

Overview

Last lectures

- TCP uses packet loss as an indication of congestion
- Congestion occurs when a node is unable to forward packets at the rate they arrive at.
- Queues tend to operate best when the presented load is no more than 70% of the server's capacity.

This lecture

- A bit more on circuits, including virtual circuits
- Random early detection
- Explicit congestion notification

Issues with circuit switching

- Comparatively expensive
- If node or link in circuit fails, the circuit fails too
 In a packet switched network, each packet is routed independently of any previous packet, so failures can often be routed around
- · Switches need to keep per-connection state

Issues with packet switching

- Difficult to provide Quality of Service
- Very difficult to guarantee information delivery
- Arrival order of packets not guaranteed
- If packets take different routes, some delay variation can occur
- Switches must match destination address to topology for routing every packet at every node.

Connection-oriented packet switched networks

- Virtual circuits
 - X.25
 - Frame Relay
 - Asynchronous Transfer Mode (ATM)
 - Multi-protocol Label Switching (MPLS)
- Signalling just like a circuit switched network
- State about each circuit held by VC switches
- Packets are identified as belonging to a particular connection
 - "labelled"

Connection-oriented packet switched networks

Advantages

- Minimum packet overhead just a label per packet
- Less per-packet processing at switches
- Straightforward to provide Quality of Service
- Reliability and Delay can be controlledOrder of packet arrival same as transmission

Disadvantages

- Signalling protocol is complex
- Failure of switch causes failure of all VCs through that switch
- · Switches keep per-connection state
- Can't provide VCs across the Internet to an arbitrary destination

Back to Queuing

- Queue types range from the obvious
 First in, First out (FIFO)
- to more complicated
 - Priority Queuing
 - Class-based Queuing
 - Leaky bucket

Priority Queuing

(Strict) Priority Queuing

• Queues have different priorities

- Queues are serviced in order of priority
 - Serviced until empty
 - Highest priority queue experiences lowest delay, lowest drop rate
 Other queues fare less well
 - Can receive no service for a long time if there is sufficient high priority traffic

Queues and Congestion Control

- When a queue fills, all TCP connections that arrive at the queue experience congestion at about the same time
 - Therefore, all currently active TCP connections will halve their rate of transmission
 - The queue in question will quickly empty, and throughput (work done) will reduce
 - The TCP connections in question will then slowly increase their rate of transmission until the queue fills
 - Repeat from top
- Known as TCP global synchronisation

Random Early Detection

- Random Early Detection / Discard / Drop
- Router will randomly drop packets as a function of its queue size
 - If queue is empty, or below a defined threshold, an arriving packet will not be discarded
 - If queue is full, all arriving packets will be discarded
 - If queue is above threshold, an arriving packet could be discarded
- Because packets are discarded early, connections will
 experience congestion at different times
 - i.e. each will back off at different times, avoiding synchronisation
- The faster a TCP is transmitting, the more chance it has of experiencing an early drop
 - i.e. RED is reasonably fair

Explicit Congestion Notification (ECN)

- Instead of discarding packets when the queue is not yet full (before the situation is dire) advise the sender to reduce their rate of transmission
- On the Internet, this can be done with ECN
 - in reality, ECN is not well deployedhowever, this is a university.
- Transport protocols have to be ECN capable.
- History
 - First proposed in 1994.
 - RFC 2481, 1999 experimental proposal to add ECN
 - RFC 3168, 2001 proposed standard
 - 2009: not terribly well supported

)			15 16		31
Ver.	hlen		E C C E T	Total Length	
			-		
E	ст (CE	Na		
E	CT (CE 0	No	t-ECT	
E0 (CT ())	CE 0 1	No EC	t-ECT F(1)	
E(CT ()) L	CE 0 1 0 1	No EC EC	t-ECT F(1) F(0)	

Summary

- Virtual circuits provide reserved capacity in a packetswitched network
- Through smarter queues, it is possible to improve performance of TCP
 - RED widely deployed
 - ECN not widely deployed
- Further reading
 - Pages 344 350Pages 391 395