Design and Architecture

Report on the design and architecture of the sub-systems defined in the
requirements document.

Table of Contents

(O A== PR 2
(10 BTN S 1 =1 P 3
COMPOSITION IMIANAGEMENT SUB=SYSTEM. .. etuuttuneestnieeenesneenseassnessnseaneenesenseanseasenesenseansrnasensesnees 6
COMPOSITIONS SUB=SYSTEM. .. .eeuuetuneesnteeuntesanesseneesneeaneesa e sean e s seasesaseanseassaseenstansenesenssansennees 8
AN TS TN o) 211 =1 P 13
ONLINE COMMUNICATION SUB=SYSTEM.eetueesneesnsesnasssnsesreaessesseaaseaeesseaseaaeenseasraeeeeaneennns 21

SHARING SUB=SY STEM. .t ettt ettt et ettt ettt et et et ettt e 29

We have split the design document in size general sub-systems. Here is a high-level
graphical representation of these subsystems:

Compositions Composition Management

Y

Main GUI
Y

Net

Online Communication Composition Sharing

For each sub-system there are high-level descriptions as well as the design-decisions
made during the design process. UML Class-diagrams and sequence-diagrams have been
also been added to show the interactions between our static class-diagrams. We initially
designed UML class diagrams before we began our programming iterations to help us
develop the system such that it meets the requirements that we gathered at the start of the
project; most of these can be found on our CVS website. Some of the old UML class
diagrams have been added to show the comparisons between what we initially designed
and what we actually implemented.

Purpose
This section describes the design decisions of the Graphical User Interface (GUI) — from
structuring the display of data to managing windows and displaying file transfer invitations.

General Priorities
Decisions in the user interface area were based on the following priorities (most important
first):

Integrating well with other subsystems.

Aesthetically pleasing.

Simple and easy to use, including a fast learning curve.

Quickly achieve desired actions. This means responsiveness and low click-count.
Maintainability.

arON=

Outline of design
The GUI is based on the Model-View-Controller design pattern.

Major Design Issues

Issue 1: GUI implementation and design pattern.

It seemed like it was going to be complex to integrate our musical structures (like track,
chord, composition, etc.) with JMusic. Thorough testing would be required, and we didn't
want to mix the GUI up in that, knowing that a user interface is very hard to unit test. |
wanted a user interface that would be responsive.

Option 1.1

The first option was to use a responsive GUI system written in C++ and adapted to work
with java through an interface. This satisfied the fourth priority, but would be impossible to
integrate with junit. This ruled option 1.1 out instantly because the first priority wasn't met
at all.

Option 1.2

Swing combined with Model-View-Controller pattern. This would allow us to test as much
as we could in the underlying model data structures, and to create a visual display
representing the underlying data at all times. The display is kept in sync with the data
through subjects and observers. The model is a subject and the view is an observer.
JMusic also used swing, and would integrate seamlessly into our program.

Decision 1

Option 1.2: Swing combined with Model-View-Controller was chosen. Doing it this way
allowed us to split the job up into tasks - have one person design and implement the
model, and another implement the user interfaces to change and display that model. Edit
actions would typically be used as a "controller" to edit the model. The GUI simply has to
create the correct action and execute it to change the model. The model will then notify it's
observers of the change, and the gui observer would reflect the change visually. Edit
actions can also be queued in an undo manager and if they are coded carefully such that
they can redo their action to the previous state, we can then easily implement undo and
redo into the composition editing.

Issue 2: Managing windows/panels

After realizing that there is going to be a lot of different windows: compositions, online
conversations, download transfers and several more... we saw a need to design a window
system that would allow us to manage so many separate windows.

This was especially important to our mission statement of integrating sharing and editing
into one application.

Initially, Brook wanted to reside conversations in a separate window to the program (like
MSN messenger), but Ryan pointed out that it could become confusing and the windows
may look like a separate program. This also takes away from the whole notion of having
the composing/sharing all-in-one.

After sketching several designs; including layers of tabs, we were stuck on how to
organize the tabs. We didn’t want all the tabs in one line because the user would have to
search through a mixture of tab-views to locate the one they wanted. Also the tab control
didn’t support arranging/moving tabs.

Option 2.1
Separating offline-tabs such as compositions from online-tabs such as chat-rooms by
completely dividing the screen area in a split — for example like excel and eclipse do.

Option 2.2
Have the tabs individually close-able, and listed in two separate rows - one tacked above
the other. This would require a custom tab control. For example:

Offline: Composition 1 I Composition 2 IComposition 3 I Funky Mary

Online:

Login | Chat Room Listing | Invitation f| Public Conversation - "Ricky's Chat":

Decision 2

It would have been too time-consuming to implement a custom tab-control to do option
2.2. So we ended up having the tabs separated by using a split-pane: offline tabs on the
top and online tabs on the bottom. This turned out great because it allows the user to do
things simultaneously like chat while working on a composition — which meets our goal by
bridging the gap between sharing/composing; users can discuss what they are working on
live!

Issue 3: Invitations less “in your face”

Brook initially wanted invitations (such as requests to become a friend) to popup in a top-
most windows and demand a response. Ryan pointed out that this would be interrupting to
the user — especially since they could be in the middle of working on a composition, it
could really disrupt and annoy them.

Option 3.1
Pop up invitations in small windows. This would satisfy all priorities.

Option 3.2

Pop up invitations in new tabs, without bringing that tab to be actively visible on the
screen. This would satisfy all priorities, but rated better by being more aesthetically
pleasing.

Decision 3

We decided to use the tab-system and notify the user in a more passive manner by adding
a tab to the online tab view (and giving it focus) — this way when the user is working on a
composition, they can finish the task they are working without having to make a decision /
click away a dialog.

Details of design

The Model-View-Controller pattern was used extensively throughout our system. This
provided more familiarity when working with each other's subsystems. It also enabled us to
split tasks — for example Ryan worked on the GUI views for a lot of the networking data

models Brook did.

Purpose
This section describes the design of requirement 1.

General Priorities
Decisions in the library management area were based on the following priorities (most
important first):

1. Fulfilling use-case requirements.

2. Simplicity.

3. Able to work with file transfers as well as offline editing.
4. Ease of implementation, considering the short time span.

Outline of design

The composition library manager is a panel that typically sits on the left side of the user
interface. It is responsible for loading, saving, renaming, importing, and exporting
compositions in various formats.

Major Design Issues

Issue 1: Scope
The first issue encountered with the composition library manager was how much was it
going to do?

Option 3.1

This idea is to keep a repository of all the user's compositions in one place where they can
always be seen from within the program, and where they can be edited quickly with
external tools. All files would be kept in a subfolder of the user's Home or Documents
directory (depending on operating system), and can be accessed outside the program
while the program is running. This would provide greater interoperability with other
software. One draw-back is that security is compromised: composers may want to encrypt
their compositions so no one else can edit them or distribute them (intended for
development in a future iteration).

Option 3.2

This idea is to store all compositions in an internal file, such as a database. Only the
jammin program would be able to access the files. This would provide an excellent security
layer, but would make interoperability difficult for other programs.

Decision 3

The program was designed to use option 3.1, but with an interface that may later become
option 3.2 without changing the rest of the program, should security become a priority in
the future. Although this went against our generally agile design philosophy, | felt it was
important to generalize the interface for the purpose of security.

Managing Compositions Sub-system UML Diagrams

jammin.compositions

=<interface=:=
CompositionReader

extractResources) : Composition
appendResourcesizayrce - Composition) : waid
openResource{compasitionPath : 5tring) © woid
closeResource] :woid

MidiReader

A 75 Ve |
S -:-:CFE&“ZE}:—::— : S, <<tealizes=
4 | =<realizesp ==realize==
- s
- 1 |
SerializeReader WaveReader AudacityReader

-

-

-

— -
j -
future iteration

==<interface=:=
CampositionWriter

savelnPlace(camp

savedsicompositionToSawe ; Compaosition) :woid

ositionTo5awe Composition) : waid

| ==real
1

Midiviriter

Py

|
ize== |
!

==realize==

SerializeWriter

future iteration

Purpose

The compositions sub-system allows user to create musical scores by creating tracks of
MIDI music and then arranging them into sections and a complete composition. This
relates to sections eight to twelve of the requirements.

Priorities
e Create realistic sounding musical compositions
e Ease of use
e Re-use as much JMusic functionality as possible
e Create a component which will work within the overall system
e Create a design which is easily maintained

Outline

The composition sub-system allows users to create and arrange compositions. The model-
view-controller and observer design patterns are used to create a thin GUI over top of the
data system. The composition system builds on the functionality provided by JMusic.

Design Issues

Issue 1
How should JMusic be incorporated into our software?

Option 1.1
Extend the classes provided by JMusic and add functionality to the new subclasses

Optionl.2
Create a new design which uses JMusic internally

Option 1.3
Add code directly to the JMusic source code

Decision:
1.2 Create a design which uses JMusic but also fits in with the design patterns being used
throughout the system.

Issue 2
How do we structure the music so it is both easy to view and edit?

Option 2.1
Construct compositions which are just long single midi tracks for simplicity. When played
the screen scrolls across to show the point of playback

Option 2.2
Similar to 2.1 but instead of scrolling across the page have tracks wrap around so it is like
using a typical musical score.

Option 2.3
Break the composition up into small sections that can be easily viewed and then arrange
them into a complete composition.

Decision
2.3. By using the idea of sections, small repeating parts of a song can be created and

reused. This closely resembles the process of creating verses and choruses used when
creating songs.

Details of Design

Initial research into creating MIDI music within a Java application found an open source
library called JMusic. JMusic provided classes and tools for storing and manipulating MIDI
data. There was also tools for playing MIDI sound from the JMusic objects and classes for
displaying JMusic objects on musical staves. It was decided that this functionality should
form the basis of our system.

The composition sub-system uses the observer and model-view-controller design patterns
which are used throughout the project. We wanted to try and keep the GUI to just a thin
layer of the top of our data so that the data model could be unit tested. By using the
model-view-controller pattern we were able to achieve this. In most cases the controller
and view were combined because we only had one type of view for each object. The
observer design pattern was used so that the data could exist without having to know any
implementation details about the GUI. Any objects that wanted to be infromed of changes
to another object just implemented the Observer interface and then decided themselves
how the change to the subject should be handled.

The composition data structure uses a top down approach to collect all the data used in a
composition.

The top level composition object represents the highest level of abstraction and the further
down the design goes the more specific each object gets. Each composition is made up of
a collection of sections and an arrangement. The arrangement is used to specify what
order the sections are played in and how many times each section is played. Within each
section there are multiple tracks. At the track level the musical notions of instruments,
notes and chords are introduced.

The JMusic structures are used within tracks to store MIDI information. By implementing
our tracks as a wrapper around the JMusic data we could make use of the functionality
provided by JMusic and also make sure that the our data structures would fit in with the
observer design pattern. JMusic did not use the observer pattern so any changes to the
midi data that would result in a change to the GUI needed to be done through the Track
class which could raise a event signalling that the model had changed.

Compositions Sub-system UML Diagrams
These models represent various parts a Jammin composition:

AbstractTrack

< Section

MidiTrack

|ChnrdTra-:k:| | BeatTrack |

ArrangementSection

=<interfare==
MamedTrack

SectionTrack MasterT rack fon?

| MoteTrack | |h-1i:<erTrau:k|

GuitarChaord

This is the data-system used for constructing and managing rhythms:

RhythmManager

Rhythm

RtvthmFactory

==Creates=x= RhythmFactoryd
createBarichord : Chord,segment : RhythmSegment)
createBar{chord ; Chord,rhythm : Rhythm)
createPhraseichords @ List,rhythm : Rhythm)
createPhraseichords @ List,rhythm @ Rhythm)
createBventioundichard
createBventioundichard
createBventioundichard
createBventioundichard
createBventioundichard

Chard,event ;
Chard,event ;
Chard,strum ;
Chard,event ;
Chard,event ;

RhythmEwvent)
RhythmEwvent)
Guitarstrumm)
ChordHit)
RestEvent)

RhythmSegment RinahmEvant

Guitarstrum ‘ ChordHit | ‘RestExrent |

undeManager.

activeSection:

activeCompesition:

gethictive Section

addEditD

newTrack:

addTrack)

addTrackEdit:

Main:

create()
executel)

addTrackButton:

actionHandler

actions to add a new track, it also shows the action is undoable by interacting with the

Here is a sequence showing the interaction between composition classes when a user
undo-manager:

]
£ c @
< R H Ea
® =] ts
= B &2 o 5% =
%5 5=, H €% 35
i R » wE B
5 z 2 2
ER-] =i h ¥ wEE
] o Z 28=
s = c5% 5 =3 E
P @ 2 L 5% 2
w9 = c o w S v oo
2 m = mom £ 2 £ c =
=] £

Here is a sequence diagram showing the interactions between composition classes when
copying and paste chords:

User: MasterStave: Clipboard: hlasterTrack: ChordTrack: ChordStave:

T
selectChords [

The uzerselacts one
or more chords and then
chooses the copy option

copySelectedChords

addSelectedChords .

The paste option is chosen
and the chords are taken

[fram the clipboard and added getChords
[to the master track. This causes
all obsenars of the master track to

be updated I

modelChanged

addC&wds

modelChanged

[chaord track is notified of
the change and addsthe new
chords to itself and repaints its
[stave.

The masterstave is repainte
on the master tracks model

change signal.

Purpose

This section outlines the network-design decisions which requirement 3.x, 4.x, 5.x and 6.x
depend on. It also describes important aspects of the implementation for requirements 3.x
(accounts and logging in).

General Priorities

Decisions for this sub-system are made based on the following priorities (most important
first):

Maintainability

Simplicity

Consistency (with rest of systems core architecture).

Reliability

Security

Integrity (user Account data)

Efficiency

Outline of design

We decide on a network architecture to support all the online functionality for the system.
We then address how we meet the requirements under 3.x and which requirements we
have decided to omit from the project. It discusses why we have chosen to use the Model-
View-Controller architecture for the client-side and finishes up with general thoughts/idea
on how we will approach testing.

Major Design Issues

Issue 1:
What sort of network architecture should we use to support all the system online features?

Option 1.1:

Client-Server Architecture: Have a Root Server for managing the accounts and managing
communication between Clients.

This design is simple, straight forward /and easy to maintain. However it does have a
central-point of failure and its efficiency is poor (especially if it were to support many users
internationally).

Option 1.2:

P2P architecture: Still have a root-server for managing accounts, but have direct
communication links between clients rather than routing all info via a server. This design
has better efficiency than option 1.1. However it is an extremely complex design (For
example, there are issues with NAT boxes + firewalls, an issue highlighted in net file-share
prototype). Even if we used a free existing library that handles the technical / complex
issues (like JXTA), they are still very complex and difficult to use. This design would be
harder to test than option 1.1 which will make it hard to produce something more reliable.
Also it still has a central point of failure because the system will still rely on some root-
service — P2P would just be more easy-going on the root server (i.e. Reducing packet
traffic).

Decision 1:

1.1 mainly for simplicity. If the system was a commercial product designed to support
many international users option 1.2 would be the best option, however it would take too
long to implement for the duration of this small-sized project.

Issue 2:
Where and how will the account data be stored / maintained and what level of security
should we provide?

Option 2.1:
SQL Database on an SQL server

Option 2.2:
Text file local to the servers.

Decision 2:

2.2, for simplicity. Although data integrity is not as easy to maintain using text files,
simplicity is a much higher priority for this project. However, the design calls for the
account system to be a self-contained system, so it would be easy to replace when moving
beyond the course into a commercial product. Encryption would also be simple to
implement, if that option was decided on. As the system no longer supports friends due to
time constraints, SQL would also have required a large overhead in processing and
maintainability which would have been efficient, given our low requirements in this area.
This decision meets requirements (3.3.1), (3.4.1) and (3.6). Due to time constraints,
several requirements have been dropped, including profiles (3.4) and friends (5)

Details of design

The server will be running a separate program to the client. The Client code for providing
net functionality will be all accessed (by the rest of the system) from a singleton class
called “Client” in the jammin.net.client package. The server program will reside in the
jammin.net.server package and will be a command-line application.

The root server and the clients will communicate by sending packets over a TCP
connection — Java's sockets will be used to accomplish this. All communication between
clients are send to the root-server to be routed to and from the clients. Both the server and
the client will have a “MessageManager” class that can send packets over a connected
TCP channel and also listen for incoming packets. As mentioned previously; the server will
analyses incoming packets and re-route or respond to the client depending on the packet
type. When the client receives a packet from the server it's message manager will analyze
the packet an route it to a specific model class stored in the Client singleton.

To meet requirements under 3.6, established all communication channels must be
authenticated to ensure at least a basic level of security. An authentication packet is to be
sent first by the client containing a username and password to authenticate the
connection. Because security is a low-priority for this project we are not planning to
address many network-security issues.

For all the network-based sub-systems, they contain a lot of non-deterministic code due to
sockets and threads. We cannot unit-test a lot of our code, although we aim to unit-test as
much as we can. We are planning to write some test-harnesses that can simulate the use-
cases and hopefully introduce some variations and test for exceptions. This will help make
our system more stable / reliable.

Client-Side Details

For Client-side code we want to keep it's architecture as consistent as we can to fit in with
the rest of the systems design. So | have decided to use the Model-View-Controller
architecture. The controller in this case is both from the GUI and from the message-
manager (remotely being controlled by a server to some extent). The Model classes will be
designed so that a view can observe them and wait for notifications for changed data. This
also another benéefits:

1. The model code can now be more unit-testable since the model classes will be less
reliant on network / threaded code. This helps improve the reliability of the network
code.

2. We can now divide up tasks; so that one person can work on the client classes
(model/controller) and another can work on the GUI (view).

Server-Side Details

The server-side architecture was designed to be as modular as possible, allowing new
features to be added in easily. This also allows modules to be replaced with equivalent,
more efficient modules without disrupting the rest of the system. The server-side system
was furthermore divided into two separate parts, each capable of being run on separate
machines. These were the:

e Root Server:
Manages user accounts and file transfers between clients.

e Dedicated Server:
Holds the chat-rooms which clients converse in.

This was done to distribute the load between several machines, allowing more users to be
connected simultaneously.

Protocol Details

When connecting to the server a user must send an authentication packet as the first
packet to the server. The server sends back a response (a success or failure depending
on the credentials).

To logout, the client simply disconnects the socket (ends the TCP connection).

Net Sub-system UML Diagrams
We initially designed some UML class diagrams for a reference to aid us during
development. This upfront design really helped us in the long-run. Here is the initial Client-

Side overview UML class diagram:

- - ReceivedinvitationListSubject SentlnvitationListSubjest HetStatus UserStatus
Corrersation Suffect
o o~ CONNECTING : int OFFLINE : int
f:“_“’ﬂte isten_ - Siing c tionListSubject cendF fendinyitationd - vold DISCONNECTED : int OHLINE : int
id_: in 0. invitePacket : int) : void wanealinvitation) - void AUTHORISING : int
sendivhisperuser : User) : void < getinvitations() : woid geﬂwitaﬁom_w'id USERNAMEINVALID : int
sendMessage() : void joinConversationg) : vaid acceplinvitation) : veid istingConversation mitationd : vaid PASSWORDINCORRECT - int
reseivedessagel) void leaveConversation() : void declinelnuitation) - woid sendCompositionSharelnvitation() : vaid CONNECTED : int
receiveihisper(: void AN ewPrivater tionlnvitation() : void AUTHORISATIONSUCCEEDED @ int
1 1 4
Fonnected Usars
1.7
User
ugemame_: String RootServeitessagehanager
status_: int 1
1
Client
logged in user
99 netStatus_: int DedicatedSeneressagehl anagerList
instance : Client
Friend L A R b tion list subject
— cannectToNewSener : void =aRlE conveEation s subjec
losan-VOId remweSemU_mdo So that it can keep track of used connections
— oo registen]) : woid . for dedicated senvers- when 2 dedicated senver
gellmite ;?“50 e updateFofileQ : void s ne longerin use itis disonnectsd and removed.
4 n\rlla ':"tﬁ? . ‘m! ” getinstance): Client = NOTE: In convo events (especially leave) add ded-server
removelnvitationg : voi info 5o can easilyfeffaciantly determine whethar to remov,
DedicatedSenceritessagehanager a senver of not...
0.7
One TCF connectionfol - —— —~ 7
1 potentially multiple public
conversations
FriendsListSubject
selected_: Friend 1 1
getFriendusemame : Sting) : void DedicatedSenerList DedicatedSener MessagelMzrager
add() : woid 0.
deleteq : void ip_:int inputStraam : int
sFriendiuser - User) : void PP port_:int autputStream @ int
getOnlineFriends) : void tepSocket : int
getOfflineFriends : void procoesshezsaged) : void
getFriends) : void 1 /|\ cannest) | void
setFriendStatus) : vaid 1 sandMessage() : void
ChatRoam disonnect) : void
ChatRoomListSubject

name_: String
description_ : String
maxUsesCount_: int
connectedUserCount_ @ int

udpSocket : int
inputStream : int

Observerto receired invitation listings?

when an invite is added and is

: ite = a:) outputStream @ int o
afriend the invite is added to the fiiend celested_: ChatRaom genre_: String
accordingly... same goes for remawing..
refreshAll]) : woid Thread
refreshidedicated : Dedicated) woid
getChatRoomListings0: Collection [y
refreshitoom : ChatRoom] : veid b runey - void

Here is the actual Client-side overview UML class diagram:

i

RootServarhleszagehanager | Hﬂbdmctnﬁessagemanager

Py

1

ConversationListSubject

% 1

Singleton Instance Observers Each other

il
1
\ 1

1 0.r
1 DedicatedSenrerMMListh DedicatedSenverheszagetddanager

CompositionTransferbanager

1

1 1
a.-

1
DedicatedSenerlistSubject LedicatedSener

1

1.7

1
1 .-
|EhatroomListSuhject|0 ChatroomEntry Chatroom

Many of these classes are models (subjects) so that views can observe them. All net-
functionality in the client can be access through the Client's singleton.

Here is the initial UML diagram for the root server:

UserConnection

TCPSocket : int

Meszagehlanager

procoesshlessage) ; woid

£

Abztzct Sener
i o Conversation Accounthanager
getUzerlistl : vaid id_
getConversations : woid createfccount]) : woid
authenticatelUsen) : waoid
deletefccount’ : void
createFriendship() : woid
editfccount] : woid
FootSenrer 1 1
1 0.7 | DedicatedSenverEntny
main) : waid
getinstance) : RaotSener ip_:int
getDedSenListPacket) :void | port :int

Footheszagehdanager

Thread

runl) : waid

UserConnectionhbdanager

loging) @ waid
regesten]) : woid

This is the actual implementation of the server:

DSeanonnettionListener|

Listens for incoming
Dedicated Server connections.

]

Dedicatedservertanager

Maintains the list of
connected Dedicated Servers

Provides command line P - I
control of the Server — - — —|RootienierControlier

[et

AuthenticatorThread

0.

lastCheckinTime : Time

DedicatedServertanager

Represents a single
Client connection

UserConnection

tonnections.

Listens far and
authenticates
incoming Client

|UserCnnnectinnManager|

| AbstrecrMesszgeManzger

RootSenver

AccountManager

RootMessageManager | — {from the clients

Processes messages

0.

ConnectedUserstanager

Maintains the list of
connected Clients

Here is the initial (rough) design for the dedicated server:

UzerConnection

TEPSochket : int

Abstraot Sener

getlUsearlish’ : woid

getConversations) : vaoid

Meszagedanager

£

Serverfsdvartizer

DedicatedSenrer

This is the actual implementation:

[T I

0, »

AbstractMesizgeManager }

UserZonnection

| DedicatedMessageManager

ConnectedUsershManager

DedservlserCanniManager |r/
T

Maintains the list
of connected Clients

|
Accepts new client
connections

ChatRoomListingDistributor |

T
|
|
|
Responds to incoming

client requests for
chat-room listings

e

DedicatedServer

proccesshlessagel) @ vaid
1

Conwersation

id_ :int

________ Processes messages
from the clients

Allows command-line
contral of the Server

]

DedicatedserverController |

\| Conversationdanager (- — —

Maintains the list

RootServerConnection

_{of Conversations
on this Server

Maintains the connection
to the Root Server, for

authenticating clients

User: GUELogintfiew LoginAction: instance:Client instance:RootServerbessagehanager

Users credentials already added
4 _J Click login button

Here is a sequence diagram to show the interaction within the client models; this sequence

illustrates what happens when a user logs into the root-server:

Create instance

Lagin

tar

Asynchronous call:

A connection is established

and ah authentation packet is sent

sent to the root server. The server responds:
the authentication succeeds

lodelChanged flogged in)

Several net-status events

are fired to the GUI. The last

event is a netstatys event containing

a status that says that the connection

is fully-established iconnected and authenticated)
1 1

&1 this point, the useris fully
cohnected and can access/use
all net-related features.

7

Purpose

This section describes the important design aspects of the sub-system that provides online
communication between two or more users. The online communication sub-system
addresses requirements 4.x.

Caveat

The online communications is specifically talking about supporting conversations between
two or more users. When | talk about conversations, | talk about them in an abstract
manor; our system is flexible and can support more than one type of conversation. We
plan to implement two: A public conversation which can be also be referred to as a
chatroom, and a private conversation which is a conversation that users must be invited in
order to join.

General Priorities
Decisions for this sub-system are made based on the following priorities (most important
first):

5. Maintainability

6. Simplicity

7. Usability

8. Reliability

9. Security

10. Efficiency

Outline of design
We decide how conversations will be supported using a client-server architecture.

Major Design Issues

Issue 1:
How should conversations be supported by our network-sub system?

Option 1.1:

Host all conversations on the Root Server.

This option would be very simple, but its very naive; the root-server's network and host
would be the bottle-neck for performance; all conversation traffic would have to be routed
through the root server (since not using peer-to-peer). The reliability is rather poor; It
wouldn't take many clients to connect to the rootserver for the clients network-features
performance to drop and all of the rootservers' host's resources to be fully consumed (and
hence hang or crash).

Option 1.2:

Host public conversations on the dedicated server, but private conversations on the root
server.

By hosting the public conversations on the dedicated server the load-factor on both the
root-servers host and it's network would be reduced and hence provide a solution that
enables adequate performance. This design would introduce more complexity into the net-
subsystem (instead of just having one server-the root server) thus require more time to
implement. This solution is also more prone to security breaches; clients still must be
authenticated when connecting to dedicated servers so more authentication protocols are
needed.

Option 1.3:

Host public and private conversations on the dedicated server.

This option reduces the load-factor on both the root-servers host and it's network such
that it has a better performance than option 1.2. The trade-off being that it would become
more complex than option 1.2.

Decision 1:

1.2 because it not too complex for this project (where as option 1.3 looks as if it could be a
little too time-consuming to implement) and its more reliable than option 1.1: it reduces
chance of failure; however underlying architecture is still prone to a central-point-of-failure.
Another reason why we choose 1.2 over 1.3 is because it allows private conversations
between clients that don't have to be connected to the same dedicated server in order to
chat, they can chat via the root server which they will always be connected to.

Issue 2:
How should the listings of available chat-rooms be made available to clients?

Option 2.1:
The Root Server queries each Dedicated Server, and maintains its own list of all chat-
rooms, which it provides to clients upon request.

Option 2.2:
Let the clients request a listing from each Dedicated Server individually, and process it
client-side.

Decision 2:

2.2 was decided to be a generally more efficient method. It reduces the amount of
processing which the Root Server must perform by offloading work to the client. It also
reduces memory usage, as the list does not need to be maintained on the Root Server.
This is important with large numbers of Dedicated Servers and Chat Rooms.

While there is slightly more overhead in requiring each client to ask each Dedicated Server
individually, the reduced load on the Root Server is considered more important.
Furthermore, the use of UDP also helps alleviate the communication overhead.

Details of design

Dedicated servers can run on separate networks to each other and the root-server (as
long as they can connect to the root server and allow clients to connect to them). They are
designed so that they can be used by anyone (users, companies etc...) so that anyone can
host their own chatrooms.

Here is a graphical representation of four clients logged-in to the root server, it also shows
two dedicated present (available for connecting to and joining chatrooms):

Client 1 Client 2 Client 3 Client 4

RootServer

DedicatedServer 1 DedicatedServer 2

B = TCP Connection

B = TCP Connection and
Connectionless UDP Channel

The TCP connections between the dedicated server and the root server not only allows
the dedicated servers to advertise themselves as an available dedicated-server on the
Jammin network but the connection is also used for forwarding authentication packets
from connecting clients so that the root-servers user-account manager can tell the
dedicated servers that the a connecting client 's credentials is legit and is currently
connected.

The UDP communication channels between the dedicated servers and clients are
connectionless. When a client wants a list of chatrooms from dedicated server they query
them via UDP; no connections are established. This is for the dedicated servers and
clients benefit because it is a many to many relationship — by avoiding connection
establishment and teardowns a lot of load is reduced.

The TCP connections between the dedicated server and clients only needs to be
established if a client wants to join a chatroom. These connections are used for sending
conversation packets and various conversation-control packets.

Protocol Details

When a user connects to a dedicated server that client must be authenticated. The client
must send the first packet as an authentication packet. The dedicated server forwards this
authentication packet to the root server to ensure that the connecting client is legit. The
dedicated server forwards the response (also taking note of the response) to the client.
From the clients perspective the authentication process looks the same as connecting to
the root server.

For a client to join a conversation the client must send a join-request packet to the hosting
server (i.e. A root or dedicated server). The hosting server sends a type of success or
failure response to the join request. If its a success the user can now send and receive
conversation packets for the joined conversation. To leave a conversation a user can
either disconnect from the hosting server or if they want to stay connected (for example
they might be joined in other conversations hosted by the same server) then they send a
leave-packet.

Online Communication Sub-system UML Diagrams
This is a class-diagram of the conversation-models for the Client that was designed as a
reference for directing the implementation:

Client

netStatus_ :int

instance : Client

lagin) : void
registen]) : woid
updateProfile : woid
getinstance) : Client

connectTobedicatadSenven) @ void
dizconnectFromDedicatedSenen) : void

DedicatedSenrer

ip_:int
port_:int 1

ogged in user

Uszer

1

ConmversationListSubject

joinConversation(: woid
leaveConversationd : void

<dintefaces»
Subject

addObsenen) : void
removedbsemen]) : void

Conversation Sudect

meszageHistory_ @ String
id_ :int

usermname_ : String
status_ :int

Connected Users

sendWhispefuser : User) : void
sendhlessage) : woid
receivehlessagel) : woid
receiveithizpen]) : woid

ChatRaoom

name_ : String
dezcription_ : String
maxlzersCount_ : int
connectedUserCount_ @ int
genre_ : String

FublicConversationSubject

FrivateConversationSubject

Attach conversation views he

Py

1

N zzagelfarager

inputStream : int
outputStream @ int
topSocket @ int

proccesshleszaged) : void
connect) : void
sandhlessagel) : woid

This the actual class diagram for the conversations:

“{in future iterations we would also hawve private conversations

[
bstractSubject Abstractfeszagellarager
1 1
1
1
AbstractCon verzation Sulyect
1 conversationlD : String
1 1 |hasEnded : boolean

ConversationListSubject =

onnected user

1 Connected Users

]
Lizer
.- 1

AbstractConwversationSubject(id : String.mm : Abstracthdessagebdanagen
hasConversationEnded(: boolean

sendhessagelmessage : String) : woid

sendhizphenuser : User,message @ String) @ waid
receiveblessagelp : TextPacket) : woid

receivelWhisphenp : WhisperP acket) : void

getConnectedUsers) : List

setConnectedlzersfusers : Set) : woid

updateConnectedUserslp : ConversationUserlpd ateP achket) : void
getConversationl D) : String

gethessagetanagen: Abstracthessagehianager

equalgiobj : Object) : boalean

hashCode) : int

getObsemedSubject] : Subject

modelChanged? : woid

modelChanged(event : ModelChangeEvent) : woid
setdbserredSubjectparent : Subject) : void

integrity) : boolean

:] FublicCon\rersationSubjec{

1

Chatroom

MIMIMUR M2 USER COUMT : int
name : String

genre : String

description : String
maxlzerzCount @ int

connectedllsersCount @ int

DedicatedSernver

topPotMumber :int
udpPotMumber: int

DedicatedServerip @ Inettddress tepPart @ int,udpPart @ inf)
getliPAddress : Inetdddress

getTCPPotNumben] : int

getUDPFPotNumben] : int

equalsdsen : Object): boalean

hashCoded : int

integrity) : boolean

Here is the initial class diagram for the chatroom-listing models for the client:

Client
netStatus_ :int
instance : Client
loging) : void 0.7 -
ginit: DedicatedSenver
registen]) : vaid
updateP rofilal) : vaid ip_:int
updateDedicatedSenrerlist] : woid port_ :int
getlnstance : Client
joinConversation() ; woid
leavaConwversation) : waid 1
1
ChatRoomListSubject ChatRaoom
udpSocket : int name_ : String
inputStream : int description_ @ String
outputStream :int maxUzersCount_ : int
zelected_ : ChatRoom connectedUserCount_ : int
genre_ : String
refreshoall]) : waid
refreshidedicatedSenvar : DedicatedSenrer : void i

getChatRoomListings] : Collection
refreshiroom ; ChatRaoom): void

ChatRoomFilter

Thread FilteredChatR ListingSubject 1
rea iltere atRaomListingSubjec namePatter_: String
minConnectedlsers_ : int
maxConnectadlsers_ : int
run) o owaid setFilten) : woid genrePattern_ : String

T .
inzludeFullRoams_ : boalean

|
1 WIEWALL : ChatRoomFilter
1
]

Attatch Wiew for chat-room listings he[\rz]

This is the actual class diagrams for the chatroom-listing models:

[~
Client l-abstractSubject

ChatroomListSubject

serwiceRunning @ boolean 1Innercl.ass ;
showP acketTransfers | boolean

EESEMD REQUEST TIME :long
sHasFivenlnstance : boolean

CratagramListener

ChatroomListSubject)
giveChatroomListSubjectToClientcliantSingleton : Client) : waoid
fireChatmomListChanged() : void

statServicel) : void

stopSenvicel) : void

refreshicr : Chatroom) @ waoid

refreshAllD : vaoid

getChatroomEntries) : Callection

Thread

Innerclass

remowvellnavailableChatrooms)) : boolean N
isShowF acketTransfers]) : boolean RIreshitianager

izServiceRunning(: boolean

getlSChatroomLiskds | DedicatedServer) : DedicatedServerChatroomList
updateFromP acketp : ChatroomListP acket) : woid

integrity() : boolean

1
I:IHH
ChatroomEntrny Chatroom
lastUpdate Time : long MlHIbALR AR USER COUMT :int

name : String

genre : String

description ; String
maxUsarsCount : int
connectedUsarsCount : int

Here is a sequence diagram to show the interaction within the client models; this sequence
illustrates what happens when a user wants to send a public message to other users in a
conversation. Note that the user is already connected and joined to the conversation:

User:

Canversation view JConversation

Conversation subject:AbstractConversationSubject

instance:ConversationListSubject

conversations host serverAbstractMessageManager

h I
‘Hello" to severyone in conversation

SendMessagel’Hello") .y

1
1
1
1
setStatuff'S nding Message”)
1
1
1
1

SendMessage(TextPacket)

h

<_ ____________

packet is sent to the server via the

This is asynchronous: The text
connected TCP socket.

h

odelChangediReceivedTextdessagebvent)

Update Con\tershtio Text: "fou sent: Hello"

receivedessagelT extPacket)

receiveTexthessage(T extPacket)

(At this point; the message manager has
recejved the sent packet; now know that
the text message has sent the text packet.
MNOTE: Received text packets from other
senders would be proccessed the same way,

Purpose

This section describes the important design aspects of the sub-system that provides
sharing compositions between users via the Jammin network. The sharing sub-system
addresses requirements 6.x.

General Priorities
Decisions for this sub-system are made based on the following priorities (most important

first):
1. Reliability
2. Maintainability
3. Simplicity
4. Consistency (with rest of systems core architecture).
5. Security
6. Efficiency

Outline of design

We decide on what sort of connection should be used for transmitting compositions for in
order to meet requirements 6.x. It briefly outlines the protocol used for transferring
compositions from an uploader to a downloader.

Major Design Issues

Issue 1:
What connection should composition transfers be sent from? (There are limited choices
since we have chosen a client-server architecture).

Option 1.1:

Via the Root Server TCP connection: The uploaders sends compositions to the root server
to be re-routed to the downloader. The option would put a lot of stress on the root-servers'
networks resources; especially when there would be a lot of file transfers occurring at the
same time. This design however is very simplistic because we know that all logged-in
clients will always have a connection with the root server so there wouldn't need to be any
work involved in ensuring that both-clients are connected to the same server that will rout
the compositions.

Option 1.2:

Via a dedicated server TCP connection. The uploaders sends compositions to a root
dedicated to be re-routed to the downloader. Both clients must establish a connection
before the transfer. This option dramatically reduces the load-factor on the root servers
host and network; thus improving efficiency. The trade off is that it would be more
complex.

Decision 1:

1.1 due to simplicity. Ideally we would have direct TCP connections between clients for file
transfers but this would resemble a peer-to-peer network; we have chosen a client-server
approach so this is not possible. Consequently we have no choice but to choose an option
that would not suit a commercial standard (i.e. Wouldn't handle a large amount of users).
We made an early design decision for the network to be simple and straight-forward so by
taking that line we chose option 1.1 over 1.2. option 1.2 would improve performance but
still wouldn't be adequate for a commercial standard, it just adds complexity which defies
one of our main priorities (simplicity).

Details of design

The compositions are sent via the root-server connection in a series of packets using a
protocol called JCTP (Jammin Composition Transfer Protocol) which is a basic protocol
that is designed to run over TCP.

Protocol Details
JCTP is a very simple protocol. Here is a graphical overview of JCTP:

The uploader is the user The downloader is the user
who wants to share who is_r_eceiving a
their composition with composition that the
the downloader uploader is sending them
Client:Uploader Client:Downloader

A A
(] [
] [
N

O O O

Root Server -~

The root server routs all packets:
including JCTP packets

JCTP Control packets
can be sent by either the
uploader, downloader or

root-server

Initially, the uploader sends a composition-header packet to the downloader (who is
always listening for header packets) via the root server, the root-server creates an
outstanding-connection between the two users so if one of the users disconnect during the
transfer the other user is notified that the disconnected user lost their connection (by the
root-server sending a JCTP “lost connection” control packet). The uploader then sends the
composition file in separate ordered data-chunks that are encapsulated in JCTP data
packets. The downloader expects these and writes them to a temp file as soon as a data-
packet is received. Once the last data-packet is sent then the downloader ends the
transferred (the downloader knows that transfer is complete by counting the downloaded
bytes and matching the amount with the JCTP Header-packets file size member. The root-
server doesn't count the sent bytes because it would impose too much load factor on the
root server; so the uploader sends a JCTP “finished” control packet to the root-server to
tell it that the transfer is finished (it then does not need to keep track of the transfer
anymore). During the transfer both the uploader and downloader has the option of
canceling the transfer by sending a JCTP “cancel” control packet; when sent, the root-

server detects this and stops tracking the transfer and routes the packet to the other user
who then ends the transfer.

Sharing Sub-system UML Diagrams
This is the class diagrams for the client transfer-models. Note that the server-side classes

the same.

remain

CompositionTransferbdanager

uploads

sHas@®ivenlnstance : boolean

CompositionTransferbdanagend

givel T ToClient s Client) : void
iveDownloadhd i : Downloadhd 3 woid

receivellploadhl i : Uploadht 3¢ waid

getbownloadht ¢ Downloadhd

getlploadhd 3 : Uplaadhd

getObsenvedSubject] | Subject

modelChanged) : void

madelCh dievent : ModelCh s waid

receivel CTPPacketipacket : JCTPPacket) : void
zendICTPContiolP acketttransterD : intsender : String,receiver : Sting.isSenderbownloader: boolean,contral : byte) : waid
setObservedSubjest(parent : Subject) : vaid

integrity) : boolean

=srealize=»

=zinterfaces>

TransferManager

==interface=>

remowveAllinactive Transfers) : vaid

removelnactive Transfertranster : CompositionTransfer : void

downloads

®

dm

<<realize=>

1

Subject

Transfer

<=realizes>

[

Transfer

=<interface=>

CompositionTransfer

==re.

getBytesTransferedd : long
getTotalBytes) : long
getCompositionNameq : Sting
getPearName(: String
getStatus) : byte
isfuotived : boolean
getProgresss : float
cancelTransfer) : void
getPathd : String

o=

Invitations were used for inviting users to download a composition; we wanted many
different types of invitations so we designed the invitation models such that it would be

easy to implement new types of invites such as invites to a conversation.

This is the initial design for invitations:

FrivateConversationinvitation

withUsers : Collection

Conwversationlnwitation

Friendlnvitation

conversationld_ : int
LedicatedSenrer FublicConversationinvitation
ip_:int chatroomMame_ : String [
port_ :int
1
I:l =
- receiver
1
Uszer Sruitaian
username_ : String sender
status_ : int 1
[.-
1
logged in user
. ReceivedinvitationListSubject
Client
netStatus_ - int addinvitation(inviteP acket : int) ; void
instance : Client getlnvitationsl : woid
laging) : woid acceptinvitation) : woid
register] : vaid declinelnvitation) : wvoid
updateProfiled) : waid
updateledicatedSenverlist]) : void
getlnstance): Client
joinConvearsation : void 4[} <dinterfaces>
leaveConversation) : vaid Subject
addObsenran) : waid
remowve Jbsenven] : void

CompositionSharelnvitation

compasitionMame_ : int
trackMame_ : int
allTracks_ : boalean
fileSize_ :int

SentlnvitationListSubject

By sending a new private conversation invite -
the root senver creates the private conversation
once the invite accepted and sends the
conversation id to join back to both users

getinvitational : woid

sendFriendinvitation) :
cancellnvitation(: waoid

woid

sendExistingConversationlnvitation : wvoid
sendCompositionSharelnvitation? : void
sendMewPrivate Conversationinvitation) : waid

This is the actual class-diagram for the invitation client models:

Client

InvitationListSubject

inviteld @ int
sHasGivenlnstance : boolean

1
1
Ebstra ctSubject

InvitationListSubje il
givelnvitationListSubjectToClientclientSingleton : Client) : woid
getSentinvitation(p : InvitationP acket) : Sentlnvitation

sendShareFullCompositioninvitelreceiverlsemame : String, compositionTempPath : String, compositionMame :

getNewlnvitel D) : int

cancelSentinvitelinvite : InvitationPacket) : woid

declineReceivedinvitelinvite : InvitationP acket) : woid

acceptReceivedinvitelinvite © InvitationP acket) : woid

respond T olnvitelinvite © InvitationP acket responce : byte) : woid

receivedinvitationP acketpacket : InvitationP acket) : void
removedllinvitesFromTolsefusemame : String) : List

removeReceivedinviteP acketFromControl{cp : InvitationControlP acket) : Invitation P achet
remowe Sentimiite P acketFromControl{cp : InvitationControlP acket) : InvitationP acket
getObservedSubject]) : Subject

modelChanged(: vaid

modelChangedievent : ModelChangeBvent) : void

setdbservedSubject(parent : Subject) : void

String) : woid

integrity() : boolean

Sentlnvitation

isCancelled : boolean

InvitationP acket

In future iterations other type of invitationz would be add

Sentimvitation(p : InvitationP acket)
izCancelled] : boolean
setCancelledicancel : boolean) : woid
getSentlnvite) : InvitationP acket
equalsiobj : Object) : boolean
hashCode(): int

integritwl : boolean

senderlsername : String

receiverlsername @ String

hareFullCompasitioninvitationP ache

compositionMame : String
fileByteSize : lang
compaositionP ath @ String

	Overview
	GUI Sub-System
	Purpose
	General Priorities
	Outline of design
	Major Design Issues
	Issue 1: GUI implementation and design pattern.
	Option 1.1
	Option 1.2
	Decision 1
	Issue 2: Managing windows/panels
	Option 2.1
	Option 2.2
	Decision 2
	Issue 3: Invitations less “in your face”
	Option 3.1
	Option 3.2
	Decision 3
	Details of design

	Composition Management Sub-system
	Purpose
	General Priorities
	Outline of design
	Major Design Issues
	Issue 1: Scope
	Option 3.1
	Option 3.2
	Decision 3

	Managing Compositions Sub-system UML Diagrams

	Compositions Sub-system
	Purpose
	Priorities
	Outline
	Design Issues
	Issue 1
	Option 1.1
	Option1.2
	Option 1.3
	Decision:
	Issue 2
	Option 2.1

	Option 2.2
	Option 2.3
	Decision

	Details of Design
	Compositions Sub-system UML Diagrams

	Net Sub-system
	Purpose
	General Priorities
	Outline of design
	Major Design Issues
	Issue 1:
	Option 1.1:
	Option 1.2:
	Decision 1:
	Issue 2:
	Option 2.1:
	Option 2.2:
	Decision 2:

	Details of design
	Client-Side Details
	Server-Side Details

	Protocol Details
	Net Sub-system UML Diagrams

	Online Communication Sub-system
	Purpose
	Caveat
	General Priorities
	Outline of design
	Major Design Issues
	Issue 1:
	Option 1.1:
	Option 1.2:
	Option 1.3:
	Decision 1:
	Issue 2:
	Option 2.1:
	Option 2.2:
	Decision 2:

	Details of design
	Protocol Details
	Online Communication Sub-system UML Diagrams

	Sharing Sub-system
	Purpose
	General Priorities
	Outline of design
	Major Design Issues
	Issue 1:
	Option 1.1:
	Option 1.2:
	Decision 1:
	Details of design
	Protocol Details

	Sharing Sub-system UML Diagrams

