
1

1 October 2008

COMP202-08B
Computer Communications

Lecture 20

Java – Asynchronous I/O, Part Two

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

Event-based Network Applications

• Similar to programming model used when programming
GUI applications

• wait for user to click a button, then do something in response

• Network applications:
• wait for data to arrive, then do something

• wait for a new connection to be established, then do something

• wait for buffer space to come available, then write data

• Faster than spawning threads for each socket:
• no process scheduling, synchronisation overheads

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

Event-based network applications

ServerSocket

Socket

Socket

Socket

Wait for events
on this set of

Sockets

isAcceptable()
accept()

isReadable()
read()

isWritable()
write()

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

Putting this together : a starting point
Selector selector = Selector.open();
ServerSocketChannel ssc;
SocketChannel socket;
SelectionKey ssck;

ssc.socket().bind(new InetSocketAddress(1234));
ssc.configureBlocking(false);
ssck = ssc.register(selector, SelectionKey.OP_ACCEPT);

while(true) {

selector.select();
Set set = selector.selectedKeys();

if(set.contains(ssck)) {
if(ssck.isAcceptable()) {

socket = ssc.accept();
addClient(socket);

}
set.remove(ssck);

}
}

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Putting this together : a starting point
while(true) {

selector.select();

/* code to accept new sockets removed */

/* get all of the other events and loop through */
Iterator it = set.iterator();
while(it.hasNext()) {

/* get the key for this event */
SelectionKey key = (SelectionKey)it.next();

/* remove the key from the selector */
it.remove();

/* handle event */
if(key.isReadable())

handle_read();
if(key.isWritable())

handle_write();
}

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

This lecture

Have not shown you a complete application that uses
select yet, so today is about putting this all together to

get a useful network application

2

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Problems to overcome: #1

• Consider a ChatServer, with a main room:
• When someone says something in the room, it helps to know who

said it, without requiring the person saying it to identify
themselves when they speak

• Socket connections roughly map to a person.

• When an event occurs on a SocketChannel, we need to
know who it is in relation to.

• i.e. we need to map a SocketChannel to a ChatServerSession

• Remember which SocketChannel corresponds to which
ChatServerSession

• “keeping state”

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

Problems to overcome: #2

• Consider a HelloWorldServer, where the server echoes
back to the client the line they said

• Non-blocking I/O means the Selector will tell you when there is
something to read, which may not actually be a complete line yet.

• SocketChannel::read method deals in bytes, not lines.

• For each client, we need to be prepared to read a
partial line, and store it until the rest of the line arrives

• i.e. we need to keep a buffer with each client that remembers
(stores) anything partially read

• “keeping state”

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

Problems to overcome: #3

• Consider a HelloWorldServer, where the server echoes
back to the client the line they said

• Non-blocking I/O means the Selector will tell you when you are
able to write something, but not how much you can actually write

• When you perform a write, some bytes supplied are likely to be
sent, but not necessarily all of them

• For each client, we need to be prepared to send only
part of our reply, and store the unsent portion until we
are able to send it

• i.e. we need to keep a buffer with each client that remembers
(stores) anything that has not been transmitted yet

• “keeping state”

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

Keeping state

• Essentially
• remembering where you are up to

• What are the set of valid things that can happen next?

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

HelloWorldServer3: state transitions
HelloWorldServer

isAcceptable()
register client

HelloWorldServerClient

SocketChannel

isReadable()

complete line yet?

No Yes

read()

socket.register(OP_WRITE)

isWriteable()

all written yet?

No Yes

write()

finished session

accept()

This tells Selector we no
longer want to know about
any read events

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

Solution #1: keeping state

• When a SocketChannel is created …
• i.e. when you accept a new SocketChannel connection

• …it is natural to create a HelloWorldServerClient or
ChatServerSession object to associate with the
SocketChannel

3

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

Solution #1: keeping state

/*
* accept a new connection, and create a HelloWorldServerClient to
* go with the connection. Register the SocketChannel with the selector,
* asking to be told when we can read from the Socket.
*/

SocketChannel channel = ssc.accept();
HelloWorldServerClient client = new HelloWorldServerClient(this);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

/*
* associate the session variable with the SelectionKey.
* when the SelectionKey tells us we can read or write, we can get
* the attachment (HelloWorldServerClient) associated with the key
* and thus be able to keep state.
*/

key.attach(client);

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

Solution #1: keeping state

/* go through the remainder of the events */
Iterator it = set.iterator();
while(it.hasNext()) {

SelectionKey key = (SelectionKey)it.next();
it.remove();

/* retrieve the client attached to the SelectionKey */
client = (HelloWorldServerClient)key.attachment();

/* now, have the SelectionKey and the state associated with it */

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

Solution #1: keeping per-session state

class HelloWorldServerClient
{

HelloWorldServer3 server;
private String read;
private byte[] write;

/* other state variables */
}

Put various bits of information that need to be kept per-session
in the per-session structure

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

Problems to overcome: #4

• Programming Java Selector and SocketChannels is
more painful than it needs to be

• ByteBuffer

Fixed size (of your choosing)

To transmit, you write into the buffer, then pass it to write()
To receive, you pass a ByteBuffer with space in it to read(), then parse it

remaining
space

position

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

ByteBuffer: read
buffer = ByteBuffer.allocate(512);

if(key.isReadable()) {
buffer.rewind();

int len = key.channel().read(buffer);
if(len == -1) {

removeClient(client);
continue;

}

byte[] array = new byte[len];
buffer.rewind();
for(int j=0; j<len; j++) {

array[j] = buffer.get();
}
client.handle_read(array, len);

}

Allocate a ByteBuffer

shift position to zero

do the read

The ByteBuffer position has
been shifted with the read

allocate a new array

position back to zero

copy the data in

pass data to client

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

Solution #2: remembering read() data

• For each client, we need to be prepared to read a
partial line, and store it until the rest of the line arrives

• i.e. we need to keep a buffer with each client that remembers
(stores) anything partially read

Note: will not go into details of readLine, please see code on Moodle

4

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

Solution #2: remembering read() data

/* class variable we use to keep partially read strings in */
private String read;

public void handle_read(byte[] array, int len)
{

/* create a string from the byte array */
String str = new String(array, 0, len);

/* concat with any existing string portion */
this.read = read.concat(str);

/* internal method to extract a line */
str = this.readLine();
if(str != null) {

/* got a line, do something with it */
}

}

In class HelloWorldServerClient

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Solution #2 : deal with read() data

if(str != null)
{

/* got a line, buffer what we need to send back to the client */
this.write("You said: " + str + "\r\n");

/*
* tell the Selector to let us know when we can write back
* note: will no longer get read events, but could do so with
* (OP_WRITE | OP_READ)
*/
key.interestOps(SelectionKey.OP_WRITE);

}

In class HelloWorldServerClient

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Solution #3: buffering write() data

• For each client, we need to be prepared to send only
part of our reply, and store the unsent portion until we
are able to send it

• i.e. we need to keep a buffer with each client that remembers
(stores) anything that has not been transmitted yet

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

Solution #3: buffering write() data
In class HelloWorldServerClient

private byte[] write;
private ByteBuffer writebuf;

private void write(String str)
{

byte[] strb = str.getBytes(); /* convert the string to an array of bytes */

/* if there is already data buffered, extend that array and add to it */
if(write != null) {

byte[] newb = new byte[write.length + strb.length];
System.arraycopy(write, 0, newb, 0, write.length);
System.arraycopy(strb, write.length, newb, 0, strb.length);
write = newb;

} else {
/* else, no data buffered, just use the byte array generated */
write = strb;

}
}

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 23

Solution #3: buffering write() data

• HelloWorldServerClient::handle_write()

• Receives notification when a write may be used

• Implemented in three parts
• First part checks the byte[] write variable to see if there is

anything new to be sent via the ByteBuffer. If there is, add it to
the ByteBuffer

• Second part writes the actual data

• Final part checks to see if there is anything left to write in either
the write[] or writebuf variables. If nothing left, close the session

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 24

Solution #3: buffering write() data: Part 1
/* if there is new buffered data, at it to the ByteBuffer */
if(write != null) {

while(i<write.length && writebuf.hasRemaining()) {
writebuf.put(write[i]);
i++;

}
/*
* if we managed to put all the data in the byte buffer
* then we don’t need write any more. Otherwise remember
* the part we could not put in the ByteBuffer
*/

if(i == write.length) {
write = null;

} else {
byte[] newb = new byte[write.length-i];
System.arraycopy(write, i, newb, 0, write.length);
write = newb;

}

5

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 25

Solution #3: buffering write() data: Part 2

/* pass the ByteBuffer writebuf to the channel to send */

channel.write(writebuf);

/* remove the part that has been sent */

writebuf.compact();

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 26

Solution #3: buffering write() data: Part 2

/* if there is nothing to be sent at all, we’re done */

if(writebuf.position() == 0 && write == null) {

server.removeClient(this);

}

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 27

If your head hurts, that’s ok

• You’ll be getting practice with this in Lab 5, so all these
things I’ve talked about you’ll put into practice and it will
sink in.

1 October 2008© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 28

Summary

• When an event occurs on a SocketChannel, we need to
know who it is in relation to.

• Solution: keep state

• For each client, we need to be prepared to read a
partial line, and store it until the rest of the line arrives.

• Solution: keep state

• For each client, we need to be prepared to send only
part of our reply, and store the unsent portion until we
are able to send it

• Solution: keep state

