
1

24 July 2008

COMP202-08B
Computer Communications

Lecture 4 – Concurrent Java Programming

Matthew Luckie

mluckie@cs.waikato.ac.nz

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

So far

• The InetAddress class deals with resolving names to
addresses

• The Socket class represents an individual connection
established over the network

• The ServerSocket class is a special type of socket
used to allow new connections to be made

• The PrintWriter class allows us to write individual lines
of text over a socket

• The BufferedReader class allows us to read lines of
text from a socket

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

HelloWorldServer.java

ServerSocket ss = new ServerSocket(1234);

while(true) {

Socket client = ss.accept();

PrintWriter writer = new

PrintWriter(client.getOutputStream(), true);

BufferedReader reader = new BufferedReader(

new InputStreamReader(client.getInputStream()));

String line = reader.readLine();

writer.println(“You said: “ + line);

client.close();

}

Note: THIS CODE IS MISSING NECESSARY EXCEPTION HANDLING

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

HelloWorldServer.java

accept

ServerSocket

readLine

println

client socket

closeHelloWorldServer.java
waits until the client
has sent a line of text
before it can continue.

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

HelloWorldServer.java

• Major problem: two clients cannot use the server
concurrently.

• The problem is that the program blocks until the first
client to connect sends a line of text through, causing
readLine to return

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

What we want

accept

ServerSocket

readLine

println

close

readLine

println

close

readLine

println

close

client #1 client #3client #2

Server process

2

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Solutions

• There are many solutions to this problem

• The two we are going to discuss in this course are
• Threads

• Asynchronous I/O – handle events.

• We’ll look at Threads first.

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

Threads

• Just as our computer can run multiple programs at the
same time, each of which share the processor, we can
have two strands of our program run at the same time

• Each strand is a Thread

• Jargon
• Operating system runs processes

• Programs have threads

• Threads can be thought of light-weight processes

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

SleepyThreads.java
class Sleepy extends Thread {

public void run() {

try {

System.out.println("Sleepy: hello");

sleep(1000);

System.out.println("Sleepy: 1.0 seconds");

sleep(1000);

System.out.println("Sleepy: 2.0 seconds");

sleep(1000);

System.out.println("Sleepy: 3.0 seconds");

sleep(1000);

System.out.println("Sleepy: 4.0 seconds");

System.out.println("Sleepy: bye");

} catch(Exception e) {

System.err.println("Sleepy Exception: " + e);

}

}
24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

SleepyThreads.java
class Snoozy extends Thread {

public void run() {

try {

System.out.println("Snoozy: hello");

sleep(1500);

System.out.println("Snoozy: 1.5 seconds");

sleep(1000);

System.out.println("Snoozy: 2.5 seconds");

sleep(1000);

System.out.println("Snoozy: 3.5 seconds");

sleep(1000);

System.out.println("Snoozy: 4.5 seconds");

System.out.println("Snoozy: bye");

} catch(Exception e) {

System.err.println("Snoozy Exception: " + e);

}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

SleepyThreads.java

class SleepyThreads

{

public static void main(String args[])

{

Sleepy sleepy = new Sleepy();

Snoozy snoozy = new Snoozy();

sleepy.start();

snoozy.start();

System.out.println("now waiting...");

}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

In class demo

3

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

HelloWorldServer2.java

• Goal is to write HelloWorldServer so multiple clients can
connect and interact

• HelloWorldServer2:
• main method will accept new clients as before

• instead of then reading text from the client, it will then spawn a
thread to read the line of text from the client and write it back

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

HelloWorldServer2.java: a skeleton

class HelloWorldServerThread extends Thread
{

public void run()

{

/* thread’s main procedure – entry point */

}

public HelloWorldServerThread(/* parameters */)

{

/* initialise thread’s parameters */
}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

HelloWorldServer2.java: a skeleton

• Constructor takes parameters to create a thread object.
You can think of the parameters like command line
arguments to main()

• Thread does not begin execution until the start()
method is called

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

HelloWorldServer2.java
class HelloWorldServer2 {

public static void main(String args[])

{

try {

ServerSocket ss = new ServerSocket(1234);

while(true) {

Socket client = ss.accept();

HelloWorldServerThread thread =

new HelloWorldServerThread(client);

thread.start();

}

}

catch(Exception e) {

System.err.println("Exception: " + e);

}

}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

HelloWorldServer2.java
class HelloWorldServerThread extends Thread {

public void run() {

try {

PrintWriter writer = new

PrintWriter(client.getOutputStream(), true);

BufferedReader reader =

new BufferedReader(

new InputStreamReader(client.getInputStream()));

String line = reader.readLine();

writer.println("You said: " + line);

client.close();

} catch(Exception e) {

System.err.println("Exception: " + e);

}

}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

HelloWorldServer2.java

class HelloWorldServerThread extends Thread

{

Socket client;

public HelloWorldServerThread(Socket s)

{

client = s;

}

}

4

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

In class demo

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Summary so far

• HelloWorldServer2’s main routine accepts new clients
and creates a thread to handle that client

• HelloWorldServerThread’s constructor takes the client
variable to handle

• HelloWorldServer2’s main routine calls the start method

• HelloWorldServerThread’s run routine is then started.

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Threads

• One problem with threads is they don’t scale
• a thread is a mini-process

• if you had 5000 threads your operating system will have a lot to
do

• A second problem is any variables shared between
more than one thread have to be used carefully

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

Real communications systems

• Real communications systems will deal with multiple
connections simultaneously

Chat Server

bob

jim

mary

suzy

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 23

ChatServer.java

• A chat server takes lines of text from each client and
relays that line to all other clients

• Required variable: List of connected clients

• How do we organise our program now?

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 24

ChatServer.java

ChatServer

sessions

ServerSocket

ChatServerSession

PrintWriter

Socket

BufferedReader

sayToAll()

Logout()

send()

ChatServerSession

PrintWriter

Socket

BufferedReader

send()

Note: three threads
of execution with

two connected
clients

5

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 25

ChatServer.java

ChatServer

sessions

ServerSocket

sayToAll()

Logout()

ChatServerSession

PrintWriter

Socket

BufferedReader

send()

ChatServerSession

PrintWriter

Socket

BufferedReader

send()

Multiple threads use the sessions variable
when accepting new client connection
sayToAll
logout

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 26

Java Threads

• Need to be careful when accessing a variable shared
amongst threads to access the variable one at a time

• i.e, lock the variable when using it to ensure its integrity

• Easy way to do this is to use the synchronized
keyword

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 27

Java Threads
public void sayToAll(ChatServerSession from, String

message)

{

int i, len;

synchronized (sessions) {

len = sessions.size();

for(i=0; i<len; i++) {

ChatServerSession to = sessions.get(i);

if(from != to) {

to.send(message);

}

}

}

}

24 July 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 28

Summary

• Methods that block are a problem for communications
systems as they prevent other clients getting service

• Threads are one way to avoid blocking on input

• Homework task:
• Add the ability to ChatServer.java for clients to specify their name

and prefix it to their messages

• Make sure the name is unique!

