COMP312-09A Communications and Systems Software

Mobile IP Richard Nelson richardn@cs.waikato.ac.nz

WAIKATO

COMP312 - Mobile IP

Mobile IP

- Motivation
- · Other Solutions
- Mobile IPv4
- Mobile IPv6

WAIKATO

COMP312 - Mobile IP

Mobile Internet

- · Cellular Telephony has been enormously successful
- Many (most??) computers now laptops.
- · Many small portable devices now Internet enabled
- · Internet applications part of many peoples lives

COMP312 - Mobile IP

Internet Mobility

Actually, if you were designing a network to prevent mobility it could have an architecture very much like the Internet

Mobility Problem

- · IP address defined who you are
 - TCP binds all your connections to your IP address
 - Other nodes identify who they have a connection to by the IP address.
- Therefore as you move you require that your IP address stays the same.

THE UNIVERSITY OF WAIKATO To Where Bibboogs a Biolysto

COMP312 - Mobile IP

Layer 2 Solution

- By definition restricted to a single interface type.
- · Normally radio for best mobility
 - Lower speeds
 - Wide area solutions require expensive infrastructure
 - Local area solutions only local
- Cannot use the best connection option available at the time.

WAIKATO

Mobile IP Solution

- Problem
 - IP address must change
 - Require IP address to stay the same
- Solution
 - Two IP addresses
 - Can tunnel between them

WAIKATO

COMP312 - Mobile IP

Mobile IPv4 Components

- Mobile Node
 - Device that moves but maintains IP connections
- · Home address.
 - Stays the same
 - Cannot move on the network
- Home agent
 - Looks after home address
 - Forwards packets to Care-of address

Proceedure

- Home and Foreign Agents send out router advertisements
- Mobile node can detect if it is at home or visiting.
- · At home it can use its' home address
- Roaming it must register with the foreign agent to get a care-of address
- Then it must register the care-of address with the Home agent
- · Proceedure repeats whenever Mobile node moves

WAIKATO

COMP312 - Mobile IP

Traffic

- · Packets from Correspondent node go to Home agent
- Home Agent tunnels packets to Care of Address via Foreign Agent
- · Packets from Mobile node can be
 - Reversed tunneled to the Home agent OR
 - Sent directly to Correspondent node (triangular routing)

WAIKATO

COMP312 - Mobile IP

MIPv4 Issues

- · Handover Registrations are a security vulnerability
 - Need strong security associations -
- Tunneling has extra overhead MTU issues
- · Home agent is point of failure
- · Routing may be inefficient
 - Worst case is communicating with another node on the same remote network

WAIKATO

COMP312 - Mobile IP

IPv6

- · Advantages
 - Lots of address space
 - Standards still being formed when Mobile IP developed
 - Lots of address space
- Problems
 - Same architecture

WAIKATO

WAIKATO

No Foreign Agents Lots of addresses.

- SAA or DHCP
- End host support (Correspondent nodes)
 - Route optimisation
 - Mandatory IPSec
- Better Integration with protocol
 - Less overhead

COMP312 - Mobile IP

Hierarchical MIPv6

- · Mobility Anchor Point acts as local Home Agent
- · All handovers in local domain only need to update MAP
- Original Home agent and correspondent nodes receive binding updates with MAP address
- All data goes through MAP to Mobile node
- Reduces handover latency
- Reduces frequency of binding updates to Home Agent and Correspondent nodes

WAIKATO

Fast Handovers MIPv6 has a lot of delays Forming addresses Sending binding update Support of routers can reduce packet loss during delays Two types depending on whether Layer 2 triggers available

WAIKATO

Anticipated Handovers

- L3 Handover initiated (prepared for) before L2 network change
- · Requires Trigger anticipating handover
 - Most likely from radio L2
 - · May be policy as well
 - Needs consistent interface to maintain L2 independence
 - Similar to cellular system
- · Either MN or Access Router may initiate handover,

WAIKATO

COMP23Monastb03TP

NEMO

- NEtwork MObility
- Since IPv6 has lots of addresses can hand out entire network prefixes as Care of addresses.
- · Supports mobile planes trains and automobiles.