
COMP312-09A - Connectionless network

communications with error detection

March 26, 2009

1 Introduction

The aim of this assignment is to explore connectionless network data services
and error detection.

You will implement Java class providing a reliable transport protocol for sending
data across an unreliable network connection. The reliable transport protocol
will run over the provided DodgyDatagramSocket class, which replaces Data-
gramSocket. The DodgyDatagramSocket will randomly delay, corrupt, discard,
and reorder packets you send through it, so you will need to do a good job of
your ReliableDatagramSocket to get the file through.

To make use of your reliable transport class you should implement a simple
client and server for uploading files. Your client and server applications will not
have any features implemented at the application layer to provide reliability, like
TFTP has. Instead, this will be done with your ReliableDatagramSocket. Your
client does not have to tell the server the name of the file being transmitted;
your server can just store the contents in file001. The focus of this assignment
is in the ReliableDatagramSocket implementation; there are no marks provided
for your file transfer application, so you should not spend much time on it,
beyond what is required to get it working and demonstrate your ReliableData-
gramSocket.

You can get 6/10 marks for this assignment by successfully implementing a
stop-and-wait protocol in ReliableDatagramSocket. To get full marks, you need
to successfully implement a sliding window protocol and do some elementary
performance evaluation.

Your assignment will be verified in person in R-block Lab 6. You should aim to
complete your assignment by Monday April 27th. I will be in the lab to verify
this assignment on Monday at 10am before the lecture, and then again from 12.
It is worth 10% of your final grade.

1



2 Advice

The DodgyDatagramSocket class provides the following methods.

public class DodgyDatagramSocket extends DatagramSocket {

public DodgyDatagramSocket(int i);

public DodgyDatagramSocket();

public void send(DatagramPacket pkt);

public void setDropChance(double d);

public void setCorruptChance(double d);

public void setDelayChance(double d);

public void setDelayLen(int i);

public void setVerbose(boolean flag);

}

When I verify your assignment, you should not be using any of the set functions.
However, if it aids you in debugging your ReliableDatagramSocket implemen-
tation, you can use them.

Java provides a java.util.zip.CRC32 class which is useful for calculating a
checksum over a byte array. I suggest you use that.

Use the Linux command line tool md5sum to check that the file you received
is identical to the file sent.

Suggested method of send() operation for stop and wait:

1. Read a packet-sized chunk from the file into a byte buffer.

2. Form a DatagramPacket containing the data and send this to your Reli-
ableDatagramSocket.

3. Inside ReliableDatagramSocket, allocate a new DatagramPacket that is
slightly larger to contain your header.

4. Transmit this to the server.

5. Wait for acknowledgement. Retransmit after a timeout if you do not
receive one.

6. Once acknowledged, return back to the client.

2



To implement a sliding window protocol, you will need to extend your send
routine to accept new packets to transmit until the window is full. The receive
routine will need to keep any data received out of order until all previous pack-
ets have arrived. Once packets are in order they should be delivered to the
application.

In the sender, as you receive datagrams from the application and have to deliver
these datagrams in the correct order to the remote application, it makes sense
for your sequence numbers to relate to datagrams, not bytes. Your sender will
need to keep track of:

• sendSeqNext - The next sequence number to be sent

• sendSeqUnAck - The oldest sequence number not acknowledged.

• sendSeqMax - The maximum number of packets that can be unacknowl-
edged.

• sendData[] - An array to store all packets that have not been acknowl-
edged.

Your receiver will need to keep track of:

• recvSeqCur - The sequence number of the last segment received correctly
and in sequence.

• recvSeqMax The maximum number of segments that can be buffered.

• recvData[] An array to store all packets received out of order.

The easiest way to implement ReliableDatagramSocket sliding window is to split
it into threads.

• one thread to listen on the DodgyDatagramSocket for incoming packets,
check, re-order and then deliver these packets to the application.

• one thread waiting to be given packets to be sent.

Remember to use synchronize on any variables shared amongst the threads!

3



3 Questions

To complete the assignment, please write answers in the space provided. This
forms part of the verification process.

Question 1: UDP does not have the ability to signal end of file, as there
is no disconnection process. How do you signal end-of-file?

Question 2: Draw the header you prepend in your ReliableDatagramSocket.

Question 3: Briefly describe your ReliableDatagramSocket implementation.
If you implement a sliding window, say how you decide a packet has been lost,
and what action you take when this occurs.

Question 4: If you implemented a sliding window solution, please report how
throughput varies as a function of window size. Choose a suitable large file to
send, and window size of 1, 5, 10, and 20 packets.

4



Assignment 2 Mark sheet

Name:

Id:

Date:

First three questions answered well.
(2 marks)

ReliableDatagramSocket implementation. ReliableDatagramSocket works, is
well written, does not have serious flaws, and is well commented.

(4 marks)

Sliding window. Implemented a sliding window solution. Answered question
four.

(4 marks)

5


