Introduction to VHDL
-language features

COMP311

Tony McGregor

G.1.05
tonym@cs.waikato.ac.nz

Topics for the rest of VHDL

type definitions

type qualification and conversion
scaler, array and signal attributes
variables

loops

assert

delays including delta delays
discreet event simulators

FSMs

* traffic light controller

4-bit CPU

COMP311 - VHDL

Types

® \VHDL supports user defined types

® types must be declared in a package
separate file
must be compiled into a library (probably the work
library)

® scalar types

® composite types

COMP311 - VHDL 3

Scalar Types

® integer types

® floating point types
® physical types

® enumeration types

Composite Types

® array types
® record types

COMP311 - VHDL

Integer Types

type year is range 2000 to 2020;

® VVHDL has strong typing

can not assign a signal (or variable) of one type to
another even if they are, for example, both integer

types.

type born is range 2000 to 2020;
signal y : year;
signal x : born;
y <= x; (illegal)

COMP311 - VHDL 5

Real Types

® just like integer types but with real numbers

type voltage is range 3.2 to 16.0;

COMP311 - VHDL 6

Physical Types

® include the units of a value
type resistance is range 0 to 1lE9
units
ohm;
end units resistance;

example values:
5 ohm, 22 ohm, 417_000 ohm

note the space between the value and the units,

this is required.
Riviera does not enforce this

COMP311 - VHDL 7

Physical Types

® can also define subunits

type length is range 0 to 1lE9
units

um;

mm = 1000 um;

m = 1000 mm;

km = 1000 m;

inch = 254000 um;
end units resistance;

COMP311 - VHDL

Time

® type time is predefined:

type time is range something

units
fs;
ps
ns
us
ms
sec
min
hr

end units;

= 1000 fs;

1000 ps;
1000 ns;
1000 us;
1000 ms;
60 sec;
60 min;

COMP311 - VHDL

Enumerated Types
® defined by a list of values

® for example:

type day is (mon, tue, wed, thu, fri,
sat, sun);

type octal digit is ('0', '1', '2',
l3I, l4|’ l5l, I6I, l7l);

® only identifiers and character literals are
allowed in the list but they may both occur in a
single enumerated type.

® the type character is a predefined enumerated
type

COMP311 - VHDL 10

Subtypes

® subtypes limit the range of values available in
a type

subtype age is integer range 0 to 120;
subtype weekend day is day range
sat to sun;
subtype capital is character range 'A’
to 'Z';
® values of subtypes of the same type can be
assigned to one another

COMP311 - VHDL 11

A type package

package newtype is
type dow is (mon, tue, wed, thu, fri, sat,
sun) ;

type res 1s range 1 to 5
units
ohm;
end units;

subtype weekend is dow range sat to sun;
subtype capital is character range 'A' to 'Z';

end package newtype;

COMP311 - VHDL 12

Type Qualification

® Sometimes you can't tell the type of a value
type logic level is (unknown, '0°',
1)
type system state is (unknown, running,
stopped) ;

The type of unknown is ... unknown

A type qualifier resolves this:
logic level'unknown

COMP311 - VHDL 13

Type Conversion

® Similar types can be (explicitly) converted from
one type to another:

typename (value)

real(123)
integer(3.6)
real to integer conversions round

® NOTE: this is different to type qualification

COMP311 - VHDL 14

Type Attributes

® there are a range of attributes that give
information about a type.

if we have atype T
T'left is the first (leftmost) value in T
T'right is the last
T' low is the smallest
T 'high is the greatest
T'ascending is true if the range is ascending
T'image (x) a string representing the value of x
T'value(s) the value represented by the string s

COMP311 - VHDL 15

Variables

® |n addition to signals VHDL supports variables

® defined between a process statement and its
begin

® assigned with := not <=
® mostly a constrained version of signals

® variables are not visible outside the process
they are defined in good practice to use a
variable where it will do

just as it's good practice to use a private variable

® variables are updated immediately, not at the
end of the process loop

COMP311 - VHDL 16

Variables Example

architecture rtl of xor gate is
begin
XOR GATE: process(a, b) is

variable result : std logic;
begin
result := a or b;
if ((a and b) = '1l') then
result := '0';
end if

o <= result;
end process;
end architecture;

COMP311 - VHDL

17

Broken Signal Example

What is wrong with the following?

architecture rtl of xor gate is
signal result : std logic;
begin

XOR GATE: process(a, b) is

begin
result <= a or b;
if ((a and b) = '1l') then
result <= '0';
end if

o <= result;
end process;
end architecture;

COMP311 - VHDL

18

Constants

® constants can be defined like variables

® need to have an initial value
variables may also have an initial value

constant e : real := 2.718281828;

constant prop delay : time := 3 ns;

COMP311 - VHDL 19

Control Structures b

® \VHDL supports control structures
* |loops
loop

while
for

® conditionals
if
case
assert
report

COMP311 - VHDL 20

Loop

process
begin
Statements;
loop
Statements;
wait on signal;
or
wait until signal = value;
or
wait for time;

end loop;
end process;

COMP311 - VHDL 21

Process Statement Loop

® The process statement is actually a 1oop
If there is a sensitivty list, there is an implict
wait on atthe end of the loop

If there is no sensitivity list there must be at least
one wait within the process statement

COMP311 - VHDL 22

Loop exits

® there are two forms of loop exit

exit;
unconditional exit

exit when (condition);
exit when condition is true

® exit may have a label to indicate which loop

to exit
exit label
exit label when (condition)

COMP311 - VHDL 23

Loop exit

process
variable count : integer;
begin
statements;
jovan: loop
statements;
exit jovan when (count = 10);
wait for time;
statements;
end loop;
end process;

COMP311 - VHDL 24

Next statement

® similarly there are two forms of next statement
cause the loop to restart from the beginning

next,
unconditional return to start

next when (condition),
return to start when condition is true

® next may also have a label

COMP311 - VHDL 25

Next example

process (clk)
variable count : integer;
begin
statements;
jovan: loop
statements;
next jovan when (clk = '0');
wait for time;
statements;
end loop;
end process;

COMP311 - VHDL 26

While

while (condition) loop
statements;
end loop;

® |oops may also have a label
retry: while (condition) loop

statements;
end loop retry;

COMP311 - VHDL 27

For

for identifier in range loop
statements;
end loop

® may have a label
® identifier is only in scope inside the loop
® it can not be modified inside the loop

COMP311 - VHDL 28

For loop example

hidden eg process is
variable a, b : integer;

begin
a := 10;
for a in 0 to 7 loop
b := a;

end loop;
--a = 10, b =7

end process hidden eg;

COMP311 - VHDL 29

If

1f condition then
statements;

elsif condition then
statements;

else
statements;

end if;

® may have a label

COMP311 - VHDL

30

Case

® an abbreviated form of an if statement with
several elsif clauses

case value is
when range => statement;
when range => statement;
when others => statement;
end case;

COMP311 - VHDL 31

Case example

case opcode 1is
when load|add|subtract =>

operand := memory operand;
when store to branch =>
operand := address operand;
when others -
operand := 0;

end case

COMP311 - VHDL 32

Case statement

® the value selected on and selection items in a
case statement must be a discrete type or a
one dimensional array.

® the selection values must be static
(determined at analysis time). Constants OK
but variables are not.

® may have a label

COMP311 - VHDL 33

Assert

assert condition
report expression
severity expression;

® report and severity are optional

® severity is note, warning, error or failure
error is the default

® simulator may stop at a given severity (or
above)

COMP311 - VHDL 34

Assert example

assert memory >= low memory
report “low on memory”
severity note;

COMP311 - VHDL 35

Array Types

® \VHDL supports single and multi-dimensional
arrays

type nibble is array (3 downto 0) of
std logic;

type state is (off, warming,
waitingforwork, running, stopping)

type work counts is array
(waitingforwork to running) of
natural;

COMP311 - VHDL 36

Multidimensional arrays

type inputl is ('a', 'b', 'c');
type input2 is range 0 to 6;

type input counts is array(inputl,
input2) of natural;

variable input counter : input counts;
input counter('b', 3) := 0;

COMP311 - VHDL 37

Array Attributes

® if we have an array type A and N, a dimension
of the array (between 1 and the number of
dimensions)

A'left (N) is the first (left most) value in Nth
index of A

A'right (N) is the last value in the Nth index
A'low(N) is the smallest ..
A'high(N) is the greatest ...

A'ascending(N) is true if the range for the Nth
dimension is ascending

A'range(N) index range
A'reverse range(N) reverse of range
A'length(N) length of index range

COMP311 - VHDL 38

Array attributes
-example

type A is array (1 to 4, 31 downto 0)
of boolean;

o ' =
® Atleft(l) =1 Atlow(l) =1
o A'right (2 - ® A'high(2) = 31
A'right(2) = ® A'reverse range(2)
® A'range(l) is 1 to 4 is 0 to 3T
o A : —
® A'asccending(1l) = TRUE %Aiggendlng(Z)

® A'low =1
® A'length = 4

COMP311 - VHDL

39

Unconstrained Arrays

® dimensions supplied in variable (or signal)
declaration, not type definition

type dag is array (natural range <>) of
integer;

variable clark : dag(3 downto 0);

® string is a predefined unconstrained array

variable name : string(l to 32) := “F Dag”;

COMP311 - VHDL 40

std_logic_vector

® the std logic vector type we have used is an
unconstrained array

signal john : std logic vector(3 downto 0);

type sdt logic_vector is array (mnatural
range <>) of std _logic;

COMP311 - VHDL 41

Unconstrained Array Ports

entity andn is
port(i : in | std logic vector
o : out std logic);
end entity andn;

T

architecture behavioural of andn 1is

begin
ANDN:process(1) is
variable result : std logic;
begin
result := '1"';
for index in| i'range |loop

result :=Tesult and i(index);
end loop;
o <= result;
end process andn
end architecture behavioural;

COMP311 - VHDL

42

000
. o00
Unconstrained Array ports 3+
architecture tb of andn tb is
component andn
port (i : in |std logic_vector(7 downto 0);
o : out std logic);
end component;
signal i i : std logic_vector(7 downto 0);
signal o i : std logic;
begin -- tb
DUT: andn port map (
i=>1ii,
o => o0 1i);
test : process
begin
i i <= "00000000"; wait for 10 ns;
i i <= "00011100"; wait for 10 ns;
i i <= "01111111"; wait for 10 ns;
i i <= "11111111"; wait for 10 ns;
wait;
end process;
COMP311 - VHDL 43

end tb;

Propagation Delays

® Gates do not transmit signals instantly
they have a propagation delay

A—
O
B—

_— =

propagation delay
COMP311 - VHDL 44

Propagation Delays in VHDL

® we can add an 'after' clause to include a
propagation delay

architecture rtl of half 1is

begin
S <= (a xor b) xor cin after 1 ns;
cout <= (a xor b) and cin) or

(a and b) after 1.5 ns;
end rtl

COMP311 - VHDL 45

4-bit ripple adder with
propagation delays

® riviera demo

Signal Attributes

® S'event true if there is a change in S in the
current process cycle

® S'active true if the value of S is set in this
cycle

® S'transaction a signal of type bit that
changes value each time there is a transaction

on S

®S' lSast_event the time since the last event
on

® S'last_active the time since last
transaction on S

COMP311 - VHDL 47

Signal Attributes

® S'last wvalue the value of S before the last
event

® S'quiet(T) True is there has been no
transaction in S in the most recent time
Interval T

® S'stable(T) True if there has been no
event (change) in S in the most recent time
interval T

® S'delayed(T) A signal that has the same
value as S but delayed by time T

COMP311 - VHDL 48

Discreet event simulation

® A discreet event simulator is based around an
ordered list of events

® Fach entry in the list contains
the time the item is scheduled for
the action that should be taken at that time
a link to the next item

® Actions often trigger other actions
they put new items into the event list.

COMP311 - VHDL 49

The Event Chain

0

time
action
next

time
action
next

K- action

action

time
action
next

W

COMP311 - VHDL

50

Discreet Event Simulation

® The simulator is a loop that removes the top
event off the list and runs the action
associated with that event.

®* \When that event is completed the event that is
now at the top of the list is processed

¢ Simulated time skips from the time in the
previous event to the time in the next event

no association with real time

® The simulation stops when there are no events
left on the list or when a pre-set time limit is
exceeded

COMP311 - VHDL 51

Delta Time

® \When a signal value is changed a new event
IS added to the event list

® |[f the event is 'Immediate’ it goes at the top of
the list

® when the current event is complete the next
event on the list will be selected

® this explains the notion of 'delta time'

signal values don't change until the end of a
process block

COMP311 - VHDL 52

Traffic Light Controller

farm road

COMP311 - VHDL

53

Signals and States

® \We have two inputs
Car on the Farm road (CF)
Car on the Highway (CH)

® Four states that the system can be in
Red on the Farm road and Green on the highway (FR HG)
Red on the Farm road and Yellow on the Highway (FR HY)
Green on the Farm road and Red on the Highway (FG HR)
Yellow on the Farm road and Red on the Highway (FY HR)

COMP311 - VHDL 54

Finite State Machines

* Commonly used in digital design for control
circuits

* Usually described as a state transition diagram

current state event IneXt state

FR_HG | CF | FR_HY
FR_HY | delay i FG HR
FG_HR | CH : FY HR
FY_HR | delay | FR_HG

COMP311 - VHDL 55

Generating the light signals

® The light signals can be generated from the
state of the system:

HGreen <= HG FR
HYellow <= HY FR
HRed <=FG HRorFY HR

FGreen <= FG_HR
FYellow <= FY_HR
FRed <=HG FRorHY-FR

COMP311 - VHDL 56

000
000
o0
[
Moore Machines
(™)
Y N Y N
| . next current arent qutnut
INputs state edstate | oot state . F?C outputs ~
logic | clock ——| memory J
A 4 A 4

COMP311 - VHDL 57

Moore Machines in VHDL

*Use an enumerated type to represent the states
type STATE TYPE is
(HG_FR, HY FR, FG HR, FY HR);

*use a process for:
* next state logic
* state flip-flops
* output logic

COMP311 - VHDL 58

Entity Definition 13

entity traffic 1is

port (clock : in std logic;
CF : 1n std logic;
CH : in std logic;
HGreen : out std logic;
HYellow : out std logic;
HRed : out std logic;
FGreen : out std logic;
FYellow : out std logic;
FRed : out std logic);

end traffic;

COMP311 - VHDL 59

Architecture outline ‘s

architecture RTL of traffic 1is
type STATE TYPE is (HG FR, HY FR, FG HR, FY HR);
signal current state, next state : STATE TYPE := HG FR;
begin
NS: process (current state, CF, CH) --next state
begin

end process ns;

SEQ: process (clock) --state memory
begin

end process seqd;

OUTPUTS: process (current state) --output logic
begin

end process outputs;

end; COMP311 - VHDL 60

000
000
o0
Next state logic :
NS: process (current state, CF, CH)
begin
case current state is
when HG FR =>
if CF = 'l' then next state <= HY FR;
else next state <= HG FR;
end if;
when HY FR => next state <= FG HR;
when FG HR =>
if CH = 'l' then next state <= FY HR;
else next state <= FG HR;
end if;
when FY HR => next state <= HG FR;
end case;

end process;

COMP311 - VHDL 61

Traffic Light Controller +
- flip flops

SEQ: process (clock)
begin
if rising edge(clock) then
current state <= next state;
end if;
end process;

COMP311 - VHDL 62

Traffic Light Controller -
outputs :
outputs: process (current state)

begin

HGreen <= '0'; HYellow <= '0'; HRed <= '0';
FGreen <= '0';, FYellow <= '0'; FRed <= '0';
case current state is

when HG FR =

HGreen = ']l'"; FRed <= '1"';
when HY FR =

HYellow <= 'l'; FRed <= '1';
when FG HR =

FGreen = ']l'"; HRed <= '1";
when FY HR =

FYellow <= 'l'; HRed <= '1"';

end case;
end process;

COMP311 - VHDL 63

Traffic Light Controller - timi

® Rivera simulation

ng

FSM Initialisation

*Simulator assumes default value of an object is
its left most value

*In traffic light controller want FG_HR as initial
state

seq: process (clock, reset)
begin
1f reset = ‘1’ then
current state <= FG HR;
elsif clock = '1’" then
current state <= next state;
end 1f;
end proces S GOMP311- VHDL 65

4-bit CPU 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

