chapter 8

Functional parsers

In this chapter we show how Haskell can be used to program simple parsers. We
start by explaining what parsers are and why they are useful, show how parsers
can naturally be viewed as functions, define a number of basic parsers and
higher-order functions for combining parsers in various ways, and conclude by
developing a parser for arithmetic expressions.

8.1 | Parsers

A parser is a program that takes a string of characters, and produces some form
of tree that makes the syntactic structure of the string explicit. For example,
given the string 2 # 3 + 4, a parser for arithmetic expressions might produce
a tree of the following form, in which the numbers appear at the leaves of the
tree, and the operators appear at the branches:

+
4N
* 4
7N
2 3
The structure of this tree makes explicit that + and + are operators with two
arguments, and that + has higher priority than +.

Parsers are an important fopic in computing, because most real-life pro-
grams use a parser to pre-process their input. For exampile, a calculator prograr
parses nuMmeric expressions prior to evaluating them, the Hugs system parses
Haskell programs prior 1o executing them, and a web browser parses hyper-
text documents prior to displaying them. In each case, making the structure of
the input explicit considerably simplifies its further processing. For example,
once a numeric expression has been parsed into a tree structure such as in the
example above, evaluating the expression is straightforward.

le parsers. We
» how parsers
¢ parsers and
d conclude by

ces some form
. For example,
might produce
1e leaves of the

wrators with two

15t real-life pro-

[culator program

25 system parses
er parses hyper-
g the structure of
ng. For example,
wre such as in the

8.3 BASIC PARSERS

7!

8.2 | The parser type

In Haskell, a parser can naturally be viewed directly as a function that takes a
string and produces a tree. Hence, given a svitable type Tree of trees, the notion
of a parser can be represented as a function of type String — Tree, which we
abbreviate as Parser using the following declaration:

type Parser = String — Tree

In general, however, a parser might not always consume its entire argument
string, For example, a parser for nurbers might be applied to a string compris-
ing a number followed by a word. For this reason, we generalise our type for
parsers to also return any unconsumed part of the argument string:

type Parser = String — {TVvee, String)

Sirnilarly, a parser might not always succeed. For example, a parser for numbers
might be applied to a string comprising a word. To handle this, we further
generalise our type for parsers to return a list of results, with the convention
that the empty list denotes failure, and a singleton list denotes success:

type Parser = String — [(Tree, String)]

Returning a list also opens up the possibility of returning more than one result
if the argument string can be parsed in more than one way. For simplicity,
however, we only consider parsers that return at most one result,

Finally, different parsers will likely return different kinds of trees, or more
generally, any kind of value. For example, a parser for numbers might return
an integer value. Hence, it is useful to abstract from the specific type Tree of
result values, and make this into a parameter of the Parser type:

type Porser ¢ = String — [(a, Siring)]

In summary, this declaration states that a parser of type e is a function that
takes an input string and produces a list of results, each of which is a pair
comprising a result value of type a and an output string. Alternatively, the
parser type can also be read as a thyme in the style of Dr Seuss!

A parser for things
Is a function from strings
1o lists of pairs
Of things and strings

8.3 | Basic parsers

We now define three basic parsers that will be used as the building blocks for all
other parsers. First of all, the parser return v always succeeds with the result
value v, without consuming any of the input string:

refurn b a -+ Parser a
refurn v = Ainp — [(v, inp)]

76

FUNCTIONAL PARSERS

fined by result v inp = [(w, inp)]. How-
h the second argument inp is shunted
pression, because it makes ex-
gument and returns & parser,

This fupction could equally well be de
ever, we prefer the above definition in whic
to the body of the definition using a lambda ex
plicit that return is a function that takes a single ar
as expressed by the type a — Parser u.

Whereas return v always succeeds, the dual parser failure always fails,

regardless of the contents of the input string!

foilure = Parser a

failure = Ainp > 1]
QOur final basic parser is e, which fails if the input string is empty, and
succeeds with the first character as the resulf value otherwise:

item 1 Parser Char
ifern = hinp —» Case inp of

11—=11

(z:z5) — (2, 28)]
anism of Haskell used in this definition allows pattern matching
dy of a definition, in this example by matching the string
¢ to choose between two possible results. The case
in this book, but can sometimes be useful.
they could be applied to a string using normal
stract from the representation of parsers

The case mech
to be used in the bo
inp against two patiern
mechanisn is not used much

Becatse parsers are functions,
function application, but we prefer to ab
by defining our own application function:

parse .« Parser a — String — [(a, Siring)}

parse pinp = P inp

Using purse, we conclude this section with some examples that illustrate the

behaviour of the three basic parsers defined above:

> parse {refurn 1)

(1, Ge1™]

> parse failure "abe!

[]

> parse item

L]

> parse item *abc”
{(: a’ . Itbcﬂ)]

8.4 | Sequencing

of combining two parsers is to apply one after the
put string returned by the first parser becoming
ow should the result values from the two

Perhaps the simplest way
other in sequence, with the out
the input string to the second. But h

B
-

S

8.4 SEQUENCING 77

1p)]. How- parsers be handled? One appraach would be to combine the two values as a
\is shunted pair, using a sequencing operator for parsers with the following type:
makes e:r- : Farser a — Parser b — Parser (a, b)
ns @& PArser, :
In practice, however, it turns out to be more convenient to combine the se-
ways fails, quencing of parsers with the processing of their result values, by means of a
sequencing operator = (read as “then™) defined as follows:
(=) Parser a — (¢ — Parser &) —» Parser b
p»=f = linp — case parse p inp of
' (T-+1]
d .
emply, an [(v, out)] — parse (f v) out
That is, the parser p == [fails if the application of the parser p to the input
string fails, and otherwise applies the function f to the result value to pive g
second parser, which is then applied to the output string to give the final resulr,
In this manner, the result valyue produced by the first parser is made directly
available for processing by the second,
rn matching A typical parser built using == has the following strucrure:
1g the string :
is. The case _ pl »=Avl —
seful. P8 =)vd —
4sing normal
on pr'dFSGI'S

pnoz=dun -
return (f wi v2 ... un)

That is, apply the parser pl and call its result value v1: then apply the parser
p2 and call its result value v2; . .. ; then apply the parser pn and call its result
lustrate the value vn; and, finally, combine all the results into a single value by applying
) .

the function f. Haskell provides a special syntax for such parsers, allowing
them 1o be expressed in the following, more appealing, form:

dovf < pi
vZ < p2

R < pn
return (f w1 v2 .., vn)

As with list comprehensions, the EXpressions v < pi are called generators, If
the result value produced by a generator v <« pi is not required, the gene
can be abbreviated simply by pi. Note also that the layout rule applies to 1l
notation for sequencing parsers, in the sense that
must begin in precisely the same column,

Tator

e do
each parser in the sequence

For example, 2 parser that consumes three characters, discards the second,
and returns the first and third as a pair can now be defined as follows:

p = Parser (Char, Char)
y one after the

r = dox < item
jrser becoming item
s from the two ¥ <— item

return (z, i)

78 FUNCTIONAL PARSERS

Note that p only succeeds if every parser in its defining sequence succeeds,
which requires at least three characters in the input string:

> parse p "abcdef”
[(("ar, c’), "def")]

> parse p "ab"

[}

8.5 | Choice

Another natural way of combining two parsers is to apply the first parser to the
input string, and if this fails to apply the second instead. Such a choice operator

-+ (read as “or else”) can be defined as follows:

(-H+) . Parser a — Parser a —» Parser a
p4 g = Ainp - Case parse p inp of

[1 = parse g inp

[(v, out)} — [(v, oul)}

For example:

= parse (ilem -+ return rd*} "abce"
[(r al , "bc")}

> parse {foilure -+ return ¢ d’) "abc”
[(r d: , "abc")]

> parse (failure +H+ failure) abat ;
[

8.6 | Derived primitives

Using the three basic parsers together with sequencing and choice, we can now
define a number of other useful parsing primitives. First of all, we define a
parser sat p for single characlers that satisfy the predicate p:

sal . (Char — Bool) — Parser Char
satp = dozx + iem
if p z then return T else failure

Using sat and appropriate predicates from the standard pretude, we can define
parsers for single digits, lower-case letters, upper-case letters, arbitrary letters,
alphanumeric characters, and specific characters:

8.6 DERIVED PRIMITIVES

squence succeeds, digit % Parser Char
: digii = sat isDigit

lower o Porser Char
lower = sat isLower
upper i Parser Char
upper = sat isUpper
letier o Parser Char
letter = sat isAlpha

- alphenum = Parser Char
alphanum = sat isdlphaNum
char @ Chaer — Parser Char

e first parser to the char = sat (==)

t a choice operator
For example:

> parse digit ¥123"
{(11:, r|23n)}

> parse digili "abc"

{1

> parse (char *a’) "abgn
[(: a’ . |rbcu)]

> parse (char 'a*)viazn

(1

In turn, using char we can define a parser string xs for the string of
characters zs, with the string itself returned as the result value:

string i Siring ~ Parser String
string [] = return [}
string (x:xs) = do char g
: siring s
choice, we can now return (i ; 1s)
of all, we define a Note that string is defined using recursion, and only succeeds if the entire
[iB

target string is consumed. The base case states that the empty string can always
be parsed. The recursive case states that a non-empty string can be parsed by
parsing the first character, parsing the remaining characters, and returning the
entire string as the result value, For example:

slude, we can define
ars, arbitrary letters,

> parse {siring "abc") "abode £
[(Ilabclf, rldefll)}

> parse (siring "abc") "abh1234n

L1

Our next two parsers, many p and many! p, apply a parser p as many
times as possible until it fails, with the result values from each successful
application of p being combined as a list. The difference between these two

i

FUNCTIONAL PARSERS

repetition primitives is that maeny permits zero or more applications of p,
whereas manyl requires at least one successful application:

Many - Parser o — Parser [a]
many p = manyl p-+ return []
manyl . Parser a — Parser {a]
manyl p = douv <+ p

us <~ many p

return (v vs)
Note that many and rmanyl! are defined using mutual recursion. In particutar,
the definition for many p states that p can either be applied at least once or not
at all, while the definition for menyl p stales that p can be applied once and
then zero or more times. For example:

> purse (many digit) "123abc*
[(n}_23n‘ uabcu)]

> parse (many digit) " abcedef"
[(n L] , " abcdef ll)]

> parse (manyl digil) " abcdef”
L1

Using many and many!, we can define parsers for identifiers (variable
names) comprising a lower-case letter followed by zero or more alphanumeric
characters, natural numbers comprising one or more digits, and spacing com-
prising zero or more space, tab, and newline characters:

ident = Parser Siring

ident = dox +— lower
73 < many alphapun
return (T 1 25}

nal v Parser Int
nat = do s < manyl digit
retfurn (read T8}

space : Parser ()
space = do many (sal isSpace)
return)
For example:

> porse ident "abc def"
[(ll abo" . u def ")]

> parse nal "123 abc!
[(123, " abc")]

> parse spece " abc"

[{0), "abe")]

8.7 HANDLING SPACING {

wons of p,

n particular,
t once or not
ed once and

fers (variable
alphanumeric
spacing com-

Note that space returns the enpty tuple () as a dummy resuly value, reflecting
the fact that the details of spacing are not usualiy important,

8.7 | Handling spacing

Most real-life parsers aliow spacing to be freely used around the basic tokens
in their input string. For example, the strings 142 and 1 + 2 are both parsed in
the same way by Hugs. To handle such spacing, we define a new primitive that
ignores any space before and after applying a parser for u token:

token i Parser a — Parser a
token p = do space

vV p

space

refurn v

Using token, it is now easy o define parsers that ignore spacing around iden-
tifiers, natural numbers, and special symbols:

wdentifier 1 Parser String

identifier = token ident

natural i Parser ni

natural = token nat

symbol i String — Parser String
symbol zs = ioken (string zs)

For example, a parser for a non-empty list of natural numbers that ignores
spacing around 1okens can be defined as follows:

p n Parser[Int]
p = dosymbol v [v
1« nafural
ng < many (do symbpl v, »
natural)
symbol n]
return (n: ns)
This definition states that such a list begins with an opening square bracket
and a natural number, followed by zero or more commas and natural numbers,
and concludes with a closing square bracket. Note that p only succeeds if a
compiete list in precisely this format is consumed:

> parsep " 1, 2, 3] v
[(f1,2,37, mmy]

> pavsep " [1,2,]n

[

FUNCTIONAL PARSERS

8.8 | Arithmetic expressions

We conclude this chapter with an extended example, Consider a simple form of
arithmetic expressions built up from natural numbers using addition, multipli-
cation, and parentheses, We assume that addition and multiplication associate to
the right, and that multiplication has higher priority than addition. For example,
243+ 4means 2+ (3 +4), while 2 » 3 4+ 4 means 2344

The syntactic structure of a language can be formalised using the mathe-
matical notion of a grammar, which is a set of rules that describes how strings
of the language can be constructed. For example, a grammar for our language
of arithmetic expressions can be defined by the following two rules:

expr + expr | ezpr % €IPT | (ezpr) | nat

i

expr

nat = 011j2]--
The first rule states that an expression is either the addition or multiplication
of two expressions, a parenthesised expression, or a natural number. In turn,
the second rule states that a natural number is either zero, one, two, Etc.
For example, using this grammar the construction of the expression 2 #3 +4
can be represented by the following parse tree, in which the tokens in the
expression appear at the leaves, and the grammatical rules applied to construct
the expression give rise to the branching structure:

exrpr
2 ™
expr + erpr
PR I y
expr % eIpr nat
i V|
nat nat 4
¢ y
2 3

The structure of this tree makes explicit that 2 3 + 4 can be constructed from
the addition of two expressions, the first given by the multiplication of two
further expressions which are in turmn given by the numbers two and three, and
the second expression given by the number four, However, the grammar also
permils another possible parse tree for this example, which corresponds to the
erroneous interpretation of the expression as 2 (344

eLpr
24 ™

expr s eTpr
\ PRI

nat €pT + expr

Vo b

2 nat nab
3 4
The problem is that our grammar for expressions does not take account of the

this can

fact that multiplication has higher pricrity than addition. However,

8.8 ARITHMETIC EXPRESSIONS

2 form of
multipli-
sociate to
example,

¢ mathe-
wostrings
language

tiplication
. In turn,

two, elc.
124344
ens in the
) construct

ructed from
tion of two
d three, and
ammar also
ponds to the

ceount of the
wer, this can

easily be fixed by modifying the grammar to have a separate rule for each level
of priority, with addition at the lowest level of priority, multiplication at the
middle level, and parentheses and numbers at the highest level:

eTpr = ewpr 4 cxpr | term
term = term # term | factor
factor = (expr) | nat

not = 0J1)2]...

Using this new grammar, 2 + 3 + 4 indeed has a single parse tree, which cor-
responds to the correct interpretation of the expression as (2 # 3) + 4

eTpr

£ N

exTpr + eTpT

' ¢

term. e
P I }
term #* term factor
v ' y
Jactor fuctor rial
i { }
nai nat 4
v -}
2 3

We have now dealt with the issue of priority,
take account of the fact that addition and muitiplication associate to the right.
For example, the expression 2 + 3 + 4 currently has two possible parse trees,
corresponding 0 (2 + 3) + 4 and 2 + (3 -+ 4). However, this can also easily be
fixed by modifying the grammatical rules for addition and multiplication to be
recursive in their right argument only, rather than both arguments:

but our grammar does not yet

expr U= {erm -+ expr | term
term = factor x term } factor

Using these new rules, 2 + 3 + 4 nowhas a single parse tree, which corresponcs
to the correct interpretation of the expression as 2 + (3 4 4);

expr

=N

term, -+ cxpr

{ PRI

factor termn + eTpr

b }

nat factor term
| } |
2 nat Jactor
} |
3 1)
v
4

B4

| FUNCTIONAL PARSERS

In fact, our grarmmar for expressions is now unambiguoous, in the sense that
every well-formed expression has precisely one parse tree.

Qur final modification to the grammar is one of simplification, For example,
consider the rule expr == term -+ expr | term, which states that an expression
is either the addition of a term and an expression, or is a term. In other words,
an expression always begins with a term, which can then be followed by the
addition of an expression or by nothing. Hence, the rule for expressions can be
simplified to expr = term (+ expr | €), in which the symbol £ denotes the
empty string. Simplifying the rule for terms in a similar manner gives our final
grammar for arithmetic expressions:

erpr = term (+ expr | e€)
term = factor (% term | €)
factor u= (ezpr}| nai

nat n= 0|12

Tt is now straightforward to translate this grammar into a parser for ex-
pressions, by simply rewriting the rules using our parsing primitives. In fact,
we choose to have the parser itself evaluate the expression being parsed to its
inteper value, rather than returning some form of tree:

expr . Parser Int
expr = dol < lerm
do symbol "+
e < expr
return (t + e)
--H- return

term : Pavser Int
term = dof <+ factor
do symbol "¥

t « term
return (f 1)
A4 return f

factor = Parser Int
foctor = do symbol " ("
e <— erpr
symbol ") "
relurn ¢
4+ natural

For example, the parser ezpr first parses a term with value ¢, then parses a plus
symbol followed by an expression with value e and returns the value ¢ + ¢, or
else parses nothing further and simply returns the value ¢, The parsers term
and factor can be read in a similar manner.

Finally, using expr we define a function eval :: String — Int that evaluates
an arithmetic expression to its integer value. To handle the cases of unconsumed
and invalid input, we use the library function error it String — « that displays
an error message and then terminates the program:

e sense that

Jor exarmnple,
1 expression
other words,
owed by the
ssions can be
: denotes the
ives our final

sarser Tor ex-
tives. In fact,
; parsed 10 its

2n parses 2 plus
value { + e, Or
|e parsers term

24 that evaluates
of uneonsumed
- g that displays

eval i String — Int
evel T8 = case parse eTpT 5 of
[(n. [N = n

[(= out)] — error ("unused input ¥ 44 out)
[1— error "invalia input®

For example:
> eval "2¥344n

10

> eval "2% {34a) v

14

> eval "2 % (3 4 g)n
14

> eval "2*3.an
Error : unused mput — 4

> ewal "-1M
Error : invalid input

8.9 | Chapter remarks

A library file comprising the parsing primitives from this chapter is available
from the book’s website. For technical reasons concerning the monadic nature
of parsers, a number of the basic definitions in this library are slightly different
to those given here. Further details are available in (16; 17y, upon which
this chapter is based, More information conceriing grammars can be found
in (27), und more advagced approaches to building parsers in Haskell are given
in (22; 9). The reading of the parser type as a thyme is due to Fritz Ruehr.

8.10 | Exercises

1. The library file also defines a parser int . Parser Int foran integer. Without
looking at this definition, define ing. Hint: aninteger is either a minus symbol
followed by a natural number, or a natural number,

2. Define a parser comment - Parser () for ordinary Haskell comments that
begin with the symbol - and extend to the end of the current line, which is
represented by the control character * \n’.

3. Using our second grammar for arithmetic expressions, draw the two possible
parse trees for the expression 2 -+ 3 + 4.

4. Using our third grammar for arithmetjc expressions, draw the parse trees
for the expressions 2 +3,2%3%4and 243+ 4.

8.10 EXERCISES !

Be

FUNCTIONAL PARSERS

tn

=

il

Explain why the final simplification of the grammar for arithmetic expres-
gions has a dramatic effect on the efficiency of the resulting parser. Hint:
begin by considering how an expression comprising a single number would
be parsed if this step had not been made.

Extend the parser for arithmetic expressions to support subtraction and
division, based upon the following extensions to the grammar:

egpr u= term (4 eIpr | — expr | €)
term = foctor (s lerm | [term b e)

Further extend the grammar and parser for arithmetic expressions to support
exponentiation, which is assumied to associate to the right and have higher
priority than multiplication and division, but lower priority than parentheses
and numbers. For example, 2 1 3 4 means (2 $ 3) * 4. Hint: the new level
of priority requires a new rule in the grammar.

Consider expressions built up from natural numbers using a subtraction
operator that is assumed to associate to the left.

{a) Define a natural grammar for such expressions.

(b) Translate this grammar into a parser espr = Parser Int.

(¢) What is the problem with this parser?

(d) Show how it can be fixed. Hint: rewrite the parser using the repetition
primitive rnany and the library function foldl.

