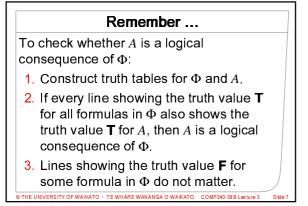
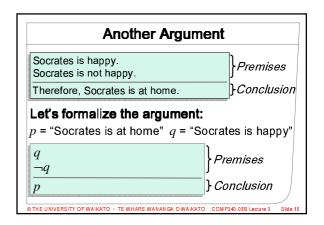
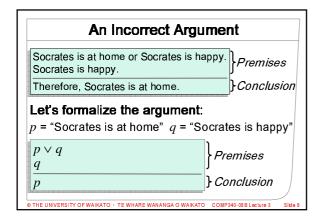
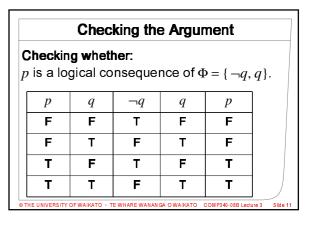


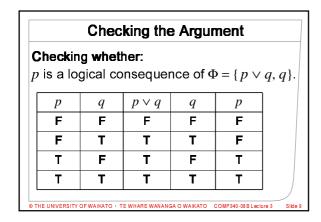
Checking the Argument							
Checking whether: q is a logical consequence of $\Phi = \{p, p \rightarrow q\}$.							
	p	q	p	$p \rightarrow q$	q		
	F	F	F	Т	F		
	F	T	F	Т	T		
	Т	F	T	F	F		
	Т	Т	T	Т	Т		
61	© THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 3 Slide 6						











Note					
If the premises of an argument are false, the conclusion does not matter!					
 An argument with false premises is always correct. 					
© THE UNIVERSITY OF WAIKATO - TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 3 Slide 12					

Checking Arguments

- So far we have used truth tables to check whether an argument is correct.
- A different way of asserting the correctness of an argument is to find a proof for it.

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 3 Slide 10

Laws of Equivalence

Commutativity:

 $A \wedge B$ is logically equivalent to $B \wedge A$ plus the same for the connectives \vee , \oplus , \leftrightarrow

Associativity:

 $A \wedge (B \wedge C)$ is logically equivalent to $(A \wedge B) \wedge C$ plus the same for the connectives \vee , \oplus , \leftrightarrow

Distributivity:

 $A \wedge (B \vee C)$ is equivalent to $(A \wedge B) \vee (A \wedge C)$ $A \vee (B \wedge C)$ is equivalent to $(A \vee B) \wedge (A \vee C)$

THE UNIVERSITY OF WAIKATO . TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 3 Slid

What is a Proof?

A proof is a step-by-step demonstration that the conclusion follows from the premises.

In each step,

we are only allowed to use

- sound rules of inference or
- sound laws of equivalence.

THE UNIVERSITY OF WAIKATO - TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 3 Slide 14

More Laws of Equivalence

Excluded Middle Law:

 $A \wedge \neg A$ is logically equivalent to *false* $A \vee \neg A$ is logically equivalent to *true*

Identity Laws:

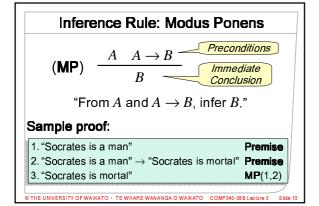
 $A \wedge true$ is logically equivalent to $A \vee false$ is logically equivalent to A

Domination Laws:

 $A \wedge false$ is logically equivalent to false

 $A \lor true$ is logically equivalent to true

THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 3 Slide



More Laws of Equivalence

Double Negation Law:

A is logically equivalent to $\neg\neg A$

De Morgan's Laws:

 $\neg (A \land B)$ is logically equivalent to $\neg A \lor \neg B$

 $\neg (A \lor B)$ is logically equivalent to $\neg A \land \neg B$

Definition of \rightarrow :

 $A \rightarrow B$ is equivalent to $\neg A \lor B$

Definition of ⇔:

 $A \leftrightarrow B$ is equivalent to $(A \to B) \land (B \to A)$

THE UNIVERSITY OF WAIKATO • TE WHARE WANAN GA O WAIKATO COMP340-08B Lecture 3 Slid