

Assessment

Internal Assessment: 50%

- 11 assignments handed out in Thursday lectures, due Wednesday 17:00 the following week
- Assignments 1–5 and 7–11 are worth 1/12 of internal assessment.
- Assignment 6 is worth 2/12 of internal assessment.

Final Exam: 50%

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1

COMP340-08B Lecturers

Robi Malik

Office: G 2.23 Phone: 07 838 4796

e-Mail: robi@cs.waikato.ac.nz

Tim Stokes

Office: G 3.11 Phone: 07 838 4131

e-Mail: stokes@math.waikato.ac.nz

© THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Sible 2

COMP340-08B Textbook

Michael Huth and
Mark Ryan,
Logic in Computer
Science.
2nd edition,
Cambridge University
Press, 2004.

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1

COMP 340-08B Lectures and Tutorials

Lecture Tue 15:10 G 3.33

Lecture Wed 12:00 G B.13

Lecture Thu 13:10 G 3.33

Tutorial Fri 9:00 K G.06 or R G.19

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Sible

Logic

'Contrariwise,' continued Tweedledee, 'If it was so, it might be; and if it were so, it would be: but as it isn't, it ain't. That's logic.'

— Lewis Carroll

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1 SI

Why Study Logic?

Rules of logic used in many areas of computer science, for example:

- Programming (e.g. && and | | in C)
- Circuit design
- Artificial intelligence
- Proving the correctness of a program

THE UNIVERSITY OF WAIKATO - TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Slide 7

Euclidean Algorithm

```
public int gcd(int x, int y)
{
  if (y == 0) {
    return x;
  } else {
    return gcd(y, x % y);
  }
}
```

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B L

Logic Symbols

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1 Slide

COMP340-08B Prerequisites

- COMP103
 - Introduction to Computer Science I
- COMP153
 - **Practical Programming**
- COMP140
 - Foundations of Computer Science
- COMP235
- Logic and Computation
- COMP240
- Mathematical Foundations of Computer Science

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Slibe

On the Nature of Implication

Let:

p = "The moon is made of green cheese."

q = "The lecturer is a pink elephant."

What is the truth value of ...

 $p \rightarrow q$

THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1 Slide 1

Propositional Connectives		
Negation	$\neg p$	"not p"
Conjunction	$p \wedge q$	" p and q "
Disjunction	$p \vee q$	"p or q"
Exclusive Or	$p \oplus q$	"either p or q "
Implication	$p \rightarrow q$	"if p then q "
Equivalence	$p \leftrightarrow q$	" p if and only if q "

Propositional Variables

- Propositional variables are the basic components of propositional logic.
- Written as p, q, r, ...
- They are placeholders for propositions.
- Example:

p = "The fridge is empty."

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Slide 19

Truth Values

Every propositional variable has a **truth** value attached to it, which is either

- T true, or
- F false.

Example:

p = "The fridge is empty."

- If the fridge is empty then p has value T.
- Otherwise p has value F.

THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Slide 20

Evaluating Formulas

If we know the truth value of each basic proposition, we can already determine the truth value of a formula automatically!

Example:

"Hamilton is south of Auckland." and "Auckland is east of Sydney."

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 1 Slide:

Constructing Formulas

- Building complex propositions from simpler ones:
 - Propositional variables are joined together using logical connectives.
- The complex propositions are called formulas (or sentences).

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 1 Slide 21

#