
1

21 July 2008

COMP202-08B
Computer Communications

Lecture 3 – Java Sockets

Matthew Luckie

mluckie@cs.waikato.ac.nz

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

Overview of lecture

• Introduce Java
• or reintroduce Java as the case may be

• Show, by example, how to program basic network
applications with Java

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

Hello, world.

class HelloWorld

{

public static void main(String args[])

{

System.out.println("Hello World!");

}

}

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

Running this program

$ javac HelloWorld.java

$ java HelloWorld

Hello World!

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Useful properties of Java

• Object oriented

• Garbage collection provided – you don’t need to
explicitly free resources.

• Errors are returned by the called method throwing an
Exception

• The java compiler will complain if you do not have necessary
exception handling code.

• The Java compiler produces a binary that should be
able to be run anywhere using the Java interpreter

• The Java API is fairly well documented by Sun
• http://java.sun.com/javase/6/docs/api/

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

Hello World, version 2.0
class HelloWorld2

{

public static void main(String args[])

{

int i;

System.out.println("There are " + args.length +

" parameters");

for(i=0; i<args.length; i++)

{

System.out.println(" " + args[i]);

}

}

}

2

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Hello World, version 2.0

$ javac Helloworld2.java

$ java HelloWorld2 COMP 202 08B

There are 3 parameters

COMP

202

08B

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

From earlier lectures

• DNS names map to IP addresses

• IP addresses identify systems on the Internet

• Applications run on a port

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

From earlier lectures

Web server

Mail server

80

25

130.217.250.39
File transfer 21

…..

sorcerer.cs.waikato.ac.nz

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

Dealing with IPv4 addresses in Java

• java.net.InetAddress class

• Useful methods:
• getByName : resolve address with DNS

• getHostAddress : return String containing IP address

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

An example
String address =

“sorcerer.cs.waikato.ac.nz”;

try {

InetAddress IP =
InetAddress.getByName(address);

System.out.println(address + " : " +

IP.getHostAddress());

}

catch(UnknownHostException e) {

System.err.println(address + " : unknown
host");

}

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

Output

sorcerer.cs.waikato.ac.nz : 130.217.250.39

3

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

Doing the reverse

• It is also possible to obtain a DNS name of an IP
address (if one exists) using
InetAddress::getHostName()

• Sometimes if an IP address has a name, this method
won’t return it

• if the name lookup takes too long to complete

• If the IP address does not have a name, this method
returns the IP address looked up in a String

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

A second example
String address = “130.217.250.39”;

try {

InetAddress IP =
InetAddress.getByName(address);

System.out.println(address + " : " +

IP.getHostName());

}

catch(UnknownHostException e) {

System.err.println(address + " : unknown
host");

}

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

Output

130.217.250.39 : sorcerer.cs.waikato.ac.nz

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

Networked hello world

• The rest of this lecture is concerned with what is known
as a Socket

• A Socket is used to establish connections between
networked machines on the Internet.

• java.net.Socket

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

Establishing a connection

• This code connects to the HTTP port on
www.wand.net.nz

InetAddress wandIP =
InetAddress.getByName(“www.wand.net.nz”);

Socket mysocket = new Socket(wandIP, 80);

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

Now what?

• We’ve established a connection, but now we need to be
able to send and receive messages on it.

• There are multiple ways to do this in Java.

4

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

Input and Output streams

• At the lowest level, messages are made up in units of
bytes

• You can obtain bytes by obtaining the corresponding input
and output streams, and then using the read and write
methods available

InputStream in = mysocket.getInputStream();

OutputStream out = mysocket.getOutputStream();

• But you probably don’t want to do this yet.

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Input and Output lines of text

• To start with, we want to deal with reading and writing
text lines from Sockets

• java.io.BufferedReader

• java.io.PrintWriter

• BufferedReader returns whole lines of text per call

• PrintWriter assembles lines of text and writes to the
Socket when a whole line of text is available

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Writing lines of text

• PrintWriter is fairly easy to use

PrintWriter out = new
PrintWriter(mysocket.getOutputStream(), true);

out.println(“hello world”);

out.close();

• The constructor takes an optional boolean parameter
that controls whether or not it flushes on a line basis;
you want to use true as the parameter.

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

Reading lines of text

• BufferedReader is a bit more complicated
• its constructor takes a Reader object, but Socket::getInputStream

returns an InputStream.

• The InputStreamReader class extends the Reader class, and it
takes an InputStream as a parameter in its constructor, so we’ll
use that

InputStreamReader isr = new
InputStreamReader(mysocket.getInputStream());

BufferedReader reader = new
BufferedReader(isr);

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 23

ServerSocket

• There is a special type of socket for accepting new
connections to the system in Java.

• ServerSocket

ServerSocket

ServerSocket

80

25

ServerSocket 21

…..

sorcerer.cs.waikato.ac.nz

Socket

Socket

Socket

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 24

ServerSocket

ServerSocket server = new ServerSocket(1234);

Socket client = server.accept();

5

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 25

Wrapping it all up: HelloWorldServer.java

ServerSocket ss = new ServerSocket(1234);

while(true) {

Socket client = ss.accept();

PrintWriter writer = new

PrintWriter(client.getOutputStream(), true);

BufferedReader reader = new BufferedReader(

new InputStreamReader(client.getInputStream()));

String line = reader.readLine();

writer.println(“You said: “ + line);

client.close();

}

Note: THIS CODE IS MISSING NECESSARY EXCEPTION HANDLING

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 26

Wrapping it all up: HelloWorldClient.java

InetAddress IP = InetAddress.getByName(args[0]);

Socket me = new Socket(IP, 1234);

PrintWriter writer = new

PrintWriter(me.getOutputStream(), true);

BufferedReader reader = new BufferedReader(

new InputStreamReader(me.getInputStream()));

writer.println(“Hello, World”);

String response = reader.readLine();

me.close();

System.out.println(“The other system said:\n” +

response);

Note: THIS CODE IS MISSING NECESSARY EXCEPTION HANDLING

21 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 27

In summary

• The InetAddress class deals with resolving names to
addresses

• The Socket class represents an individual connection
established over the network

• The ServerSocket class is a special type of socket used
to allow new connections to be made

• The PrintWriter class allows us to write individual lines
of text over a socket

• The BufferedReader class allows us to read lines of text
from a socket

