

Laws of Equivalence

Definition Laws:

- $A \rightarrow B$ is equivalent to $\neg A \lor B$.
- $A \leftrightarrow B$ is equivalent to $(A \to B) \land (B \to A)$.
- $A \oplus B$ is equivalent to $(A \land \neg B) \lor (B \land \neg A)$.

DeMorgan's Laws:

- $\neg (A \land B)$ is equivalent to $\neg A \lor \neg B$.
- $\neg (A \lor B)$ is equivalent to $\neg A \land \neg B$.

THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 4 Slide

Properties of CNF and DNF

- Any propositional formula can be converted into CNF or DNF using laws of equivalence.
- Why are CNF and DNF important?
 - Easy to understand and analyze.
 - Can be easily converted into a circuit.

THE UNIVERSITY OF WAIKATO . TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 4 Slid

Algorithm to Construct CNF (or DNF)

- Apply the Definitions of →, ←, and ⊕
 to remove all occurrences of these
 connectives.
- 2. Move negation inwards using
 - Double Negation or
 - De Morgan's Laws
- 3. Use the **Distributivity Law** to reduce the scope of ∧ (or ∨).

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 4 Slible 7

Full Disjunctive Normal Form

Definition:

A formula is in **full disjunctive normal form** if it is a disjunction minterms.

$$(\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$$

© THE UNIVERSITY OF WAIKATO · TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 4 Slide

Finding a CNF: an Example

Find CNF equivalent to $\neg((p \rightarrow q) \land r)$:

$$\neg((p \rightarrow q) \land r)$$

$$\neg((\neg p \lor q) \land r)$$

$$\neg(\neg p \lor q) \lor \neg r$$

$$(\neg p \land \neg q) \lor \neg r$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

$$(p \lor \neg r) \land (\neg q \lor \neg r)$$

THE UNIVERSITY OF WAIKATO + TE WHARE WANANGA O WAIKATO | COMP340-08 B Lecture 4 | Slide 8

Properties of Full DNF

- Every formula can be converted into full DNF.
- Full DNF can be constructed from truth tables.
- Two formulas are logically equivalent if and only if their full DNFs are equal (up to reordering of subterms).

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08B Lecture 4 Slide 1

Minterms

<u>Definition:</u>

A **minterm** is a conjunction of literals in which each propositional variable occurs exactly once.

Example:

 $(\neg p \land q \land \neg r)$ is a minterm. (if we have only the variables p, q, and r.)

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO COMP340-08 B Lecture 4 Slide S

Reading

Huth & Ryan: Section 1.5.1–1.5.2 pp. 54–65

THE UNIVERSITY OF WAIKATO • TE WHARE WANAN GA O WAIKATO COMP340-08B Lecture 4 Slide 12