Introduction to VHDL

-component hierarchy

COMP311

Tony McGregor

G.1.05
tonym@cs.waikato.ac.nz

Hierarchy

® \VHDL is designed to support hierarchical
design

done by including detailed design into a higher
level design

® Build a nand gate from an "and' gate and a
‘not’ gate

® Build a 4-bit (ripple) adder from 4 one bit
adders

® Build a CPU from memory, data path, ALU
and registers

COMP311 - VHDL 2

AND Gate

library ieee;
use ieee.std logic 1164.all;

entity and gate is

port (
and a : in std_logic;
and b : in std_logic;

and out : out std logic
)i
end and gate;
architecture rtl of and gate is
begin
and out <= and_a and and b;

end rtl

COMP311 - VHDL

NOT gate in VHDL e

NOT gate in VHDL

library ieee;
use ieee.std logic 1164.all;

entity not gate is

port (
not in : in std_logic;
not out : in std _logic

)i
end not gate;
architecture structural of not gate is
begin
not out <= not not_inj;

end structural

COMP311 - VHDL

NAND gate

® build nand from not and and

® build a new entity that references not and and
definitions.

component and gate

port (
and a : in std logic;
and b : in std logic;

and out : out std logic

)

COMP311 - VHDL 6

NAND VHDL

nand_out

and not
and_a
and_out
not_in not_out
and_b
nand
not
and
nand_a and_a .
and_out not_in
not_out
nand_b and_b

COMP311 - VHDL

Nand from and and not

library ieee;
use ieee.std logic_1164.all;

entity nand gate is

port (
nand a : in std_logic;
nand b : in std logic;

nand_out : out std logic
)i

end entity nand gate;

architecture rtl of nand gate is

Begin

component and_gate

port (
and a : in std _logic;
and b : in std logic;

and_ o : out std logic);
end component and gate;

ANDGATE: and_gate

port map (
and_a => nand_a,
and b => nand b,

and_out => and out_i);

NOTGATE: not_gate
port map (
not in => and out i;
not_out => nand out);

component not_gate
port (
not in : in std logic;
not out : out std _logic);
end component not_gate;

signal and out_i : std_logic;

end architecture rtl;

COMP311 - VHDL

Alternative NAND gate syntax

library ieee;
use ieee.std logic_1164.all;

entity nand gate is

port (
nand a : in std logic;
nand b : in std logic;

nand out : out std logic);
end entity nand gate;

architecture rtl of nand gate is

signal and out i : std _logic;

begin -- rtl
ANDGATE: entity and gate
port map (
and a => nand a,
and b => nand b,
and _out => and out i);

NOTGATE: entity not gate
port map (—
not in => and out i,
not out => nand out);
end architecture rtl;

COMP311 - VHDL

Revision:
8 bit register in VHDL

library ieee;
use ieee.std logic_1164.all;

entity reg 8bit is

port (
reset, clk : in std_logic;
we : in std _logic;

din : in std logic_vector (7 downto 0);
dout : out std logic_vector (7 downto 0);
);

end reg 8bit;

architecture rtl of reg 8bit is

begin
process (reset, clk)
begin
if reset = '1l' then

dout <= (others => '0');
elsif rising edge(clk) then

if we = '1l' then
dout <= din;
end if;
end if;
end process;
end rtl;

COMP311 - VHDL

10

Half Adder

»—»—OO>

- o = o |w

- o o o |0

S = = O |

00
o000
X XX
| X X
o0
o
A PA o
B ®
C
S<=AxorB
C<=Aand B

COMP311 - VHDL 11

Half Adder VHDL

library ieee;
use ieee.std logic_1164.all;

entity half is

port (
a : in std_logic;
b : in std_logic;
S : out std_logic;
c : out std_logic

)i
architecture rtl of half is
begin
s <= a xor b;
c <= a and b;

end rtl

COMP311 - VHDL

12

Full Adder

Cin A B | Cout S
o o of| O O
0 0 1 0 1
o 1 of| O 1
0 1 1 I 0
1 o of O 1
1 0 1 I 0
1 1 0 1 0
1 1 1 I 1

A S
B Cout
Cin

clk

FDED—

Cl’.‘-..IT

S <= (A xor B) xor Cin
Cout <= ((A xor B) and Cin) or (A and B)

COMP311 - VHDL 13

Full Adder VHDL

library ieee;
use ieee.std logic_1164.all;

entity full is

port (
a : in std _logic;
b : in std _logic;
S : out std_logic;
cin : in std_logic;

cout : out std logic
)i
end full;

architecture rtl of full is

begin

S <= (a xor b) xor cin;

cout <= ((a xor b) and cin) or (a and b);
end rtl

COMP311 - VHDL

14

4-bit adder

SO S1 S2 S3

COMP311 - VHDL 15

4-bit adder VHDL

entity add4 is
port (
a : in std logic vector(3 downto 0);
b : in std logic vector(3 downto 0);
o : out std logic vector(3 downto 0);
carry : out std logic);
end entity add4;

COMP311 - VHDL 16

. (XY
4-bit adder VHDL 13
architecture rtl of add4 is
signal c¢ : std logic vector(2 downto 0);

begin

bit0: entity full
port map(a => a(0), b => b(0), s => s(0),
cin => '0', cout => c(0));

bitl: entity full
port map(a => a(l), b => b(l), s => s(1),
cin => c(0), cout => c(1));

bit2: entity full
port map(a => a(2), b => b(2), s => s(2),
cin => c(1l), cout => c(2));

bit3: entity full
port map(a => a(3), b => b(3), s => s(3),
cin => c(2), cout => carry);
end architecture rtl;

COMP311 - VHDL 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

