | Execution stage Mem access Write back
RegD [ALU |ALU ALU Branch | Mem |[Mem |Reg Mem
st Opl | OPO Src read |Write |Write |to Reg

Rformat | 1 1 0 0 0 0 0 1 0

Lw 0 0 0 1 0 1 0 1 1

Sw X 0 0 1 0 0 1 0 X

Beq X 0 1 0 1 0 0 0 X

Control Lines for final three
stages

wH|
| R
Instruction M - \/\/B—|_.
ce > Mb—... -

T

:
a

IF/ID ID/EX EX/IMEM MEM/WB

Updated Datapath

St
0 DX
M
u /}'\Mﬂ
: [
| {Cord | n
\ /o
IFD e
Al
a
g
g
<
= Addess %1 Read|_,!
B,
Inetrucion - —d
ey T e T Bl
regser
kS
Inetnudion
0 ¥ [sp
et

Pipeline Hazards

« Situations in pipelining where next
instruction cannot execute in following
clock cycle

Structural Hazards

« Hardware cannot support combination of
instructions we want to execute in same
cycle

* E.g. If used a washer/dyer combination or
flatmate doing something else

e E.g. MIPS Only a single memory available

10

Control Hazards

* Need to make a decision based on the
results of one instruction while it is still
executing

« Example — The branch instruction

beq $7, $8 label | |E |DecodeiExecute

['/

? IF |DecodeExecute)

Control Hazards

* Can either:

— Stall

» Bubble(s) inserted into pipeline
— Predict

* Predict outcome of branch

« Stall if prediction wrong
— Delay branch

» Execute instruction after branch regardless of
whether branch is taken or not

11

Branch Prediction

execution(] 2 4 6 8 10 12 14

Time T T T T T T T

Program(]

order(!
(in instructions)

add $4, $5, $6

Instruction Data
Ri AL Ri
fetch €9 U access €9

Instruction Datal
fetch Reg ALY access Reg

beq $1, $2, 40 «—>
2ns

Instruction Data
Iw $3, 300($0) “ "] et Reg ALU | ccess | Re9

Program(]

execution[]) 2 4 . N
Time T T T T T T f

order’]
(in instructions)
Datal

Instruction
add $4, $5 ,$6 fetch Reg ALU access Reg

Instruction Datal
beq $1, $2, 4
veq $1, $2, 40 «— Reg ALU access | R€9

2ns fetch
bubble bubble w bubble %
@)

Instruction Data
or $7, $8, $9 « 4ns "l fetch Reg ALU access | R®9

v

Branch Prediction

Assume all branches will fail

Assume backwards branches always
succeed while forward branches always
falil

Use a dynamic branch predictor

— Uses a table to record the outcomes of
previous time branch instructions were
executed

» Gets about 90% accuracy

Longer pipelines amplify problem

12

Delayed Branches

* Used on MIPS R3000 processors

Program
execution . 2 4 6 8 10 12 14
order Time T T T T T T T >
(in instructions)
eqsi sz o [l ool o | 222 g
add $4, $5, $6 <« | Instruction Reg ALU Data Reg
(Delayed branch slot) 2 ns fetch access
Iw $3, 300($0) Wlnsftg:é::on Reg| ALU a?(i;zs Reg
+—>
2ns
Data Hazards
* Instruction depends on outcome of a
previous instruction still in the pipeline
 E.Q.
add $s0, $t0, $t1
sub $t2, $s0, $t3
add $S0, $t0, $t1| |E |DecodelExecute] mem |writeback
sub $t2, $s0, $t3 IF |Decode Execute{ mem |writeback

13

Forwarding

Program
execution 2 4 6 8 10
order Time T T T T T >
(in instructions)
add $s0, $t0, $t1 | IF ID MEM WB
1 sub $t2, $s0, $t3 - b EX—{MEM WB
4 6 8 10 12 14

v

Program Time
execution
order

(in instructions)

Iw $s0, 20($t1) IF B—MEM

sub $t2, $s0, $t3

D==s

14

Data Hazards and Forwarding

Consider execution on following sequence
of instructions:

Sub $2, $1, $3
And $12, $2, $5
O $13, $6, $2
Add $14, $2, $2
Sw $15, 10Q $2)

Pipelined Dependencies

Time (in clock cycles)

Value of cc1 ccz2 cc3 cca ccs cce cc7 ccs cco
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program

execution

order

(in instructions) 1 [
o551 I -ﬂa.l.’ o
[~
and $12, $2, $5 n' '
or $13, $6, $2 @» Reg

add $14, $2, $2

AL

=

sw $15, 100($2)

15

Time (in clock cycles)

cC1 Ccc2 CcCc3 cc4 CCs
Value of register $2 : 10 10 10 10 10/-20
Value of EXIMEM : X X X -20 X
Value of MEM/WB : X X X X -20

Program
execution order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100 ($2)

Hazard notation

* IN our previous example the two pairs of

hazard conditions are

— la. EX/Mem.RegisterRd = ID/EX.RegisterRs
— 1b. EX/Mem.RegisterRd = ID/EX.RegisterRt

— 2a. Mem/WB.RegisterRd = ID/EX.RegisterRs
— 2b. Mem/WB.RegisterRd = ID/EX.RegisterRs

 Hazard on $2 between the sub and and

instructions is:

— EX/Mem.RegisterRd = ID/EX.RegisterRs = $2

Hazards

» Above notation will do forwarding unnecessarily as some

instruction do not write registers

— Solution: can check WB control to check if register writes back

¢ What about $0
— Do not forward as should always be zero

Time (in clock cycles)

cc1 cc2 CcCc3 CC4 CC5 CC6

Value of register $2 : 10 10 10 10 10/-20 -20
Value of EXIMEM : X X X -20 X X
Value of MEM/WB : X X X X -20 X

Program
execution order

(in instructions)

oo [P
wiszszss [I ..’ ;
or $13, $6, $2 IE— '

add $14, $2, $2 Eﬂ—}@:

sw $15, 100 ($2) O Reg

M
T

CcCc7
-20

cC8
-20

CC9
-20

17

No Forwarding

ID/EX EX/MEM MEM/WB
—
— >
—>
Registers ALU
—>| —>
Data | |
memory
a. No forwarding
F ding
ID/EX EX/MEM MEM/WB
) M
M
- — u >
—| X
—
Registers /
ForwardA ALU >
_ N M
M Data
>
M 5 > memory
*—>|
/
IRs ForwardB
EN il >
Rt > M EX/MEM.RegisterRd
Rd u .Register
L X LI I
7 | Forwarding MEM/WB.RegisterRd —‘
unit

b. With forwarding

18

EX Hazard

 If (EX/Mem.RegWrite) and
(EX/Mem.RegRd = 0) and
(EM/Mem.RegRd = ID/EX.RegRs) then
Forwar dA = 10

* If (EX/Mem.RegWrite) and
(EX/Mem.RegRd != 0) and
(EM/Mem.RegRd = ID/EX.RegRt) then

ForwardB = 10

Mem Hazard

* If (Mem/WB.RegWrite) and
(Mem/WB.RegRd != 0) and
(Mem/WB.RegRd = ID/EX.RegRs) then

Forwar dA = 01
If (Mem/WB.RegWrite) and
(Mem/WB.RegRd = 0) and
(Mem/WB.RegRd = ID/EX.RegRt) then
ForwardB = 01

What about:

Add $1, $1, $2
Add $1, $1, $3
Add $1, $1, $4

o If (Mem/WB.RegWrite) and
(Mem/WB.RegRd = 0) and
(EX/Mem.RegRd != ID/EX.RegRs) and
(Mem/WB.RegRd = ID/EX.RegRs) then

ForwardA = 01
If (Mem/WB.RegWrite) and
(Mem/WB.RegRd = 0) and
(EX/Mem.RegRd != ID/EX.RegRt) and
(Mem/WB.RegRd = ID/EX.RegRt) then
ForwardB =01

20

Updated datapath to resolve
data hazards

IDEX

| U L L3 iyl

I Instruction

IF/ID RegserRs Rs
IF/IDRegserRt Rt
IF/IDRegserRt Rt

J IF/ID RediserRd Rd

Data Hazards and Stalls

Forwarding will not work where an instruction tries to read a register

following a load instruction that writes the same register

Program Time (in clock cycles)
execution CC1 cC2 CC3 CC4 CC5 CCéo6 cCc7 cCs CcCo9 Ccc1o
order’
(in instructions) —

e [EHMRHID

- —
and $4, $2, $5
or $8, $2, $6 Ll Reg]:B~ i
@)
[aH [3
[BH R FDH e

21

Stalls

» Hazard detection unit required at the ID
stage
— If (ID/EX.MemRead) and
(ID/EX.RegRt = IF/ID.RegRs) or

(ID/EX.RegRt = IF/ID.RegRt then
stall the pipeline

22

