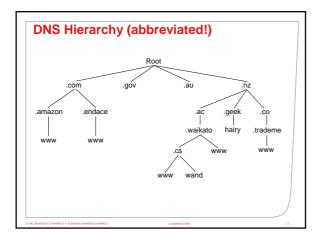
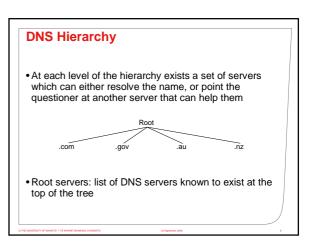

DNS


- Domain Name System (DNS)
 Implemented at the application level
- Provides a mapping from a friendly name to an IP address


Among many other services

- We have talked about DNS before. This lecture is a little about how it is implemented
 - Hierarchy
 - Distributed network databases
- UDP

DNS hierarchy

- Client has name: www.amazon.com
 - 1. Ask root server: what is the IP address for www.amazon.com?
 - reply: I don't know, try the .com server: a.gtld-servers.net (192.5.6.30) or 15 other servers they also specify
 - Ask .com server: what is the IP address for www.amazon.com?
 reply: I don't know, try the amazon.com server: udns1.ultradns.net (204.69.234.1) or
 - udns2.ultradns.net (204.74.101.1)
 - Ask amazon.com server: what is the IP address for www.amazon.com?
 - reply: 72.21.204.208
- This is an iterative look-up. Recursive lookups are also used.

DNS hierarchy

- dig www.amazon.com @a.root-servers.net
- dig www.amazon.com @a.gtld-servers.net
- dig www.amazon.com @udns1.ultradns.net

Root Servers

•

- (A through M).root-servers.net
- 13 pre-defined IP addresses
 - These addresses do change periodically, but not all at the same time
- Once upon a time (less than ten years ago) 13 individual points of failure:
 - most of which were in the USA.
 - 13 individual points of failure isn't that many for a critical service like $\ensuremath{\mathsf{DNS}}$
- These days much more robust through being widely distributed

DNS hierarchy

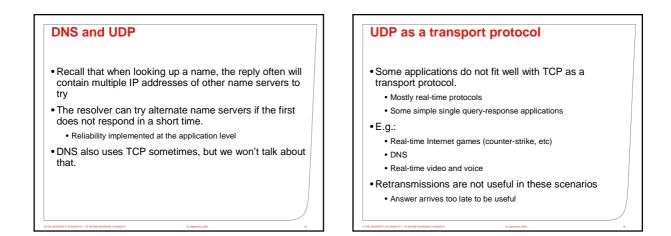
- A note: the DNS hierarchy is nothing like what the underlying network topology looks like.
- It is a distributed database, each server having been delegated some authority to answer queries.

DNS caches

- As with ARP, DNS resolvers keep a cache of recently looked up records
 - So each time an IP address is required, the resolver does not have to repeat the process
 - Also, if www.endace.com is looked up, we already have the details of the .com servers, so don't need to go to the root.
- The length of time they keep each entry is defined by a person, and varies from minutes to days.
 - TTL: time to live

DNS and transport protocols

- Recall that TCP is a connection oriented, reliable, byte stream transport protocol
 - Connection oriented: three packet connection handshake, four packet disconnection
 - · Reliable: retransmissions automatically taken care of
 - Byte stream: deals with taking a stream of data, dividing it up into packets, and reassembling it at the destination


• DNS

- Each query is small: what is the IP address for a name?
- TCP is not well suited to DNS

DNS and TCP

- TCP will try and connect to a destination 3 or 4 times, taking about a minute to give up
 - What happens if the destination is down?
 - DNS: we want to know our answer much quicker
- Solution: UDP

UDP header		
0	15 16 31	
Source	Port	Destination Port
UDP Le	ngth	Checksum
• User datagram	protocol (U	DP)
• UDP provides a length field.	oort number	rs like TCP, a checksum, and
 DNS: well know 	wn port 53	
• It does not prov	/ide much e	lse.
 Not reliable 		
 Not connection 	oriented	
 Not a byte-street 	am service	
E UNIVERSITY OF WARATO . TE WHARE WANANGA O WARA	°	22 September 2008

Summary DNS is an application-level service that provides the ability to obtain an IP address from a more easily remembered name DNS is implemented as a distributed database DNS has built-in redundancy, which the DNS application service takes advantage of UDP is an unreliable transport protocol