Caches Il

Chapter 7

Example Cache — DecStation
3100

Released 1989
Used a MIPS R2000

« separate Instruction and

Data caches
— single word block size
— each cache 16K words

3130 ++ve 171615 +++ 543210

[I []

16 14 Byte
offset

Hit Data

16 bits 32bits
valid Tag Data

16K
entries

DecStation 3100 cache

Steps for Read:

— send address to appropriate cache

— If a hit then return value on data-lines

— If a miss then get value from main memory then put in
cache — re-perform original read

For writes have to ensure cache and main

memory remain consistent:

— simplest approach is to write data to both main
memory and cache

DecStation 3100 cache

Writes on the 3100
— Index cache using bits 15-2 of the address

— Write bits 31-16 of address to the tag field, write data
& update valid field
— Also write word to main memory

CPIl on 3100 is about 1.2 without cache misses

adding 10 cycles for every write operation
changes this to:
1.2 +10*13% =2.5

Write Buffer

One solution is to use a write buffer (e.g. 3100
caches can buffer up to 4 words)

Assumes that writes occur at a slower rate than
the values can be written to memory

Can overflows still occur?

What should happen if an overflow is going to
occur?

Taking advantage of Spatial
Locality

» Need a block size bigger than a word

» When a miss (read or write) occurs then
need to fetch the whole block

31...16 15-+4 3210

16 J12 J2sye

Tag offset
Index Block offset
16 bits 128 bits
vV Tag Data
4K
entries
16 32 32 32 32
=
1
Mux
32

Data

Multiword block size

* Reads are dealt with as before

« With writes not possible to just write tag and
data

l |
(s [Y77

¢ For a write miss then have to fetch replacement
block from memory and re-perform write

Miss rate verses Block Size

Miss rate
N
o
8

Block size (bytes) = 1KB
® 8 KB
® 16 KB
64 KB
©256 KB

Designing Memory to Support
Caches

b. Wide memory organization

c. Interleaved memory organization

a. One-word-wide
memory organization

Reducing Cache misses by more
flexible placement of blocks

» Fully associative caches allow blocks to be
placed anywhere in the cache
— Have to search every tag field for every memory
access
» Set associative cache allows blocks to be placed
in a fixed number of locations in the cache

— an n-way set associative cache allows a block to be
placed in one of n locations in the cache

Block# 01234567 Set# 0 1 2 3

Data Data Data
1 1 1
Tag A Tag A Tag . 2
seach] searen T searen TTTTTTTT

« All caches can be considered as being set
associative

* Increasing associatively tends to decrease
the miss rate

" (directmapped)
Block Tag Data
0

Two-way set associative

Set Tag Data Tag Data

N oo Arw N e
w N ko

Four-way set associative
Set Tag Data Tag Data Tag Data Tag Data

T T T T T 1T

Eight-way set associative (fully associative)
Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

NI N N N N N O

3130---12111098---3210

22 8

Index V_Tag Data V_Tag Data V_Tag Data V_Tag Data

0

1

2

253

254

255

4-to-1 multiplexor

Hit Data

Summary

« Store more than one word per block for spatial
locality

— Adds complexity to write-miss
« Provide more than one location to store a block
in a cache to reduce miss rate
— Associative caches
— Need mechanism to determine which block to replace

— Rate of return of additional associativity reduces fairly
quickly compared with additional complexity in
implementation

